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Abstract

Conversational bots are a big topic in fields like customer care or artificial personal
assistance. Chatbots give us new ways to access all sorts of information quicker
and more reliable. Querying data trough natural language is becoming reality and
Information Retrieval Chatbots are making it possible.
This thesis gives a short overview on the general topic of chatbots and discusses
different architectures for Information Retrieval Chatbots. Machine learning and
rule-based approaches will be introduced and compared. In the end I will present
an attempt to build a German question-answering chatbot and evaluate it on a test
set of questions.

Zusammenfassung

Konversationsbots sind ein wichtiges Thema für Anwendungsgebiete wie Kundenbe-
treuung oder künstliche persönliche Assistenten. Chatbots eröffnen uns neue Wege,
um verschiedene Arten von Informationen schneller und verlässlicher zu erhalten.
Daten mit natürlicher Sprache abzufragen wird zur Realität und Information Re-
trieval Chatbots werden entwickelt, um dies zu ermöglichen.
Diese Bachelorarbeit gibt einen kurzen Überblick über das allgemeine Thema der
Chatbots und erörtert verschiedene Architekturen von Information Retrieval Chat-
bots. Machine learning und regelbasierte Vorgehen werden vorgestellt und vergli-
chen. Danach werde ich einen Versuch präsentieren, einen deutschen Chatbot zu
erstellen und evaluiere ihn auf einem Test-set von Beispielfragen.
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1 Introduction

1.1 Motivation

It is said that to explain is to explain away. This maxim is nowhere so
well fulfilled as in the area of computer programming, especially in what
is called heuristic programming and artificial intelligence. For in those
realms machines are made to behave in wondrous ways, often sufficient
to dazzle even the most experienced observer. But once a particular
program is unmasked, once its inner workings are explained in language
sufficiently plain to induce understanding, its magic crumbles away; it
stands revealed as a mere collection of procedures, each quite compre-
hensible.

This quote by Joseph Weizenbaum, developer of ELIZA, the first convincing con-
versational chatbot, describes a process that many people working with computers
know. A program or system, impressive and intimidating at first sight, becomes
easy to understand once we start dissecting it into the little pieces that make it up.
We start to see how the different parts interact and form the program we are seeing.
In the end all that is left to say is: “I could have done that.” That’s what the motto
of this thesis shall be. With my thesis I want to explain how chatbots work and
uncover their magic.

Talking is one of the best indicators of intelligence to us humans. Language evolved
as the arguably most elaborate result of genetic evolution in our species. No other
species has mastered this ability which has put us in a privileged position. But it
remains a very mysterious privilege. What is it that makes us able to think and
speak in language? The origin of language and intelligence is obscure. Since their
beginnings computers are thought to give answers to these questions.
For me chatbots are the closest thing to general artificial intelligence we have right
now. Chatbots emulate a human conversation partner. I think once a program can
get perfect at emulating human language behaviour, it will start to become clearer
to us what it means to be human. Also what intelligence means and if it is neces-
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Chapter 1. Introduction

sary to be human to be intelligent. It is exciting to think that one day, it might be
possible to talk to a being that doesn’t exist in the real world.
When I started programming 4 years ago, developing a chatbot was one of my first
dream projects. I had several small attempts but never really got through with the
plan, because it seemed like an overwhelmingly big project. Now for my bachelor
thesis I will take another go. I will have a look at the topic of chatbots as a whole
and then specialize in a practical attempt trying to train a learning German Infor-
mation Retrieval Chatbot.

1.2 Research Questions

The key questions of my thesis are related to the practical work around it, which
was developed together with Swisscom. The company is putting a lot of research
into developing chatbot technology and they agreed to support me with some of
their knowledge. I used part of their chatbot system, and changed some of it, to
come up with my own version of a German chatbot.
During this process several path choices had to be taken and questions came up.
These are the most important questions that I had to answer to arrive at my end-goal
of the German chatbot:

1. Which chatbot architecture is better for information retrieval, rule-based or
statistical machine learning?

2. What does it take to train a German chatbot that performs similar as an
English one on the same dataset?

3. Is there an advantage using a neural network architecture for our bot?

As we will see in the next chapters, the first question is a relevant one, since machine
learning is not yet the most reliable choice when it comes to general architecture of
typical conversational bots. Information Retrieval bots on the other hand, have a
few properties which make them more interesting for the use of machine learning.
In the second chapter I will mostly answer this question by showing the advantages
and disadvantages of rule-based and machine learning approaches in chatbot devel-
opment.
The second and third question will be addressed in the third chapter. I will explain
some of the decisions we took in the design process of the German question-answering
bot. This will shed light on the question what it takes to train such a system and why
neural networks perform good at it. I will discuss why I think that the choices were
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Chapter 1. Introduction

the best ones for our scenario and evaluate if the outcome was positive compared to
the results of the English system.

1.3 Thesis Structure

In this thesis I will review the state of the art in chatbot technology and report my
own experiences with developing a German Information Retrieval Chatbot. The first
chapter serves as an introduction to my motives and my goals with this thesis. The
research questions are defined which will be answered at the end of the document. In
the second chapter I will give a general introduction as to what a chatbot actually
is. I will follow up with an extensive overview of the history of such programs.
Beginning with the early conversational technologies until the situation of today.
The landscape of modern chatbot applications is changing very rapidly in the last
years and still things are shifting very much. I will give a short overview on the
different types of chatbots that we can find in industry and academia.
Different kinds of chatbot architectures will come up and I will give detailed examples
with explanations of the most important ones.
Chapter 3 introduces my practical work and the collaboration with Swisscom. I’ll
explain the setting that I found at Swisscom and the background on which the
project originated. I’ll give an overview on the methods that were used and the
different stages of the design process. In the end I will present my evaluation results
and discuss them.
In Chapter 4 I give my conclusion and answer my research questions.
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2 Chatbots

2.1 What is a chatbot?

A chatbot is a conversational agent that interacts with users through natural lan-
guage. As the name ’bot’ suggests, the agent is a robot or more specifically a
computer program. It receives input from a conversational partner in the form of
a question or other natural language expressions. It outputs an answer or other
expressions to uphold a conversation.
It depends on the type of chatbot whether the focus of the conversation is to answer
a question or just to keep some smalltalk going. A chatbot can also be a personal
assistant and perform certain actions. Chatbots can be guides that help achieving a
task. There are a lot of different use cases for chatbots and all of them have different
requirements to architecture and capabilities of the bot.
Microsoft CEO Satya Nadella said in a keynote given at a Microsoft developer confer-
ence in March 2016: “Bots are the new apps”.1 She is referring to the way companies
are using bots to distribute their services or information via dedicated bots instead
of apps. When Mark Zuckerberg announced Facebook Messenger would open up
to branded chatbots at the F8 conference in April 2016, “1-800 Flowers” was the
example he used in his demo, a bot that lets users order flowers just by chatting.2

According to Ted Livingston, CEO and founder of the messaging app Kik, “People
think bots are about chatting. They’re just a better way to deliver software. It’s
just a user interface.”3

More generally spoken bots can simplify the process of receiving any kind of ser-
vice, which was only possible by installing a dedicated app beforehand. A chatbot
can respond directly to a user’s needs in the familiar environment of chat applica-
tions. They can be a natural language interface with many kinds of software, which
eliminates the need to adapt to new interfaces or procedures for the user.

1https://eu.usatoday.com/story/tech/news/2016/03/30/microsof-ceo-nadella-bots-new-
apps/82431672/ - 22.06.2018

2http://www.businessinsider.com/live-facebooks-f8-conference-2016-4
3https://econsultancy.com/blog/68532-the-case-for-chatbots-being-the-new-apps-notes-from-

websummit2016/ - 22.06.2018
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Chapter 2. Chatbots

2.2 History

The idea of a chatbot is about as old as computers are. In 1950 Alan Turing pro-
posed the Turing test to assess the ability of a computer to act like a human.[Turing,
1950] He envisioned artificial intelligence as machines which can take the role of con-
versational partners. He thought of computers giving creative, complex responses to
human input instead of just trivial preprogrammed reactions. It should be remarked
that Turing formulated these thoughts only one year after the first computer pro-
gram had even been run on an actual machine. And these programs were only used
to compute numbers and solutions of equations. The desire to talk to computers
which were initially designed to perform arithmetic operations, was conceived very
early in the history of computers.

Turing Test The idea of the Turing test was published in the paper ’Computing
Machinery and Intelligence’ by Alan Turing. [Turing, 1950] He wanted to create a
method to prove human-like intelligence in a machine.
The test involves two human beings and one machine. One of the two people acts as
an interrogator while the other acts as a chat-partner. The machine then acts as an-
other chat partner. The setup involves two screens with keyboards where questions
or statements can be typed to start a conversation. It is hidden to the interrogator
which of the screens has a human being behind and which a machine.
After conversation, the interrogator is asked to decide which of the chat partners
was human and which wasn’t. The Turing test is passed if no statistical preference
can be found towards the ’real’ chat partner.

Talking computers weren’t an absurd concept at the time. Many early thinkers in
the field of computer science were already reflecting on intelligent machines. John
Von Neumann, who invented the basic architecture of all our computing devices
today, wrote a book where he compared computers and brains. [Neumann, 1958]
He, like many others, was intrigued by the question whether or not computers could
think creatively and how such intelligence could be proven.
The quest for artificial intelligence was one of the main drives for early developments
in chatbot technology. It all started with simple programs that were based on key-
word matching. They would search for certain keywords in the users input and then
return preconfigured answers based on that. It was especially before the arrival of
graphical interfaces that many developers would create such chatbots mainly for
fun. [Shawar and Atwell, 2007]
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Chapter 2. Chatbots

ELIZA One of the first notable efforts in the field was the creation of JosephWeizen-
baum’s ELIZA [Weizenbaum, 1966], a computer program that was able to hold a
conversation pretending to be a psychotherapist. In the program, rules are used to
transfer an input question into a response. Weizenbaum defined decomposition and
reassembly rules which could be activated by certain keywords.
One of the noticeable features of the program was that it often just rephrased the
question into a counterquestion. Very rarely a concrete answer to a question was
given. The conversation with ELIZA was usually set up in the context of talking
to a Rogerian psychotherapist, which is a form of psychotherapy, where the ther-
apist just guides the patient through their self-reflection to finally overcome their
problems through acceptance. In this setting the chatbot’s tactic of avoiding direct
answers did not take away from the illusion that ELIZA was indeed human.
One example for a conversation could start with the input sentence “It seems that
you hate me”. ELIZA matches the keywords “you” and “me” in this sentence. These
are connected with the decompositon rule “(0 YOU 0 ME)”. 0 stands for an infinite
number of words like the wildcard symbol in regular expressions.
The reassembly rule goes like this: (WHAT MAKES YOU THINK I 3 YOU). The
3 in this stands for the third component of the decomposition rule. All the words
that stand between ME and YOU.
The bot then answers: “What makes you think I hate you?” In a psychotherapy
context such conversational turns looked very convincing. Many people actually
believed that the computer understood their problems.
In later years many chatbots followed up on similar ideas where the context con-
tributed immensely to the illusion of humanness of the program. One notable ex-
ample of this was Parry, a bot simulating a paranoid mental patient. [Shawar and
Atwell, 2007]

Loebner Prize In 1990 Hugh Loebner established a competition for a successful
implementation of the Turing Test. $100’000 were initially offered as a prize for
the first computer that can not be distinguished from a human being in the ability
of upholding a conversation. Later the requirements also included being able to
interpret textual as well as visual and auditory input. The first bot that achieves
the goal just on text without visual and auditory systems can claim a silver medal
and $25’000. A bronze medal and an annual prize of $2’000’-$3000 are given every
year for the computer which seems to be more human in relation to the other
competitors, regardless of how good it is absolutely. It is the first known competition
that represents a formal instantiation of the Turing test. [Mladenić and Bradeško,
2012]
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The competition is running since 1991 annually with slight changes made to the
original conditions over the years. The goal of it is to design a chatbot that has the
ability to drive a conversation. During the chat session, the interrogator tries to guess
whether they are talking to a program or a human. The setting is an implementation
of the above-mentioned Turing test. The interrogator is presented with two screens
on which he’s presented with interactive conversations. One having one of the
chatbots behind, the other a voluntary person, who tries to answer questions as
naturally as possible. After a ten minute conversation the interrogator has to judge
which one was the human person. Humanness of the bot must be evaluated on a
scale from 1 to 4. According to this judgement, the more human chatbot is the
winner. No chatbot has ever passed the test to win the Loebner Prize gold medal.
Some chatbots have scored a maximum of 3 out of the 12 judges believing they were
human.
The first winner of the bronze medal in 1991 was PC therapist by Joseph Weintraub,
which was largely based on ELIZA. He won the competition 4 times with this bot.

A.L.I.C.E. With improvements in machine learning techniques and availability of
chat corpora, better chatbot architectures arose. Most notably the ALICE/AIML
architecture. A.L.I.C.E. or Alicebot was the name of the bot that won the Loebner
Prize in 2000, 2001 and 2004. It was developed by Richard Wallace. He refined
Alicebot’s code over the years and made it open-source. With this came the public
release of the AIML standard. (see section 2.3.1) AIML stands for Artificial Intelli-
gence Markup Language and it is an XML standard to write ELIZA-like conversion
rules to transform chatbot questions into answers.
The development of AIML led to many open-source frameworks that allowed the
fast and simple collection of AIML rules. Many of these frameworks make setting
up customizable bots very easy. The character and domain of a bot can be formed
through its conversation rules. Hundreds of Alicebots clones have been created in
the years after. Many tools became available that abstract the creation of a chat-
bot so much that also people without programming experience can develop simple
chatbots.

Cleverbot As of today, most of the competitors in the Loebner prize have been us-
ing an AIML architectures. One of the exceptions being 2005 and 2006 prize winner
Jabberwacky, which later evolved to the popular chatbot Cleverbot. According to
its inventor Rollo Carpenter, Jabberwacky learns how to answer from a big store of
learned answers and uses pattern matching techniques to find the appropriate ones.
On the website it is written:
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Jabberwacky stores everything everyone has ever said, and finds the most
appropriate thing to say using contextual pattern matching techniques.
In speaking to you it uses only learnt material. With no hard-coded rules,
it relies entirely on the principles of feedback. This is very different to
the majority of chatbots, which are rule-bound and finite.

Chatscript In recent years, another standard for the definition of chatbot con-
version rules was introduced. Chatscript. Chatscript allows more compact rule
definition than AIML. It was brought up by Bruce Wilcox who won the Loebner
prize three times with bots based on Chatscript architecture. I will give an example
of Chatscript syntax in section 2.3.1.

Mitsuku Mitsuku, created by Steve Worswick, is considered one of the best con-
versational bots in existence. It won the Loebner Prize in 2013, 2016, and 2017.
Mitsuku is based on AIML architecture. In addition to that it has some basic rea-
soning skills. The bot has been worked on since 2005 and updates to the AIML
rules are scripted based on conversation logs with users.
In 2015, Steve Worswick announced that his bot had 7 million interactions per
month on the Kik messenger platform alone.4 Mitsuku has been launched on Pan-
dorabots.com which is a chatbot hosting platform that lets people easily create,
develop and deploy AIML chatbots. Pandorabots allows direct integration of chat-
bots into many messengers services like Whatsapp, Facebook Messenger or Kik.

As stated in the introduction, chatbots can be easily integrated into the Facebook
messenger app since 2016. As of July 2016, there were more than 11’000 bots on
the Facebook Messenger platform.5

Chatbots are used by many industries today, most prominently in the field of E-
commerce. Other fields where Chatbots are being used are: Media & Entertainment,
Customer Service, Traveling, Games, Financial Information, Personal Assistants and
Food & Restaurants.

In the last 2-3 years interest in chatbots has skyrocketed. User Trends are showing
that People install less and less different apps. Messenger apps are by far the most
installed apps. And people are not opposed to centralize a variety of functions on
their messenger apps. One of the best examples for this trend might be the massively

4https://twitter.com/MitsukuChatbot/status/671095095287029761 - 28.06.2018
5https://econsultancy.com/blog/68532-the-case-for-chatbots-being-the-new-apps-notes-from-

websummit2016/ - 28.06.1018
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popular chinese messaging app WeChat which allows users to find social networks,
gaming, mobile payment and many more features all inside a messenger app. The
idea to use chatbots to give people a means of direct interaction with a company
has gained a lot of traction in the latest years. Nearly all of the big messaging apps
allow easy integration of custom bot programs into their system.

2.3 Types of chatbots

With the variety of use cases of today’s chatbots there come many differences in
purpose and structure of these bots. If we are talking about chatbots there are
different categories which we might want to distinguish. First let’s consider the
purpose of the chatbot. The goal of a conversational bot might be to entertain
a user and excel at smalltalk. Other chatbots are intended to inform their chat
partners about a specific topic. Then there are chatbots that answer questions and
chatbots that follow orders.
The structure can also have many different forms. We have already heard about
conversational chatbots and their mostly rule-based backgrounds. Besides that there
are, of course, bots that involve different degrees of machine learning. This starts at
things like intent classification and goes all the way to strict sequence to sequence
neural network architectures, which generate whole responses just from a question.
In terms of categories, these are some classification bullet points:

• conversational vs. information retrieval

• long vs. short conversation

• closed domain vs. open domain

• rule-based vs. machine-learning

On the one hand there are the conversational bots like the ones competing for the
Loebner prize. They are designed for long conversation in open domain and often
their answers are witty but very shallow.
In the industry, information retrieval chatbots are in demand. Many companies store
their knowledge in relational databases. Whether it is user-information, statistics,
financial information or general data. An information retrieval chatbot is a specific
type of bot which lets a user interact with such a data store through natural lan-
guage conversation.
These specific chatting bots have found their way into daily life in recent years.
In most cases it is more a question-answering system than real conversation and
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interactions are typically very short. The conversations have a certain goal and
meaningful answers are key.
Companies like Lufthansa, H&M or Zalando are currently using such chatbots to
answer simple questions of their users. Easy and obvious answers can be preconfig-
ured by a developer. Questions like ’Where do I find the men’s underwear on your
website?’
The domain can be very closed but it is important that the bot understands all
sorts of questions. Conversational tricks are not a good option to hide the fact that
a system does not understand a question correctly. For all the possible questions
that are generally answerable by our data we want to connect the question with
the correct answer. This is often achieved with some generalizing machine learning
models.
Let’s consider this more complex scenario: An information retrieval chatbot will
have to retrieve data from a database. For example someone might want to know:
“On which weekdays do flights to Athens depart from Frankfurt?”. It is practically
impossible to preconfigure answers to questions like this especially since the infor-
mation can change all the time. The chatbot has to rely on some sort of knowledge
graph or data storage that it can query for this kind of information.
The bot transfers the input sentence into a database language representation, looks
up the query and responds with the result. Such chatbots serve as a mere interface
between the user and the data where the user can use his own words to retrieve
information without any other abstraction.
In the following we will have an in depth look at some of the techniques used in
rule-based chatbots as well as machine learning approaches.

2.3.1 Rule based approach

Starting with Joseph Weizenbaums ELIZA, the majority of chatbots created for real
world usage have been developed around a set of rules. Every winner of the Loebner
Prize competition up to date has used a rule based approach paired with pattern
matching on the input sentence to produce output sentences. Meanwhile machine
learning approaches to chatbot architecture are not underdeveloped at all. The
reason why rule-based approaches are dominating the Loebner competition is that
with rules it is much easier to build a chatbot that pretends to be human. Actually
it is in a way human because it just outputs sentences that were defined by human
programmers.
Machine learning bots on the other hand are often easy to unmask because they
make mistakes in sentence structure and logic. It is however very questionable if a

10



Chapter 2. Chatbots

deterministic chatbot defined by a finite set of rules can ever pass the Turing Test.
There are just too many imaginable possibilities of conversational turns in order to
cover them all with rules.
Since rule based chatbots make up the majority of bot-systems today, we will have
a look at the two major frameworks that are used to build these bots. AIML and
Chatscript. AIML is a dialect of XML. It was one of the first bot scripting languages
and is still widely used today. AIML stores all the rules that are put into a chatbot
in AIML objects. It was originally developed by Richard Wallace who released his
famous chatbot A.L.I.C.E. under GNU license. (see section 2.2) Community work
on the open source code base of A.L.I.C.E. led to the creation of AIML 1.0 in 2002
and AIML 2.0 in 2013 which has some more powerful features. The purpose of the
AIML language is to simplify the job of conversational modeling. The scripting
boils down to the most basic idea of building a chatbot: Defining a set of input and
output pairs.
A very simple AIML Rule can look like this:

<category>

<pattern>WHAT IS YOUR NAME</pattern>

<template>My name is Michael N.S Evanious.</template>

</category>

Individual Rules are marked by ’category’ tags. The ’pattern’ tag matches an input
sentence. It also features wildcard symbols like * and _. The template tag defines
the answer the bots gives. It can be just plain text, but it is also possible to define
variables that change depending on input and context. Inside category tags we can
also find that tags and topic tags which can define a certain context in which the
rule should be used.

Chatscript is a more modern chatbot scripting framework. It allows more com-
pact rule definitions and powerful features like extensive use of ontologies, support
of relational databases like PostgreSQL and the ability to read JSON structures
directly taken from the web.
An example of a Chatscript script file would be the following:

topic: ~pets (dog cat pet animal bird fish snake)

?: ( << you like snake >> )

I love pythons except ^"Python" (the programming language)

t: Do you have any pets?

a: ( ~yes ) Great. You like animals.

a: ( ~no ) You don’t like animals?

11
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a: ( cat ) I prefer dogs

a: ( [parrot bird canary finch swallow] ) Birds are nice.

In Chatscript, we define files for all the topics our bot should cover. Lines starting
with ’t:’ define things the bot says without being asked. At the core rules are defined
very similar to AIML. We have these major types of rules:

• s: means the rule reacts to statements.

• ?: means the rule reacts to questions.

• u: means the rule reacts to the union of both.

The pattern which activates the rule is given in brackets and the answer comes after
that. a: to q: are called rejoinders. They can only be activated if the rule before
them has been activated. So only after the question ’Do you have any pets?’ is
formulated, the bot will answer to any input involving ’yes’ with ’Great. You like
animals.’
In addition to that there are many sorts of variables and concepts one can define.
It is generally a bit more complex than AIML but comparing a similar chatbot in
any of the languages, Chatscript uses fewer distinct rules.

With all these rule-based systems it is tempting to think that it is an immense
work to put up enough rules to be prepared for practically anything a person could
say. But in reality the prize winning bots only use a few thousand rules and are
already very convincing. This stems from the fact that these rules already allow
a certain degree of generalization with the definition of topics and wildcards. The
number of concepts and topics people generally converse about is surprisingly small.
Especially if we compare it with the number of syntactically correct sentences that
could be formed combinatorially with our vocabulary.

2.3.2 Machine learning approach

The problem with pattern based heuristics in chatbot development is that the pat-
terns have to be manually crafted by a developer. Even though these systems can
be very convincing and human-like they can quickly be overwhelmed by unforeseen
input.
Especially if a bot has a certain function and does not just serve as an entertaining
conversational bot. If the bot should provide some information to the user, we can’t
just rely on some cheap tricks to hide the fact that the computer in fact does not
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understand what we are talking about. It is necessary that the bot recognizes what
the user wants. One approach to achieve this is intent classification.
If we imagine a customer service bot at some company for example, we might want
to ask it, if refunds are possible. There are a lot of different ways we can express
this question in language. “I want a refund!”, “Can I request a refund if I don’t like
the service?” or “What is your refund policy?”. All these expressions share the same
intent. To predict this intent based on the input an intent classifier can be used.
Given a list of intents or categories and pairs of example question and associated
intent, the classifier can learn to associate the correct intent to questions.
At the moment many of the big cloud providers offer customizable intent classifiers.
Facebook has wit.ai, Google api.ai, Microsoft LUIS and on Amazon it is Lex. They
use similar strategies in high level scripting like AIML or Chatscript. The difference
is that you can define a few input sentences and the underlying intent which will
also determine the output. The system will then generalize any given sentence to
one of the possible intents you created, just by using supervised learning algorithms
on your examples.
Another learning method is using deep neural networks on huge conversation logs to
train a sequence to sequence model. Given an input sentence, the system will then
be capable of predicting a whole output sentence or answer using just an encoder-
decoder model.[Pereira and Luisa]
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3 A German Chatbot

3.1 Definition of Task

I have introduced the concept of an information retrieval chatbot in section 2.2.
In particular the type of chatbot that uses machine learning techniques to convert
natural language into database query representations.
At Swisscom, Switzerland’s biggest telecommunications provider, this kind of chat-
bot is a topic of ongoing research. It is especially areas related to customer care where
it is very imaginable that chatbot technology could increase quality and efficiency of
services. The company needs to assure constant support for their customers in cases
of technical issues, consultation and all sorts of question-answering. Depending on
the time of the day and the general situation it is necessary to wait for a long period
of time to speak to a customer care employee. This is one of the biggest problems
when it comes to customer satisfaction.1 Integrating chatbots into the process can
presumably make it easier for all the parties involved.
Additional to that, we have the problem of language. While there is an abundance
of chatbots in English, other languages have only seen little development in this
area. Considering that Switzerland has four official languages, multilingual chat-
bots would make a lot of sense at Swisscom. People feel a lot more comfortable and
satisfied when they can communicate in their native language.
Many short and easy questions can potentially be answered thoroughly and correctly
by relatively simple chatbots. This gives employees more time to focus on harder
cases and provides customers with a fast and uncomplicated response. Customers
do not have to be on the phone for several minutes to get a simple answer.
As explained earlier, a chatbot can also handle slightly more complicated cases,
where the correct answer can only be found in a database. It is possible to train
a machine learning model that generates SQL expressions given a natural language
question and look up information in a big table. A well trained information retrieval
bot could potentially be added to the current question-answering setup in customer

1https://www.swisscom.ch/de/business/enterprise/themen/digital-business/des-2017-008-
servicesmit-kuenstlicher-intelligenz.html - 30.06.2018
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service at Swisscom.
To get hands-on experience with the actual research that is being conducted in this

Figure 1: Overview of the SQL generation task

area we arranged a short collaboration with Swisscom’s AI group. I was introduced
to Claudiu Musat and Ignacio Aguado and their ongoing chatbot system experi-
ments. Their experiments involve a neural network chatbot architecture which is
able to retrieve answers from a database of tables extracted from Wikipedia. The
project is a proof of concept for the task of natural language to SQL conversion.
Their experiments involve a bot, that can be provided with a question and predicts
an SQL expression through several neural networks which have different properties
based on the specific function that they serve in generating the SQL query.
Consider this example: The question “How many players are from Georgia?” is trans-
lated to the SQL query “SELECT COUNT(Player) WHERE Nationality=’Georgia’;”.
The column name ’Player’ and the WHERE clause “nationality=’Georgia’ ” have to
be predicted from the inputs. The aggregation function COUNT is chosen from the
set of possible aggregation functions in SQL syntax. (See Figure 1)
These elements are generated by a series of neural networks. Some of the networks
just predict one element out of a series, others encode a series of words into a vector
and still others decode or generate a series of words from an encoder output. In the
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end, outputs of several networks form the full SQL query string. In the following
sections, all of these individual parts will be taken apart and explained.
Our goal was to test the system’s ability to adapt to new languages. What we had
in mind here, was to conceptualize the idea of multilinguality, which would be a very
helpful feature of any chatbot as mentioned above. In this case I worked with the
biggest language in Switzerland - German - trying to find out where the difficulties
might lie and find possible solutions.
In particular we would come up with a way to generate the equivalent training ma-
terial for the bot in German as it had in English and see if evaluation results can
be at least comparable to those of the English system. The limiting factor here is
the quality of the training corpus we begin with and especially the quality of the
translations that are generated. As I will explain in the next section, the corpus we
are working with is created quite artificially and therefore not a very good example
of natural language. Therefore in the act of translating this corpus the connection
between the question sentences and the aligned SQL expressions will get lost to a
certain degree.
In German, sentences are generally longer than in English and things like syntacti-
cal variation or compound nouns could make the task of learning the corresponding
SQL query for a German sentence harder than in the English case.
The question that needs to be answered is, whether automatically translating the
training corpus gives useful results in constructing a chatbot system in a different
language.

3.2 Groundwork

In my practical evaluations I have not been setting up anything from scratch. I
largely relied on previously built neural network training architecture. Swisscom
largely follows the approach of Zhong et al. [2017] and also Xu et al. [2017] to train
and evaluate their early experiments. In the following I will describe some of the
groundwork underlying my experiments and the data being used.
Zhong et al. [2017] provide the WikiSQL data set which is used to develop the
chatbot. Zhong et al. [2017] also describe a neural network architecture to translate
natural language sequences to SQL which is the basis of my practical work. I will
explain the content of the Seq2SQL project in more detail later. In general they
used a big corpus of natural language question and SQL expression pairs to train
their system to generate SQL expressions from natural language questions.
The idea of the presented practical work is to adapt the corpus and system to
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German language. This means translating the natural language questions to German
with a machine translation service, then preprocessing the sentences and retraining
the Seq2SQL system with some adaptations. I train a number of different models
with different training data and system parameters. Then the models are all used
to predict SQL expressions in a given test set of sentences.
Subsequent evaluation of the results will show what setting is best for the task and
if the resulting bot can compete with the original English one.

3.2.1 Seq2SQL

Seq2SQL is a project described in two research papers published by Salesforce re-
search team in 2017.[Zhong et al., 2017; Xu et al., 2017] The task they were trying
to solve is the generation of SQL queries from natural language expressions.

WikiSQL The WikiSQL data set is a data set that comprises 80’654 manually pro-
duced examples of natural language questions aligned with SQL queries generated
from 24’241 tables taken from Wikipedia. It was gathered using the crowd sourcing
platform Amazon Mechanical Turk where workers were asked to form English sen-
tences from SQL paraphrases.
To start with, a subset of the Wikipedia tables is used to generate the SQL queries.
So for example a table about a certain basketball team might give us many possible
queries like this one:

SELECT COUNT(Player) WHERE Nationality=’Georgia’;

Listing 3.1: SQL with aggregation

This is basic SQL syntax to say that we want the content of column “Player” in the
rows where column “Nationality” has the value “Georgia” and then to count together
all the individual cells that follow these constraints. The query counts all the players
that come from Georgia.
COUNT is an example of an aggregation function. Aggregations are cases where an
aggregate has to be computed from a number of values. In the data we can find four
types of aggregations: COUNT, MIN, MAX or None (no aggregation). No other
functions were used in the SQL expressions that were generated for creating the
WikiSQL corpus. This is quite arbitrary and in a real scenario there would be more
aggregation functions to learn, to get all answers from the data.
To extract the SQL strings, they only chose tables big enough and well formatted.
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In a next step an English language paraphrase of the SQL expression is automati-
cally generated using a template. The SQL expression from above for example could
be translated to “How many player when the nationality is Georgia?” which is eas-
ily derivable from the SQL string. After that the freelance Amazon worker, called
“turker” comes in. He forms the prepared question into a proper English sentence.
The turkers also control whether the result of the SQL query is actually a valid
answer to the natural language question.

In Zhong et al. [2017] a neural network architecture is presented to translate from
the natural language question to the SQL expression. I will explain this architecture
in detail further down. In the earlier paper, Zhong et al. [2017] use policy-based
reinforcement learning in the form of immediate query execution on the database.
In the next paper Xu et al. [2017] describe a pointer network without reinforcement
learning which leads to a performance increase. For the experiments at Swisscom,
structures from the earlier approach are used. For specific parts of the network archi-
tecture like the WHERE clause prediction, they did not use reinforcement learning
but a pointer network as described in Xu et al. [2017].
The general Seq2SQL architecture is built around a deep neural network model
called the pointer network. [Vinyals et al., 2015] It consists of an encoder two-layer
bidirectional Long Short-Term Memory network and a decoder two layer unidirec-
tional LSTM network. Pointer networks are implementations of Recurrent Neural
Networks (RNN). They are used to solve sequence-to-sequence problems. A pointer
network uses the mechanism of neural attention as a pointer to select a member of
the input sequence as the output.
There will be an in-depth explanation of the different pointer networks that are used
to generate the output in section 3.3.2. In our case, input to the pointer network
is provided in form of all the tokens of the question and all the tokens of possible
column headers in the corresponding table. More specifically word embeddings of
tokens are used as an input layer. (For more information about embeddings, see
section 3.3.3)
All the embeddings of the input set are encoded by a neural network so that we
get an encoder output for each of the words in the input sequence. On the encoded
input sequence a decoder network is built. At each decoder step the decoder LSTM
network takes as input the query token generated during the previous decoding step
and outputs a state. With this state a scalar attention score for each one of the
input tokens is computed, which determines the output token.
In a real world application, we assume that we know beforehand which table contains
the information that the user is seeking or that all knowledge is stored in the same
table. Consequently the table name (FROM statement) is not part of the predicted
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output. This also means that we should know all the possible column names that
are part of the input to the network.
Let’s consider another basketball example:

SELECT result WHERE place=’Los Angeles’ AND date=’05.09.1993’;

Listing 3.2: Example SQL expression

Given an input sentence like “What was the result of the game in Los Angeles on
05.09.1993?” and the column names “place”, “result”, “date”, “number”, etc., we
want to generate the above expression. Due to the simple and consistent syntax of
SQL, the hardest things that need to be predicted here are actually the slots with
column names and values. The SQL specific tokens like “SELECT”, “WHERE” etc.
are pretty much given with the exception of aggregation functions like COUNT or
MAX. So what has to be predicted are actually the SELECT column, possibly an
aggregation on the selection and the WHERE clause.
One problem that arises with SQL is that different queries can often have equal
results. Let’s look at this query for example:

SELECT place WHERE date=’05.09.1993’ AND place=’Los Angeles’;

Listing 3.3: Example SQL expression equivalent to 3.2

This SQL expression will yield exactly the same result as the one above, even though
the ordering of the constraints is switched up. They are semantically equivalent.
However in automatic evaluation they won’t be seen as equivalent. This phenomenon
can affect the performance of the model significantly.
To simplify the task and prevent this problem Xu et al. [2017] introduce a canonical
representation of SQL strings. The above query for example would be formalized to
the following construct:

{

"aggregation":None

"select": "results",

"conditions": [

["date", "=", "05.09.1993"],

["score","=",50]

]

}

Listing 3.4: Canonical representation of SQL query
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The neural network now only fills this data structure. The SELECT column as well
as the column in the WHERE clause have to be chosen from the set of possible
column headers. Aggregation can have one of the four values I mentioned above.
The WHERE clause consists of one or more conditions. In fact we probably never
find more than three conditions in our questions and most of the time it is just
one. A condition has three parts: a column name, an operation and a value. The
operation between WHERE clause column and value can have these three forms:
’=’,’<’ and ’>’.

3.3 Methods

In the following sections I will give a detailed description of the computational meth-
ods that were used during the practical work. At first, I will explain some of the
choices regarding machine translation that I took to come up with the best German
training corpus. Then we will have a look at the neural network architecture. I
will explain each of the different networks, used to generate the information in the
canonical representation. (see listing 3.4)
Finally I introduce the concept of embeddings and present the pre-trained embed-
dings that I experimented with.

3.3.1 Translation

The quickest way to develop a neural network learning chatbot in a different lan-
guage, namely German, should be to translate the natural language sentences that
are aligned with SQL expressions in the training data. The system is then trained on
the translated data again and should ideally already understand the new language.
In our case, this means translating all the questions as well as all the headers that
belong to them for the WikiSQL data.
More than 80’000 sentences are not realistic to be translated manually by human
translators in reasonable time- and cost-efficiency. It is also not necessary since it
is possible to use a machine translation system to translate these simple and short
sentences. The crucial part with this idea is that these translations are as accurate
as possible. This will ensure the quality of the corpus and its actual usefulness as a
training resource for a German chatbot.
It is not important that the translations are always perfectly on point, because neu-
ral network learning algorithms are generally known to be resistant to some amount
of noise in their inputs. So, a good machine translation service will probably serve
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a good enough service, while being highly efficient and low cost.
For this translation task we considered two translation services. One was the Google
translate API and the other one was DeepL.com. Both of these services use big scale
deep learning to train their neural machine translation systems. They also both pro-
vide a well-documented and easy to use web API which takes requests and charges
a certain fee per translated character. While Google translate is kind of a stable
veteran in the machine translation business, DeepL is seen as a runner-up that fea-
tures some exciting benchmark results.
To find out which of the services works better for our cause, I translated the whole
WikiSQL corpus with both of them and evaluated a random sample of both of the
outcomes.
First there is to say that, while both of these services provide very easy access for
reasonable prices, actually only Google translate’s API was ready to use right away.
At the time of this writing it was not possible for a private person to access DeepL’s
web API. The reason was supposedly that they are overwhelmed by requests at the
moment.
To have the DeepL translations nonetheless, we decided to use a web scraper that
puts the questions as queries into the translation box on the DeepL web page. As
soon as the result appears, the bot retrieves it from the result box and puts the next
query. This is not a recommended approach, as it can impact the performance of a
web page and is not the intended way to use this application. But since our corpus
was relatively small and we couldn’t get access in a different way, this was the only
way to go.
This method takes a lot longer than using an API. To avoid the web server auto-
matically blocking the IP that sends a huge amount of requests, different sorts of
timeouts had to be used. To speed up the process I ran the bot from 5 different ma-
chines at once, 3 of which were small amazon computing instances. In this manner
the 80’000 sentences could be translated in roughly a week.
To evaluate the quality of the translations I randomly picked 200 of them from the
corpus. I manually rated them from 1 to 5 based on my subjective judgment of
correctness. Results can be found in table 3.1. The quality of the translations is
quite good, especially for shorter sentences. It is not often the case that a question is
not comprehensible anymore after the translation or completely changes its meaning
which would defeat the purpose of the corpus. DeepL sometimes corrupts numerical
characters. In the translations we can find examples of numbers where parts were
interchanged or cut out. It is very rare though and can be fixed in post-processing.
Google translate seems to have problems with detecting named entities which cre-
ates a big problem for our corpus, which contains many named entities in column
names and values. So if these are not translated correctly, the bot will learn wrong
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Table 3.1: Quality assessments of translation services

DeepL Google translate

mean 4.70 4.55

median 5.0 5.0

standard deviation 0.48 0.61

associations.
As can be seen in table 3.1. DeepL translations are generally a bit better than the
Google translate ones. So it is these translations that we are using for the training.
Column names or headers are also part of the input to the system. To make sure
that the training process works as intended, all of the header tokens were translated
as well. In the corpus we can also find tokens of the WHERE clause values. These
are mostly numerical, but sometimes they are words like “color=’blue’ ”. I translated
these as well to be sure that we can evaluate the generated German SQL expressions
against the ground truth later.

3.3.2 Neural Network Training

In the following I will explain how the different parts of the system are trained
to generate an SQL expression from a natural language input. We might have an
input like “Who was the winning team of the game that was contested on February
1, 2009?”. What we want our system to learn is the variable parts of the SQL
expression. As seen in the canonical representation listing 3.4. The resulting SQL
is then “SELECT winner WHERE date=’February 1, 2009’;”.
According to this structure, it is three parts that we want to determine. Aggregation,
SELECT column and WHERE clause. An aggregation function is not used in this
example because we just select one value and aggregations can only be produced
from a group of values. The select column is “winner” and the WHERE clause is
“date=’February 1, 2009’ ”.

Aggregation To predict an aggregation operation like the count of players from
Georgia in the example previously given, first a scalar attention score is computed
on all the tokens of the input question, αinp

t = W inphenct , where W inp is the weight
matrix and henct is the state of the encoder corresponding to the tth word in the
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Figure 2: The Seq2SQL system has three components: Aggregation, SELECT col-
umn and WHERE clause. On the left there is the input, a question and
the headers of the corresponding table. On the right the SQL expression.

input sequence. From these a distribution is produced, βt = softmax(αinp). The
input representation κagg is the sum over the input encodings henc weighted by the
normalized scores βinp.

κagg =
∑
t

βinp
t henct

Next we compute αagg by applying a multi-layer perceptron to the input represen-
tation κagg. αagg denotes the scores over the subset of the three SQL aggregation
functions COUNT, MIN, MAX, and the no-aggregation ’None’.
Then we apply the softmax function to the output of the perceptron to obtain
the probability distribution over the set of possible aggregation operations, βagg =

softmax(αagg). This distribution lets us choose the most probable of the four ag-
gregation possibilities.

Select Column The selection column depends on the table columns as well as the
question. SELECT column prediction is a matching problem. We have column
names like “Player”, “Nationality”, “Position”, etc. encoded with an encoder LSTM
network. Given the list of column representations and a question representation,
the column is selected that best matches the question.
Similar to the procedure above, column names and input are represented by applying
some transformation on them. Namely encoding all the column names with LSTM
networks and the same procedure on the input question as for the aggregation.

hci,j = LSTM(emb(xcj,t), h
c
j,t−1)
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hj,t denotes the tth encoder state of the jth column. A multilayer perceptron is
then applied to the column representations, conditioned on the input sentence rep-
resentation. It outputs a distribution of scores for all the possible columns, which
represents their probability to be the correct column.

Where Clause The WHERE clause is the most complicated structure to predict.
It is necessary to predict the subset of columns that is present in the WHERE clause
and for each of them we also have to predict an operator and a value.
For example, in the question above, the column is “date”, operator is “=” and the
value is “February 1, 2009”. Attention weights are computed so that the network
predicts only the set of columns that are part of the WHERE clause. Taking the
weighted sum of the attention weights and the LSTM network hidden layers output
of the question encodings, we can compute the probability of the columns to be in
the set of WHERE columns.
Once we have these probabilities, we need to decide how many of the columns are in
the clause. We use a pointer network again to predict the number of WHERE clause
constraints. Then we choose the number of columns with the highest probability
scores.
Predicting the operation between column and value is a three-way classification
problem. The model needs to choose between ’<’,’>’ and ’=’. The pointer network
uses column attention again to capture the dependency between column and oper-
ator slot.
The value slot is predicted with a sequence-to-sequence model. The value is gener-
ally a substring of the natural language question. The sentence token embeddings
are encoded with a bi-directional LSTM network as before. The decoder network is
another pointer network. Generally we compute the probability that the next token
of the value string is the i-th token in the natural language question.

Pval(i|Q, col, h) = softmax(a(h))

where h is the hidden state of the previously generated sequence, Q is the input
question, col is the column that is associated with the value and a(h) is the decoder
output of each of the tokens in the input question. Note that an <END> token is
added to the input tokens. The model takes all input tokens with probabilities higher
than the <END> token as part of the value string. Input tokens with probabilities
lower than the <END> token do not belong to the value string.
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3.3.3 Embeddings

Embeddings are n-dimensional vectors, where the numbers in the vector are proba-
bilities of the word to appear with a certain context word. These vectors represent
a word based on its surroundings in natural language. Embeddings are learned
and updated from examples of words and context in natural language text sources.
A neural network is used to predict probability of context based on words if the
Skip-gram algorithm is the architectural choice. If we calculate the probability of
words given a context, they are produced with Continuous Bag of Words (CBOW)
algorithm. The choice of algorithm brings differences in the properties of the out-
put embedding table. The Skip-gram approach tends to produce embeddings that
capture more semantic details and can also represent different concepts of the same
word.2

Embeddings are ideally extracted from very big text corpora. Words become points
in space and much more meaningful input to neural networks. If the vocabulary in
the data is rather domain specific, it makes sense to train embeddings on domain
specific text. If not, there are already pre-trained embeddings available. They are
extracted from corpora like Wikipedia or Europarl. [Koehn, 2005]
To train the networks in my experiments, I used different types and sizes of pre-
trained word embeddings. They were trained using a Word2Vec [Mikolov et al.,
2013] approach which uses a combination of Skip-gram and CBOW networks. First
I used polyglot embeddings. [Al-Rfou et al., 2013] These were some of the first pre-
trained embeddings available. They are trained for 110 languages on their respective
Wikipedia corpus. The embedding files are very small for the polyglot embeddings,
since they only consist of 64 dimensional vectors for the 100’000 most frequent words
of each language. That means we have 100’000 words to look up and 64 context
probability values associated with each of them.
These embeddings were useful to get a first baseline and run a quick training. After
that I tried bigger embedding files. I used pre-trained vectors from fastText. [Bo-
janowski et al., 2016] They are also trained on German Wikipedia but featuring a
vocabulary of more than 2 million words. These vectors have 300 dimensions.
It is possible to simultaneously continue updating the probabilities of the pre-trained
word embeddings while running the Seq2SQL training algorithm. The probabilities
are adjusted based on the context in which the word is found in the training data.
In addition to that it is possible to initialize words that are not found in the pre-
trained embedding file with a zero embedding. This embedding can then be updated
between the training iterations as well, so that we produce some of our own embed-

2https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/ -
25.06.2018

25



Chapter 3. A German Chatbot

dings on our data.
One way to dramatically increase the training data size is to use multilingual embed-
dings.[Conneau et al., 2017] These embeddings are taken from word-aligned parallel
corpora of different languages which allows us to compute probabilities of words
to be in context with words of different languages. We take the words that are
aligned to the context words of the word that we are looking at. An English word
like “house” might be in context with different English words. We can look at the
alignments of the context words of the German “Haus” to English to compute the
probabilities for the same context words in another language.
In the end we achieve vectors for different languages which all use the same vector
space. They feature probabilities of the same words being in context with them.
With these vectors it is possible to use training material of different languages, be-
cause the multilingual words that are semantically quite equivalent will be very close
to each other in the vector space. The language of the words does not matter any-
more because they are represented by their surroundings which are aligned across
languages.

3.4 Evaluation

To evaluate the quality of the trained system we took the splits of the WikiSQL
dataset of the Seq2SQL project. The whole dataset is partitioned into 56’355 sen-
tences for training, 8’421 for development and 15’878 for testing. With the training
set I trained models for aggregation, SELECT column and WHERE clauses. Due
to the different architectures, Aggregation and SELECT column were trained sepa-
rately from the WHERE clauses. Aggregation and SELECT column prediction use
the same type of network which just outputs one column name and an aggregation
to it. For the WHERE clause a pointer network is used and the output consists of
sequences of tokens of variable length.
First of all, I wanted to find out what the impact of translating all the table headers
to German was on the quality of the model. My hypothesis is that, since we are
using embeddings to encode the input tokens, it should not depend on the language
too much. All the inputs to the system are encoded to a network representation
which is then decoded to attain a probability distribution over the headers. The con-
nection between German words in the question and English headers can be learned
by a neural network in the same way it can with German headers.
To compare and contrast different starting data and model parameters, I ran the
training algorithm several times. To see the details of the different settings, please
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refer to table 3.3.

Aggregation SELECT column WHERE column

setting 1 0.89 0.79 0.33

setting 2 0.87 0.82 0.09

setting 3 0.87 0.80 0.31

setting 4 0.87 0.83 0.31

setting 5 - - 0.32

setting 6 - - 0.29

setting 7 - - 0.14

setting 8 - - 0.33

Seq2SQL reference 0.901 0.889 0.601

English baseline 0.872 0.865 0.005

Table 3.2: Accuracy results of different training configurations on the test set

For setting 1 I used the small polyglot embeddings pre-trained on Wikipedia (see
section 3.3.3), the input questions translated by DeepL and the original English
headers. The flag for retraining embeddings during training was set to false. I
trained the aggregation and SELECT clause model for 5 epochs and the pointer
network for the WHERE clause for 50 epochs. These different numbers are results
of the WHERE clause training algorithm taking less time to finish an epoch.
With this configuration, we get the training results that can be seen in table 3.2 in
the first row. Interestingly the aggregation was predicted the most accurate in this
first trial out of all the trained models. The SELECT column is not as accurately
chosen from the possible column headers. The WHERE clause prediction does not
work very well on German training data. We are speaking of 50% decrease in
accuracy compared to the English version of the Seq2SQL experiments.[Xu et al.,
2017]
Aggregation is nearly as accurate as the Seq2SQL results at least in the first model.
The SELECT column sees about a 10% drop in accuracy which is still acceptable,
considering that in the original experiment the questions were tailored to the header
columns. In the creation of the corpus the sentences were built looking at the correct
SQL expression already. (See section 3.2.1) It was to be expected that this prediction
is a bit less accurate since after translation we often do not find the header tokens
in the question anymore. It also happens when we translate the headers, because
often a word is translated differently in context of the question than separately.
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Translated
Header

Translated
Values

Embedding Continue
training
embeddings

Epochs

setting 1 polyglot agg: 5, ptr: 50

setting 2 X polyglot agg: 5, ptr: 50

setting 3 fastText agg: ∼10, ptr:
∼100

setting 4 fastText X agg: ∼10, ptr:
∼100

setting 5 X X fastText X ∼100

setting 6 X X fastText+GloVe X ∼100

setting 7 X fastText X ∼100

setting 8 X X MUSE multilin-
gual embeddings

X ∼100

Table 3.3: Differences in training parameters during model training

What happens when we take the translated headers instead of the original ones
during the training, can be seen with setting 2. We can easily compare setting 2
and setting 1. They both use the same settings the only difference being the column
headers translated or left original. While the SELECT column prediction is a lot
better than in setting 1, aggregation is worse and the pointer network does not
produce much usable output anymore.
One obvious way to boost the performance of the system is to use bigger pre-
trained embeddings to lookup the tokens. In setting 4 I used large embedding files
with 2’000’000+ words. I used the training file with English headers and German
translated questions again. This time the 300 dimensional pre-trained embeddings
from fastText were used to encode the input. The fact that these embeddings were
trained on Wikipedia makes them very suitable for the task, since the questions are
also constructed on Wikipedia data.
Setting 4 got 83% for the SELECT column prediction which is the best result I
could achieve. It is a high number considering that there were only English headers
to choose from, based on German questions. In fact it is even a bit better than when
we use the translated headers as can be seen in table 3.2.
After some discussions, we had identified one possible source for the practically zero
results of the pointer network in WHERE clause prediction with translated German
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headers (setting 2 table 3.2). The problem was in evaluation where we are comparing
the output of the pointer network to the ground truth.
The WHERE clause values in the ground truth are normally a subset of tokens of
the input question and header tokens. The network uses a sequence to sequence
transformation approach to find the value based on the input question and the
headers. So on German input questions and German headers the value will often
very much resemble German language and not compare well to the English values
in the ground truth.
To overcome this problem I translated all the values in our ground truth. I only
substituted them if, after translation, the German value could be found in the input
question as well. Otherwise this would probably have been rather detrimental to
the task.
I trained just the WHERE clause prediction again on the data with translated
values. It helped and increased the accuracy from 0.09 in setting 2 to 0.32 in setting
5. In setting 7 I tried using English headers with translated WHERE clause values.
The result confirms that the values are also generated from headers as well as the
questions and that the evaluation problem has indeed been caused by the difference
in language of the WHERE clause values.
In settings 6 and 8 I tried different embeddings again.
In setting 8 I used a combined corpus of all German sentences and all original English
sentences to train the system. The tokens were represented by German embeddings
and English embeddings which were produced in a multilingual manner, as explained
in the embeddings section. [Conneau et al., 2017]

3.5 Limitations

As I have already mentioned at several points in this thesis, the approach discussed
here to build a German question-answering chatbot, has some limitations.
We have seen that the WHERE clause prediction accuracy couldn’t be trained to
a quality that can be compared to the one in the original Seq2SQL experiments.
The biggest reason for this is that the corpus has been built very artificially and
the question sentences were often quite similar to the SQL that they were derived
from. With the translation to German this similarity has vanished in many cases.
Especially since the English sentences were often ungrammatical and not making
sense anyways. This often led to nonsensical translations.
When column headers and WHERE clause values were translated, they were often
translated by a different word than what could be found in the sentence, which
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makes it harder for the algorithm to associate the correct columns and values with
an input question. If we consider an example like “Who won on September, 1?”
with the automatic translation “Wer gewann am ersten September?”. Our model
might even predict the WHERE clause value to be “ersten September”, but then
in evaluation we compare to the translated groundtruth value and it could be “1.
September”. We will not have a match in this case.
These were the limitations that keep us from achieving high accuracy values in test
set evaluation. In general the task can also be said to be too simple for a real world
scenario. Even if the model would have predicted very well on the test set, it is still
not able to form more complex SQL queries and answer questions that are out of
the training domain reliably. The concept is no sufficient proof that a customer care
chatbot could be created in a similar way. For this, domain specific training corpora
and real SQL queries are necessary.
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4 Conclusion

In the beginning of this thesis I gave an overview of rule-based chatbot systems
and machine learning approaches. For the task of building an information retrieval
chatbot, I tested a sequence to sequence neural network algorithm. The task was
that we want to predict a complex structure, namely an SQL expression, from an
input question and the headers of the table which contains the information. The
resulting SQL query is heavily dependent on the inputs. On the other hand it is a
far abstraction from the original sentence and it does not always use the elements
that can exactly be found in the words of the natural language sentence.
We have to draw a connection between the natural language words and the known
column headers. Generating the correct SQL expression is mainly a question of
whether we can find a function that is able to map a subset of the predefined table
headers to an input sentence. Neural networks are a great way to find a function
like this.
Another big advantage compared to a rule based system is that if we train the sys-
tem on enough data, it will be able to generalize to big amounts of unseen data
without having to readjust constantly to new input like in a rule based system. Out
of these reasons this approach seemed the most reasonable.
I could show with my project that adapting such a chatbot to another language can
be quite challenging even if the approach seems easy and straight-forward. Sim-
ply translating the data with a machine translation service and then retraining it,
resulted in a system that can predict 33% of the SQL queries correctly. That is
significantly lower than the original English system at 60%.
I reached accuracy values of 5-10% lower than the English system in the prediction
of aggregation and SELECT column, which are the simpler parts of the SQL ex-
pression. On the more complex part of the WHERE clause generation, the system
still produces a sensible output, but compared to the English system it is loosing
accuracy. I tried different possible solutions for the WHERE clause problem. In the
end none of them turned out to improve the result significantly.
To increase performance of the German chatbot to a comparable level with the En-
glish one, different training data would be needed. The WikiSQL data set is too
closely derived from the SQL expression that are used to evaluate the performance of
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the model, so in the original language the higher accuracy is much easier to achieve.
To give an ultimate answer whether a rule-based or a machine learning system is a
better fit for this task, it would be very interesting to adapt a rule-based chatbot to
German language.
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