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Abstract. In many multiple testing problems, the individual null
hypotheses (i) concern univariate parameters and (ii) are one-sided. In
such problems, power gains can be obtained for bootstrap multiple test-
ing procedures in scenarios where some of the parameters are ‘deep in
the null’ by making certain adjustments to the null distribution under
which to resample. In this paper, we compare a Bonferroni adjustment
that is based on finite-sample considerations with certain ‘asymptotic’
adjustments previously suggested in the literature.

1 Introduction

Multiple testing refers to any situation that involves the simultaneous testing of
several hypotheses. This scenario is quite common in empirical research in just
about any field, including economics and finance. Some examples are: one fits a
multiple regression model and wishes to decide which coefficients are different
from zero; one compares several forecasting strategies to a benchmark and wishes
to decide which strategies are outperforming the benchmark; and one evaluates a
policy with respect to multiple outcomes and wishes to decide for which outcomes
the policy yields significant effects.

If one does not take the multiplicity of tests into account, then the probability
that some of the true null hypotheses will be rejected by chance alone is generally
unduly large. Take the case of S = 100 hypotheses being tested at the same time,
all of them being true, with the size and level of each test exactly equal to α.
For α = 0.05, one then expects five true hypotheses to be rejected. Furthermore,
if all test statistics are mutually independent, then the probability that at least
one true null hypothesis will be rejected is given by 1 − 0.95100 ≈ 0.994.

The most common solution to multiple testing problems is to control the
familywise error rate (FWE), which is defined as the probability of rejecting at
least one of the true null hypotheses. In other words, one uses a global error rate
that combines all tests under consideration instead of an individual error rate
that only considers one test at a time.

Controlling the FWE at a pre-specified level α corresponds to controlling the
probability of a Type I error when carrying out a single test. But this is only
one side of the testing problem — and it can be achieved trivially by rejecting
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a particular hypothesis under test with probability α without even looking at
data. The other side of the testing problem is ‘power’, that is, the ability to
reject a false null hypothesis.

In this paper, we shall study certain adjustments to ‘null sampling distrib-
utions’ with the hope of power gains in the setting where the individual null
hypotheses (i) concern univariate parameters and (ii) are one-sided.

2 Testing Problem

Suppose data X are generated from some unknown probability mechanism P. A
model assumes that P belongs to a certain family of probability distributions,
though we make no rigid requirements for this family; it may be a parametric,
semiparametric, or nonparametric model.

We consider the following generic multiple testing problem:

Hs : θs ≤ 0 vs. H ′
s : θs > 0 for s = 1, . . . , S, (1)

where the θs ..= θs(P) are real-valued, univariate parameters and the values
under the null hypotheses are always zero without loss of generality. We also
denote θ ..= (θ1, . . . , θS)′.

Remark 1 (Arbitrary Null Parameters). Of course, in practice the values of the
parameters under the null hypotheses (“null parameters”) may not always be
zero. But this situation can easily be handled by our framework as well. To see
how, denote the ‘original’ parameters of interest by γs and consider the multiple
testing problem

Hs : γs ≤ γ0,s vs. H ′
s : γs > γ0,s for s = 1, . . . , S, (2)

where the null parameters γ0,s can take on any value. In such a case, simply
define θs ..= γs − γ0,s, for s = 1, . . . , S. ⊓%

The familywise error rate (FWE) is defined as

FWEP ..= P{Reject at least one hypothesis Hs : θs ≤ 0}.

The goal is to control the FWE rate at a pre-specified level α while at the same
time to achieve large ‘power’, which is loosely defined as the ability to reject
false null hypotheses, that is, the ability to reject null hypotheses Hs for which
θs > 0. For example, particular notions of ‘power’ can be the following:

• The probability of rejecting at least one of the false null hypotheses
• The probability of rejecting a particular false null hypothesis
• The expected number of the false null hypotheses that will be rejected
• The probability of rejecting all false null hypotheses
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Control of the FWE means that, for a given significance level α,

FWEP ≤ α for any P. (3)

Control of the FWE allows one to be 1 − α confident that there are no false
discoveries among the rejected hypotheses.

Control of the FWE is generally equated with ‘finite-sample’ control: (3) is
required to hold for any given sample size n. However, such a requirement can
often only be achieved under strict parametric assumptions or for special per-
mutation set-ups. Instead, we settle for asymptotic control of the FWE:

lim sup
n→∞

FWEP ≤ α for any P. (4)

Note here that the statement “for any P” is meant to mean any P in the
underlying assumed model for the family of distributions generating the data;
for example, often one would assume the existence of some moments.

3 Multiple Testing Procedures

We assume that individual test statistics are available of the form

Tn,s
..=

θ̂n,s
σ̂n,s

,

where θ̂n,s is an estimator of θs based on a sample of size n and σ̂n,s is a
corresponding standard error.1 We also denote θ̂n ..= (θ̂n,1, . . . , θ̂n,s)′. We further
assume that these test statistics are ‘proper’ t-statistics in the sense that Tn,s

converges in distribution to the standard normal distribution under θs = 0, for
s = 1, . . . , S.

There exists by now a sizeable number of multiple testing procedures (MTPs)
designed to control the FWE, at least asymptotically. The oldest and best-
known such procedure is the Bonferroni procedure that rejects hypothesis Hs if
p̂n,s ≤ α/S, where p̂n,s is a p-value for Hs. Such a p-value can be obtained via
asymptotic approximations or alternatively via resampling methods; for exam-
ple, an ‘asymptotic’ p-value is obtained as p̂n,s ..= 1−Φ(Tn,s), where Φ(·) denotes
the c.d.f. of the standard normal distribution. Although the Bonferroni proce-
dure controls the FWE asymptotically under weak regularity conditions, it is
generally suboptimal in terms of ‘power’.

There are two main avenues of increasing ‘power’ while maintaining (asymp-
totic) control of the FWE. The first avenue, dating back to [Hol79], is to use
stepwise procedures where the threshold for rejecting hypotheses becomes less
lenient in subsequent steps in case some hypotheses have been rejected in a first
step. The second avenue, dating back to [Whi00], at least in nonparametric set-
tings, is to take the dependence structure of the individual test statistics Tn,s

1 This means that σ̂n,s is an estimator of the standard deviation of θ̂n,s.
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into account rather than assuming a ‘worst-case’ dependence structure as the
Bonferroni procedure does; taking this true dependence structure into account —
in the absence of strict assumptions — requires the use of resampling methods,
such as the bootstrap, subsampling, and permutation methods. [RW05] suggest
to combine both avenues, resulting in resampling-based stepwise MTPs.

We start by discussing a bootstrap-based single-step method. An ideal-
ized method would reject all Hs for which Tn,s ≥ d1 where d1 is the 1 − α
quantile under the true probability mechanism P of the random variable
maxs(θ̂n,s − θs)/σ̂n,s. Naturally, the quantile d1 not only depends on the mar-
ginal distributions of the centered statistics (θ̂n,s − θs)/σ̂n,s but, crucially, also
on their dependence structure.

Since the true probability mechanism P is unknown, the idealized critical
value d1 is not available. But it can be estimated consistently under weak
regularity conditions as follows. Take d̂1 as the 1 − α quantile under P̂n of
maxs(θ̂∗

n,s − θ̂n,s)/σ̂∗
n,s. Here, P̂n is an unrestricted estimate of P. For example, if

X = (X1, . . . , Xn) with Xi
iid∼ P, then P̂n is typically the empirical distribution

of the Xi. Furthermore, θ̂∗
n,s is the estimator of θ̂s and σ̂∗

n,s is the corresponding
standard error, both computed from X∗ where X∗ ∼ P̂n. In other words, we
use the bootstrap to estimate d1. The particular choice of P̂n depends on the
situation. In particular, if the data are collected over time a suitable time series
bootstrap needs to be employed; for example, see [DH97,Lah03].

We have thus described a single-step MTP. However, a stepwise improve-
ment is possible.2 In any given step j, one simply discards the hypotheses that
have been rejected so far and applies the single-step MTP to the remaining
universe of non-rejected hypotheses. The resulting critical value d̂j necessarily
satisfies d̂j ≤ d̂j− 1, and typically satisfies d̂j < d̂j− 1, so that new rejections may
result; otherwise the method stops with no further rejections.

This bootstrap stepwise MTP provides asymptotic control of the FWE under
remarkably weak regularity conditions. Mainly, it is sufficient that (i)

√
n(θ̂n−θ)

converges in distribution to a (multivariate) continuous limit distribution and
that the bootstrap consistently estimates this limit distribution; and that (ii)
the ‘scaled’ standard errors

√
nσ̂n,s and

√
nσ̂∗

n,s converge to the same, non-zero
limiting values in probability, both in the ‘real world’ and in the ‘bootstrap
world’. Under even weaker regularity conditions, a subsampling approach could
be used instead; see [RW05]. Furthermore, when a randomization setup applies,
randomization methods can be used as an alternative; see [RW05] again.

4 Adjustments for Power Gains

As stated before, the bootstrap stepwise MTP of the previous section provides
asymptotic control of the FWE under weak regularity conditions. But in the
one-sided setting (1) considered in this paper, it might be possible to obtain

2 More precisely, the improvement is a stepdown method.
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further power gains by making adjustments for null hypotheses that are ‘deep
in the null’, an idea going back to [Han05].

To motivate such an idea, it is helpful to first point out that for many parame-
ters of interest, θ, there is a one-to-one relation between the bootstrap stepwise
MTP of the previous section, which is based on an unrestricted estimate P̂n of P,
and a bootstrap stepwise MTP that is based on a restricted estimate P̂0,n of P,
satisfying the constraints of the S null hypotheses. In the latter approach the
critical value d̂1 in the first step is obtained as the 1 − α quantile under P̂0,n of
maxs θ̂∗

n,s/σ̂
∗
n,s. Here, θ̂∗

n,s is the estimator of θs and σ̂∗
n,s is the corresponding

standard error, both computed from X∗ where X∗ ∼ P̂0,n. Note that in this lat-
ter approach, there is no (explicit) centering in the numerator of the bootstrap
test statistics, since the centering already takes place implicitly in the restricted
estimator P̂0,n by incorporating the constraints of the null hypotheses.

For many parameters of interest, the unrestricted bootstrap stepwise MTP
of the previous section is equivalent to the restricted bootstrap stepwise MTP
of the previous paragraph based on an estimator P̂0,n that satisfies θs(P̂0,n) = 0
for s = 1, . . . , S. In statistical lingo, such a null parameter θ(P̂0,n) corresponds
to a least favorable configuration (LFC), since all the components θs(P̂0,n) lie on
the boundary of the respective null hypotheses Hs.

Remark 2 (Example: Testing Means). To provide a specific example of a null-
restricted estimator P̂0,n, consider the setting where X = (X1, . . . , Xn) with
Xi

iid∼ P, Xi ∈ RS , and (θ1, . . . , θS)′ = θ ..= E(Xi). Then an unrestricted estima-
tor P̂n is given by the empirical distribution of the Xi whereas a null-restricted
estimator P̂0,n is given by the empirical distribution of the Xi − θ̂n, where θ̂n
is the sample average of the Xi. In other words, P̂0,n is obtained by suitably
shifting P̂n to achieve mean zero for all components. ⊓%

[Han05] argues that such an approach is overly conservative when some of
the θs lie ‘deep in the null’, that is, for θs ≪ 0. Indeed, it can easily be shown
that asymptotic control of the FWE based on the restricted bootstrap stepwise
MTP could be achieved based on an infeasible ‘estimator’ P̂0,n that satisfies

θs(P̂0,n) = min{θs, 0}.

(We use the term ‘estimator’ here, since such an P̂0,n is infeasible in practice
because one does not know the true values θs.) Clearly, when some of the θs
are smaller than zero, one would obtain smaller critical values d̂j in this way
compared to using the LFC.

The idea then is to adjust P̂0,n in a feasible, data-dependent fashion such
that θs(P̂0,n) < 0 for all θs ‘deep in the null’.
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4.1 Asymptotic Adjustments

Based on the law of iterated logarithm, [Han05] proposes an adjustment P̂A
0,n

that satisfies

θs(P̂A
0,n) ..= θ̂n,s1{Tn,s<−

√
2 log log n}, (5)

where 1{·} denotes the indicator function of a set. Therefore, if the t-statistic
Tn,s is sufficiently small, the parameter of the restricted bootstrap distribution
is adjusted to the sample-based estimator θ̂s, and otherwise it is left unchanged
at zero. How one can construct such an estimator P̂A

0,n depends on the particular
application. In the example of Remark 2, say, P̂A

0,n can be constructed by suitably
shifting the empirical distribution P̂n.

[Han05] only considers a bootstrap single-step MTP. [HHK10] propose the
same adjustment (5) in the context of a bootstrap stepwise MTP in the spirit
of [RW05].

The adjustment (5) is of asymptotic nature, since one does not have to pay
any ‘penalty’ in the proposals of [Han05,HHK10]. In other words, the MTP
procedure proceeds as if θs(P̂A

0,n) = θs in case θs(P̂A
0,n) has been adjusted to

θ̂n,s < 0. The point here is that in finite samples, it may happen that Tn,s <
−

√
2 log log n even though θs ≥ 0 in reality; in such cases, the null distribution

P̂0,n is generally too ‘optimistic’ and results in critical values d̂j that are too
small. As a consequence, control of the FWE in finite samples will be negatively
affected.

Also note that the cutoff −
√
2 log logn is actually quite arbitrary and could

be replaced by any multiple of it, however big or small, without affecting the
asymptotic validity of the method.

Remark 3 (Related Problem: Testing Moment Inequalities). The literature on
moment inequalities is concerned with the related testing problem

H : θs ≤ 0 for all s vs. H ′ : θs > 0 for at least one s. (6)

This is not a multiple testing problem but the multivariate hypothesis H, which
is a single hypothesis, also involves an S-dimensional parameter θ and is one-
sided in nature. For this testing problem, [AS10] suggest an adjustment to P̂0,n

that is of asymptotic nature and corresponds to the adjustment of [Han05] for
testing problem (1). But then, in a follow-up paper, [AB12] propose an alterna-
tive method based on finite-sample considerations that incorporates an explicit
‘penalty’ for making adjustments to the LFC. The proposal of [AB12] is com-
putationally quite complex and also lacks a rigorous proof of validity. [RSW14]
suggest a Bonferroni adjustment as an alternative, which is simpler to implement
and also comes with a rigorous proof of validity. ⊓%

4.2 Bonferroni Adjustments

We now ‘translate’ the Bonferroni adjustment of [RSW14] for testing problem (6)
to the multiple testing problem (1).
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In the first step, we adjust P̂0,n based on a nominal 1− β upper rectangular
joint confidence region for θ of the form

(−∞, θ̂n,1 + ĉ σ̂n,1] × · · · × (−∞, θn,S + ĉ σ̂n,S ]. (7)

Here, 0 < β < α and ĉ is a bootstrap-based estimator of the 1 − β quantile of
the sampling distribution of the statistic

max
s

θs − θ̂n,s
σ̂n,s

.

For notational compactness, denote the upper end of a generic joint confidence
interval in (7) by

ûn,s
..= θ̂n,s + ĉ σ̂n,s. (8)

Then we propose an adjustment P̂B
0,n that satisfies

θs(P̂B
0,n) ..= min{ûn,s, 0}. (9)

How one can construct such an estimator P̂B
0,n depends on the particular appli-

cation. In the example of Remark 2, say, P̂B
0,n can be constructed by suitably

shifting the empirical distribution P̂n.
In the second step, the restricted bootstrap stepwise MTP (i) uses θ(P̂B

0,n)
defined by (9) and (ii) is carried out at nominal level α − β as opposed to at
nominal level α. Feature (ii) is a finite-sample ‘penalty’ that accounts for the fact
that with probability β, the true θ will not be contained in the joint confidence
region (7) in the first step and, consequently, the adjustment in (i) will be overly
optimistic.

As reasonable ‘generic’ choice for β is β ..= α/10, as per the suggestion of
[RSW14].

It is clear that the Bonferroni adjustment is necessarily less powerful com-
pared to the asymptotic adjustment for two reasons. First, typically θs(P̂A

0,n) ≤
θs(P̂B

0,n) for all s = 1, . . . , S. Second, the asymptotic adjustment uses the full
nominal level α in the stepwise MTP whereas the Bonferroni adjustment only
uses the reduced level α − β. On the other hand, it can be expected that the
asymptotic adjustments will be liberal in terms of the finite-sample control of
the FWE in some scenarios.

4.3 Adjustments for Unrestricted Bootstrap MTPs

We have detailed the asymptotic and Bonferroni adjustments in the context of
the restricted bootstrap stepwise MTPs, since they are conceptually somewhat
easier to understand.

But needless to say, these adjustments carry over one-to-one to the unre-
stricted bootstrap stepwise MTPs of [RW05].
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Focusing on the first step to be specific, the asymptotic adjustment takes d̂1 as
the 1−α quantile under P̂n of maxs(θ̂∗

n,s− θ̂An,s)/σ̂∗
n,s. Here, P̂n is an unrestricted

estimator of P and

θ̂An,s
..=

{
θ̂n,s if Tn,s < −

√
2 log log n

0 otherwise

Furthermore, θ̂∗
n,s and σ̂∗

n,s are the estimator of θs and the corresponding stan-
dard error, respectively, computed from X∗, where X∗ ∼ P̂n.

On the other hand, the Bonferroni adjustment takes d̂1 as the 1 − α + β
quantile under P̂n of maxs(θ̂∗

n,s−θ̂Bn,s)/σ̂∗
n,s. Here, P̂n is an unrestricted estimator

of P and

θ̂Bn,s
..= θ̂n,s − min{ûn,s, 0}, (10)

with ûn,s defined as in (8). Furthermore, θ̂∗
n,s and σ̂∗

n,s are the estimator of θs
and the corresponding standard error, respectively, computed from X∗ where
X∗ ∼ P̂n.

The computation of the critical constants d̂j in subsequent steps j > 1 is
analogous for both adjustments.

Remark 4 (Single Adjustment versus Multiple Adjustments). In principle, the
Bonferroni adjustments (10) could be updated in each step of the bootstrap step-
wise MTP by updating the joint confidence region for the remaining part of θ
in each step, that is, for the elements θs of θ for which the corresponding null
hypotheses Hs have not been rejected in previous steps. This approach can be
expected to lead to small further power gains, though at additional computa-
tional (and software coding) costs. ⊓%

5 The Gaussian Problem

5.1 Single-Step Method

In this section, we derive an exact finite-sample result for the multivariate
Gaussian model, which motivates the method proposed in the paper. Assume
that W ..= (W1, . . . ,WS)′ ∼ P ∈ P ..= {N(θ,Σ) : µ ∈ RS} for a known covari-
ance matrix Σ. The multiple testing problem consists of S one-sided hypotheses

Hs : θs ≤ 0 vs. H ′
s : θs > 0 for s = 1, . . . , S. (11)

The goal is to control the FWE exactly at nominal level α in this model,
for any possible choice of the θs, for some pre-specified value of α ∈ (0, 1).
Note further that, because Σ is assumed known, we may assume without loss
of generality that its diagonal consists of ones; otherwise, we can simply replace
Ws by Ws divided by its standard deviation. This limiting model applies to
the nonparametric problem in the large-sample case, since standardized sample
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means are asymptotically multivariate Gaussian with a covariance matrix that
can be estimated consistently.

First, if instead of the multiple testing problem, we were interested in the
single multivariate joint hypothesis that all θs satisfy θs ≤ 0, then we are in the
moment inequalities problem; see Remark 3. For such a problem, there are, of
course, many ways in which to construct a test that controls size at level α. For
instance, given any test statistic T ..= T (W1, . . . ,WS) that is nondecreasing in
each of its arguments, we may consider a test that rejects H for large values
of T . Note that, for any given fixed critical value c, Pθ{T (W1, . . . ,WS) > c} is
a nondecreasing function of each component θs in θ. Therefore, if c ..= c1− α is
chosen to satisfy

P0

{
T (W1, . . . ,WS) > c1− α

}
≤ α,

then the test that rejects H0 when T > c1− α is a level α test. A reasonable
choice of test statistic T is the likelihood ratio statistic or the maximum statistic
max(W1, . . . ,WS). For this latter choice of test statistic, c1− α may be determined
as the 1−α quantile of the distribution of max(W1, . . . ,WS) when (W1, . . . ,WS)′
is multivariate normal with mean 0 and covariance matrix Σ. Unfortunately, as
S increases, so does the critical value, which can make it difficult to have any
reasonable power against alternatives. The same issue occurs in multiple testing,
as described below. The main idea of our procedure is to essentially remove
from consideration those θs that are ‘negative’.3 If we can eliminate such θs
from consideration, then we may use a smaller critical value with the hope of
increased power against alternatives.

In the multiple testing problem using the max statistic, one could simply
reject any θs for which Xs > c1− α. But as in the single testing problem above,
c1− α increases with S and therefore it may be helpful to make certain adjust-
ments if one is fairly confident that a hypothesis Hs satisfies θs < 0. Using this
reasoning as a motivation, we may use a confidence region to help determine
which θs are ‘negative’. To this end, let M(1 − β) denote an upper rectangular
joint confidence region for θ at level 1 − β. Specifically, let

M(1 − β) ..=
{
θ ∈ RS : max

1≤s≤S
(θs − Ws) ≤ K− 1(1 − β)

}
(12)

=
{
θ ∈ RS : θs ≤ Ws +K− 1(1 − β) for all 1 ≤ s ≤ S

}
,

where K− 1(1 − β) is the 1 − β quantile of the distribution (function)

K(x) ..= Pθ

{
max
1≤s≤S

(θs − Ws) ≤ x
}
.

Note that K(·) depends only on the dimension S and the underlying covariance
matrix Σ. In particular, it does not depend on the θs, so it can be computed
under the assumption that all θs = 0. By construction, we have for any θ ∈ RS ,
that

Pθ{θ ∈ M(1 − β)} = 1 − β.

3 Such a program is carried out in the moment inequality problem by [RSW14].
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The idea now is that with probability at least 1 − β, we may assume that
θ will lie in Ω0 ∩ M(1 − β) rather than just in Ω0, where Ω0 is the ‘negative
quadrant’ given by {θ : θs ≤ 0, s = 1, . . . , S}. Instead of computing the critical
value under θ = 0, the ‘largest’ value of θ in Ω0 (or the value under the LFC),
we may therefore compute the critical value under θ̃, the ‘largest’ value of θ in
the (data-dependent) set Ω0 ∩ M(1 − β). It is straightforward to determine θ̃
explicitly because of the simple shape of the joint confidence region for θ. In
particular, θ̃ has sth component equal to

θ̃s ..= min{Ws +K− 1(1 − β), 0}. (13)

But, to account for the fact that θ may not lie in M(1−β) with probability β, we
reject any Hs for which Ws exceeds the 1− α+ β quantile of the distribution of
T ..= max(W1, . . . ,WS) under θ̃ rather than the 1−α quantile of the distribution
of T under θ̃. The following result establishes that this procedure controls the
FWE at level α.

Theorem 1. Let T ..= max(W1, . . . ,WS). For θ ∈ RS and γ ∈ (0, 1), define

b(γ, θ) ..= inf{x ∈ R : Pθ{T (W1, . . . ,Wk) ≤ x} ≥ γ},

that is, as the γ quantile of the distribution of T under θ. Fix 0 < β < α. The
multiple testing procedure that rejects any Hs for which Ws > b(1 − α + β, θ̃)
controls the FWE at level α.

Remark 5. As emphasized above, an attractive feature of the procedure is that
the ‘largest’ value of θ in Ω0 ∩ M(1 − β) may be determined explicitly. This
follows from our particular choice of the initial joint confidence region for θ. If,
for example, we had instead chosen M(1− β) to be the usual Scheffé confidence
ellipsoid, then there may not even be a ‘largest’ value of θ in Ω0 ∩ M(1 − β). ⊓%

Proof of Theorem 1. First note that b(γ, θ) is nondecreasing in θ, since T is
nondecreasing in its arguments. Fix any θ. Let I0 ..= I0(θ) denote the indices of
true null hypotheses, that is,

I0 ..= {s : θs ≤ 0}.

Let θ∗
s

..= min(θs, 0) and let E be the event that θ ∈ M(1 − β). Then, the
familywise error rate (FWE) satisfies

Pθ{reject any true Hs} ≤ Pθ

{
Ec

}
+ Pθ{E ∩ {reject any Hs with s ∈ I0}}

= β + Pθ{E ∩ {reject any Hs with s ∈ I0}}.

But when the event E occurs and some true Hs is rejected — so that
maxs∈I0 Ws > b(1 − α + β, θ̃) — then the event maxs∈I0 Ws > b(1 − α + β, θ∗)
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must occur, since b(1−α+β, θ) is nondecreasing in θ and θ ≤ θ̃ when E occurs.
Hence, the FWE is bounded above by

β + Pθ

{
max
s∈I0

Ws > b(1 − α + β, θ∗)
}

≤ β + Pθ∗
{
max
s∈I0

Ws > b(1 − α + β, θ∗)
}

because the distribution of maxs∈I0 Ws only depends on those θs in I0. Therefore,
the last expression is bounded above by

β + Pθ∗
{
max
all s

Ws > b(1 − α + β, θ∗)
}
= β + 1 − (1 − α + β) = β + (α − β) = α.

⊓%

5.2 Stepwise Method

One can improve upon the single-step method in Theorem1 by a stepwise
method.4 More specifically, consider the following method. Begin with the
method described above, which rejects any Hs for which Ws > b(1 − α + β, θ̃).
Basically, one applies the closure method to the above and show that it may
be computed in a stepwise fashion. To do this, we first need to describe the
situation when testing only a subset of the hypotheses. So, let I denote any
subset of {1, . . . , S} and let bI(γ, θ) denote the γ quantile of the distribution of
max(Ts : s ∈ I) under θ. Also, let θ̃(I) ..= {θ̃s(I) : s ∈ I} with θ̃s(I) be defined
as in (13) except that K− 1(1 − β) is replaced by K− 1

I (1 − β), defined to be the
1 − β quantile of the distribution (function)

KI(x) ..= Pθ{max
s∈I

(θs − Ws) ≤ x}.

The stepwise method can now be described. Begin by testing all Hs with
s ∈ {1, . . . , S} as described in the single-step method. If there are any rejections,
remove the rejected hypotheses from consideration and apply the single-step
method to the remaining hypotheses. That is, if I is the set of indices of the
remaining hypotheses not previously rejected, then reject any such Hs if Ws >
bI(1 − α + γ, θ̃(I)). And so on. (Note that at each step of the procedure, a new
joint confidence region is computed to determine θ̃(I), but β remains the same
in each step.)

Theorem 2. Under the Gaussian setup of Theorem1, the above stepwise
method controls the FWE at level α.

Proof of Theorem 2. We just need to show that the closure method applied
to the above tests results in the stepwise method as described. To do this, it
suffices to show that if Hs is rejected by the stepwise method, s ∈ I, and I ⊂J ,
then when J is tested (meaning the Hs with s ∈ J are jointly tested) and
the method rejects the joint (intersection) hypothesis, then it also rejects the
particular joint (intersection) hypothesis when just I is tested.
4 More precisely, the improvement is a stepdown method.
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First, the distribution of maxθs∈I Ws is stochastically dominated by that of
maxθs∈J Ws (since we are just taking the max over a larger set), under any θ
and in particular under θ̃(I). But the distribution of the maximum statistic
maxθs∈J Ws is monotone increasing with respect to θs because of the important
fact that, component wise,

θ̃(I) ≤ θ̃(J).

Hence, the distribution of maxθs∈J under θ̃(I) is further dominated by the dis-
tribution of maxθs∈J Ws under θ̃(J). Therefore, the critical values satisfy

bI(1 − α + β, θ̃(I)) ≤ bJ(1 − α + β, θ̃(J)),

which is all we need to show, since then any Hs for which Ws exceeds bJ (1 −
α + β, θ̃(J)) will satisfy that Ws also exceeds bI(1 − α + β, θ̃(I)). ⊓%

6 Monte Carlo Simulations

The data are of the form X ..= (X1,X2, . . . , Xn) with Xi
iid∼ N(θ,Σ), θ ∈ RS ,

and Σ ∈ RS×S . We consider n = 50, 100.
For n = 50, we consider S = 25, 50, 100 and the following mean vectors

θ = (θ1, . . . , θS)′:

• All θs = 0
• Five of the θs = 0.4
• Five of the θs = 0.4 and S/2 of the θs = −0.4
• Five of the θs = 0.4 and S/2 of the θs = −0.8

For n = 100, we consider S = 50, 100, 200 and the following mean vectors
θ = (θ1, . . . , θS)′:

• All θs = 0
• Ten of the θs = 0.3
• Ten of the θs = 0.3 and S/2 of the θs = −0.3
• Ten of the θs = 0.3 and S/2 of the θs = −0.6

For S = 50, 100, the covariance matrix Σ is always a constant-correlation
matrix with constant variance one on the diagonal and constant covariance ρ = 0,
0.5 on the off-diagonal.

The test statistics Tn,s are the usual t-statistics based on the individual
sample means and sample standard deviations.

The multiple testing procedure is always the bootstrap stepwise MTP of
[RW05] and we consider three variants:

• LFC: No adjustment at all
• Asy: Asymptotic Adjustment
• Bon: Bonferroni Adjustment
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Note that for computational simplicity, Bon is based on a single adjustment
throughout the stepwise MTP; see Remark 4.

The nominal level for FWE control is α = 10% and the value of β for the
Bonferroni adjustment is chosen as β = 1% following the ‘generic’ suggestion
β ..= α/10 of [RSW14].

We consider two performance measures:

• FWE: Empirical FWE
• Power: Average number of rejected false hypotheses

The number of Monte Carlo repetitions is B = 50, 000 in each scenario and the
bootstrap à la [Efr79] is based on 1,000 resamples always.

The results for n = 50 are presented in Sect.A.1 and the results for n = 100
are presented in Sect. A.2. They can be summarized as follows.

• As pointed out before, Asy is always more powerful than Bon necessarily.
• There are some scenarios where Asy fails to control the FWE, though the
failures are never grave: In the worst case, the empirical FWE is 10.6%.

• Bon can actually be less powerful than LFC (though never by much). This
is not surprising: When null parameters are on the boundary or close to the
boundary, then the ‘minor’ adjustment in the first stage of Bon does not offset
the reduction in the nominal level (from α to α − β) in the second stage.

• When null parameters are ‘deep in the null’, also the power gains of Bon over
LFC are noticeable (though never quite as large as the power gains of Asy
over LFC). Of course, such power gains would even be greater by increasing
the proportion of null parameters ‘deep in the null’ and/or the distance away
from zero of such null parameters.

7 Conclusion

In many multiple testing problems, the individual null hypotheses (i) concern
univariate parameters and (ii) are one-sided. In such problems, power gains can
be obtained for bootstrap multiple testing procedures in scenarios where some
of the parameters are ‘deep in the null’ by making certain adjustment to the
null distribution under which to resample. In this paper we have compared a
Bonferroni adjustment that is based on finite-sample considerations to certain
‘asymptotic’ adjustments previously suggested in the literature. The advantage
of the Bonferroni adjustment is that it guarantees better finite-sample control
of the familywise error rate. The disadvantage is that it is always somewhat less
powerful than the asymptotic adjustments.

A Detailed Monte Carlo Results

A.1 Results for n = 50

See Tables 1, 2, 3 and 4.
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Table 1. All θs = 0: FWE.

S LFC Asy Bon

ρ = 0

25 9.8 10.5 8.8

50 9.7 10.2 8.7

100 9.5 10.1 8.5

ρ = 0.5

25 10.0 10.0 9.0

50 9.8 9.8 8.8

100 9.9 9.9 8.9

Table 2. Five of the θs = 0.4: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

25 8.9 9.4 7.9 2.7 2.8 2.6

50 9.1 9.6 8.2 2.2 2.2 2.1

100 9.4 10.0 8.4 1.7 1.8 1.6

ρ = 0.5

25 9.9 9.9 8.9 3.2 3.2 3.1

50 9.8 9.8 8.8 2.8 2.8 2.7

100 10.0 10.1 9.2 2.4 2.4 2.3

Table 3. Five of the θs = 0.4 and S/2 of the θs = −0.4: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

25 3.7 7.7 3.6 2.7 3.3 2.7

50 4.2 8.2 4.0 2.2 2.7 2.2

100 4.7 8.8 4.4 1.7 2.1 1.7

ρ = 0.5

25 5.3 7.6 4.7 3.1 3.6 3.2

50 5.9 8.0 5.3 2.8 3.2 2.7

100 6.6 8.4 5.9 2.4 2.8 2.3



92 J. P. Romano and M. Wolf

Table 4. Five of the θs = 0.4 and S/2 of the θs = −0.8: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

25 3.7 8.8 6.9 2.7 3.4 3.2

50 4.2 9.3 7.1 2.2 2.8 2.6

100 4.7 9.8 7.4 1.7 2.2 2.0

ρ = 0.5

25 5.3 9.8 7.8 3.1 3.7 3.5

50 5.9 9.8 7.7 2.8 3.2 3.1

100 6.6 10.0 7.8 2.4 2.8 2.6

A.2 Results for n = 100

See Tables 5, 6, 7 and 8.

Table 5. All θs = 0: FWE.

S LFC Asy Bon

ρ = 0

50 9.8 10.2 8.8

100 10.0 10.4 8.9

200 10.0 10.6 8.9

ρ = 0.5

50 10.0 10.0 9.0

100 10.1 10.1 9.0

200 10.1 10.1 9.1

Table 6. Ten of the θs = 0.3: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

50 8.8 9.1 7.9 5.4 5.5 5.3

100 9.5 9.8 8.5 4.5 4.5 4.3

200 9.7 10.2 8.7 3.6 3.7 3.5

ρ = 0.5

50 9.9 9.9 8.9 6.5 6.5 6.3

100 10.0 10.0 9.0 5.8 5.8 5.6

200 10.1 10.1 9.1 5.1 5.1 4.9
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Table 7. Ten of the θs = 0.3 and S/2 of the θs = −0.3: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

50 3.3 7.3 3.4 5.4 6.4 5.4

100 4.3 8.4 4.1 4.5 5.3 4.4

200 4.7 8.9 4.4 3.6 4.4 3.6

ρ = 0.5

50 5.3 7.7 4.7 6.5 7.3 6.5

100 6.2 8.4 5.6 5.8 6.5 5.7

200 6.9 8.8 6.1 5.1 5.7 5.0

Table 8. Ten of the θs = 0.3 and S/2 of the θs = −0.6: FWE | Power.

S LFC Asy Bon LFC Asy Bon

ρ = 0

50 3.4 8.4 6.9 5.4 6.6 6.4

100 4.3 9.4 7.7 4.5 5.5 5.2

200 4.7 9.9 7.9 3.6 4.5 4.3

ρ = 0.5

50 5.3 9.9 8.3 6.5 7.4 7.1

100 6.2 10.0 8.4 5.8 6.5 6.3

200 6.9 10.2 8.6 5.1 5.9 5.6
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