

A method for in-depth comparative evaluation

How (dis)similar are outputs of POS taggers, dependency parsers and coreference resolvers really?

Don Tuggener tuggener@cl.uzh.ch

Motivation

Top systems often result in very **similar scores** despite (potentially vastly) **different architectures**

Method	Acc.
JMT _{all}	97.55
Ling et al. (2015)	97.78
Kumar et al. (2016)	97.56
Ma & Hovy (2016)	97.55
Søgaard (2011)	97.50
Collobert et al. (2011)	97.29
Tsuruoka et al. (2011)	97.28
Toutanova et al. (2003)	97.27

Hashimoto et al. (2017): POS tagging WSJ

Question & Goal

Are these systems roughly producing the same output?

- The top system is just generally (a bit) better? Or ...
- Some systems have an area of specialty where they outperform the others (despite overall lower score)?
- Overall Accuracy / F1 doesn't tell us
- Generally, little is known/done about this

Devise evaluation method that

- compares two outputs (or more) to a gold standard
- highlights and quantifies their specific differences

Question & Goal

Are these systems roughly producing the same output?

- The top system is just generally (a bit) better? Or ...
- Some systems have an area of specialty where they outperform the others (despite overall lower score)?
- Overall Accuracy / F1 doesn't tell us
- Generally, little is known/done about this

Devise evaluation method that

- compares two outputs (or more) to a gold standard
- highlights and quantifies their specific differences

Simple Metric

T: tokens in the test set, S_1, S_2 : system outputs

$$diff(S_1, S_2 \mid T) = \frac{|\forall t_i \in T : label(t_i, S_1) \neq label(t_i, S_2)|}{|T|}$$

- ► Isn't this just 1 Accuracy? Yes!
- Does this tell us whether S₁ or S₂ is correct where they're different? No!
- Include the gold standard

Difference classes

Introduce a **inventory of classes** to label **differences** in S_1 and S_2 given the gold standard on the **token level**.

(Let's assume e.g. S_1 : baseline, S_2 : new SOTA)

Gold	$\mathbf{S_1}$	S_2	Class
А	В	Α	Correction
А	А	В	New error
А	В	С	Changed error

Analyse distribution of these classes

Dependency parsing WSJ

Stanford PCFG/NN, Parsey McParseface

	UAS	LS	LAS
Stanford PCFG	87.96	92.26	85.36
Stanford NN	88.68	92.45	86.43
Parsey	92.70	92.86	88.94

	ΔLAS	$diff(S_1 \neq S_2)$
Stanford PCFG \leftrightarrow Stanford NN	1.07	14.01
Stanford NN \leftrightarrow Parsey	2.51	13.62
$Parsey \leftrightarrow Stanford \ PCFG$	3.58	15.49

 \Rightarrow diff does not seem to correlate with $\Delta {\rm LAS}$

Dependency parsing WSJ: Class distribution

- "Only" half the differences are corrections
- Most frequent corrections wrt. attachment
- New errors often involve labeling
- Changed errors are mixed

Stanford NN \rightarrow Parsey

Corrections:	50.22
nn ightarrow nn	10.93
prep o prep	9.49
$\mathbf{CC} ightarrow \mathbf{CC}$	5.32
New errors:	31.79
$vmod \rightarrow partmod$	9.38
amod \rightarrow nn	8.08
prep ightarrow prep	7.38
Changed errors:	17.99
$\text{prep} \rightarrow \text{prep} \rightarrow \text{prep}$	5.00
$vmod \to vmod \to partmod$	2.95

Another view on difference: Oracle ensemble

- Take gold standard and n system outputs
- Whenever at least 1 of n systems has the correct label, count as correct (oracle ensemble)
- Measure oracle score vs. best performing single system
- Upper bound for ensemble
- Indicator for how complementary (or different) the n sytem outputs are

Oracle ensemble POS tagging TüebaD/Z

Stanford POS, TreeTagger, CleverTagger

	Stan.	Tree.	Clever.	Upper bound	
Overall	90.41	94.38	96.16	98.52	+2.36
NE	87.35	77.46	85.31	95.17	+9.86
ADV	89.25	91.71	90.93	95.48	+4.55
VVFIN	79.73	95.15	91.52	97.48	+5.96
ADJD	72.37	89.29	88.80	93.53	+4.73

- Best tagger overall is outperformed by a large margin for particular tags (e.g. VVFIN)
- Vast differences in performances wrt. different tags (Stan.)
- Oracle performance near optimal

Oracle ensemble dependency parsing WSJ: LAS

	S-PCFG	S-NN	P-MP	Upper bound	
Overall	85.36	86.43	88.94	94.93	+5.99
nsubj	92.08	89.78	94.41	97.85	+3.44
amod	87.59	88.45	86.95	95.26	+8.31
root	93.79	89.61	95.74	98.63	+2.89
dobj	90.19	90.88	92.91	97.47	+4.56
advmod	74.48	78.56	82.97	91.40	+8.43

- Parsey consistently best (ex. amod; adjectival modifier)
- ► Large distance to upper bound (~ 6 LAS)

Conclusion

- Method and class inventory for comparative evaluation
- SOTA outputs are more heterogeneous than (small) differences in Acc. suggest
- Most advances come at the cost of new errors
 - Quantifiable with the proposed method
- Why does my feature X not improve the baseline?
 - Maybe it does in the intended subproblem, but also harms performance in other areas
 - Now you can find out
- A means to help you point out in what regard your system output differs from others - even if it's not the new SOTA, maybe it solves a (sub-)problem the SOTA can't!