
Bachelorarbeit

zur Erlangung des akademischen Grades

Bachelor of Arts

der Philosophischen Fakultät der Universität Zürich

Post-Correcting OCR Errors Using

Neural Machine Translation

Verfasserin: Chantal Amrhein

Matrikel-Nr: 14-703-656

Referent: Prof. Dr. Martin Volk

Betreuer: Dr. Simon Clematide

Institut für Computerlinguistik

Abgabedatum: 10.12.2017

Abstract

OCR errors are an enormous problem for the digitisation of, especially, historical

texts. To explore new strategies to fix this problem, this Bachelor thesis focuses

on post-correcting OCR errors using character-based neural machine translation

(NMT). First, I compare the performance of NMT to previously tested approaches

with character-based statistical machine translation (SMT). Furthermore, I analyse

how OCR post-correction with NMT can profit from using additional information.

This is investigated in different ways: both by employing well-known NMT ap-

proaches and testing novel ideas. My findings show that SMT and NMT can benefit

from each other for OCR post-correction. Moreover, I discover that the data on

which the MT systems are trained has a large influence on which methods work

best. Finally, I show that a combination of my experiments can outperform other

OCR post-correction approaches in the task of error correction and perform com-

paratively in error detection.

Zusammenfassung

OCR-Fehler stellen ein grosses Problem für die Digitalisierung vor allem historischer

Texte dar. Um neue Erkenntnisse zu sammeln, wie dieses Problem gelöst werden

kann, beschäftigt sich diese Bachelorarbeit mit der Post-Korrektur von OCR-Fehlern

mit zeichenbasierter neuronaler maschineller Übersetzung (NMÜ). Zuerst vergleiche

ich die Qualität von NMÜ mit früheren Experimenten mit zeichenbasierter statis-

tischer maschineller Übersetzung (SMÜ). Zusätzlich analysiere ich, wie sich OCR

Post-Korrektur mit NMÜ durch das Hinzuführen von zusätzlichen Informationen

verbessern lässt. Im Besonderen wird das auf zwei Arten untersucht: Indem ich be-

reits bekannte Ansätze für NMÜ einsetze und indem ich neue Ideen ausprobiere.

Die Ergebnisse zeigen, dass NMÜ und SMÜ voneinander profitieren können bei der

Post-Korrektur von OCR-Fehlern. Weiterhin stellt sich heraus, dass die Art von

Daten, auf welchen die Systeme trainiert werden, einen grossen Einfluss darauf hat,

welche Methoden am besten funktionieren. Zum Schluss zeige ich, dass eine Kom-

bination meiner Experimente andere OCR Post-Korrektur-Ansätze übertrifft, wenn

es darum geht Fehler zu korrigieren, und ähnliche Resultate liefert, wenn es darum

geht Fehler zu erkennen.

ii

Acknowledgement

First of all, I would like to thank Martin Volk for his never-ending enthusiasm. You

woke my fascination for computational linguistics at the beginning of my studies

and always encouraged me to explore my interests.

Many thanks go to my supervisor Simon Clematide. It was always a pleasure to

work with you, and I appreciated your valuable feedback, our interesting discussions

and your continuous support throughout my work on this thesis.

Additionally, I am extremely grateful to Natalia Korchagina for her helpful insights

into her work with character-based machine translation and to Tilia Ellendorff for

the initial idea to experiment with images in this Bachelor thesis.

A heartfelt thank you to my best friends who shared my joy in moments of success

and, likewise, never failed to build me up when the struggle was real.

Last but not least, I want to thank my family who believes in me no matter what.

Thank you for all you taught me and for making me the person I am today.

Without any of you, this work would never have been written.

iii

Contents

Abstract i

Acknowledgement iii

Contents iv

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1

2 Related Work 2

2.1 OCR post-correction . 2

2.2 Neural Networks for NLP tasks . 3

2.3 Character-based NMT . 4

3 Materials 5

3.1 ICDAR2017 OCR Post-correction Data 5

4 Methods 11

4.1 Experimental Setup . 11

4.2 Character-based SMT . 13

4.3 Character-based NMT . 13

4.4 Increased Training Material for SMT and NMT 15

4.5 Using More Context for SMT and NMT 16

4.6 Factored Character-based NMT . 17

4.7 Glyph Embeddings . 18

4.8 Error-focused Models . 19

4.9 Ensemble Decoding . 20

4.10 System Combination . 20

iv

Contents

5 Results and Discussion 23

5.1 Evaluation Setup . 23

5.2 Increased Training Material for SMT and NMT 23

5.3 Using More Context for SMT and NMT 27

5.4 Factored Character-based NMT . 28

5.5 Factored Character-based NMT with Increased Training Set 30

5.6 Glyph Embeddings . 32

5.7 Error-Focused Models . 33

5.8 Ensemble Decoding . 35

5.9 Overview of Best Systems . 38

5.10 ICDAR 2017 Competition Submission and Results 39

5.11 Future Work . 42

6 Conclusion 43

References 45

A Tables and Graphs 49

v

List of Figures

1 English monograph errors over time 10

2 Character B as image . 19

3 Error detection and correction algorithms 21

4 Competition data sample . 22

5 Evaluation format . 22

6 F1 results with language specific data 24

7 Levenshtein results with language specific data 24

8 F1 results with all data combined . 26

9 Levenshtein results with all data combined 26

10 F1 results with context . 27

11 Levenshtein results with context . 28

12 F1 results with time factor . 29

13 Levenshtein results with time factor 29

14 F1 results with all factors . 30

15 Levenshtein results with all factors 31

16 F1 results with glyph embeddings . 32

17 Levenshtein results with glyph embeddings 33

18 F1 results with error-focused data . 34

19 Levenshtein results with error-focused data 34

20 F1 results with single ensembling . 35

21 Levenshtein results with single ensembling 36

22 F1 results with multi ensembling . 36

23 Levenshtein results with multi ensembling 37

24 Shared task results overview . 41

25 Shared task results task 1 . 41

26 English periodical errors over time . 50

27 French periodical errors over time . 51

28 French monograph errors over time 52

vi

List of Tables

1 Operations . 7

2 Substitutions . 8

3 Hapax legomena . 9

4 Most frequent token corrections . 9

5 Train, dev, test sets . 12

6 NMT parameter configurations . 15

7 Best-performing systems overview . 38

8 Systems included in combinations . 40

9 English periodical results . 49

10 English monograph results . 50

11 French periodical results . 51

12 French monograph results . 52

vii

List of Acronyms

BnF Bibliothèque nationale de France

IAPR International Association of Pattern Recognition

ICDAR International Conference on Document Analysis and Recognition

MERT Minimum Error Rate Training

MT Machine Translation

NLP Natural Language Processing

NMT Neural Machine Translation

OCR Optical Character Recognition

RNN Recurrent Neural Network

SMT Statistical Machine Translation

viii

1 Introduction

In the digital age, optical character recognition (OCR) is an important processing

step for text digitisation, and it becomes more and more important with the growing

interest in digital humanities. Unfortunately, the output of OCR systems is often

faulty. Especially historical documents pose a challenge due to both orthographic

and typographic variation and sometimes also poor condition of the source material

(e.g. stains on the documents). Therefore, it is often necessary to take measures to

improve the quality of OCR-generated text.

Recently, more and more natural language processing (NLP) tasks have profited

from the use of neural networks. Especially in machine translation (MT), neural

machine translation (NMT) managed to outperform statistical machine translation

(SMT) with much better results. Since string-to-string translation methods have

been used to correct OCR errors for a long time, it is interesting to explore how

character-based NMT can be employed for this task.

Therefore, this thesis focuses on answering the following two research questions:

1. How does character-based NMT perform compared to character-based SMT

in the case of OCR post-correction?

2. How can these approaches be improved by using more information during

training and translation?

In the following chapter, I discuss previous works relevant to OCR post-correction,

neural networks used for NLP tasks and character-based NMT. In Chapter 3, I give

an overview of the data used in this thesis and describe its properties. Chapter

4 presents the methodology used for my experiments, which are then evaluated in

Chapter 5. Finally, I summarise the results in Chapter 6. More detailed graphs and

tables are presented in Appendix A.

1

2 Related Work

2.1 OCR post-correction

OCR errors are a severe problem for digitised texts, and it is often necessary to

avoid or correct them. As described in Volk et al. [2011], there are three possible

ways to achieve this: Modifying the input images, altering the OCR system or post-

processing the output text. Since it does not involve re-OCRing, a considerable

number of approaches has focused on the last option. Kukich [1992] discusses various

automatic methods to find and correct errors, such as n-gram or dictionary-based

techniques. These methods have frequently been used for correcting OCR output.

Generally, OCR post-correction can be seen as a special case of spelling error correc-

tion. Eger et al. [2016] give an overview of common error correction techniques and

compare them to general NLP string-to-string translation models for an OCR data

set. They show that the latter models can achieve significantly better results than

for example (weighted) edit distance or the noisy channel model [Brill and Moore,

2000].

Based on the idea that OCR post-correction can be perceived as a translation task,

Afli et al. [2016] have successfully trained an SMT system to translate historical

OCR-generated text with errors into corrected text. Their system managed to out-

perform language model based techniques for OCR post-correction. However, for

the training of their models, they used a data set of more than 60 million OCR

output tokens. This exceeds the data set used in this Bachelor thesis by far. For

their experiments, a word-level SMT system was used. In previous experiments, Afli

et al. concluded that word-level SMT systems perform better than character-level

systems for OCR post-correction [Afli et al., 2015]. The size of the training set

there was over 90 million OCR output words. It is therefore interesting to see, how

character-level MT performs if the available training data is much smaller.

Motivated by the above work, this Bachelor thesis shall give an insight into how

NMT systems perform in the correction of noisy OCR output. A similar approach

has been tested in a Master project by Valette [2017]. However, in contrast to his

2

Chapter 2. Related Work

work, I train a supervised end-to-end system without separating error detection and

correction and without external lexical resources.

2.2 Neural Networks for NLP tasks

Recently, neural networks have been given much attention in the field of compu-

tational linguistics. Especially the work of Sutskever et al. [2014] has prompted

much research which focused on employing sequence-to-sequence (seq2seq) neural

networks in various NLP tasks. Examples include effectively using neural networks

for transliteration [Rosca and Breuel, 2016], for grapheme-to-phoneme conversion

[Yao and Zweig, 2015], for historical spelling normalisation [Bollmann and Søgaard,

2016] and language correction of second language learners [Xie et al., 2016].

All of these tasks can (at least partly) be viewed as string-to-string translation

problems and are, thus, closely related to OCR post-correction. The models were

all successful, performing at least equally but mostly better than traditional NLP

methods such as methods based on (weighted) edit distance [Xie et al., 2016].

However, Schnober et al. [2016] express their doubt whether neural networks are

already at the point where they can entirely replace traditional approaches. They

evaluated the performance of encoder-decoder neural networks against established

methods for spelling correction, OCR post-correction, grapheme-to-phoneme conver-

sion and lemmatisation. Some of the string-to-string translation systems they used

as baselines were also evaluated by Eger et al. [2016]. It is particularly interesting

to see how neural network approaches performed compared to these models which

were previously shown to exceed (weighted) edit distance and other techniques.

In the experiments of Schnober et al. on OCR post-correction, the neural network

systems did not manage to outperform a system built with Pruned Conditional

Random Fields on a training set of 72’000 misrecognized words. Despite these

negative results, the work gives valuable insight into model selection for neural net-

work approaches. Attention-based models [Bahdanau et al., 2015] show significant

improvements over plain seq2seq models. On a smaller training set, the attention-

based models also performed better than the Pruned Conditional Random Fields.

In contrast to the experiments conducted by Schnober et al., my work will work with

data that does not only contain misrecognized words. Therefore, the task becomes

much harder since the systems also need to detect erroneous words to correct them

accurately.

3

Chapter 2. Related Work

2.3 Character-based NMT

Machine Translation with neural networks has been very popular over the last few

years. Even though such systems achieve much better results than SMT systems,

there is always a trade-off between OOV words and computation time. NMT systems

need a fixed vocabulary to generate fixed-size vectors as input to the neural network.

The larger this vocabulary is, the less unknown words occur, but the longer it takes

to train the model and to use it in practice for translation.

To address this drawback, many approaches have been proposed to design open

vocabulary NMT systems. These range from simple dictionary lookup techniques

[Luong et al., 2015] over integrating SMT features [He et al., 2016] to specific design

choices for the NMT architecture itself. This approach mainly focused on using

smaller units than words for translation. Luong and Manning [2016] use a hybrid-

system which translates primarily on word-level and falls back to a character-based

representation for out-of-vocabulary words.

Similarly, Sennrich et al. [2016] propose to translate on subword-level. They use

byte pair encoding to create a vocabulary that is built bottom up, starting with

characters and then adding larger subwords made from already known entries. The

resulting vocabulary will contain characters, subwords as well as whole words.

Going one level deeper, Chung et al. [2016] designed a character-based decoder with-

out explicitly segmenting the character sequences to match words. They motivate

their approach with the following arguments: There is always a risk of introducing

artificial errors when sentences are explicitly segmented into words. Furthermore, a

character-based model will not suffer as much from data sparsity since stem forms

and affixes can be treated separately. Finally, the system has a much better chance

at generalisation for unseen word forms.

Extending this idea, Lee et al. [2017] aimed to design a fully character-based NMT

system without explicit segmentation. They show that such an architecture is also

beneficial for a multilingual many-to-one translation environment. More importantly

for this Bachelor thesis, they also observe that their model is capable of locating

spelling errors and still producing the correct translation. This finding is shared by

Zhao and Zhang [2016].

Motivated by the mentioned approaches and their outcomes, this Bachelor thesis

will employ character-based NMT in post-correcting OCR errors. Since character-

based NMT proved to handle spelling errors well it is not far-fetched to believe that

it will also perform well on OCR errors.

4

3 Materials

3.1 ICDAR2017 OCR Post-correction Data

The data for the experiments of this Bachelor thesis comes from the 14th IAPR

International Conference on Document Analysis and Recognition (ICDAR 2017).

Every second year, competitions in various subfields concerning document analysis

problems are organised. One of these competitions in 2017 was dedicated to OCR

post-correction1.

The full data set for this competition consists of around 12M OCRed characters and

their alignments to a gold standard2. It consists of an equal split of English and

French data. The set is a subpart from a corpus that was built in the AmeliOCR

project3 realised by the L3i laboratory (University of La Rochelle, France) and the

National Library of France (BnF).

The data is distributed as a training set consisting of 10M characters (83% of the

full data set) and an evaluation set of 2M characters (17%). The data is split into

multiple files, most likely each referring to an individual paragraph. Every file is

distributed with three lines of text. The following example shows an excerpt from

the training data:

(3.1) “[OCR toInput] ATRAVELLER STOPPED AT A WIDOW’S GATE.”

“[OCR aligned] A@TRAVELLER STOPPED AT A WIDOW’S GATE.”

“[GS aligned] A TRAVELLER STOPPED AT A WIDOW@S GATE.”

Example from a document written in 1860.

The first line contains the original output of the OCR system. On the second line,

the OCRed text is aligned with the gold standard. This means that for every OCRed

character the aligned gold standard character can be found directly below. Wherever

1https://sites.google.com/view/icdar2017-postcorrectionocr/home
2The term “gold standard” is used with “ground truth” interchangeably.
3http://actions-recherche.bnf.fr/BnF/anirw3.nsf/IX01/A2016000030_post-

correction-d-ocr-pour-les-ouvrages-anciens-en-exploitant-les-associations-

lexicales-de-l-ocr-bruite

5

https://sites.google.com/view/icdar2017-postcorrectionocr/home
http://actions-recherche.bnf.fr/BnF/anirw3.nsf/IX01/A2016000030_post-correction-d-ocr-pour-les-ouvrages-anciens-en-exploitant-les-associations-lexicales-de-l-ocr-bruite
http://actions-recherche.bnf.fr/BnF/anirw3.nsf/IX01/A2016000030_post-correction-d-ocr-pour-les-ouvrages-anciens-en-exploitant-les-associations-lexicales-de-l-ocr-bruite
http://actions-recherche.bnf.fr/BnF/anirw3.nsf/IX01/A2016000030_post-correction-d-ocr-pour-les-ouvrages-anciens-en-exploitant-les-associations-lexicales-de-l-ocr-bruite

Chapter 3. Materials

a character has to be inserted to match the length of the gold standard (which means

there is no possible alignment) an “@” is inserted. The last line contains the gold

standard. Here, the “@” is added for all characters that appear in the OCRed text

but cannot be aligned with a character in the gold standard. Any characters or

longer segments that could not be identified with certainty in the original image are

aligned with the “#” character in the gold standard.

It is a challenging data set since the documents origin from different collections, e.g.

the BnF and the British Library. The texts were all published either in periodicals

or monographs. Additionally, the data covers a considerable time span. In the

training set, the oldest document is from the year 1654 and the most recent from

the year 2000. Unfortunately, for some documents the publication year is unknown.

Of those where this information is known, about 92% origin from the 19th century.

Despite this substantial majority, there is still much variance in spelling both of

typographic as well as orthographic nature. For example, consider the difference in

the spelling of “completed” between the middle of the 18th century and the end of

the 19th century:

(3.2) “[...] all her Forces to be compleated without delay.”

Example from a document written in 1744.

(3.3) “[...] other parts of the kingdom, where railroads are completed [...].”

Example from a document written in 1894.

With this example, it becomes clear that diachronic documents pose a great chal-

lenge to OCR post-correction. First of all, the OCR quality will already be worse

since such texts are often harder to recognise correctly for OCR systems. For lexicon-

based approaches, it is essential that as many historical spelling variants as possible

are included. This is also an issue for learning algorithms. Especially for supervised

methods, having many distinct spellings can create data sparsity. Furthermore,

models have to deal with special characters, e.g. “ s ” (long s). The data contains

many hyphens for which the gold standard is often very inconsistent. Following the

decision of the organisers of the OCR post-correction competition, all hyphens are

ignored in both the error analyses in this chapter as well as in all evaluations. They

are not removed from the data in order to use the original training setting, but they

are simply ignored when producing any statistics or evaluating translation outputs.

Table 1 gives an overview of the operations needed to correct the OCR errors in the

training data. Insertions and deletions are measured counting the “@” characters

in the aligned OCRed text and the aligned gold standard respectively. Other pairs

of aligned characters that do not match are counted as substitutions. A character is

6

Chapter 3. Materials

Monograph Periodical

Language fr en fr en

Total # of Chars in Gold Standard 3560500 3592543 1637087 1574796

Total # of Chars in Original OCR Output 3569285 3592763 1640237 1575613

Insertions 0.32% 0.51% 0.68% 0.63%

Deletions 0.57% 0.52% 0.87% 0.68%

Substitutions 0.75% 0.78% 1.88% 2.46%

Errors Total 1.64% 1.81% 3.43% 3.77%

Unrecognisable 0.42% 3.32% 5.27% 9.33%

Table 1: Edit operations needed to correct OCRed training data (excluding hy-
phens): Percentage of total characters that need to be inserted, deleted,
substituted in the OCR output or are unrecognisable in the gold standard.
Relative numbers are measured over the total number of characters in the
original OCR output.

classified as unrecognisable if it is aligned with an “#” in the gold standard. Overall,

the texts from the periodicals need more correction operations, possibly due to worse

quality of their images. Interestingly, the English texts seem to contain many more

unrecognisable characters than the French texts for both document types.

Table 2 takes a closer look at the ten most frequent substitutions over characters

ngrams. The substitutions were counted as illustrated in the following artificial

example:

(3.4) “[...] the rnassive bouse [...]” (original OCR output)

| |
“[...] the @massive house [...]” (gold standard)

Substitutions found: rn → m and b → h

The table suggests that the frequency of certain substitutions is very text type

specific. Most of the substitutions can be easily explained due to the visual similarity

of the characters, e.g. mistaking “v” for “u”. However, it is perplexing to see that

“é” is recognised instead of “e” and the other way around in the English monograph

texts. A quick look at the data shows that sometimes there are French citations

in the English texts. An example of code-switching can be seen below. Finally,

there seem to be many substitutions for punctuation. A comma is often recognised

instead of a full stop and vice versa.

7

Chapter 3. Materials

Monograph Periodical fr en both

Language fr en fr en form freq form freq form freq

1. f → s 1 → I t → l fi → fi f → s 2346 1 → I 2279 f → s 2653

2. u → v é → e , → . b → h é → e 870 b → h 1250 1 → I 2310

3. é → e U → ll e → é u → n e → é 790 fi → fi 993 é → e 1647

4. i → j e → é o → e - → - u → v 740 u → n 898 b → h 1338

5. v → u h → b . → , ff → Ď t → l 677 é → e 777 u → n 1320

6. e → é b → h é → e f → s , → . 639 - → - 720 . → , 1225

7. l → t d → ll i → l o → e l → t 562 ff → Ď 712 , → . 1214

8. c → e e → c a → e li → h . → , 535 c → e 701 e → é 1209

9. 1 → ! f → s u → n c → e o → e 521 . → , 690 c → e 1157

10. è → e ’ → e l → t . → , i → j 504 li → h 666 o → e 1110

Table 2: 10 most common substitutions of characters ngrams (excluding hyphens).
→ means x was recognised “instead of” y.

(3.5) “[...] his astonishment over Martine’s de-scription of the apparel of

Sganarelle in Le médecin malgré lui. Un habit jaune et vart ! C’est done le

médecin des perroquets. We light-minded [...].”

Gold standard example from a document written in 1888.

From the corrections needed on word-level, it can be observed that most wrong

tokens only appear once in the whole data set. Table 3 shows the percentage of

hapax legomena over all tokens that are wrong in the OCR output. I exclude

any punctuation characters to compute which tokens need to be corrected for this

analysis, because there are many errors where only a punctuation character needs

to be added or removed. If these errors were considered, there would be many

hapax legomena tokens where, for example, only a comma needs to be removed

from the end. With this measure, only non-punctuation errors are counted like

recognising “rnessage” instead of “message” but not a comma instead of a full stop.

The large percentage of hapax legomena suggests that performing post-correction

on character-level will be more beneficial than on word-level.

Table 4 shows the ten most common tokens that need to be corrected for both

languages. It is interesting to see that for the English texts there are four misspelt

versions of “the” among the ten most frequent misrecognized words. The average

number of spelling versions per misrecognized gold standard type is 1.7 for the

English data set and 1.77 for the French data set. The English word with the most

8

Chapter 3. Materials

fr en

Total Mistakes 51699 47583

Total Hapax Legomena Mistakes 46644 41487

Percentage of Hapax Legomena in original OCR output 90.22% 87.19%

Table 3: Percentage of hapax legomena considering all tokens that need to be cor-
rected in the OCR output (excluding hyphens).

error diversity is “the” with 275 distinct variants, for French, it is “de” with 214

distinct variants. All of these findings suggest that a character-based approach is

more suitable for this task and data set.

fr en

OCR GS Freq OCR GS Freq

1. font sont 470 1 I 2245

2. a à 331 tbe the 513

3. 1 ! 286 thé the 510

4. d de 167 tlie the 303

5. !. !... 164 aud and 211

6. do de 145 1 ’I 195

7. ta la 139 tho the 188

8. ie je 129 he be 172

9. vn un 116 hut but 165

10. dé de 101 ail all 165

Table 4: Ten most frequent errors on word-level (excluding hyphens).

Finally, it is interesting to see how errors develop over time. Figure 1 is a screen-

shot from an interactive visualisation of the frequency development of the ten most

frequent errors per 30 years in the English monograph data. The numbers are di-

vided by the number of files for the specific time span to normalise the amount

of data. Unfortunately, the available colour palettes did either not cover the many

data tracks or could not be visually distinguished from each other. In the interactive

visualisation, the error would be shown by hovering over a line, or other errors could

be faded out such that the development of one error can be seen better.

9

Chapter 3. Materials

However, for the sake of this argument, it is not essential to know which error belongs

to which line. Instead, it is astonishing to see the error development. Notice that the

scale is logarithmic. For the texts around 1800, the most frequent errors occur by

far more often than the most frequent errors in later years. The most frequent error

in 1800 was observed around 2000 times, while for example around 1860 the most

frequent error lies around a value of 2. Also, most of the errors in early documents

rarely happen in files that were published later.

Figure 1: Errors over time in English monograph data. Frequency of ten most fre-
quent errors per 30 years divided by number of files on logarithmic scale.

Due to spatial reasons, the visualisations for the other data sets are included in Ap-

pendix A. The graph for the English monograph was chosen in this section because

it is the most interesting to discuss since the drop from a frequency of 2000 to 2

is striking. Even though the pictures for the individual data do not show such ap-

parent differences between the periods, similar observations can be made about the

frequency span of an error over time. Thus, it can be concluded that the different

time periods all offer distinct challenges for OCR post-correction.

10

4 Methods

In the following sections, I present the approaches used in my experiments. First, I

introduce the experimental setup and the preparation of the data. Then I describe

my baseline systems and show how additional information can be included in these

systems. In particular, I use techniques from SMT and NMT for my experiments.

I do not go into great detail about how SMT and NMT work but I refer to the

most important works which give an excellent introduction to the techniques I use.

Furthermore, I describe how approaches like factored NMT and ensemble decoding

can be applied in the context of OCR post-correction. Additionally, I propose a new

technique on how glyphs can be used as embeddings for NMT systems, and I explore

different strategies of transforming the data set, e.g. adding more translation con-

text, building error-focused training sets and combining different data sets. Finally,

I present our submission to the ICDAR 2017 competition on OCR post-correction.

4.1 Experimental Setup

Unfortunately, it was not possible to obtain the original test set gold standard in

time for my experiments. Therefore, the training data released for the ICDAR 2017

OCR post-correction shared task was split again into a new training, development

(dev) and test set. For each file, a random split of 10% was used for testing, another

10% as the dev set and the rest for training. This design choice was made due to the

various orthographic and typographic changes and different error frequencies over

time. If the training set overrepresented a particular time span, the MT systems

would overfit to correcting OCR errors from this time span. Furthermore, characters

that were aligned with a # in the gold standard, meaning they were unrecognisable

when creating the gold standard, were ignored while building the train and dev set

and excluded in the evaluation of the test set.

Table 5 shows the resulting data sets. These were the starting point for all further

experiments, and whenever the data needed to be in a specific format, these data

sets were transformed to fit it.

11

Chapter 4. Methods

Periodical Monograph Combined

fr en fr en fr en both

Train 1320728 1268194 2862351 2887538 4183079 4155732 8338811

Dev 165449 158748 360090 362068 525539 520816 1046355

Test 165032 158492 356580 360228 521612 518720 1040332

Table 5: Size of train, dev and test set in characters (including whitespace and hy-
phens) for all four document types. The combined French and English
data sets were constructed by concatenating all available data (periodical
& monograph). The last column shows the data set consisting of all, both
French and English, data.

Chapter 3 illustrated that an enormous percentage of errors are hapax legomena

errors, meaning they only occur once. This motivates my decision to use character-

based approaches in my experiments. In contrast to word-based machine translation,

one word or a sequence of more than one words are translated instead of a whole

sentence. This is due to limited memory. The length of the text that should be

translated is much longer since in character-based MT every character is treated as

a separate word.

Tokenisation is not as important for a character-based approach as for a word-based

approach. Therefore, the data sets described in Table 5 were processed further using

only whitespace tokenisation. Whenever two space characters were aligned in the

OCR output and the gold standard, a newline character was introduced to create a

verticalised format. Having one word per line makes the training of the MT systems

less complex. However, this results in a context-insensitive approach. Between each

character, a space is inserted to force the MT systems to work on character-basis.

All @ characters occurring in the original OCR text as well as in the gold standard

were deleted.

(4.1) “This@couise@was agretd to, [...]” Original OCR text.

“This course was agreed to, [...]” Aligned gold standard.

(4.2) T h i s c o u i s e w a s T h i s c o u r s e w a s

a g r e t d a g r e e d

t o , t o ,

(OCR text) (Gold standard)

12

Chapter 4. Methods

The resulting data format can be seen above. Example 4.1 shows an extract from

the English periodical training data set. Example 4.2 shows the same extract in the

format given to the MT systems. Note that all @-characters are removed, and the

first OCRed word needs to be split into three separate words in the gold standard.

4.2 Character-based SMT

To have a baseline for the character-based NMT models, I trained character-based

SMT systems on the ICDAR 2017 OCR post-correction data sets analogous to the

experiments of Pettersson et al. [2013]. The core components of SMT systems are a

translation model to translate words from a source to a target language, a language

model to focus on translations that are as natural as possible and a reordering model

which can change the word order. For a more extensive introduction to SMT, please

refer to [Koehn, 2009].

All SMT systems were trained with the Moses1 toolkit using GIZA++2 for character

alignment and MERT3 for optimisation. Since training an SMT system on character-

level does not generate a large vocabulary, it is possible to train a higher order

language model. I used a 10-gram language model in all experiments.

4.3 Character-based NMT

There are different NMT frameworks which can be used for OCR post-correction.

First, I chose to test the NMT system described in Lee et al. [2017]. This is an

implementation which works on character-level by design. The architecture which

they describe in their paper is different from other NMT systems. Instead of the

bi-directional recurrent input layer, they use a set of convolutional filters to cap-

ture local dependencies of characters. Early experiments with this framework did

not produce satisfactory results. In most cases, more errors were introduced than

corrected.

Since Lee et al.’s framework did not produce acceptable results for OCR post-

correction, I tested another framework which does not translate on character-level

by design. Nematus4 is a well-know NMT framework described in Sennrich et al.

1[Koehn et al., 2007]
2[Och and Ney, 2003]
3[Och, 2003]
4https://github.com/EdinburghNLP/nematus

13

https://github.com/EdinburghNLP/nematus

Chapter 4. Methods

[2017]. Using the same strategy as for SMT with Moses, it can also translate on

character-level. Therefore, the input format for the NMT systems is the same as

for the SMT systems. Initial experiments with Nematus convinced me to use this

framework in all subsequent NMT experiments.

As discussed in Section 2.3, a fixed-sized vocabulary is used for translation with

NMT systems. In order to have the option to combine individual systems in later

experiments, I decided to build one large vocabulary over all data sets and use it

for all the experiments.

Neural networks have many hyperparameters that can influence their performance.

I decided to test different hyperparameters before performing my experiments, to

find the best conditions for correcting OCR errors with NMT systems. In particular,

I investigated how embedding size, the amount of dropout, the batch size and the

use of tied embeddings affect the OCR error detection and correction quality. For a

more extensive introduction to NMT, please refer to [Koehn, 2017].

Embeddings are encoded one-hot vectors which are projected into a dense, con-

tinuous vector space with a much lower dimension. The embedding size refers to

the number of dimensions in the dense representation. Dropout is a state of the

art technique in NMT. During training, some units in the network are switched

off. Consequently, the model does not have access to all the information and is

less prone to overfit on the training data. The amount of dropout regulates how

many units are switched off at the same time. Batch size refers to the number of

training examples which are used to compute the gradient and update the weights

in the network. Larger batch size leads to a speed-up in training on GPUs. Lastly,

I tested the usefulness of tied embeddings. This means that the embeddings of the

target side are tied to the embeddings of the source side. In the case of OCR post-

correction, the embedding for the character “f” would be the same for the input as

for the translated output since they are always updated together.

To save some time with these configuration experiments, I only tested them on the

French periodical data. There are two main reasons for this decision: First, it is one

of the smaller data sets and, thus, it takes less time to train a system and, second,

my experiments with SMT had already shown that this data set is harder to correct

than others. Therefore, it is a suitable choice to make some assumptions about all

the data. Of course, it would be better to evaluate this more systematically but it

is not feasible to do this within the scope of this thesis.

14

Chapter 4. Methods

Embedding Size Dropout Batch Size Tied Embeddings

32 0 50 yes *

256 * 0.2 * 100 * no

512 200

Table 6: All possible options for each hyper-parameter. Parameter used in the base
configuration are marked with an asterisk.

Table 6 shows all possible parameter options. The parameters which I used in the

base configuration are marked with an asterisk. This means that whenever I tested

the options for one parameter, the others were set to the asterisk option. These are

the options which initially I assumed to work best for OCR post-correction. For the

first three parameters, the base configuration did indeed work better than the other

options in my experiments. For the last option, not using tied embeddings achieved

better results in error detection but worse results in error correction. Therefore, both

options could be have been chosen. Eventually, I decided to use tied embeddings

since I also experienced a training time speed-up when using them.

Additionally, there are a few hyperparameter for which I did not evaluate which value

is best. I used the default values from Nematus for the hidden layer size (1000),

the optimizer (adadelta), the gradient clipping threshold (1) and the learning rate

(0.0001). Furthermore, I set the maximum sequence length to 23 for all context-

insensitive experiments and to 53 for context-sensitive experiments. These limits

cover 99.99% of all training examples.

4.4 Increased Training Material for SMT and NMT

In the first experiments, the context was ignored when translating a token. Hence,

the verticalized one-token-per-line format described in example 4.1 could directly be

used for training and testing. However, this also means that there is little informa-

tion that the MT system can work with. Therefore, it makes sense to think about

how more information can be fed into an MT system.

Since OCR errors mostly occur due to the visual similarity of characters, it is possi-

ble that the same errors occur in the OCRed periodicals as in the monographs and

also in both languages. Moreover, in Section 3.1, I also found that there is some

code-switching within the individual data sets. With these assumptions, it would be

15

Chapter 4. Methods

sensible to combine the individual training sets and thus increase the available train-

ing material. Therefore, the traditional method of adding more training material

in MT can be simulated in the scenario of the ICDAR competition by combining

training sets from the different languages and text types: one with both French

periodical and monograph data, one with both English periodical and monograph

data and, finally, one combining all the available data.

4.5 Using More Context for SMT and NMT

Besides increasing the training material, another simple method to give more infor-

mation to an MT system is using more context for every training example instead

of using more training examples. By adding context to the word that should be

corrected, I quadruple the training material since the model sees every word three

more times as context words.

In addition to this benefit, there is another reason why context should be used

for OCR post-correction. Some OCR-errors generate wrong tokens which are valid

words of the document language. Unfortunately, these real word errors cannot be

corrected in isolation, not even with the help of a dictionary. For example, in Table

4 the most frequent French OCR-error on word-level was the word “sont” which

was wrongly recognised by the OCR system as “font”. The characters “s” and “f”

themselves do not look very similar. However, it is likely that in these documents a

font was used which used ligature s, “ s ”, which looks indeed very similar to an “f”.

The misrecognized word “font” cannot be detected in isolation since it is part of the

French language. However, with some context, it may be possible to produce the

correct word. Therefore, the base experiment with SMT and NMT were conducted

again, but this time with more context for the word that should be corrected. This

means that the input data format for the MT systems had to be adapted slightly:

(4.3) “Si ces principes font fondés sur le goût [...]” Original OCR text.

“Si ces principes sont fondés sur le goût [...]” Aligned gold standard.

(4.4) S i || c e s || p r i n c i p e s || f o n t S i || c e s || p r i n c i p e s || s o n t

c e s || p r i n c i p e s || f o n t || f o n d é s c e s || p r i n c i p e s || s o n t || f o n d é s

p r i n c i p e s || f o n t || f o n d é s || s u r p r i n c i p e s || s o n t || f o n d é s || s u r

f o n t || f o n d é s || s u r || l e s o n t || f o n d é s || s u r || l e

(OCR text) (Gold standard)

The resulting data format can be seen in example 4.4. In the actual training data

the word boundary, in this example marked with ||, needed to be a character which

16

Chapter 4. Methods

otherwise could not occur in any of the training data. Therefore, an emoji character

was chosen as an artificial word boundary marker.

Interestingly, forcing the MT system also to produce the context on the target side

produced better results than only producing the word that was in focus at that mo-

ment. However, this means that (especially in the case of NMT) it is possible that

not all of the three word-boundary emojis are produced in a translation. Whenever

this happened, I chose the word from the translation which had the smallest Leven-

shtein distance to the actual word in the OCR output to be the final translation of

the word in focus.

4.6 Factored Character-based NMT

In the sections above, I experimented with giving the MT systems more information

by adding more training material from the combined data sets and by providing more

context. However, since Nematus allows the training of “factored” NMT models,

even more information can be included: the time span from which the text originates,

whether it is a periodical or a monograph and finally what language it is.

The number of factors depends on what training set was used. For the four original,

type- and language-specific sets only the information on when a text was published

was used. This experiment was tested both with context-sensitive and context-

insensitive data. Motivated by Figure 1 on Page 10, it is clear why a time factor

makes sense. If the publication period is known, errors from a specific period can

more easily be detected and, thus, better be corrected. To create this factor, I

divided the files into bins of 50 years. This is a rather large time span, but, with

smaller bins there is the risk of data sparsity problems. The text in example 4.6

was written between 1800 and 1849. Thus, divided by 50, its time span factor is

36. This information could be useful to help detect OCR errors which occur due to

orthographical or typographical changes.

For the medium-sized training set, where the two text types were combined for each

language, I used an additional factor. The factors consist of the publication time

and the text type for each training example. The largest combined training set

consisted of all training data that was available. Hence, another factor was added

which specified to which language the training example belongs to. In this way,

factors can be used to label the individual training examples such that it is known

which training set they belong to. Due to time restrictions, these experiments were

only conducted for the data sets without context.

17

Chapter 4. Methods

(4.5) “[...] who may wish [...]” Original OCR text.

“[...] who may wish [...]” Aligned gold standard.

(4.6) w|en|peri|36 h|en|peri|36 o|en|peri|36 w h o

m|en|peri|36 a|en|peri|36 y|en|peri|36 m a y

w|en|peri|36 i|en|peri|36 s|en|peri|36 h|en|peri|36 w i s h

(OCR text) (Gold standard)

Example 4.6 shows the input format with all possible factors. The character | marks

the beginning of a new factor. The first factor here is the language code, the second

refers to the text type, and the third stands for the time span when the text was

written. In contrast to factored SMT factored NMT does not translate on different

levels. Rather, the embeddings are extended by concatenating the word embeddings

(in this thesis character embeddings) and embeddings for each factor. Due to a bug

in Nematus, I could not use tied-embeddings for the factored experiments. Detailed

factored NMT with Nematus is described in Sennrich and Haddow [2016]. I did not

test translating with factors for SMT, since it would not be directly comparable and

is, thus, out of the scope of this Bachelor thesis.

4.7 Glyph Embeddings

Another interesting case for increased information is the use of glyph images as

pre-trained embeddings. State of the art NMT often uses pre-trained embeddings

instead of standard normal distribution initialisation. However, these pre-trained

embeddings are mainly trained to put words in the vector space closer together if

they share the same context. For OCR post-correction, characters do not neces-

sarily need to be substituted with characters that often occur in the same context

but rather visually similar characters. Therefore, it makes sense to generate non-

randomised embeddings that have some intuition about the visual similarity of two

characters.

Since the embedding size in the experiments so far was set to 256, the initialised

embeddings can be replaced by pixel vectors, which were generated by reading the

grey-scale values of a 16 by 16 pixel image of every character in the vocabulary.

However, the source images were not released for the competition, and it was not

possible to know the correct font to generate these images. Instead, I simply used

the standard font Helvetica. An example can be seen below in Figure 2.

18

Chapter 4. Methods

Figure 2: Character “B” as a 16 by 16 pixel image.

To exchange the randomised embeddings with the pixel vectors, I started training a

Nematus model with the desired parameters, while I set the “max epochs” param-

eter to zero. This way the training process stopped automatically as soon as the

initialised model was generated. Then I retrieved the embedding lookup table. For

each character in the vocabulary, I read an image of the character which I converted

to grayscale. Then I read the pixels into a vector and normalised the values such

that they were fit into a range between -1 and 1. Finally, I scaled them by 0.01 as

it is done in the Nematus toolkit for the randomly initialised values as well.

After having generated the new glyph embeddings, I inserted them into the Nematus

model and restarted training with this model. Of course, there are other ways how

visual information could be included in an NMT system. However, this is a straight-

forward and time-saving technique and was therefore used in this experiment. I only

tested the impact of using glyph embeddings in the context-sensitive experiments.

4.8 Error-focused Models

Most of the OCR generated data is very simple to process for an MT system since it

is already correct and does not need to be translated. This means that for the most

part the NMT system just learns how to copy characters from the source to the

target side. If the system is trained on a data set which contains a larger proportion

of errors, it will become better at detecting errors and will do this more aggres-

sively. However, these systems might over-correct while translating. Therefore, it

is essential to find a reasonable threshold of the percentage of non-error tokens in

the training data, to boost the error detection recall but not affecting precision too

much.

For my experiments, I first tried a split of 75% error and 25% non-error tokens.

Since there are fewer errors in the monograph training data, these values did not

work well for these data sets. Consequently, I set the threshold to 50% errors for

19

Chapter 4. Methods

French monograph and for the English monograph to 37.5% errors. I filtered out

random examples which did not contain errors until the error threshold mirrored

the number of errors in the training data. All experiments were done only with the

context-aware data.

4.9 Ensemble Decoding

The idea of adding more information to a single model can be taken even further by

using ensemble decoding. This is a common technique in NMT. For this, multiple

models are combined in decoding. This is done by averaging the individual prob-

ability distributions of all the models. The reasoning behind ensemble decoding is

that combining more models evens out the variance between single models’ outputs.

With NMT it is possible to do ensemble decoding by using either models from the

same training run at different time steps or multiple models. For my experiments,

I tried both of these approaches. In order to distinguish them, the former will be

called “single ensemble” (using different time stamp models of the same system)

and the latter “multi ensemble” (using the best model of different systems).

All experiments with ensembling were conducted on the context-aware data sets.

Single ensembles were tested for the base context-aware NMT system and the error-

focused NMT system. For single ensembles, I combined the best model with the

models at the two previous time stamps. Multi ensembles were tested by using the

base context-aware NMT system, the one with glyph embeddings and the error-

focused system for decoding.

4.10 System Combination

The final method that is explored in this Bachelor thesis is combining multiple MT

systems’ outputs. The output from this post-translation combination of systems is

what was submitted to the ICDAR shared task on OCR post-correction.

Different strategies were used for error detection and error correction. It has to

be kept in mind that, for the error correction test set, the shared task organisers

published the positions of erroneous tokens. This means that for the error detection

set we translated all data and for the error correction set we only translated the

erroneous tokens. A visual representation of our algorithms can be seen in Figure 3.

The error detection algorithm uses the output of five MT systems for a specific data

20

Chapter 4. Methods

set which worked best in combination tested on the dev set. We have four conditions

which trigger the error detection. First, if the model with the smallest Levenshtein

distance proposes a change, we assume there is an error. Second, we check the five

best systems, and if the most frequently proposed token is different from the OCR

output, we also assume there is an error. Third, if the original OCR token does

not occur in the combined gold standard training and dev set for both text types,

we assume there is an error. Finally, if the current token and one of its neighbours

(both can be translated = current candidate or untranslated = OCR output) do not

occur in the training set, but their concatenation does, we assume that they should

be concatenated and there is an error in both tokens. The algorithm checks these

steps in the order they are presented.

Figure 3: Algorithms for error detection and correction explained with an example.

21

Chapter 4. Methods

The algorithm for error correction works slightly different. The five models with

the smallest Levenshtein distance on the dev set are used to generate correction

candidates. Since the evaluation script for the shared task evaluates two scenarios,

a “fully-automated” one where only one correction candidate is given and a “semi-

automated” one where a ranked list of candidates with confidence scores is given,

we pay special attention to our choice of candidates. If the system with the smallest

Levenshtein distance on the dev set suggests a correction, we take this as an exclusive

correction candidate. Otherwise, we look at the candidates of all five systems and

model the weights according to the frequency distribution of their suggestions which

are different from the OCR output. An example of the OCR input and the format

for the evaluation can be seen in Figure 4 and 5 respectively. The figures are taken

from [Chiron et al., 2017]

Figure 4: Sample of the training set for the competition

Figure 5: Format expected for submissions to both Task 1 and 2.

22

5 Results and Discussion

5.1 Evaluation Setup

All systems were evaluated on the test set which was generated from a subpart of

the ICDAR 2017 training set (see Section 4.1). For comparison, the evaluation was

done separately for error detection and error correction. Error detection is measured

on word-level using precision, recall and the F1-score. Error correction is measured

on character-level using Levenshtein distance between the translation candidate and

the gold standard as well as the percentage of corrected tokens that match the gold

standard. However, due to spatial constraints, only the F1-score and the relative

Levenshtein distance improvement are presented and discussed in this section. All

other results can be found in Appendix A. Please note that there are different scales

in the visualisations.

As in the data overviews in Section 3.1, hyphens were ignored for both evaluation

metrics since the gold standard is very inconsistent and, thus, hyphen errors occur

frequently. It would take too long to train systems for cross-validation. Therefore,

all results are computed by averaging the scores of three individual runs per system

using the same data and the same configuration. This measure is taken to reduce

the differences that occur due to systems’ variance.

5.2 Increased Training Material for SMT and NMT

Traditionally, in machine translation, the most straightforward method to increase

the translation quality is adding more training material by training the model on

more samples. As described in Section 4.4, this was simulated by combining training

sets from the different languages and text types. Figure 6 shows the results for the

error detection and Figure 7 for the error correction when the medium-sized data

set is used; meaning all data of one language is combined for training but tested on

the individual test sets.

23

Chapter 5. Results and Discussion

Figure 6: F1-score for the text type & language specific data set and the data sets
with text type combined. Comparing SMT vs. NMT and different text
types and languages.

Figure 7: Relative Levenshtein distance improvement for the text type & language
specific data set and the data sets with text type combined. Comparing
SMT vs. NMT and different text types and languages.

The transparent columns with dark borders are the F1-scores of the context-insensitive

baseline trained only on the text type and language-specific training set. The green

and pink columns show the results of the combined data set for error detection and

error correction respectively. The scatter plots above the bar plots show the relative

24

Chapter 5. Results and Discussion

improvement from the baseline systems to those trained on the medium-sized data

set. With the labels at the bottom, the results for SMT, NMT, the two languages

and the different text types can be compared.

Before analysing the influence of using more training data, a few general observations

can be made from these figures. First of all, it can be noticed that the SMT models

perform better than NMT in error correction and worse in error detection. For

error detection, the results trained only on the English periodical data set are much

higher than the rest of the models trained on the individual sets. It can also be

observed that error detection worked better on the periodical data. In comparison,

error correction worked better on the English data sets than on French.

For the increased training data, there are also a few interesting patterns showing.

In most cases, both error detection and error correction are performing worse when

the two text types are combined for training. Especially for English periodicals,

there is a great loss in performance both for error detection and for error correction.

Since the MT models perform better on the periodical data than on the mono-

graphs adding the almost twice as large training data for the monographs will push

the trained model to fit this data better. This finding is supported by the improve-

ment on the English monograph data when the medium-sized data set is used for

training. Because there are more errors in the English periodical data set, this has

a positive influence on the monograph data set because errors will be detected more

aggressively. In the best case, there had been an improvement on both test sets.

However, the lack thereof shows that the errors occurring in the individual data sets

are particular to a text type and that error frequency is an influential factor when

training MT systems for OCR post-correction.

The same observations can be made for the large data set which consists of all the

training material of each of the data sets. The results are shown in Figure 8 for

error detection and in Figure 9 for error correction. Potentially, the correction of

OCR texts on character-level could benefit from data from other languages since

most of the errors are due to the visual similarity of characters and there are cases

of code-switching. Both figures show that this is not the case for the given data set.

The achieved scores are even lower here than for the combined text types discussed

above.

Both experiments with increased training data indicate that character-based MT

systems obtain a language and text-type specific model of the data.

25

Chapter 5. Results and Discussion

Figure 8: F1-score for the text type & language specific data set and all data
sets combined. Comparing SMT vs. NMT and different text types and
languages.

Figure 9: Relative Levenshtein distance improvement for the text type & language
specific data set and all data sets combined. Comparing SMT vs. NMT
and different text types and languages.

26

Chapter 5. Results and Discussion

5.3 Using More Context for SMT and NMT

Since adding more training material did not prove to be very successful, it is inter-

esting to see how other methods of adding more information to the NMT system

perform. Using more context for translation turned out to be one of the most ef-

fective improvements. The results of the experiments from Section 4.5 are shown in

Figure 10 and Figure 11.

Figure 10: F1-score for context-insensitive and context-sensitive data sets. Compar-
ing SMT vs. NMT and different text types and languages.

The differences between SMT and NMT are still the same as in the experiment

above with the increased training set: Even though using more context has a positive

influence on both, SMT still performs better for error correction and NMT for error

detection. It is also interesting to notice that, again, the systems for the periodical

data sets achieve higher F1-scores than for the monographs and the systems for

English achieve higher relative Levenshtein distance improvements than for French.

Why using more context improves OCR post-correction is straightforward. Many

errors cannot be detected or corrected accurately without context. The example

discussed in Section 4.5 shows this quite well. The fact that all but one systems

show an improvement with context confirms that there are many errors which cannot

be corrected in isolation.

27

Chapter 5. Results and Discussion

Figure 11: Relative Levenshtein distance improvement for context-insensitive and
context-sensitive data sets. Comparing SMT vs. NMT and different text
types and languages.

5.4 Factored Character-based NMT

Using factors as described in Section 4.6 is another strategy to include more infor-

mation when training an NMT system. Figure 12 and Figure 13 show the influence

of using a factor which holds information about the publication time of a text.

Overall, time factors result in a better performance in error detection for most

data sets. It can be spotted immediately that using the time factor has a greater

effect on the English monograph data than on the others. This phenomenon can be

explained with a quick look at Figure 1 on Page 10. Most of the files belonging to

the English monograph set do not need many corrections which results in a rather

passive NMT model. This is problematic for the earlier files (around 1800), which

contain, comparatively, much more errors than the later published files in this set.

Consequently, in this case, using time factors allows the model to detect errors more

aggressively on text that was published around 1800. Therefore, time factors are

capable of controlling an NMT model’s detection aggressiveness.

28

Chapter 5. Results and Discussion

Figure 12: F1-score with and without time factor. Comparing context-insensitive
vs. context-sensitive data and different text types and languages.

Figure 13: Relative Levenshtein distance improvement with and without time factor.
Comparing context-insensitive vs. context-sensitive data and different
text types and languages.

In contrast to error detection, there is a decrease in the relative Levenshtein distance

improvement in error correction for all but two data sets. This development could

be simply because there is an improvement in error detection. If a system detects

more errors, it does not automatically mean it will also provide an accurate correc-

tion. Trying to correct more tokens can lead to an overall higher distance to the

29

Chapter 5. Results and Discussion

gold standard than the original OCR output. Another explanation could be that,

especially, with smaller data sets there might be data sparsity issues. The additional

dimensions which are added to the embeddings for the time factor project the same

character into different positions if the text is from a different period. This might

then lead to problems in error correction since the character “f” from around 1800

cannot directly benefit from the character “f” from around 1950.

5.5 Factored Character-based NMT with Increased

Training Set

Following the motivation of the section above, I repeated the experiments of Section

5.2 with factored data. In those experiments, using more training material from

different data sets did not prove to be much useful for OCR post-correction. How-

ever, this was most likely due to the fact that the individual training sets contain

specific errors and have different sizes. Despite these drawbacks, there might still

be some valuable information to be gained from a larger, combined training set.

This was tested in the following experiments by using a factor for the publication

time period, the text type (for medium data sets) and an additional factor for the

language (for large data sets). Unfortunately, due to time constraints, I could not

test this method’s influence when used with context-aware data.

Figure 14: F1-score when using no factors or time, text type and language fac-
tors. Comparing medium vs. large data sets and different text types
and languages.

30

Chapter 5. Results and Discussion

Figure 14 and 15 show how using factors influences the F1-score and the relative

Levenshtein distance improvement with increased data sets. As can be seen, the

NMT system is powerful enough to make use of the factors and produces much

better results than the previous experiments with combined training data. Still,

the medium-sized data set has higher results than the large data set where all

data is combined. This indicates that combining different languages for OCR post-

correction with character-based NMT is not very useful, despite the code-switching

discussed in Section 3.1.

Figure 15: Relative Levenshtein distance improvement when using no factors or
time, text type and language factors. Comparing data sets medium vs.
large data sets and different text types and languages.

More interestingly, if these values are compared to the results for the individual data

sets without factors and without context in Figure 12 and Figure 13, a performance

improvement in error detection and even more so in error correction can be noticed.

For error detection, the factored NMT models without context behave similarly to

the same models trained on the medium and large data sets. In Section 5.4 using

factors led to a decrease in performance in error correction. Surprisingly, when

combining factors with the increased data sets, there is an improvement in error

correction over both the factored and not factored data without context (except

for English monograph). This finding supports the claim stated in Section 5.4 that

using factors on small data sets might lead to data sparsity. In this experiment,

the combined data sets are much larger which does not cause as much data sparsity

when using factors for translation.

31

Chapter 5. Results and Discussion

5.6 Glyph Embeddings

Another interesting case is the use of glyph images as pre-trained embeddings as de-

scribed in Section 4.7. I expected this to have a positive effect on the post-correction,

since OCR errors mostly occur due to visual and not due to contextual similarity.

However, the results of the experiment look a bit different than expected: As can

be seen in Figure 16 and 17, there was only a slight improvement in both F1-score

and relative Levenshtein distance for the monograph texts. For the periodical texts,

the results with glyph embeddings are even slightly worse than with randomised

embeddings.

Figure 16: F1-score when using glyph embeddings. Comparing different text types
and languages.

A possible explanation why this experiment did not work as expected is that the

images did not adequately reflect what the OCR characters looked like. It has to

be kept in mind that the images that were used to generate the glyph embeddings

were created manually. Unfortunately, the original images that were OCRed were

not made publicly available for this competition. This means that there was no

way of recreating the actual font in which the texts were written. It is possible

that the created glyph images match the font of the monograph texts more closely

than those of the periodical texts. This would explain why glyph embeddings have

a positive influence on the monograph systems and a negative influence on the

periodical systems.

32

Chapter 5. Results and Discussion

Figure 17: Relative Levenshtein distance improvement when using glyph embed-
dings. Comparing different text types and languages.

It might also be a coincidence that glyph embeddings worked better for the mono-

graph data than the periodical data. Since the differences are so small and could

be due to simple variance between systems, no satisfying conclusion can be drawn

about glyph embeddings. To find out what the actual impact of glyph embeddings

is, one would have to study their use more extensively and in different experiments.

Also, it might be useful to give them as independent input to the NMT systems and

not update them throughout training like embeddings. Still, this Bachelor thesis

has shown that it is possible to use glyph images as pre-trained embeddings and

that NMT systems trained with these embeddings perform more or less comparable

to systems with randomly initialised embeddings.

5.7 Error-Focused Models

In Section 5.2, it was discovered that combining the training data of English mono-

graphs and periodicals led to a great loss in performance on the English periodical

test set. Table 1 showed that the periodical data set contains much more errors

that need to be corrected than the monograph data set. Following these findings,

I created error-focused training sets which force the NMT systems to detect errors

more aggressively as described in Section 4.8.

33

Chapter 5. Results and Discussion

Figure 18: F1-score when using error-focused training sets. Comparing different text
types and languages.

Figure 19: Relative Levenshtein distance improvement when using error-focused
training sets. Comparing different text types and languages.

Figure 18 and 19 show the results of this experiment. As was to be expected,

the performance in error correction sank drastically for all data sets. In case of

error detection, the experiments showed a performance increase for the periodical

data sets and a decrease for the monograph data sets. The reason for this is most

likely that the error threshold in the monograph experiments was not ideal. For

34

Chapter 5. Results and Discussion

the periodical experiments, the error-focused models produce better results in error

detection. This proves that the concept works. More work would need to be done on

finding a suitable threshold for all data sets. However, due to time and scope limits

of this thesis no further experiments were conducted with error-focused models.

5.8 Ensemble Decoding

After an NMT system is trained, it is still possible to increase the amount of infor-

mation for translation by ensembling different models as described in Section 4.9.

Figure 20 and 21 show the results of the experiments with single ensembles. Both

error detection and error correction improve when single embeddings are used in

almost all cases. This finding shows that single embeddings are a simple method to

increase the performance of a single NMT model for OCR post-correction. Again,

the error-focused monograph data cannot be analysed reliably, since the error thresh-

old was most likely not set ideally. Except for English monograph, the error-focused

models show a higher improvement than the baseline context-aware models.

It is interesting to see that the relative improvement for error correction is much

higher than for error detection. This suggests that at individual time stamps the

models provide different correction candidates which in combination produce more

correct translations. For error detection, the improvement is not as apparent. How-

ever, the models still benefit from each other and detect errors more accurately.

Figure 20: F1-score when using single ensembles. Comparing standard vs. error-
focused models and different text types and languages.

35

Chapter 5. Results and Discussion

Figure 21: Relative Levenshtein distance improvement when using single ensembles.
Comparing standard vs. error-focused models and different text types
and languages.

Since single ensembles showed an improvement for both error detection and cor-

rection, I also wanted to find out what could be gained by using multi ensembles.

Figure 22 and 23 show the results of this experiment. There is an improvement for

all models, both for error detection and error correction.

Figure 22: F1-score when using multi ensembles. Comparing different text types
and languages.

36

Chapter 5. Results and Discussion

Compared to the baseline models with context and the single ensembles built from

them, the results for multi-ensembles are much better for error detection. For error

correction on periodical data, the multi ensembles perform better than the single

ensembles on the context-aware models. For the monographs, the results with multi

ensembles are slightly worse. Again, this might be due to the error-focused mono-

graph models which are included in the multi ensemble and the error threshold

chosen for them.

In contrast to the error-focused single ensembles, multi ensembling was worse in

error detection for both periodical data sets. However, in error correction, the multi

ensemble models proved to be much more robust. This shows that some of the

benefits from the error-focused models can also be found in the multi ensembles but

without the considerable loss of performance in error correction.

Figure 23: Relative Levenshtein distance improvement when using multi ensembles.
Comparing different text types and languages.

Finally, it is surprising to see that the finding of the first experiment with the

baseline systems without context has not changed. Error detection still works better

on the periodical data, and error correction works better on the English data sets

than on French. From these findings, it becomes clear that the performance in

error detection is closely connected to how many errors occur in the data. Systems

trained on data with more errors, see more examples and, thus, become better at

detecting them. Moreover, the language of the data influences the performance in

error correction. A possible explanation for this is that French has more inflexion

than English. Therefore, it is harder to correct errors in the French data sets.

37

Chapter 5. Results and Discussion

5.9 Overview of Best Systems

In the sections above, I discussed the results of my experiments. However, it is hard

to see how all results relate to each other and which systems should be chosen for

which data set. Therefore, I give an overview of the best systems for each data set.

The full tables with all results can be found in Appendix A. The best results are

marked in those tables as well, but Table 7 contains all best-performing systems.

As can be seen, all best systems for error detection are NMT systems, while all

best systems for error correction are SMT systems. Thus, this reinforces the finding

that NMT systems perform better for error detection than SMT systems while SMT

works better for error correction than NMT. It is interesting to see that, for error

correction, SMT systems with context work best in all but one case.

Data Set Error Detection Error Correction

en Periodical NMT single ensemble error SMT context

en Monograph NMT time factor context SMT baseline

fr Periodical NMT single ensemble error SMT context

fr Monograph NMT multi ensemble SMT context

Table 7: The best.performing systems for each data set. For error detection, the F1
score is considered and for error correction the relative Levenshtein distance
improvement.

In contrast, the best choice is less clear for error detection. For the periodical data

sets, the single ensemble models trained on the error-focused data sets performed

best. The best models for the monograph data sets, however, are not error-focused.

This might again be due to the error threshold which was not chosen ideally. One

thing that almost all of the best error detection models have in common is that they

are ensembles. Only for the English monograph data set, the best system is not an

ensemble but the factored model with context. This can easily be explained since

the error rates in this data set vary largely over time, and this model captured these

characteristics the best.

This overview of the best systems shows that the choice of MT system for OCR

post-correction should depend on the data set and whether error detection or error

correction is more important. NMT systems should be used if the focus is on error

detection and SMT systems for error correction. If the data set contains differ-

ent error frequencies in different time spans, a factored model will better capture

these irregularities for error detection. In general, all NMT systems should be used

38

Chapter 5. Results and Discussion

as ensembles because this reduces the variance of the system and produces better

translations. Moreover, if the threshold for the error-focused models is set well, this

can give an enormous boost to the recall in error detection and also to the F1-score.

However, the results for error correction with the same system will suffer. Therefore,

a combination of multiple systems might be the best solution if the resources and

time for training are available. Our submission for the ICDAR 2017 competition was

such a system combination for which the results are presented in the next section.

5.10 ICDAR 2017 Competition Submission and Results

Since the participation in the ICDAR 2017 shared task on OCR post-correction was

part of this Bachelor thesis, the results from the competition are summarised in this

section. It has to be kept in mind, that the systems used in the shared task were not

trained on the same split of the data set. The gold standard of the test data was not

published before the conference in November 2017, and the experiments discussed

above were conducted before that. Therefore, the available training data had to be

split into training, development and test sets again. However, for the models used

in the competition, the full training set could be used to train the models (10%

were used as a development set). Even though the results are also evaluated with

precision, recall, F1-score for error detection and the Levenshtein distance for error

correction, the evaluation script used in the shared task is slightly different from

the one used in this Bachelor thesis. Consequently, the results from the competition

cannot be directly compared to the results in the sections above. Still, seeing how

the experiments from this Bachelor thesis perform compared to other approaches

gives valuable insight into the usefulness of my approach.

As described in Section 4.10 our submission was a combination of different system

outputs. We chose the systems such that their combination performed best on the

development set. Table 8 shows which systems fed into our submission. Again,

these systems cannot be directly compared to the experiments of this Bachelor

thesis. They were trained on a different data split, and some system types discussed

in the sections above were built after the submission, for example, the factored

models of the increased data sets and the ensembles of the error-focused models.

In the detailed result tables in Appendix A, the systems in our combinations are

marked with an asterisk. Note that the systems used for the combination are not

necessarily the top five systems on that data set but the five systems which worked

best in combination. Therefore, a system which does not perform very well on

its own can be useful in combination with other systems because it may discover

39

Chapter 5. Results and Discussion

different types of errors.

Error Detection (Task 1) Error Correction (Task 2)

en Periodical en Monograph en Periodical en Monograph

NMT multi ensemble NMT baseline SMT context * SMT baseline *

SMT baseline * SMT context * SMT baseline SMT context

NMT single ensemble normal NMT multi ensemble NMT multi ensemble NMT baseline

NMT glyph embeddings NMT context NMT single ensemble normal NMT glyph embeddings

NMT context NMT time factor context NMT context NMT multi ensemble

fr Periodical fr Monograph fr Periodical fr Monograph

NMT multi ensemble NMT multi ensemble NMT multi ensemble * SMT context *

NMT baseline * SMT context * NMT time factor context SMT baseline

NMT time factor context NMT single ensemble normal NMT error-focused NMT multi ensemble

NMT error-focused NMT context NMT glyph embeddings NMT single ensemble normal

NMT glyph embeddings NMT glyph embeddings SMT baseline NMT context

Table 8: Systems which were included in our system combination for task 1 and task
2. Systems marked with an asterisk have the smallest Levenshtein distance
of the systems in that combination.

Figure 24 is a table taken from the competition paper of the ICDAR 2017 shared task

on OCR post-correction [Chiron et al., 2017]. Our approach (Char-SMT/NMT) is

marked in blue. As can be seen, we achieved the best results of all submitted

methods in task 2, the error correction. In task 1, we performed comparatively

to other submissions. The best approach for task 1 applies a noisy channel model

to the OCR post-correction. They also use the Google Books Ngram Corpus as a

source for their vocabulary and language model. Therefore, error detection probably

profits a lot from external additional data. In contrast, our approach does not need

additional resources to train the MT systems. Other models that achieve similar

results as our method use character-based NMT with context (they use OpenNMT1),

SMT on character- and token-level, spell checkers, error frequency patterns, 2-pass-

RNN-architectures where the first RNN works on character-level and the second on

token-level. The paper contains further information on the individual participants

and their approaches, but since everyone was asked only to submit a summary of

their work the texts are not very detailed.

1http://opennmt.net/

40

Chapter 5. Results and Discussion

Figure 24: Table from [Chiron et al., 2017]. Results for error detection (task 1) and
error correction (task 2).

Figure 25 shows the results of task 1 in more detail. Precision and recall can be

compared with each other directly. As can be seen, our method achieved by far the

highest precision. However, even though we focused on increasing the recall for error

detection in multiple experiments, our recall is not as high as other methods. This

comparison provides valuable information on what can still be improved with our

method and in what cases it makes sense to use it. In a scenario where having a good

precision for error detection and a high correction quality is of utmost importance,

it would make sense to use our approach. On the other hand, if recall is more

important, our method might need to be adapted further, or another approach

should be used.

Figure 25: Table from [Chiron et al., 2017]. More detailed results of task 1.

41

Chapter 5. Results and Discussion

5.11 Future Work

Due to the many experiments in this Bachelor thesis, the findings are rather broad

and could not be discussed in depth. In future research, it is important to gain

more details about every approach and evaluate them more extensively. Especially

for the context-aware systems, it needs to be investigated how much context should

be given to the MT systems. Of course, having more context means that the time for

training the systems increases. But the results of my experiments have shown that

context is beneficial to OCR post-correction with character-based NMT. Therefore,

more experiments should be conducted to find the ideal balance between gained

benefit and increased training time.

For the error-focused models, more research should be done on what the best thresh-

old between erroneous and correct examples is. This thesis showed that this thresh-

old is dependent on the general frequency of errors in the training data. Finding a

good threshold is important since it will boost the recall for error detection while

not harming error correction too much.

Concerning the amount of training material for OCR post-correction, a more ex-

tensive study should be conducted. In my experiments, I compared monographs to

periodicals for which I had about 2’870’000 and 1’280’000 characters for training

respectively. My results showed, for example, that error detection and correction

work better for English periodical than for English monograph. Since the English

periodical data set contains a larger percentage of errors, this suggests that the to-

tal number of characters is not as important for increasing performance as the error

frequency in the data sets. Therefore, it should be investigated how both, the total

size of the data set and the numbers of errors, influence OCR post-correction with

character-based NMT.

Finally, for the glyph embeddings, it would be interesting to see how models be-

have when the correct font from the actual OCR images is used to generate the

embeddings. For this competition, the glyph images belonging to the text were not

released. But for other data sets, this might be possible. There might also be better

ways to integrate visual information about glyphs into character-based NMT which

would be worth exploring.

42

6 Conclusion

This Bachelor thesis gave a broad overview of how character-based NMT techniques

can be used for OCR post-correction. I make all scripts and configurations used in

my thesis publicly available on my GitHub1 account. My work built on previous

work with SMT and explored how NMT compares to this approach. The findings

showed that SMT systems perform better in error correction, while NMT systems

achieve higher results in error detection. This is important to know for anyone

who plans to employ character-based MT for OCR post-correction. If it is more

important to detect as many errors as possible, an NMT system should be trained.

However, if it is more important that the system produces the correct candidates,

an SMT system should be used. This answers my first research question: How

does character-based NMT perform compared to character-based SMT in the case

of OCR post-correction?

Furthermore, I tested both state-of-the-art and novel strategies to include more in-

formation in the training and translation process of NMT systems. One of the most

successful approaches was giving more context to systems. This measure allows bet-

ter detection of real word errors and increases the training material. Additionally,

I found out that no improvement in OCR post-correction can be achieved when

data sets are combined that have different error characteristics. However, when the

individual training examples are labelled with their original data set as factors, the

systems are able to generalise from the increased training sets and produce better

results, especially for error correction. Moreover, data sets with error rates that vary

considerably across different time spans can profit from time factors. Another fun-

damental insight is that error-focused models can boost error detection but have a

rather negative influence on error correction. Finding a well-balanced error thresh-

old for these models is essential. I showed that the decrease in error correction

with error-focused models can be cushioned by using ensemble decoding. In fact,

ensembling proved to be quite useful for single systems and, even more so, if dif-

ferent systems were combined for ensemble decoding. Finally, I presented a novel,

straightforward approach how visual information on glyphs can be included in the

1https://github.com/chanberg/charmender

43

Chapter 6. Conclusion

training process of character-based NMT systems. Through all of these experiments,

I explored answers to my second research question: How can OCR post-correction

with character-based MT be improved by using more information during training

and translation?

With the approach described in this Bachelor thesis, we participated in a shared task

on OCR post-correction which was organised in the context of ICDAR 2017. Due

to the individual systems’ strengths and weaknesses, we proposed an algorithm that

combines different system outputs. The results of the shared task show that our ap-

proach is competitive in error detection and strongly outperforms other approaches

in error correction, even though we do not use external resources. This evaluation

suggests that future work should focus more on improving error detection. However,

our approach is undoubtedly a useful solution for error OCR post-correction.

44

References

H. Afli, L. Barrault, and H. Schwenk. Ocr error correction using statistical

machine translation. In 16th International Conference on Intelligent Text

Processing and Computational Linguistics, Cairo, Egypt, 2015.

H. Afli, Z. Qiu, A. Way, and P. Sheridan. Using smt for ocr error correction of

historical texts. In Proceedings of LREC-2016, Portorož, Slovenia, pages

962–965, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. In International Conference on Learning

Representations, 2015.

M. Bollmann and A. Søgaard. Improving historical spelling normalization with

bi-directional lstms and multi-task learning. In Proceedings of COLING 2016,

the 26th International Conference on Computational Linguistics: Technical

Papers, pages 131–139, Osaka, Japan, December 2016. The COLING 2016

Organizing Committee. URL http://aclweb.org/anthology/C16-1013.

E. Brill and R. C. Moore. An improved error model for noisy channel spelling

correction. In Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics, ACL ’00, pages 286–293, Stroudsburg, PA, USA,

2000. Association for Computational Linguistics. doi: 10.3115/1075218.1075255.

URL http://dx.doi.org/10.3115/1075218.1075255.

G. Chiron, A. Doucet, M. Coustaty, and J.-P. Moreux. Icdar2017 competition on

post-ocr text correction. In 2017 14th International Conference on Document

Analysis and Recognition (ICDAR), forthcoming, 2017.

J. Chung, K. Cho, and Y. Bengio. A character-level decoder without explicit

segmentation for neural machine translation. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 1693–1703, Berlin, Germany, August 2016. Association for

Computational Linguistics. URL

http://www.aclweb.org/anthology/P16-1160.

45

http://aclweb.org/anthology/C16-1013
http://dx.doi.org/10.3115/1075218.1075255
http://www.aclweb.org/anthology/P16-1160

Chapter 6. Conclusion

S. Eger, A. Mehler, et al. A comparison of four character-level string-to-string

translation models for (ocr) spelling error correction. The Prague Bulletin of

Mathematical Linguistics, 105(1):77–99, 2016.

W. He, Z. He, H. Wu, and H. Wang. Improved neural machine translation with

smt features. In Proceedings of the Thirtieth AAAI Conference on Artificial

Intelligence, pages 151–157. AAAI Press, 2016.

P. Koehn. Statistical machine translation. Cambridge University Press, 2009.

P. Koehn. Neural machine translation. CoRR, abs/1709.07809, 2017. URL

http://arxiv.org/abs/1709.07809.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi,

B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin, and

E. Herbst. Moses: Open source toolkit for statistical machine translation. In

Proceedings of the 45th Annual Meeting of the Association for Computational

Linguistics Companion Volume Proceedings of the Demo and Poster Sessions,

pages 177–180, Prague, Czech Republic, June 2007. Association for

Computational Linguistics. URL

http://www.aclweb.org/anthology/P07-2045.

K. Kukich. Techniques for automatically correcting words in text. ACM

Computing Surveys (CSUR), 24(4):377–439, 1992.

J. Lee, K. Cho, and T. Hofmann. Fully character-level neural machine translation

without explicit segmentation. Transactions of the Association for

Computational Linguistics, 5:365–378, 2017. ISSN 2307-387X. URL

https://www.transacl.org/ojs/index.php/tacl/article/view/1051.

M.-T. Luong and C. D. Manning. Achieving open vocabulary neural machine

translation with hybrid word-character models. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 1054–1063, Berlin, Germany, August 2016. Association for

Computational Linguistics. URL

http://www.aclweb.org/anthology/P16-1100.

T. Luong, I. Sutskever, Q. Le, O. Vinyals, and W. Zaremba. Addressing the rare

word problem in neural machine translation. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 11–19, Beijing, China, July 2015. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/P15-1002.

46

http://arxiv.org/abs/1709.07809
http://www.aclweb.org/anthology/P07-2045
https://www.transacl.org/ojs/index.php/tacl/article/view/1051
http://www.aclweb.org/anthology/P16-1100
http://www.aclweb.org/anthology/P15-1002

Chapter 6. Conclusion

F. J. Och. Minimum error rate training in statistical machine translation. In

Proceedings of the 41st Annual Meeting of the Association for Computational

Linguistics, pages 160–167, Sapporo, Japan, July 2003. Association for

Computational Linguistics. doi: 10.3115/1075096.1075117. URL

http://www.aclweb.org/anthology/P03-1021.

F. J. Och and H. Ney. A systematic comparison of various statistical alignment

models. Computational linguistics, 29(1):19–51, 2003.

E. Pettersson, B. Megyesi, and J. Tiedemann. An smt approach to automatic

annotation of historical text. In Proceedings of the workshop on computational

historical linguistics at NODALIDA 2013; May 22-24; 2013; Oslo; Norway.

NEALT Proceedings Series 18, number 087, pages 54–69. Linköping University

Electronic Press, 2013.

M. Rosca and T. Breuel. Sequence-to-sequence neural network models for

transliteration. CoRR, abs/1610.09565, 2016. URL

http://arxiv.org/abs/1610.09565.

C. Schnober, S. Eger, E.-L. Do Dinh, and I. Gurevych. Still not there? comparing

traditional sequence-to-sequence models to encoder-decoder neural networks on

monotone string translation tasks. In Proceedings of COLING 2016, the 26th

International Conference on Computational Linguistics: Technical Papers, pages

1703–1714, Osaka, Japan, December 2016. The COLING 2016 Organizing

Committee. URL http://aclweb.org/anthology/C16-1160.

R. Sennrich and B. Haddow. Linguistic input features improve neural machine

translation. In Proceedings of the First Conference on Machine Translation,

pages 83–91, Berlin, Germany, August 2016. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/W16-2209.

R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words

with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

1715–1725, Berlin, Germany, August 2016. Association for Computational

Linguistics. URL http://www.aclweb.org/anthology/P16-1162.

R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler,

M. Junczys-Dowmunt, S. Läubli, A. V. Miceli Barone, J. Mokry, and

M. Nadejde. Nematus: a toolkit for neural machine translation. In Proceedings

of the Software Demonstrations of the 15th Conference of the European Chapter

of the Association for Computational Linguistics, pages 65–68, Valencia, Spain,

47

http://www.aclweb.org/anthology/P03-1021
http://arxiv.org/abs/1610.09565
http://aclweb.org/anthology/C16-1160
http://www.aclweb.org/anthology/W16-2209
http://www.aclweb.org/anthology/P16-1162

Chapter 6. Conclusion

April 2017. Association for Computational Linguistics. URL

http://aclweb.org/anthology/E17-3017.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems, pages

3104–3112, 2014.

L. Valette. Ocr correction of le temps. Master project, EPFL, January 2017.

M. Volk, L. Furrer, and R. Sennrich. Strategies for Reducing and Correcting OCR

Errors, pages 3–22. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN

978-3-642-20227-8. doi: 10.1007/978-3-642-20227-8 1. URL

http://dx.doi.org/10.1007/978-3-642-20227-8_1.

Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, and A. Y. Ng. Neural language

correction with character-based attention. CoRR, abs/1603.09727, 2016. URL

http://arxiv.org/abs/1603.09727.

K. Yao and G. Zweig. Sequence-to-sequence neural net models for

grapheme-to-phoneme conversion. In 16th Annual Conference of the

International Speech Communication Association (INTERSPEECH 2015), pages

3330–3334, 2015.

S. Zhao and Z. Zhang. An efficient character-level neural machine translation.

CoRR, abs/1608.04738, 2016. URL http://arxiv.org/abs/1608.04738.

48

http://aclweb.org/anthology/E17-3017
http://dx.doi.org/10.1007/978-3-642-20227-8_1
http://arxiv.org/abs/1603.09727
http://arxiv.org/abs/1608.04738

A Tables and Graphs

English Periodical

Error Detection Error Correction

Precision ↑ Recall ↑ F1-Score ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

SMT baseline * 83.82 61.84 71.17 0.1347 40.96 53.42

SMT medium 91.33 46.87 61.94 0.1461 29.96 57.28

SMT large 93.26 40.51 56.47 0.1510 25.71 56.78

NMT baseline 87.33 59.27 70.61 0.1472 28.95 49.00

NMT medium 90.60 46.60 61.53 0.1584 19.85 47.52

NMT large 91.47 42.51 58.04 0.1593 19.13 47.42

SMT context * 85.19 58.87 69.62 0.1339 41.83 58.98

NMT context * 89.31 59.56 71.46 0.1406 34.95 51.34

NMT time factor no context 87.38 60.27 71.33 0.1475 28.68 48.24

NMT time factor context 89.99 57.77 70.37 0.1420 33.65 51.38

NMT factor medium 88.82 58.94 70.85 0.1448 31.12 49.94

NMT factor large 89.32 57.28 69.79 0.1415 34.10 50.95

NMT glyph embeddings * 89.62 59.16 71.27 0.1422 33.44 51.17

NMT error-focused 76.95 68.01 72.20 0.1591 19.28 41.09

NMT single ensemble normal * 89.92 59.54 71.64 0.1388 36.73 52.22

NMT single ensemble error 78.41 68.28 72.99 0.1533 23.80 43.35

NMT multi ensemble * 89.20 60.79 72.30 0.1369 38.68 52.37

Table 9: English periodical results of all experiments. Best results are marked in
blue, worst results in red. Asterisks mark systems in system combination.

49

APPENDIX A. TABLES AND GRAPHS

Figure 26: Errors over time in English periodical data. Frequency of ten most fre-
quent errors per 30 years divided by number of files on logarithmic scale.

English Monograph

Error Detection Error Correction

Precision ↑ Recall ↑ F1-Score ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

SMT baseline * 92.84 33.92 49.68 0.0631 31.50 72.03

SMT medium 86.32 36.58 51.37 0.0649 27.84 64.52

SMT large 89.41 32.84 48.03 0.0652 27.30 68.56

NMT baseline * 91.77 35.50 51.19 0.0652 27.33 65.94

NMT medium 87.56 36.74 51.76 0.0668 24.18 61.54

NMT large 87.82 33.92 48.93 0.0678 22.45 62.52

SMT context * 88.85 39.07 54.27 0.0628 32.25 70.34

NMT context * 87.97 39.93 54.92 0.0632 31.27 65.38

NMT time factor no context 90.19 40.64 56.03 0.0668 24.26 58.39

NMT time factor context * 85.31 45.04 58.94 0.0644 28.77 61.06

NMT factor medium 92.33 39.66 55.48 0.0652 27.27 61.22

NMT factor large 91.62 39.24 54.95 0.0654 26.83 61.91

NMT glyph embeddings * 87.75 40.27 55.20 0.0631 31.46 65.73

NMT error-focused 50.51 50.81 50.60 0.0884 -6.01 35.80

NMT single ensemble normal 89.95 39.51 54.90 0.0625 32.87 67.39

NMT single ensemble error 49.38 51.70 50.43 0.0888 -6.31 35.58

NMT multi ensemble * 86.85 41.14 55.82 0.0627 32.38 65.78

Table 10: English monograph results of all experiments. Best results are marked in
blue, worst results in red. Asterisks mark systems in system combination.

50

APPENDIX A. TABLES AND GRAPHS

French Periodical

Error Detection Error Correction

Precision ↑ Recall ↑ F1-Score ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

SMT baseline * 83.48 35.31 49.62 0.1656 16.54 47.39

SMT medium 86.93 38.00 52.87 0.1663 16.06 46.97

SMT large 87.18 35.37 50.31 0.1675 15.22 44.43

NMT baseline * 87.87 43.52 58.21 0.1700 13.53 39.25

NMT medium 88.49 41.75 56.72 0.1695 13.88 38.93

NMT large 88.01 40.07 55.06 0.1735 11.21 35.84

SMT context 81.75 40.00 53.71 0.1614 19.64 53.66

NMT context 88.53 44.26 59.01 0.1645 17.32 42.53

NMT time factor no context 85.81 44.58 58.66 0.1755 10.02 37.77

NMT time factor context * 87.78 46.74 61.00 0.1655 16.68 40.88

NMT factor medium 87.51 44.20 58.72 0.1699 13.64 39.09

NMT factor large 86.28 43.83 58.11 0.1704 13.30 39.24

NMT glyph embeddings * 88.30 43.22 58.03 0.1657 16.45 41.81

NMT error-focused * 67.47 60.72 63.91 0.1956 -1.32 28.99

NMT single ensemble normal 88.30 44.26 58.96 0.1631 18.34 43.45

NMT single ensemble error 69.54 61.55 65.30 0.1903 1.40 30.99

NMT multi ensemble * 86.79 47.84 61.68 0.1621 19.08 42.17

Table 11: French periodical results of all experiments. Best results are marked in
blue, worst results in red. Asterisks mark systems in system combination.

Figure 27: Errors over time in French periodical data. Frequency of ten most fre-
quent errors per 30 years divided by number of files on logarithmic scale.

51

APPENDIX A. TABLES AND GRAPHS

French Monograph

Error Detection Error Correction

Precision ↑ Recall ↑ F1-Score ↑ Lev. ↓ % Rel. Imp. ↑ % Correct ↑

SMT baseline * 82.69 38.55 52.52 0.0558 24.00 55.04

SMT medium 80.81 36.30 50.10 0.0574 20.59 51.95

SMT large 82.44 36.24 50.18 0.0587 18.07 48.84

NMT baseline 84.22 40.10 54.38 0.0602 15.00 44.13

NMT medium 83.59 38.23 52.37 0.0593 16.71 43.89

NMT large 82.81 37.15 51.05 0.0610 13.66 40.66

SMT context * 82.49 40.51 54.18 0.0568 22.15 58.47

NMT context * 84.17 42.95 56.85 0.0586 18.26 46.10

NMT time factor no context 84.37 41.53 55.75 0.0591 17.28 45.38

NMT time factor context 81.60 43.04 56.45 0.0583 18.85 45.68

NMT factor medium 85.94 40.97 55.46 0.0580 19.31 47.32

NMT factor large 85.63 39.36 53.86 0.0577 20.11 47.48

NMT glyph embeddings * 83.55 43.30 57.00 0.0583 18.73 45.43

NMT error-focused 58.53 54.56 56.48 0.0756 -8.28 30.23

NMT single ensemble normal * 85.72 42.98 57.29 0.0575 20.43 48.10

NMT single ensemble error 59.71 55.15 57.37 0.0744 -6.99 31.87

NMT multi ensemble * 82.27 45.73 58.91 0.0581 19.09 46.30

Table 12: French monograph results of all experiments. Best results are marked in
blue, worst results in red. Asterisks mark systems in system combination.

Figure 28: Errors over time in French monograph data. Frequency of ten most
frequent errors per 30 years divided by number of files on logarithmic
scale. (Legend for individual errors had to be shortened to fit image)

52

	Abstract
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Related Work
	OCR post-correction
	Neural Networks for NLP tasks
	Character-based NMT

	Materials
	ICDAR2017 OCR Post-correction Data

	Methods
	Experimental Setup
	Character-based SMT
	Character-based NMT
	Increased Training Material for SMT and NMT
	Using More Context for SMT and NMT
	Factored Character-based NMT
	Glyph Embeddings
	Error-focused Models
	Ensemble Decoding
	System Combination

	Results and Discussion
	Evaluation Setup
	Increased Training Material for SMT and NMT
	Using More Context for SMT and NMT
	Factored Character-based NMT
	Factored Character-based NMT with Increased Training Set
	Glyph Embeddings
	Error-Focused Models
	Ensemble Decoding
	Overview of Best Systems
	ICDAR 2017 Competition Submission and Results
	Future Work

	Conclusion
	References
	Tables and Graphs

