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1 Introduction

Firms and other organizations often use dynamic tournaments to incentivize

repeated effort provision.2 For instance, promotion tournaments and bonus

systems are common. When designing such tournaments, a principal must

ask how to induce the best possible effort stream with a given budget. She

can affect total effort and its distribution across periods though the prize

structure, i.e., the division of a given prize sum between several periods. She

can give one big prize after a long time or several small prizes in different

periods. Apart from this prize policy, she has an alternative instrument for

influencing the intertemporal effort distribution, namely the weight she gives

to past performance when assigning prizes in later periods. We will show

that, in spite of their superficial similarity, this weight policy and the prize

policy have very different effects on effort streams, and we will identify the

optimal combination of both instruments.

Specifically, we consider a two-period tournament with two risk-neutral

agents with identical and known abilities.3 The principal can split the prize

money across two periods arbitrarily. If she awards a second-period prize, she

also chooses a first-period performance weight. After the announcement of

prize and weight policies, the agents choose effort levels in each period. The

principal observes each agent’s performance, a noisy measure of effort. In

period 1, she awards the prize (if any) to the agent who performed better. In

our benchmark case with feedback, she publicly announces the performance

of both agents in the first period. In period 2, the agents choose efforts again.

The principal then allocates the second-period prize to the agent for whom

the weighted sum of first- and second-period performance is highest.

In line with the literature, we consider the case that a principal regards

efforts in different periods and by different agents as perfect substitutes and

thus maximizes total effort. Contrary to most of the literature, we also ana-

lyze the optimal policy for a principal who treats efforts in different periods

2A well-known argument for tournaments is as follows. When performance is not ver-
ifiable, a principal who contracts directly on performance may claim that performance
was low to save on performance pay. Tournaments reduce this incentive, because the total
payments to the agents are independent of performance.

3To see the incentive effects of such tournaments most clearly, we abstract from the
important issue of selecting the agent with the highest innate ability for a particular task.
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as imperfect substitutes and wants to balance them across periods. This is

important, because excessively low efforts in some period may cause large

harm, which cannot even be compensated by an extremely large effort in

other periods.

Our main contribution is that we compare the effects of prize and weight

policies on effort streams. Moreover, we identify the optimal combination of

both policies, depending on parameters. The two instruments seem similar

at first sight. Indeed, we use a simple example to show that a principal can

induce the same maximal first-period effort and the same maximal second-

period effort with each instrument. However, the two instruments implement

different sets of effort vectors with positive efforts in both periods.

Generalizing the example, we then identify the optimal combination of

prize and weight policies. We show that, under quite general conditions,

the principal should give only a second-period prize, but with a positive

first-period performance weight. The optimal first-period prize is positive

only if the first-period performance measure is suffi ciently precise. We then

show that for quadratic cost functions and normally distributed observation

errors, this condition never holds. Even with more general distributional

assumptions, the optimal first-period prize is never higher than the second-

period prize for imperfect substitutes and quadratic cost functions.

For the normal-quadratic example, we identify large gains from good de-

sign. The expected effort is at least 40% higher when a principal chooses

prizes and weights optimally than when she carries out two identical inde-

pendent tournaments with the same total prize sum.

Finally, we compare the results of the benchmark model with the no

feedback case without communication of performance.4 We obtain similar

results on the optimal combination of prizes and weights. Moreover, we

generalize some existing results on whether a principle should give feedback.

The organization of the paper is as follows. Section 2 discusses related

literature. In Section 3, we introduce the model. In Section 4, we analyze

agent behavior. Section 5 uses a simple example to compare the incentive

4In the no revelation case, the game is static. The model thus becomes a special case of
a multi-battle contest where agents compete simultaneously in a multiplicity of dimensions
(see, e.g., Clark and Konrad 2007 and Kovenock and Roberson 2010).

3



effects of pure prize policies and pure weight policies. Sections 6 and 7 char-

acterize the optimal policy. Section 8 discusses the feedback policy. Section

9 concludes. The Appendix contains all non-trivial proofs.

2 Relation to the Literature

Our paper focusses on the optimal choice of prizes and weights in dynamic

tournaments.5 We are not aware of any work on the trade-off between these

two instruments and their optimal combination. A small number of papers

(Möller 2012, Clark et al. 2012, Clark and Nilsson 2013) derives the optimal

prize structure in Tullock contests when good performers in period one have

an exogenous advantage in period two, creating an asymmetry between the

agents in the second period.6 However, these papers do not deal with the

choice between prize and weight policies as alternatives for influencing the

effort streams, which is central in our paper. Moreover, they neither analyze

feedback policies nor do they allow for imperfect substitutes.7

Our results on optimal weights are closely related to the literature, but

they provide additional insights. For instance, Meyer (1992) considers a

setting similar to our case with feedback and a single prize, but with risk-

averse agents. She shows that cost minimization requires a bias towards the

first-period winner.8 Our analysis shows that the principal should also give a

headstart when the first-period prize is higher than the second-period prize,

when efforts are imperfect substitutes and when there is no feedback. Finally,

5Nitzan (1994) and Konrad (2009) provide surveys of the literature on tournaments.
Another broadly related literature analyzes dynamic principal-agent relationships with
moral hazard in a non-competitive setting. Lewis and Sappington (1997) examine how
current incentives should optimally depend on past performance. Hansen (2013) and Chen
and Chiu (2013) deal with the optimal revelation policy.

6These technological assumptions are also made by some authors who do not deal
with the optimal prize structure (e.g., Schmitt et al. 2004, Grossmann and Dietl 2009,
Grossmann 2011 and Baik and Lee 2000).

7Some papers derive the optimal distribution of prize money across stages in a two-
period elimination tournament, where only the winners of the current period compete again
in the next period. A seminal paper is Moldovanu and Sela (2006). Because elimination
tournaments have a very different structure than our model, the results are diffi cult to
compare to ours.

8See also Harbaugh and Ridlon (2011) and Ridlon and Shin (2013).
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we provide results on the determinants of the size of the bias.9

Several recent papers have dealt with feedback in dynamic tournaments

(see Section 8). Aoyagi (2010) considers a two-period tournament similar to

ours. However, he takes prizes and weights as exogenous: Unlike in our pa-

per, there is only one prize, and first and second-period performance receive

the same weight. He shows that the expected effort is higher (lower) with

feedback if marginal costs are concave (convex).10 We endogenize Aoyagi’s

assumptions on prizes and weights by analyzing under which circumstances

the principal optimally chooses them in this way. Moreover, we show that

the optimal feedback policy has the same features when these assumptions

do not hold. Ederer (2010) introduces incomplete information about abil-

ity. The results are equivalent to those of Aoyagi (2010) if ability is non-

complementary to effort.11 With complementarity, expected efforts may be

higher with feedback than without, even for quadratic costs.12

Like us, Gershkov and Perry (2009) ask how a sequence of performance

signals in a two-period setting should translate into prizes. The paper is hard

to compare with ours, because the assumptions differ considerably. Most im-

portantly, the authors assume that the principal can only use coarse informa-

tion for interim performance evaluation (which, if any, agent was better).13

Contrary to us, they do not ask whether and how the principal should spread

a given prize sum over two periods. Instead, they investigate properties of

the optimal mechanism when the principal can not only vary the prize distri-

9Contrary to us, Meyer (1992) assumes that the size of the bias is fixed ex ante rather
than a function of the performance difference in period 1.
10Aoyagi (2010) allows for general objective functions of the principal and for partial

feedback. Denter and Sisak (2013) show that effort may increase with feedback if marginal
efforts are concave. They use their set-up to analyze the effect of polls on political campaign
spending, allowing for an initial asymmetry before the beginning of the first period.
11Ederer and Fehr (2013) use a special case of this model with equal abilities.
12Other papers address feedback in dynamic tournaments under very different assump-

tions. Arbatskaya and Mialon (2012) analyze a lottery contest where first- and second-
period efforts are complements. Goltsman and Mukherjee (2011) consider a contest in
which the agents either succeed or fail, and the prize is given to the agent who succeeded
more often. Zhang and Wang (2009) consider dynamic all-pay auctions with elimination.
13Also, Gershkov and Perry (2009) assume that the relation between winning probabil-

ities and efforts is the same in both periods, while we allow for differences in the error
structure. Finally, they only focus on maximization of total effort. Contrary to us, they al-
low for a technological relation between first-period effort and second-period performance.
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bution, but also the prize sum. Allowing such flexibility makes sense in their

set-up (contrary to ours), because they assume performance to be verifiable,

so that the principal is not tempted to report low performance (and thus pay

low prizes).14

In brief, our paper contributes to the literature by showing how a principal

should use prizes and weights to affect effort streams. Moreover, it provides

robustness results regarding weight and feedback policies, and it justifies

some assumptions previously used in the literature.

3 The Model

We consider a class of two-stage rank-order tournaments. Given a fixed

budget W > 0, a principal chooses an incentive system I = (η,W1, ρ) ∈
R+ × [0,W ] × {0, 1} to be explained below.15 Given I, agents i ∈ {1, 2}
choose effort levels eit ≥ 0 (t ∈ {1, 2}). The cost function Kit (eit) has the

following properties:

Assumption 1: Kit is independent of i and differentiable three times.

It satisfies K ′it > 0, K ′′it > 0, Kit (0) = K ′it (0) = 0. K ′′′it (eit) ≥ 0 or

K ′′′it (eit) ≤ 0 must hold globally.

Thus, we can write Kt ≡ Kit. Note that we allow first- and second-period

cost functions to differ, reflecting potential differences in the two tasks.

The agents maximize expected utility and are risk-neutral. Utility is ad-

ditively separable in period-specific income and costs. At the end of each

period t, the principal observes performance, which is an imperfect effort

measure sit = eit+ εit. The error term εit is independently distributed across

agents and periods. In each period, the error distribution is the same for

agent 1 as for agent 2. However, the error distribution in period 1 may differ

from the one in period 2. This captures possible differences in the precision

14Like us, Gershkov and Perry (2009) have some results (e.g. Theorem 2) which are
consistent with first-period efforts receiving positive weights. While they consider settings
with and without midterm review, they do not directly analyze the ceteris paribus effect
of giving feedback.
15In Klein and Schmutzler (2014), we allow for η < 0, but we show that this would

never be optimal. Every η < 0 is dominated by |η|, because |η| will turn out to provide
the same second-period incentives while strengthening first-period incentives.
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of monitoring for the two tasks.16

The principal awards the first-period prize W1 to agent i if si1 > sj1.

Agent i receives the second-period prizeW2 = W−W1 if si2+ηsi1 > sj2+ηsj1.

The principal’s choice of the first-period weight η ∈ R+ thus determines the

influence of past performance on the chance of winning in the second period.

Under a full feedback policy (ρ = 1), the principal makes the performance

of both agents public before they choose second-period efforts.17 Under a no-

feedback policy (ρ = 0), the principal does not communicate the performance

assessment. She does not even communicate who won the first-period prize,

and she distributes both prizes at the end of period 2. In the following, we

shall focus on the full feedback policy; except in Section 8.

The following notation is helpful to describe the solution of the game.

Definition 1 The error difference of agent i in period t (t = 1, 2) is

∆εit = εit−εjt, his relative first-period performance is ∆si1 = si1−sj1 =

∆ei1 + ∆εit, where ∆eit = eit − ejt.

Clearly, ∆eit = −∆ejt, ∆εit = −∆εjt, ∆si1 = −∆sj1. We make the

following assumption on the error distributions:

Assumption 2 ∆εit is distributed as Ft (s) on R with a symmetric,

single-peaked, strictly positive and continuously differentiable density ft (s).

This implies ft (s) = ft (−s), f ′t (s) = −f ′t (−s) and E (∆εit) = 0.

For some results, we assume quadratic cost functions:

(C1) The cost function is Kt (eit) = kt
2

(eit)
2 with kt > 0.

We assume that, given a fixed prize budget, the principal’s payoff is in-

creasing in efforts. The efforts of different agents within periods are perfect

substitutes for the principal. We allow first- and second period efforts to be

perfect or imperfect substitutes. For perfect substitutes, the principal chooses

16In a non-tournament setting, Ke et al. (2014) show that organizations optimally
hire workers into easy-to-monitor jobs with low effort costs and then promote them into
diffi cult-to-monitor jobs with high (marginal and absolute) effort costs. In our setting,
this would correspond to σ1 < σ2 and K1 (e) < K2 (e), K ′1 (e) < K ′2 (e).
17In practice, the principal will typically not communicate a concrete number. Instead,

she may communicate whatever relevant information she has to the agents, thereby cre-
ating a common understanding about their relative performance.
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the incentive system so as to maximize expected total efforts. For imperfect

substitutes, she maximizes the expected product of first and second-period

efforts. This corresponds to a complementarity that makes it desirable to

have similar efforts in both periods.

4 Agent behavior

We focus on the full feedback policy, deferring the no feedback policy to

Section 8. We first analyze the agents’ equilibrium behavior for a given

incentive system. The following simple result is stated without proof.

Lemma 1 (i) The conditional probability that si1 > sj1 given ei1 and ej1
is F1 (ei1 − ej1). (ii) The conditional probability that si2 + ηsi1 > sj2 + ηsj1

given ei2, ej2 and ∆si1 is F2 (η∆si1 + ei2 − ej2).

4.1 General Analysis

In period 2, a player’s information set consists of all combinations of period 1

efforts and error differences that are consistent with the own first-period effort

ei1 and the observed relative performance ∆si1. We use the Perfect Bayesian

Equilibrium (PBE) to deal with this imperfect information (Mas-Colell et

al. 1995, p. 285).18 A pure strategy σi of player i consists of a first-period

choice ei1 and a function Ei2 mapping information sets (ei1,∆si1) to actions

ei2. If player i chose ei1, observes ∆si1 and assumes that player j plays the

pure strategy σj = (ej1, Ej2), he will assign probability one to the event that

∆εi1 = ∆si1 − ∆ei1. We will assume that beliefs are formed in this way,

without specifying them explicitly.

18The task is simplified because there are no off-equilibrium events to consider, as f1 is
strictly positive on R. Moreover, period 1 enters player i’s payoffs only via ∆si1 and ei1,
so that the unobservable aspects of previous play (player j’s effort choices) are irrelevant
for the players’choices.
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4.1.1 Second-period efforts

Using Lemma 1(ii), the expected second-period payoff of agent i, conditional

on relative first-period performance and second-period efforts, is

Ui2 (ei2, ej2,∆si1) = F2 (η∆si1 + ∆ei2)W2 −K2 (ei2) . (1)

Thus, the first period effort influences the second-period payoff via the first-

period relative performance ∆si1. The first-order condition is

f2(η∆si1 + ∆ei2)W2 = K ′2 (ei2) . (2)

Though the game does not have any proper subgames because information

sets in period 2 are not singletons, payoffs in period 2 are constant on infor-

mation sets. We use this in the following definition.

Definition 2 The second-period effort game induced by ∆si1 is the game

with players i = 1, 2, strategy spaces Xi = R+ and payoffs given by (1) for

(ei2, ej2) ∈ Xi ×Xj.

We obtain the following result:

Lemma 2 Suppose ρ = 1 (feedback) and W2 > 0.

(i) In any equilibrium of the second-period effort game, efforts for i = 1, 2

are symmetric and satisfy

e∗i2 (∆si1) ≡ e∗i2 (∆si1; η,W2, 1) = (K ′2)
−1

[f2 (η∆si1)W2] (3)

(ii) If costs are suffi ciently convex, (3) defines the unique Nash equilibrium

of the second-period effort game.

Lemma 2 has some simple comparative statics implications.

Corollary 1 Suppose ρ = 1, η > 0 and W2 > 0. Then e∗i2 is decreasing in

|∆si1| and η, and increasing in W2 for i = 1, 2.

The result on |∆si1| implies that a greater performance difference between
the leader (the agent i with ∆si1 > 0) and the laggard (the agent with

9



∆si1 < 0) reduces both players’effort in period 2.19 The other two results

identify policy effects. In particular, increasing the first-period weight η

reduces second-period efforts.

In the PBE, the symmetric second-period equilibrium is played after each

realization of ∆si1. Thus, the expected second-period payoff, conditional on

first-period performance, is

U s
i2 (∆si1) ≡ Ui2

(
e∗i2 (∆si1) ,e∗j2 (−∆si1) ,∆si1

)
. (4)

The expected second-period payoff, given first-period efforts, is

U e
i2 (ei1, ej1) ≡ E∆εi1U

s
i2 (∆ei1 + ∆εi1) . (5)

4.1.2 First-period efforts

Using Lemma 1(i), agent i’s optimization problem in period 1 is

max
ei1≥0

F1 (ei1 − ej1)W1 + U e
i2 (ei1, ej1)−K1 (ei1) .

The corresponding first-order conditions is

f1 (∆ei1)W1 +
∂U e

i2

∂ei1
= K ′1 (ei1) . (6)

The following definition is crucial for the intuition.

Definition 3 The intensity of second-period competition is given by

C(η) = 2

∫ ∞
0

f2 (ηs) f1 (s) ds.

The logic of this definition is as follows. For each agent, f1 (s) captures the

density of the event that the relative first-period performance of this player is

s when efforts are symmetric (as in equilibrium). Since both players choose

19This result reflects the "well-known evaluation effect or lack-of-competition effect"
(Ederer 2010, p. 742). It implies that the principal has an incentive to always report equal
performances. This problem becomes negligible if the principal leaves the communication
to disinterested parties from within or outside the organization.
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identical equilibrium efforts in the second period, f2 (ηs) = f2 (−ηs) captures
the density of the event that a strike of luck of one agent in period 2 exactly

compensates a strike of luck of the other agent of size s in period 1. Therefore,

C(η) measures the probability of the event that the second-period contest is

a close run where a marginal effort increase of one agent will tip the balance

of the second-period contest in his favor: When C(η) is high, an agent who

was lucky in the first period cannot be too sure about his winning prospects

in the second period, and will therefore continue to put in some effort. C(η)

has simple properties. First,

C ′(η) = 2

∫ ∞
0

sf ′2 (ηs) f1 (s) ds < 0 for η > 0. (7)

An increase in η thus weakens second-period competition. Moreover,

(i) C (η) > 0; (ii) C (0) = f2 (0) ; (iii) C ′(0) = 0 (8)

We sometimes invoke a regularity condition to simplify the interpretation:

(C2) ηC(η) is increasing in η.

This condition holds, for instance, in Example E1 below. The following

result uses (6) to derive equilibrium efforts:

Proposition 1 Suppose ρ = 1 (feedback).

(i) In any symmetric interior PBE, first-period efforts satisfy

e∗1 (η,W1,W2, 1) = (K ′1)
−1

[f1 (0)W1 + ηW2C(η)] . (9)

(ii) Suppose the cost functions are suffi ciently convex. Then (3) and (9)

describe the unique symmetric PBE strategies.

We defer the discussion of second-order conditions to the appendix; there

we will show that they require suffi ciently convex cost functions.

By Proposition 1, if (C2) holds, a higher η induces higher first-period

effort. The term in brackets on the right-hand side of (9) is the marginal

benefit from increasing ei1. The effect on the expected first-period payoff is
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f1 (0)W1; the effect on the expected second-period payoff is ηW2C(η), which

is positive if η > 0. This term reflects the direct effect of higher first-period

effort on second-period winning chances. The term does not capture strategic

effects on the future efforts of the other player. Such effects are relevant in

the game, but they cancel out in the symmetric equilibrium.20

We now characterize second-period efforts. Symmetry of the equilibrium

in Proposition 1 implies ∆si1 = ∆εi1. Using (3) and taking the expectation

over ∆εi1, we obtain:

Corollary 2 The expected efforts in period 2 in the PBE of the feedback

game described in Proposition 1 are

E (e∗2 (η,W2, 1)) = 2

∫ ∞
0

(K ′2)
−1

[f2 (ηs)W2] f1 (s) ds (10)

4.2 A Normal-Quadratic Example

To obtain sharper results, we introduce a simple example.

Example E1: The cost function is Kt (eit) = k
2
e2
it for t = 1, 2. The error

difference ∆εit is normally distributed with variance σ2
t .
21

Example E1 satisfies Assumptions 1 and 2.

Corollary 3 In E1, a PBE exists. Equilibrium efforts with feedback are

e∗1 (η,W1,W2) =
1

k
√

2π

(
W1

σ1

+
ηW2√
σ2

2 + σ2
1η

2

)
. (11)

E (e∗2 (η,W2, 1)) =
W2

k
√

2π
√
σ2

2 + σ2
1η

2
. (12)

Lower marginal costs, higher second-period prize, lower first-period weight

and higher first- and second-period precision induce higher second-period ef-

forts. Analogous results hold for period one. First-period efforts also increase
20If, for any first-period effort choice, a player knew he was ahead of the other player,

he would have a strategic incentive to increase efforts to discourage player j from exerting
effort in the future, whereas the converse would hold for a player who knows he is behind
the opponent. Since the game is stochastic, players have to consider the expected strategic
effects, which can be positive or negative, but cancel out for identical first-period efforts.
21A normally distributed error difference follows, for example, from normally distributed

observation errors.
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if the second-period precision increases: The parameter change makes first-

period effort more worthwhile, because the positive effect on winning the

second-period prize increases. Finally, a redistribution of the prize sum from

period 2 to period 1 increases first-period efforts, because the positive effect

of an increase in the first-period prize is always stronger than the negative

effect of an identical decrease in the second-period prize.

5 Prizes vs. Weights: An illustration

We now use Example E1 to illustrate the fundamental difference between

prize and weight policies that makes it worthwile to study the optimal com-

bination of both instruments. We first ask which effort combinations can

be implemented with a total budget W with two independent tournaments

(η = 0) with prizes W1 and W2 = W − W1. In this case, we speak of a

pure prize policy. Second, we ask which effort combinations can be imple-

mented with a pure weight policy, that is, with only one (second-period) prize

(W1 = 0 and W2 = W ), but arbitrary first-period weights η. We formulate
the analysis for the feedback policy, but Corollary 6 below will show that an

analogous argument works for the no feedback policy.22

For the purposes of this illustration, we assume that cost functions and

performance measures are identical across periods. Our first result seems to

confirm that there is no difference between prize and weight policies.

Observation 1: In Example E1 with σ1 = σ2 = σ, we obtain:

(i) A pure prize policy with W1 = W and a pure weight policy with η → ∞
both implement (e1, E (e2)) =

(
W
/
kσ
√

2π , 0
)
.

(ii) A pure prize policy with W1 = 0 and a pure weight policy with η → 0

both implement (e1, E (e2)) =
(
0,W

/
kσ
√

2π
)
.

Thus, the maximal effort that the principal can induce with a pure prize

policy in period 1 is the same as for a pure weight policy; similarly for period

2. However, the two policies induce very different combinations of more

balanced effort vectors with positive effort levels in both periods.

22Note that, since we focus on symmetric equilibria, and efforts within periods are perfect
substitutes, we can write the principal’s objective in terms of the efforts of only one agent
here and in the following sections.
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Observation 2: Independent of the prize distribution, the total expected
effort for a pure prize policy is W

/
kσ
√

2π . For a pure weight policy, the

total expected effort is W (1 + η)
/
kσ
√

2π
√
η2 + 1 .

Figure 1: Prizes vs. weight policies

Figure 1 illustrates the observations. It depicts all effort vectors that can

be implemented with each type of policy for σ = 1, k = 1 and W = 1.

Reflecting Observation 1, both lines intersect the axes in the same point.

The set of implementable effort vectors for a pure prize policy is a straight

line with slope −1, whereas for a pure weight policy it is a line that is

concave to the origin. The figure also shows the principal’s indifference curves

with perfect and imperfect substitutes, respectively. The figure demonstrates

that the advantages of weight policies for effort provision are particularly

pronounced for balanced efforts (η = 1). These figures also imply that it is

optimal for the principal to induce such balanced efforts in the symmetric

example, even when efforts are perfect substitutes.

Intuitively, starting from an effort vector with all efforts concentrated in

one period, the opportunity costs of inducing small positive effort levels in

the other period are smaller with a weight policy than with a prize policy.

Consider the first-order condition in period 2, which is e2 = W2C (0) /k =

W2f2 (0) /k under a pure prize policy. Thus, inducing higher first-period ef-

forts by marginally increasingW1 has the opportunity cost that second-period

efforts fall by f2 (0) /k, a positive constant that is independent of W1. Under

a pure weight policy, the first-order condition becomes e2 = WC (η) /k, so

that the opportunity cost of marginally increasing η is a reduction of the
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second-period effort by WC ′ (η) /k, which depends directly on the resulting

reduction in competition. As C ′ (0) is zero, the reduction in competition is

negligible when one starts from a situation without first-period effort. The

argument for the case without second-period effort is analogous.

In this special case, the principal prefers pure weight policies to pure prize

policies. However, under more general conditions, positive first-period prizes

will have a role to play, even though, at least for perfect substitutes, strong

conditions are necessary for principals to benefit from offering two prizes.

6 Optimal Policy: Quadratic Cost Functions

We first characterize the optimal policy for perfect and imperfect intertem-

poral effort substitutes, respectively.23 Then we illustrate the size of the

benefits resulting from an optimal design of the incentive system. We fix the

total budget as W , so that W2 = W −W1.

6.1 Perfect Substitutes

The principal’s objective function for perfect substitutes is:

V P (η,W1, ρ) ≡ e∗1 (η,W1,W −W1) + E (e∗2 (η,W −W1, ρ)) . (13)

The first main result characterizes the optimal policy. It is a special case of

Lemma 5, which is stated for general cost functions (see Appendix 10.3 and

the discussion in Section 7.1).24

Proposition 2 Suppose (C1) holds.
(i) If ∃ η ∈ R+ s.t. f1 (0) < (k1 /k2 + η)C(η), then the optimal first-period

prize is W P
1 = 0. The optimal first period weight ηP solves∣∣∣∣C ′(η)

C(η)

∣∣∣∣ =
1

k1 /k2 + η
. (14)

23In the following discussion, we assume that, for given error distributions and effort
cost functions, second-order conditions hold for all allowable choices of the policy variables.
This is for instance true for Example E1.
24We discuss Lemma 5 briefly below.
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(ii) If f1 (0) ≥ (k1 /k2 + η)C(η) ∀ η ∈ R+, W P
1 = W .

The result implies that it is always optimal to give only one prize. To

see this, note that, if (C1) holds, efforts in each period are linear functions

of the prize in that period. As efforts are perfect substitutes, the principal

focuses on the period for which the effect of the prize on the effort is higher.

When the principal gives a second-period prize, η is determined by (14),

which captures the trade-off between strengthening first-period incentives

and weakening second-period competition.25 As the right-hand side of (14)

is downward-sloping in η, the optimal η falls as a result of any change in

the error distribution that globally increases the sensitivity
∣∣∣C′(η)
C(η)

∣∣∣ of second-
period competition to η: As

∣∣∣C′(η)
C(η)

∣∣∣ shifts upward, the opportunity cost of
using η to increase first-period efforts (the reduction in future competition)

increases. Thus, the principal should be more reluctant to use this instrument

to induce first-period efforts. Figure 2 illustrates Proposition 2 for Example

E1. It shows how the optimal weight of first-period performance ηPdepends

on
∣∣∣C′(η)
C(η)

∣∣∣, which, in this example, is low if the second-period performance
measure is imprecise compared to the first-period measure, implying a higher

optimal weight ηP .

Furthermore, the higher the ratio of first-period to second-period marginal

costs, the lower is the optimal η. Note also that (14) and thus the optimal η

is independent of W1.26 Nevertheless, one should think of first-period prizes

and weights as substitutes: As W1 increases, W2 = W − W1 falls. Thus,

even if η is unchanged, the marginal effect of higher first-period effort on the

expected future payoff (ηW2C(η)) falls if W1 increases, so that the principal

relies less on the prospects of future prizes to induce first-period efforts.

Corollary 4 specifies the optimal policy for Example E1.

Corollary 4 In E1, W P
1 = 0 and ηP = σ2

2 /σ2
1 .

Consistent with Proposition 2, it is optimal to give only a second-period

prize with perfect substitutes. Incentives for first-period efforts come exclu-
25The proof shows that (14) not only holds for the optimal weight/prize combination,

but for the optimal weight corresponding to any positive second-period prize.
26This is due to the fact thatW−W1 enters ∂V P (η,W1) /∂η multiplicatively (see (47)).
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Figure 2: Necessary conditions for η with perfect substitutes

sively from η. The result endogenizes the assumption thatW1 = 0 and η = 1

in Aoyagi (2010) for identically normally distributed error distributions: For

σ1 = σ2, this is the optimal combination of prizes and weights.

6.2 Imperfect Substitutes

The principal’s objective function for imperfect substitutes is

V I (η,W1, ρ) ≡ e∗1 (η,W1,W −W1) · E (e∗2 (η,W −W1, ρ)) . (15)

Obviously, the principal wants to induce efforts in both periods. We can

characterize the optimal policy for quadratic costs and, in particular, for the

normal-quadratic example.
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Figure 3: Necessary conditions for imperfect substitutes

Proposition 3 Suppose (C1) holds. The optimal
(
W I

1 , η
I
)
satisfies one of

the following properties:

(a) W I
1 = 0 and

∣∣∣∣C ′(ηI)C(ηI)

∣∣∣∣ =
1

2ηI
;

(b) W I
1 = W

f1 (0)− 2ηIC
(
ηI
)

2f1 (0)− 2ηIC (ηI)
∈ (0, 1/2] and

∣∣∣∣C ′(ηI)C(ηI)

∣∣∣∣ =
C
(
ηI
)

f1 (0)
.

According to Proposition 3, there are two possibilities for
(
W I

1 , η
I
1

)
, both

depicted in Figure 3.

According to (a), the first-period prize may be zero, in which case the op-

timal first-period weight satisfies a simple condition that depends exclusively

on C (η) (see point A in Figure 3). As with perfect substitutes, η is lower the

greater its adverse effect on future competition is. By (b), the first-period

prize may be positive, in which case the optimal first-period weight satisfies

a condition that depends on error distributions not only via C (η), but also

via f1 (0) directly, as captured by W I
1 (see point B in Figure 3).27 The error

distributions determine which of the two cases in Proposition 3 applies. For

instance, with normal error distributions, the first-period prize is zero (see

Corollary 5 below).

Contrary to the case of perfect substitutes, Proposition 3 does not rule

out positive prizes in both periods. Per-period efforts are linear in prizes, so

27Note that W I
1 (η) is typically not linear.
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that one of the prizes will typically have a more positive effect on total ef-

forts. Nevertheless, the principal should not focus exclusively on this period,

because she wants to balance efforts. On a related note, (b) states that the

first-period prize is smaller than the second-period prize. This differs from

perfect substitutes, for which it can be optimal to induce only first-period ef-

forts. To obtain the desired balanced effort distribution, the principal should

not give excessive first-period prizes, because she already provides incentives

for first-period effort through η. In E1, we can say more about the optimum.

Corollary 5 In E1, necessary conditions for the optimum are ηI = σ2 /σ1

and W I
1 = 0.

The result resembles Corollary 4 for perfect substitutes, with variances

replaced by standard deviations. Note that ηI > ηP if and only if σ2 < σ1:

Greater precision of the second-period performance measure leads to higher

second-period efforts than first-period efforts. Imperfect substitutes require

balanced efforts, so that a greater weight of the first period is used to mitigate

the asymmetry.

6.3 The size of the benefits of optimal design

We now use Example E1 to calculate the size of the benefits resulting from an

optimal design of the incentive system with perfect substitutes. We compare

the optimal choice of prizes and weights ((η,W1) = (σ2
2 /σ2

1 , 0)) with the

case of two independent and identical tournaments ((η,W1) = (0,W /2)).

By optimally adjusting prizes and weights, the principal achieves a relative

payoff increase of

∆EP≡V
P (σ2

2 /σ2
1 , 0)− V P (0,W /2)

V P (0,W /2)
=

2
√
σ2

1 + σ2
2 − (σ1 + σ2)

(σ1 + σ2)

Figure 4 shows how the total relative payoff increase from choosing the op-

timal incentive system depends on the standard deviations of the error dis-

tributions.

∆EP attains its minimum for σ1 = σ2 at
√

2 − 1 ≈ 41%. Thus, the

percentage payoff increase from implementing the optimal policy is lowest if
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Figure 4: Relative payoff increase when setting W1 and η optimally

both performance measurements are equally precise. Figure 4 further shows

that the more precise one of the performance measures is, the more the

principal can benefit from implementing the optimal policy.28

7 Optimal Policy: General cost functions

With more general cost functions, we can still derive conditions for the op-

timal policy. While they are less straightforward to interpret, we can never-

theless obtain some insights.

7.1 Prizes

7.1.1 Perfect Substitutes

Proposition 2 on the optimal weights and prizes for quadratic cost functions

and perfect substitutes follows from Lemma 5 in Appendix 10.3. This lemma,

which assumes that K ′′′t ≤ 0, characterizes optimal prizes, conditional on

weights. Specifically, it describes when the principal should only use a second

period (first-period) prize. As in the case of quadratic cost functions, low

precision of the first-period signal favors relying only on a second-period prize.

28If one of the performance measures is very precise (σt ≈ 0), then ∆EP ≈ 1.

20



The assumption that K ′′′t ≤ 0 will turn out not to be a serious restriction:

Corollary 6 in Section 8 shows that K ′′′t ≤ 0 corresponds to the case where

feedback is optimal; if K ′′′t > 0, the principal should not give feedback.

7.1.2 Imperfect Substitutes

For imperfect substitutes, it is more diffi cult to characterize the optimal

policy for general cost functions. One can show (for K ′′′t ≤ 0) that the opti-

mal W1 conditional on η is zero whenever f1 (0) < ηC (η).29 Intutively, for

any given first-period weight, positive first-period prizes should be avoided

whenever the first-period signal is suffi ciently noisy, but second-period com-

petitiveness is suffi ciently high that second-period prizes are useful.

7.2 Weights

The following result generalizes an observation already made for quadratic

cost functions:

Proposition 4 With feedback, the optimal unconditional weight is positive
for perfect and imperfect substitutes for all positive second-period prizes W2.

The result follows directly from Lemma 6 in the Appendix, according to

which increasing η marginally from zero increases first-period efforts, while

there is no effect on second-period efforts. Proposition 4 states that per-

formance evaluation should always have memory: Firms should consider not

only the recent performance of employees, but also the performance in the

distant past. As discussed for Example E1 in Section 5, this holds because, for

η = 0, the marginal effect of η on first-period effort is positive and bounded

away from zero (a first-order effect), whereas it is zero for second-period effort

(a second-order effect). To understand the latter point, note that increasing

η has an adverse effect on second-period efforts because the second-period

contest becomes more asymmetric, that is, less competitive (C ′ (η) < 0). As

C ′ (0) = 0, this adverse effect vanishes as η approaches 0.

29The result follows because W1 = W cannot be optimal with imperfect substitutes,
and (51) implies that the objective function is convex if f1 (0) < ηC (η); see Klein and
Schmutzler (2014) for details.
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As discussed in Section 2, several authors have argued that the principal

should use positive first-period weights. The proof of Lemma 6 shows that

this is even true for arbitrarily high first-period prizes. Moreover, it holds

for imperfect as well as perfect substitutes.

8 Feedback Policy

We now suppose the principal does not give feedback about first-period per-

formance. Section 8.1 characterizes the equilibrium. Section 8.2 compares

the cases with and without feedback. Generalizing existing results, we show

that the optimal feedback policy depends only on the sign of the third deriv-

ative of the cost function, with no difference for quadratic costs (C1). Hence,

all results on the optimal prize/weight policy with (C1) translate directly to

the case without feedback. In Section 8.3, we sketch some results for more

general cost functions in the no feedback case.

8.1 No feedback

8.1.1 Equilibrium

Under the no-feedback policy, agents simultaneously choose first- and second-

period efforts according to

max
ei1≥0,ei2≥0

F1 (ei1 − ej1)W1+ (16)

W2

∫ ∞
−∞

F2 (η (ei1 − ej1 + s) + ei2 − ej2) f1 (s) ds−K1 (ei1)−K2 (ei2) .

By Lemma 1(ii), the integral in (16) is the probability of winning the second-

period prize, conditional on effort choices. We can use this to characterize

the Nash equilibrium.

Proposition 5 Suppose ρ = 0 (no feedback).

(i) In any symmetric interior Nash equilibrium, efforts must satisfy:

e∗1 (η,W1,W2, 0) = (K ′1)
−1

[f1 (0)W1 + ηW2C(η)] > 0 (17)

e∗2 (η,W2, 0) = (K ′2)
−1

[W2C(η)] > 0. (18)
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(ii) If the cost functions are suffi ciently convex, (17) and (18) describe the

unique symmetric Nash equilibrium.30

Both effort levels reflect standard cost-benefit considerations. The mar-

ginal benefit of first-period efforts consists of the increased winning proba-

bility in period 2 (ηC(η)) and period 1 (f1 (0)).

8.2 The effects of feedback

By Propositions 1 and 5, first-period efforts in any symmetric equilibrium

are non-stochastic and equal under both feedback policies; we thus write

e∗1 (η,W1,W2) for first-period equilibrium efforts.31 Using Jensen’s inequality,

we compare the expected second-period efforts in the equilibria characterized

by Propositions 1 and 5:32

Lemma 3 ∀η ∈ R+,W1 < W :

(i) If K ′′′2 ≥ 0, then e∗2 (η,W −W1, 0) ≥ E (e∗2 (η,W −W1, 1)).

(ii) If K ′′′2 ≤ 0, then e∗2 (η,W −W1, 0) ≤ E (e∗2 (η,W −W1, 1)).

For quadratic costs, (i) and (ii) imply that expected second-period efforts

are equal under both feedback policies. Intuitively, K ′′′2 matters because

second-period efforts are the inverse of marginal costs for ρ = 0 and the

expectation of the inverse of marginal costs for ρ = 1. Thus, concavity (con-

vexity) of the inverse marginal costs is decisive for which regime yields higher

30In Appendix 10.5.2 we identify the meaning of “suffi cient convexity”. We also show
that the second-order conditions hold locally for arbitrary convex cost function.
31The result reflects the fact that the marginal effect of first-period effort on the expected

second-period payoff is identical under both policies. Intuitively, a marginal increase of ei1
has positive effects on the second-period payoff of player i if it suffi ces to tip the balance in
the contest in period 2 in his favor. The probability that this happens, which is captured
by C(η) for both players, is independent of whether information on ∆si1 is revealed to
players before they choose second-period efforts. In this argument, it is important to start
from the respective equilibrium, with equal efforts in both periods.
32Intuitively, with feedback, the agents base their second-period decisions on the re-

vealed asymmetry between players, whereas, without feedback, the expected asymmetry
is decisive. Compare second-period decisions with and without feedback for given effort
choices in the first period: For error realizations where the asymmetry is low (high) relative
to expectations, efforts will be higher (lower) with feedback than without.
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efforts on expectation.33 A stark implication is that neither the other policy

variables nor the exogenous parameters matter for the optimal feedback pol-

icy. Intuitively, this result should not hold when the third derivatives of cost

functions switch sign; then the relation between second-period efforts with

and without feedback will depend on details of the parameters and the pol-

icy.34 Moreover, even in the current set-up the remaining parameters matter

for the extent to which efforts with and without feedback differ.35

A straightforward implication of Lemma 3 is that even if the principal

has chosen the optimal parameters for a given feedback policy, switching to

the other feedback policy is beneficial if the corresponding condition on K ′′′2

holds.36 Hence, we have proven:

Corollary 6 The optimal feedback policy is the same for perfect and imper-
fect substitutes, with ρ = 0 if K ′′′2 > 0 and ρ = 1 if K ′′′2 < 0. For K ′′′2 = 0,

expected payoffs are independent of the feedback policy.

The result extends Aoyagi (2010) who shows that, for one prize (W1 = 0)

and equal weights (η = 1) —the optimal parameters for Example E1 —the

cost function completely determines the optimal feedback policy.37 Our result

shows that this statement holds for arbitrary W1 and η.

8.3 Optimal Policy —Beyond Quadratic Costs

By Lemma 3, feedback has no effect on (expected) efforts for quadratic costs.

Thus, in this case, the results on prize and weight structure (Propositions 2

and 3) also hold without feedback. Lemma 8 in the Appendix characterizes

the optimal prize structure without feedback for K ′′′t ≥ 0, where no feedback

33This result extends to non-separable cost functions if the third partial derivatives are
positive (negative) for all first-period efforts: This follows from copying the analysis of the
second-period game with the modified cost function,with e1 playing a dummy role.
34For instance, if K ′′′2 < 0 for small values of e1 and K ′′′2 > 0 for large values, one would

expect the results for very low prizes to be as if K ′′′2 < 0 and those for very large prizes to
be as if K ′′′2 > 0.
35Trivially, for instance, when the second-period prize is small, the difference between

the two policies becomes negligible, whereas it can be substantial for more general policies.
36To see this, note that Lemma 3 applies to all values of η and W1 and, in particular,

to those that maximize e∗2 (η,W −W 1, 0) or E (e∗2 (η,W −W 1, 1)).
37Ederer (2010) also treats this case in his discussion of non-complementary abilities.
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is superior by Lemma 3. The interpretation of the general results is similar

as for quadratic costs: If the first-period contest is too noisy, it is optimal

not to give a first-period prize. Moreover, arguments analogous to those in

the proof of Proposition 4 show that, starting from η = 0, a slight increase

in η has a positive first-order effect on e1, but only a second-order effect on

e2. Hence, as in the case with feedback, it is optimal in the no feedback case

to give a positive weight on past performance.

9 Concluding Remarks

This paper analyzes intertemporal effort provision in two-stage tournaments.

A principal with a fixed budget faces two risk-neutral agents. She observes

noisy effort signals in both periods. She aims at maximizing either total

efforts (perfect substitutes) or the product of first- and second-period efforts

(imperfect substitutes). She decides (i) how to spread prize money across the

two periods, (ii) how to weigh performance in the two periods in the second

period prize, and (iii) whether to reveal performance after the first period.

Prize and weight policies differ in their incentive effects, even though they

seem similar at first sight. Our main results characterize the optimal com-

bination of prizes and weights in terms of exogenous parameters, depending

on whether efforts are perfect or imperfect substitutes. The analysis shows

that, even when a principal can divide the prize arbitrarily, it is usually bet-

ter to give only a second-period prize and rely on performance weights to

incentivize first-period weights. We also show that the effects of different

incentive structures can be quite substantial.

Several extensions are conceivable. First, one might ask, by going beyond

the current model, what a rationale for using multiple prizes might be. Risk

aversion is a natural candidate. Second, one might subject the hypotheses

of our analysis to empirical tests.38

38Klein (2015) confirms some of the comparative statics predictions in a laboratory
experiment.
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10 Appendix

10.1 Behavior of the Agents39

10.1.1 Proof of Lemma 2

(i) Equilibrium efforts must be positive because f2 > 0 by Assumption 2 and

K ′2 (0) = 0 by Assumption 1. Since f2 is symmetric by Assumption 2 and

− (η∆s11+∆e12) = η∆s21+∆e22,

the left-hand side of the first-order condition (2) is equal for both agents. Hence

e∗i2 (∆si1) = e∗j2(−∆si1), so that the second-period efforts are the same for both

agents. Thus, (2) becomes f2 (η∆si1)W2= K ′2 (ei2). As K ′′2> 0 by Assumption 1,

K ′2 therefore is strictly increasing and thus invertible. Thus (3) must hold in any

equilibrium.

(ii) The following inequality guarantees that the second-period payoffs (1) of

player i are strictly concave in ei2:

f ′2 (η∆si1+∆ei2)W2 < K ′′2 (ei2) ∀ ∆si1∈ R, ei2, ej2∈ R+. (19)

(19) requiresK2 to be suffi ciently convex.40 If it holds globally, the first-order con-

ditions (2) characterize a Nash equilibrium. Moreover, the equilibrium is unique,

as (3) must hold in any equilibrium by Part (i) of the lemma.

10.1.2 Proof of Corollary 1

The inverse function theorem yields[
(K ′2)

−1
]′

(f2 (η∆si1)W2) =
1

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

) .
39The proofs in this section generalize Aoyagi (2010) and Ederer (2010) (for non-

complementary abilities) who assume W1 = 0 and η = 1.
40By Assumption 2, f ′2 (η∆si1+∆ei2) < 0 if η∆si1+∆ei2 > 0, so that (19) always holds

in this case. For the case that η∆si1 + ∆ei2 < 0, suppose f ′2 is bounded above. Then (19)
holds globally if K ′′2 has a suffi ciently high lower bound.
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Thus (3) implies

∂ei2
∂∆si1

=
ηf ′2 (η∆si1)W2

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

) ; (20)

∂ei2
∂η

=
∆si1f

′
2 (η∆si1)W2

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

) ; (21)

∂ei2
∂W 2

=
f2 (η∆si1)

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

) . (22)

By Assumption 1, K ′′2> 0. By Assumption 2, if ∆si1< (>)0 ∧ η > 0 ∧W 2> 0,

then ηf ′2 (η∆si1)< 0 and thus ∂ei2
∂∆si1

> (<)0 . This implies that ei2 is decreasing

in |∆si1|. Similar arguments show that ∂ei2
∂η
< 0. Since f2> 0 by Assumption 2,

we have ∂ei2
∂W 2

> 0.

10.1.3 Proof of Proposition 1

(i) We first derive expressions for ∂Uei2
∂ei1

for symmetric first-period efforts. This

allows us to state the FOC.

Lemma 4
∂U e

i2

∂ei1

∣∣∣∣
ei1=ej1

= ηW 2C(η) (23)

Proof. Applying the envelope theorem to (4), we obtain

dU s
i2 (∆si1)

d∆si1
=
∂U i2

∂ej2

∂e∗j2 (−∆si1)

∂∆si1
+
∂U i2

∂∆si1
. (24)

Using (20) and the symmetry of the density (Assumption 2),

∂e∗j2 (−∆si1)

∂∆si1
=
∂ei2 (∆si1)

∂∆si1
=

ηf ′2 (η∆si1)W2

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

) .
(1) implies

∂Ui2
∂ej2

= −f 2 (η∆si1+∆ei2)W2,

∂Ui2
∂∆si1

= ηf 2 (η∆si1+∆ei2)W2.
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Using these equations in (24) and inserting ∆ei2= 0, we obtain

dU s
i2

d∆si1
= − ηf 2 (η∆si1) f ′2 (η∆si1)W 2

2

K ′′2
(
(K ′2)−1 (f2 (η∆si1)W2)

)+ηf 2 (η∆si1)W2.

Using this in (5), we obtain

∂U e
i2

∂ei1
=∫ ∞

−∞

[
−ηf 2 (η (∆ei1+s)) f ′2 (η (∆ei1+s))W 2

2

K ′′2
(
(K ′2)−1 (f2 (η (∆ei1+s))W2)

) +ηf 2 (η (∆ei1+s))W2

]
f1 (s) ds

= ηW 2

∫ ∞
−∞

f2 (η (∆ei1+s)) f1 (s) ds−

ηW 2
2

∫ ∞
−∞

f2 (η (∆ei1+s)) f ′2 (η (∆ei1+s))

K ′′2
(
(K ′2)−1 (f2 (η (∆ei1+s))W2)

)f1 (s) ds.

Let

A : =

∫ ∞
−∞

f2 (η (∆ei1+s)) f1 (s) ds,

B : =

∫ ∞
−∞

f2 (η (∆ei1+s)) f ′2 (η (∆ei1+s))

K ′′2
(
(K ′2)−1 (f2 (η (∆ei1+s))W2)

)f1 (s) ds.

With this notation,
∂U e

i2

∂ei1
= ηW 2A− ηW 2

2B. (25)

Substituting s = t−∆ei1 and ds = dt in A and decomposing the integral gives

A =

∫ 0

−∞
f2 (ηt) f1 (t−∆ei1) dt+

∫ ∞
0

f2 (ηt) f1 (t−∆ei1) dt.

Let u = −t. Symmetry of f1 and f2 by Assumption 2 implies f2 (ηt)= f2 (ηu)

and f1 (t−∆ei1)= f1 (u+ ∆ei1). Hence,∫ 0

−∞
f2 (ηt) f1 (t−∆ei1) dt =

∫ ∞
0

f2 (ηu) f1 (u+ ∆ei1) du.
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Thus,

A =

∫ ∞
0

f2 (ηu) f1 (u+∆ei1) du+

∫ ∞
0

f2 (ηt) f1 (t−∆ei1) dt

=

∫ ∞
0

f2 (ηt) [f1 (t+∆ei1) +f 1 (t−∆ei1)] dt.

Substituting s = t−∆ei1 and ds = dt in B and decomposing the integral, we

obtain

B =

∫ 0

−∞

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηt)W2)

)dt+∫ ∞
0

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηt)W2)

)dt.
Again using u = −t and appealing to symmetry, f2 (ηt)=f2 (ηu), f ′2 (ηt)=−f ′2 (ηu)

and f1 (t−∆ei1)= f1 (u+ ∆ei1). Thus∫ 0

−∞

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηt)W2)

)dt =

∫ ∞
0

f2 (ηu) (−f ′2 (ηu)) f1 (u+∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηu)W2)

) du.

Hence,

B =

∫ ∞
0

−f 2 (ηu) f ′2 (ηu) f1 (u+∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηu)W2)

) du+

∫ ∞
0

f2 (ηt) f ′2 (ηt) f1 (t−∆ei1)

K ′′2
(
(K ′2)−1 (f2 (ηt)W2)

)dt
=

∫ ∞
0

f2 (ηt) f ′2 (ηt) [−f 1 (t+∆ei1) +f 1 (t−∆ei1)]

K ′′2
(
(K ′2)−1 (f2 (ηt)W2)

) dt.

Substituting the expressions for A and B into (25) and using s = t, we obtain

∂U e
i2

∂ei1
= ηW 2

∫ ∞
0

f2 (ηs) [f1 (s+ ∆ei1) +f 1 (s−∆ei1)] ds (26)

+ηW 2
2

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f1 (s+ ∆ei1)−f 1 (s−∆ei1)]

K ′′2
(
(K ′2)−1 (f2 (ηs)W2)

) ds.

With ∆ei1= 0, we obtain (23).

Together, (6) and Lemma 4 imply

f1 (0)W1+ηW 2C(η) = K ′1 (ei1) .
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By Assumption 1, K ′1 is invertible. We thus obtain (9) as a necessary condition

for any symmetric interior PBE.

(ii) By Lemma 2(ii) (2) implies sequential rationality in the second period.

From the discussion at the beginning of Section 4.1, beliefs are consistent.

As K ′1(0) = 0 by Assumption 1, efforts must be positive in any symmetric

equilibrium. Thus, by Part (i), (9) is a necessary condition for an equilibrium.

The second-order condition for player i is

f ′1 (∆ei1)W1+
∂2U e

i2

∂e2
i1

< K ′′1 (ei1) ∀ei1, ej1∈ R+. (27)

Inserting (26) in (27) gives

f ′1 (∆ei1)W1+ηW 2

∫ ∞
0

f2 (ηs) [f ′1 (s+ ∆ei1)−f ′1 (s−∆ei1)] ds+ (28)

ηW 2
2

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ ∆ei1) +f ′1 (s−∆ei1)]

K ′′2
(
(K ′2)−1 (f2 (ηs)W2)

) ds < K ′′1 (ei1) .

The left-hand side of this inequality is decreasing in K ′′2 , while the right-hand side

is increasing in K ′′1 . For given policy parameters and distributions, (27) therefore

holds as long as K ′′1 and K
′′
2 are suffi cently large. In this case, the second-order

condition holds whenever the slopes of f1 and f2 are bounded. If these conditions

hold globally, (9) thus describes an equilibrium, which is the unique symmetric

equilibrium.

10.1.4 Proof of Corollary 2

Symmetry of the equilibrium implies ∆si1= ∆εi1. Hence, (3) implies

e∗i2 (∆si1, η,W 2, 1) = (K ′2)
−1

(f2 (η∆εi1)W2) .

Taking the expectation over ∆εi1, we obtain

E∆εi1 (e∗i2 (∆si1, η,W 2, 1)) =

∫ ∞
−∞

(K ′2)
−1

(f2 (ηs)W2) f1 (s) ds.

From the symmetry of the density by Assumption 2, we get (10).
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10.1.5 Proof of Corollary 3

Part 1: Auxilliary Results
We will first provide several auxiliary results. Note that 2

∫ x
0

exp (−t2) dt /
√
π

is the error function, for which

2

∫ ∞
0

exp
(
−t2
)
dt
/√

π = 1. (29)

Next, for E1,

ft (s) =
1

σt
√

2π
exp

(
− s2

2σ2
t

)
. (30)

Hence,

f ′t (s) = − 1√
2π

s

σ3
t

exp

(
− s2

2σ2
t

)
; (31)

f ′′t (s) =
1√
2π

s2 − σ2
t

σ5
t

exp

(
− s2

2σ2
t

)
;

f ′′′t (s) =
1√
2π

3σ2
t s− s3

σ7
t

exp

(
− s2

2σ2
t

)
.

As s = −σt (the solution to f ′′t (s) = 0 and f ′′′t (s) < 0) maximizes f ′t (x), we

obtain ∀x ∈ R f ′t (x) ≤ − 1√
2π
−σt
σ3t

exp
(
− σ2t

2σ2t

)
and thus

f ′t (x) ≤ 1

σ2
t

√
2π exp(1)

(32)

Furthermore, (30) implies

∫ ∞
0

f2 (ηs) ds =
1

σ2

√
2π

∫ ∞
0

exp

(
−
(

sη√
2σ2

)2
)
ds

Substituting s =
√

2σ2
η
t and ds =

√
2σ2
η
dt implies∫ ∞

0

f2 (ηs) ds =
1

η
√
π

∫ ∞
0

exp
(
−t2
)
dt.
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With (29), we get ∫ ∞
0

f2 (ηs) ds =
1

2η
. (33)

Next, (30) and (31) imply∫ ∞
0

f2 (ηs) f ′2 (ηs) ds= − η

2πσ4
2

∫ ∞
0

s · exp

(
−s

2η2

σ2
2

)
ds.

Substituting s =
√
tσ2
η

and ds = σ2
2
√
tη
dt and noting that

∫∞
0

exp (−t) dt = 1, we

obtain ∫ ∞
0

f2 (ηs) f ′2 (ηs) ds=− 1

4πησ2
2

. (34)

Furthermore, (30) implies

C (η) =
1

πσ1σ2

∫ ∞
0

exp

−(s√σ2
1η

2+σ2
2√

2σ1σ2

)2
 ds.

Substituting s =
√

2σ1σ2√
σ21η

2+σ22
t and ds =

√
2σ1σ2√
σ21η

2+σ22
dt yields

C (η) =

√
2

π
√
σ2

1η
2+σ2

2

∫ ∞
0

exp
(
−t2
)
dt

With (29), we get

C (η) =
1√

2π
√
σ2

1η
2 + σ2

2

, (35)

so that

C ′(η) = − ησ2
1√

2π (σ2
1η

2 + σ2
2)

3
2

. (36)

Part 2: Second-Order Conditions
Next, we derive suffi cient conditions for the second-order conditions to hold.41

Using K ′′t (eit) =k, (19) simplifies to

f ′2 (x)W2< k ∀x ∈ R (37)

41We only consider the second-order conditions for the full revelation case.
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From W 2≤W and (32),

f ′2 (x)W2≤
W

σ2
2

√
2π exp (1)

(38)

(37) and (38) imply that a suffi cient condition for (19) to hold is

k >
W

σ2
2

√
2π exp (1)

(39)

Similarly, (28) can be written as

f ′1 (x)W1+ηW 2

∫ ∞
0

f2 (ηs) [f ′1 (s+ x)−f ′1 (s− x)] ds (40)

+
ηW 2

2

k

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ x) +f ′1 (s− x)] ds < k

Using (32), we obtain ∀x ∈ R

f ′1 (x)W1≤
W1

σ2
1

√
2π exp (1)

;

ηW 2

∫ ∞
0

f2 (ηs) [f ′1 (s+ x)−f ′1 (s− x)] ds≤
2W 2η

∫∞
0
f2 (ηs) ds

σ2
1

√
2π exp (1)

;

ηW 2
2

k

∫ ∞
0

f2 (ηs) f ′2 (ηs) [f ′1 (s+ x) +f ′1 (s− x)] ds≤
2W 2

2

∣∣η ∫∞
0
f2 (ηs) f ′2 (ηs) ds

∣∣
kσ2

1

√
2π exp (1)

.

This yields an upper bound for the left-hand side of (40):

1

σ2
1

√
2π exp (1)

[
W1+2W 2η

∫ ∞
0

f2 (ηs) ds+
2W 2

2

k

∣∣∣∣η ∫ ∞
0

f2 (ηs) f ′2 (ηs) ds

∣∣∣∣] .
With (33) and (34), this upper bound can be written as

W1 +W2

σ2
1

√
2π exp (1)

+
W 2

2

kσ2
1σ

2
2 (2π)

3
2

√
exp (1)

≤ W

σ2
1

√
2π exp (1)

+
W 2

kσ2
1σ

2
2 (2π)

3
2

√
exp (1)

.
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A suffi cient condition for (28) to hold is thus

k>
W

σ2
1

√
2π exp (1)

+
W 2

kσ2
1σ

2
2 (2π)

3
2

√
exp (1)

. (41)

Part 3: Characterizing the equilibrium
By Part 2, Proposition 1 characterizes the PBE. Inserting (K ′t)

−1 (x) =x
k
, (30)

and (35) in (9) and (10) yields (11) and (12).

10.2 Prizes vs. Weights: An illustration

10.2.1 Proof of Observation 1

(i) The statement for the pure prize policy with W1= W follows directly from

Corollary 3. The result for e1 and η →∞ follows from limη→∞ η
/√

σ2
2+σ2

1η
2 =

limη→∞ 1
/√

σ2
1+σ2

2 /η2 = 1 /σ1 and (11). The result for for e2 and η →∞
follows from (12). (ii) These two policies are equivalent by definition. The result

follows from Corollary 3 (ii).

10.2.2 Proof of Observation 2

By Corollary 3, a pure prize policy (W1,W −W 1) induces first-period efforts

W1

/
kσ1

√
2π and expected second-period efforts (W −W 1)

/
kσ2

√
2π . The re-

sult on prize policies thus follows from σ1= σ2= σ. A pure weight policy with

W2= W and weight η induces first-period efforts ηW
/
k
√

2π
(√

σ2
2+σ2

1η
2
)
and

expected second-period effortsW
/
k
√

2π
√
σ2

2+σ2
1η

2 , which implies the result for

pure weight policies.

10.3 Results for Perfect Substitutes

We now prove the results discussed in Subsections 6.1 and 7.1.1. In Lemma 5, we

derive the optimal prize structure (conditional on the weight η) for the case that

K1 and K2 are not necessarily quadratic (as discussed in Subsection 7.1.1). The

result will rely on the Assumption that K ′′′t ≤ 0.42 Then, we will use Lemma 5 to

42This is not a serious restriction: Corollary 6 in Section 8 will show that K ′′′2 ≤ 0 is the
case in which it is optimal to give feedback.
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prove the results discussed in Subsection 6.1. We will first show how Proposition

2 for K ′′′t = 0 follows from Lemma 5 and then derive Corollary 4.

In the following, for perfect substitutes, we will denote the optimal choice of η

conditional on W1 and ρ as ηP (W1, ρ) and the optimal choice of W1 conditional

on η as W P
1 (η, ρ).

10.3.1 General costs

Lemma 5 Suppose K ′′′t ≤ 0 for t = 1, 2. For η> 0, WP
1 (η, 1)=0 (WP

1 (η, 1)=

W ) if and only if

Wf 1 (0)< (>)K ′1

[
(K ′1)

−1
(ηWC(η)) +2

∫ ∞
0

(K ′2)
−1

(f2 (ηs)W ) f1 (s) ds

]
.

(42)

Proof. Using (9) and (10) in (13) gives

V P (η,W 1, 1) = (K ′1)
−1

(f1 (0)W1+η (W −W 1)C(η)) (43)

+2

∫ ∞
0

(K ′2)
−1

(f2 (ηs) (W −W 1)) f1 (s) ds.

This yields

∂V P (η,W 1, 1)

∂W 1

=
f1 (0)−ηC(η)

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C((η))

]
−2

∫ ∞
0

f2 (ηs) f1 (s)

K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

]ds,
and hence

∂2V P (η,W 1, 1)

∂W 2
1

=

−
K ′′′1

[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

]
(f1 (0)−ηC(η))2(

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C(η))

])3

−2

∫ ∞
0

(f2 (ηs))2K ′′′2

[
(K ′2)−1 (f2 (ηs) (W −W 1))

]
f1 (s) ds(

K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

])3 .
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Since K ′′t > 0, K ′′′t ≤ 0 implies ∂2V P (η,W 1,1)

(∂W 1)2
≥ 0. Thus, there is no interior

optimum. For W 1=0 and W 1=W , the principal’s expected payoffs are

V P (η, 0, 1) = (K ′1)
−1

(ηWC(η)) +2

∫ ∞
0

(K ′2)
−1

(f2 (ηs)W ) f1 (s) ds;

V P (η,W, 1) = (K ′1)
−1

(f1 (0)W ) .

Therefore,

V P (η, 0, 1)−V P (η,W, 1) =

(K ′1)
−1

(ηWC (η)) +2

∫ ∞
0

(K ′2)
−1

(f2 (ηs)W ) f1 (s) ds− (K ′1)
−1

(f1 (0)W ) .

Hence, V P (η, 0, 1)−V P (η,W, 1)> (<)0 if and only if (42) holds.

10.3.2 Quadratic Costs: Proof of Proposition 2

The proof relies heavily on the following result:

Lemma 6 Suppose W1< W . Then,

(i) ∂e∗1 (η,W 1,W −W 1) /∂η |η=0 > 0.

(ii) ∂E (e∗2 (η,W −W 1, 1)) /∂η |η=0 = 0.

Proof. (i) From (9),

∂e∗1 (η,W 1,W −W 1)

∂η
=

(W −W 1) (C (η) +ηC ′(η))

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

] . (44)

Hence,

∂e∗1 (η,W 1,W −W 1)

∂η

∣∣∣∣
η=0

=
(W −W 1)C (0)

K ′′1
[
(K ′1)−1 (f1 (0)W1)

]
=

(W −W 1) f2 (0)

K ′′1
[
(K ′1)−1 f1 (0)W1

] .
where the second equality follows from (8(ii)). As K ′′1 > 0 and f2 (0)> 0,
∂e∗1(η,W1,W−W1)

∂η

∣∣∣
η=0

> 0 provided W1< W .
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(ii) From (10),

∂E (e∗2 (η,W −W 1, 1))

∂η
= 2

∫ ∞
0

sf ′2 (ηs) (W −W 1) f1 (s)

K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

]ds. (45)

Hence,

∂E (e∗2 (η,W −W 1, 1))

∂η

∣∣∣∣
η=0

= 2

∫ ∞
0

sf ′2 (0) (W −W 1) f1 (s)

K ′′2
[
(K ′2)−1 (f2 (0) (W −W 1))

]ds =0,

where the second equality follows from f ′2 (0) = 0.

We now prove the proposition:

(i) With K ′′′t = 0, Lemma 5 implies thatW P
1 (η) always is a boundary solution,

withW P
1 (η) = 0 if 1

k1
f1 (0) <

(
η
k1

+ 1
k2

)
C (η). Hence, if the inequality is satisfied

for some η, then total effort for this η andW1= 0 is higher than forW1= W , which

shows that W1= W cannot be optimal. In this case, since there is no interior

optimum by Lemma 5, W1= 0 is optimal.43

From (13),

∂V P (η,W 1, 1)

∂η
=
∂e∗1 (η,W 1,W −W 1)

∂η
+
∂E (e∗2 (η1,W −W 1, 1))

∂η
(46)

Using (C1) and (7) to simplify (44) and (45), (46) becomes

∂V P (η,W 1)

∂η
= (W −W 1)

(
C(η) + ηC ′(η)

k1

+
C ′(η)

k2

)
(47)

Solving ∂V P (η,W 1)
∂η

= 0 and rearranging gives (14).

(ii) follows from reverting the argument from (i) that W1= 0 if 1
k1
f1 (0) <(

η
k1

+ 1
k2

)
C (η).

10.3.3 Normal-Quadratic Example: Proof of Corollary 4

We first derive ηP (W1). With (35) and (36), we obtain

C ′(η)

C (η)
= − ησ2

1

σ2
2+σ2

1η
2
.

43This can also be derived from Proposition 8.
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Proposition 2 (i) thus implies η·σ21
σ22+σ21η

2= 1
1+η

as a necessary condition, which is

uniquely (and positively) solved by η =
σ22
σ21
> 0. Since the optimal η must be strictly

positive by Lemma 6 and since the solution to the necessary condition is unique and

positive, the necessary condition is suffi cient and we have ηP (W1) =
σ22
σ21
∀ W 1< W .

Next, we show that W P
1 = 0. By Corollary 2, W P

1 = 0 if ∃η such that f1 (0)<

(1 + η)C (η). From (30) and (35), this condition is equivalent with√
2π
√
σ2

1η
2 + σ2

2< σ1

√
2π (1 + η)⇐⇒ 2η > σ2

2 /σ2
1−1. In particular, this holds

for ηP (W1) = σ2
2 /σ2

1 . Hence, W
P
1 = 0 and ηP = ηP

(
W P

1

)
= σ2

2 /σ2
1 .

10.4 Results for Imperfect Substitutes

We now prove the results discussed in Subsection 6.2. After some preliminary

calculation for the case of general cost functions, we prove Proposition 3 for the

quadratic case. Finally, we deal with the normal-quadratic example. For imper-

fect substitutes, we denote the optimal choice of η conditional on W1 and ρ as

ηI(W1, ρ) and the optimal choice of W1 conditional on η as W I
1 (η, ρ).

10.4.1 General Costs: Preliminary Calculations

The expected payoff of the principal is

V I (η1,W 1, 1) = e∗1 (η1,W −W 1, 1) · E (e∗2 (η2,W −W 1, 1)) . (48)

Using (9) and (10) in (48) yields

V I (η1,W 1, 1) = (K ′1)
−1

(f1 (0)W1+η (W −W 1)C(η)) · (49)

2

∫ ∞
0

(K ′2)
−1

(f2 (ηs) (W −W 1)) f1 (s) ds.
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Using (49), we have

∂V I (η,W 1, 1)

∂W 1

= (50)

2 (f1 (0)−ηC (η))
∫∞

0
(K ′2)−1 (f2 (ηs) (W −W 1)) f1 (s) ds

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

]
−2 (K ′1)

−1
(f1 (0)W1+η (W −W 1)C (η)) ·∫ ∞

0

f2 (ηs)

K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

]f1 (s) ds.

Thus,

∂2V I (η,W 1, 1)

(∂W 1)2 = (51)

−
2 (f1 (0)−ηC (η))2 ·K ′′′1

[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

](
K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

])3 ·∫ ∞
0

(K ′2)
−1

(f2 (ηs) (W −W 1)) f1 (s) ds

− 4 (f1 (0)−ηC (η))

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

] ∫ ∞
0

f2 (ηs) f1 (s) ds

K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

]
− (K ′1)

−1
(f1 (0)W1+η (W −W 1)C (η)) · 2

∫ ∞
0

(f2 (ηs))2(
K ′′2
[
(K ′2)−1 (f2 (ηs) (W −W 1))

])3 ·

K ′′′2

[
(K ′2)

−1
(f2 (ηs) (W −W 1))

]
f1 (s) ds.

10.4.2 Proof of Proposition 3

The proof requires an auxilliary result.

Lemma 7 Suppose (C1) holds. For all η > 0,W I
1 (η)> 0 if and only if f1 (0)> 2ηC (η).

In this case

W I
1 (η) = W

f1 (0)− 2ηC (η)

2f1 (0)− 2ηC (η)
> 0.

Proof. Clearly W1> 0 at the optimum if ∂V I(η,W 1)
∂W 1

∣∣∣
W1=0

> 0, that is, using

(53), if f1 (0)> 2ηC (η). To see thatW1= 0 at the optimum if ∂V
I(η,W 1)
∂W 1

∣∣∣
W1=0

< 0
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or, equivalently, f1 (0)< 2ηC (η), first note that (53) implies

∂2V I (η,W 1)

∂W 2
1

=
C (η)

k1k2

[−2f 1 (0) +2ηC (η)] .

Thus ∂V I(η,W 1)
∂W 1

is monotone in W1.

With (C1), (49) yields

V I (η,W 1) =
(W −W 1)C (η)

k1k2

(f1 (0)W1+η (W −W 1)C (η)) . (52)

Thus

∂V I (η,W 1)

∂W 1

=
C (η)

k1k2

[f1 (0) (W − 2W 1)−2ηC (η) (W −W 1)] . (53)

and ∂V I(η,W 1)
∂W 1

< 0 ∀W 1 > W
2
. The last two statements imply that, whenever

∂V I(η,W 1)
∂W 1

∣∣∣
W1=0

< 0, then ∂V I(η,W 1)
∂W 1

< 0 for all W1 ≤ W
2
and thus W I

1 (η) = 0.

To see thatW1= 0 at the optimum if ∂V
I(η,W 1)
∂W 1

∣∣∣
W1=0

= 0 or, equivalently, f1 (0) =

2ηC (η), note that f1 (0) = 2ηC (η) implies ∂2V I(η,W 1)

∂W 2
1

< 0, so that ∂V I(η,W 1)
∂W 1

< 0

∀W 1> 0 and thus W I
1 (η) = 0.

For ∂V I(η,W 1)
∂W 1

∣∣∣
W1=0

> 0, the first-order condition ∂V I(η,W 1)
∂W 1

= 0 yields W I
1 (η) =

W f1(0)−2ηC(η)
2f1(0)−2ηC(η)

> 0 for f1 (0)> 2ηC(η). Summing up, we obtain

W I
1 (η) =

{
W f1(0)−2ηC(η)

2f1(0)−2ηC(η)
> 0, f1 (0)> 2ηC (η)

0, f1 (0)≤ 2ηC (η)
(54)

We can now prove Part (i) of Proposition 3. (54) shows that W I
1 must corre-

spond to one of the two cases mentioned in Proposition 3. To complete the proof,

we derive the first-order condition for ηI (W1) for these two cases. From (49), we
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obtain

∂V I (η,W 1)

∂η
=

(W −W 1)2C (η)

k1k2

(
C (η) + ηC ′(η)

)
+ (55)

(W −W 1)C ′ (η)

k1k2

(f1 (0)W1+η (W −W 1)C (η)) .

The first-order condition ∂V I(η,W 1)
∂η

=0 yields

W1= W
(C (η))2 +2ηC (η)C ′(η)

C (η)2+2ηC (η)C ′(η)− f 1 (0)C ′ (η)
. (56)

According to Lemma 7, W1= 0 is a necessary condition for an optimum with

f1 (0)≤ 2ηC(η). InsertingW1= 0 in (56) gives the first-order condition η = − C(η)
2C′(η)

,

which corresponds to Proposition 3(a). Analogously,W1= W f1(0)−2ηC(η)
2f1(0)−2ηC(η)

is a nec-

essary condition for an optimum with f1 (0)> 2ηC(η). Inserting

W1= W f1(0)−2ηC(η)
2f1(0)−2ηC(η)

in (56) and solving for f1 (0) gives the first-order condition

f1 (0) = − (C(η))2

C′(η)
, which corresponds to Proposition 3(b).

10.4.3 Normal-Quadratic Example: Proof of Corollary 5

(35) and (36) yield

C (η)2 +C ′ (η) f1 (0) =

√
η2σ2

1+σ2
2−ησ1

2π (η2σ2
1+σ2

2)
3
2

> 0 ∀ η.

This is inconsistent with |C ′ (η) /C (η) | = |C (η) /f1 (0) | as for η > 0, |C ′ (η) /C (η) | =
|C (η) /f1 (0) | is equivalent to C (η)2 +C ′ (η) f1 (0) = 0. Therefore, according

to Proposition 3(ii)(b), W I
1> 0 cannot apply. Hence, Proposition (3)(ii) gives

|C ′ (η) /C (η) |= 1 /2η as the necessary condition for ηI . Using (35) and (36),

this can be written as |ησ2
1 /σ2

2+σ2
1η

2 | = 1 /2η , which is solved by ηI=σ2 /σ1 .

10.5 The role of feedback

We now provide additional material concerning Section 8. We prove the equilib-

rium characterization for the no feedback case, Proposition 5. We then discuss

second-order conditions. Next we prove Lemma 3, which compares the policies
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with and without feedback. Finally, we characterize the optimal prize policy in

the absence of feedback.

10.5.1 Proof of Proposition 5

(i) From (16), the first-order conditions are

f1 (∆ei1)W1+ηW 2

∫ ∞
−∞

f2 (η (∆ei1+s) +∆ei2) f1 (s) ds = K ′1 (ei1)

W2

∫ ∞
−∞

f2 (η (∆ei1+s) +∆ei2) f1 (s) ds = K ′2 (ei2)

For the symmetric case ∆ei1= ∆ei2= 0, this simplifies to

f1 (0)W1+ηW 2C(η) = K ′1 (ei1) ;

W2C(η) = K ′2 (ei2) .

Inverting K ′1 and K
′
2 yields (17) and (18).

(ii) First-period equilibrium efforts are positive because η ≥ 0 and K ′1(0) = 0

by Assumption 1. Equilibrium efforts in the second period are positive because

W2C(η) > 0 by Assumption 2. By part (i), (17) and (18) are necessary equilibrium

conditions.

Consider the following second-order conditions44

f ′1 (∆ei1)W1+η2W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds < K ′′1 (ei1) ; (57)

K ′′1 (ei1)W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds

+K ′′2 (ei2) ·
[
f ′1 (∆ei1)W1+η2W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds

]
(58)

−f ′1 (∆ei1)W1W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds < K ′′1 (ei1)K ′′2 (ei2) .

If these conditions hold globally, the expected payoff of player i is a strictly con-

cave function of (ei1, ei2), so that (17) and (18) describe best responses, and thus

44(57) is the condition that expected payoffs are strictly concave in (ei1); (58) is the
condition that the Hessian of the expected payofffunction has strictly positive determinant.
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characterize a Nash equilibrium. Furthermore, this is the unique symmetric equi-

librium.

10.5.2 Discussing Second-Order Conditions (No feedback)

Global Second-Order Conditions We first show that (57) and (58) hold

for given policy parameters and distributions as long as Kt is suffi ciently convex

for t = 1, 2. For (57), this is obvious, as the right-hand side is increasing in K1
′′ ().

To see that the statement is also true for (58), let

A ≡ W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds

B ≡ f ′1 (∆ei1)W1+η2W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds

C ≡ −f ′1 (∆ei1)W1W2

∫ ∞
−∞

f ′2 (η (∆ei1+s) +∆ei2) f1 (s) ds

With this notation, (58) can be written as

K ′′1 (ei1) ·A+K ′′2 (ei2) ·B + C ≤ K ′′1 (ei1)K ′′2 (ei2) (59)

To prove that (58) holds for suffi ciently convex cost functions, suppose it does not

hold for some pair of cost function K̃1 and K̃2. Let K̂t (e) =K̃t (e) +κ
2
e2. Then

(59) for K̂1 and K̂2 is

K̃ ′′1 (ei1) ·A+K̃ ′′2 (ei2) ·B + C ≤ (60)

K̃ ′′1 (ei1) K̃ ′′2 (ei2) +κ
(
K̃ ′′1 (ei1) + K̃ ′′2 (ei2)− A−B

)
+κ2

For all A and B, the right-hand side of this inequality can be made arbitrarily

high by increasing κ, so that the inequality is satisfied and thus (58) holds.

Local Second-Order Conditions In the symmetric equilibrium, ∆ei1=

∆ei2= 0. Using this equation in (57) and (58), f ′1 (0)= 0 and the symmetry of f1
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and f2 (Assumption 2) gives

η2W2

∫ ∞
−∞

f ′2 (ηs) f1 (s) ds < K ′′1 (ei1) ; (61)(
W2

K ′′2 (ei2)
+

η2W2

K ′′1 (ei1)

)∫ ∞
−∞

f ′2 (ηs) f1 (s) ds ≤ 1. (62)

By Assumption 2, f1 (s) = f 1 (−s) and f ′2 (ηs) = −f ′2 (−ηs). This implies
that

∫∞
−∞ f

′
2 (ηs) f1 (s) ds = 0. Thus, the left-hand sides of (61) and (62) are all

0 and the inequalities hold automatically.

10.5.3 Feedback Policy: Proof of Lemma 345

(10) and (18) imply

e∗2 (η,W −W 1, 0)−E (e∗2 (η,W −W 1, 1)) =

(K ′2)
−1

((W −W 1)C (η))−2

∫ ∞
0

(K ′2)
−1

(f2 (ηs) (W −W 1)) f1 (s) ds.

Using Definition 3 and the symmetry of f1 and f2, the right-hand side can be

written as

(K ′2)
−1

(
(W −W 1)

∫ ∞
−∞

f2 (ηs) f1 (s) ds

)
−
∫ ∞
∞

(K ′2)
−1

(f2 (ηs) (W −W 1)) f1 (s) ds.

Substituting g (s)≡ (W −W 1)f2 (ηs), this becomes

(K ′2)
−1

(∫ ∞
−∞

g (s) f1 (s) ds

)
−
∫ ∞
−∞

(K ′2)
−1

(g (s)) f1 (s) ds.

According to Jensen’s inequality, this expression is weakly negative (weakly posi-

tive) if (K ′2)−1 is convex (concave), which is the case if and only if K ′2 is concave

(convex), that is, K ′′′2 ≤ 0 (K ′′′2 ≥ 0).

45The proof resembles Aoyagi (2010) and Ederer (2010) (case with non-complementary
abilities), but allows for W1 > 0 and η 6= 1.
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10.5.4 Optimal prizes with general cost functions

For the no feedback case, we again restrict the third derivative of the cost functions

in such a way that the feedback policy is optimal by Corollary 6.

Lemma 8 Suppose K ′′′t ≥ 0 for t = 1, 2. For all η > 0

(i) WP
1 (η, 0)=0 if

f1 (0)−ηC (η)

K ′′1
[
(K ′1)−1 (ηWC (η))

]− C (η)

K ′′2
[
(K ′2)−1 (WC (η))

]< 0. (63)

(ii) WP
1 (η, 0)=W if

f1 (0)−ηC (η)

K ′′1
[
(K ′1)−1 (f1 (0)W )

]− C (η)

K ′′2 (0)
> 0. (64)

(iii) If neither (63) nor (64) holds, WP
1 ∈ [0,W ].

Proof. Using (17) and (18) in (13) gives

V P (η,W 1, 0) = (65)

(K ′1)
−1

(f1 (0)W1+η (W −W 1)C(η)) + (K ′2)
−1

((W −W 1)C (η)) .

This yields

∂V P (η,W 1, 0)

∂W 1

=

f1 (0)−ηC (η)

K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

]− C (η)

K ′′2
[
(K ′2)−1 ((W −W 1)C (η))

]
and

∂2V P (η,W 1, 0)

∂W 2
1

=

−
(f1 (0)−ηC (η))2 ·K ′′′1

[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

](
K ′′1
[
(K ′1)−1 (f1 (0)W1+η (W −W 1)C (η))

])3

−
(C (η))2 ·K ′′′2

[
(K ′2)−1 ((W −W 1)C (η))

](
K ′′2
[
(K ′2)−1 ((W −W 1)C (η))

])3
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Since K ′′t > 0, K ′′′t ≥ 0 implies ∂2V P (η,W 1,0)

(∂W 1)2
≤ 0.

(i) Thus, the principal will set W 1=0 provided

∂V P (η,W 1, 0)

∂W 1

∣∣∣∣
W1=0

=
f1 (0)−ηC (η)

K ′′1
[
(K ′1)−1 (ηWC (η))

]− C (η)

K ′′2
[
(K ′2)−1 (WC (η))

]< 0.

(ii) She will set W 1=W provided

∂V P (η,W 1, 0)

∂W 1

∣∣∣∣
W1=W

=
f1 (0)−ηC (η)

K ′′1
[
(K ′1)−1 (f1 (0)W )

]− C (η)

K ′′2 (0)
> 0.

incentives relative to the unconstrained case. To make up for this, she has

to adjust the weight of first-period performance downwards.
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