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a b s t r a c t

There has been a recent interest in reporting p-values adjusted for the resampling-based
stepdown multiple testing procedures proposed in Romano and Wolf (2005a,b). The orig-
inal papers only describe how to carry out multiple testing at a fixed significance level.
Computing adjusted p-values instead in an efficient manner is not entirely trivial. There-
fore, this paper fills an apparent gap by detailing such an algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Romano andWolf (2005a,b) propose resampling-based stepdownmultiple testing procedures to control the familywise
error rate (FWE); also see Romano et al. (2008, Section 3). The procedures as described are designed to be carried out at
a fixed significance level α. Therefore, the result of applying such a procedure to a set of data will be a ‘list’ of binary
decisions concerning the individual null hypotheses under study: reject or do not reject a given null hypothesis at the chosen
significance level α.

In a series of recent papers, however, there has been an interest in computing adjusted p-values instead.1 That is, for
each null hypothesis under study, compute a corresponding p-value adjusted for stepdown multiple testing proposed
in Romano and Wolf (2005a,b). Examples of such papers include Heckman et al. (2010), Hein et al. (2010), Campbell et al.
(2014), Gertler et al. (2014) and Dobbie and Fryer (2015). Unfortunately, the descriptions in these papers of how to compute
the adjusted p-values are often unclear or even missing altogether.

In principle, for a given individual hypothesis, an adjusted p-value can be obtained by ‘trial and error’ as the smallest
significance levelα atwhich the hypothesis can be rejected by the stepdownmultiple testing procedure. But clearly this way
of computing adjusted p-values would be rather cumbersome. Instead, it is desirable to have an efficient (or streamlined)
algorithm for computing adjusted p-values. This paper details such an algorithm.

Of course, algorithms for computing p-values adjusted for multiple testing have been described before; for example, see
Westfall and Young (1993) and the various references to earlier work listed in Section 1.3 of that book. But the contribution
of this paper is to describe an algorithm that is custom-tailored to the stepdown multiple testing procedures proposed
in Romano and Wolf (2005a,b), which will make it easier for practitioners to understand and implement this algorithm.

✩ We thank Henning Müller for helpful comments.
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2. Notation and unadjusted p-values

We now give a stylized, high-level description of the multiple testing problem under study. The details – such as the
construction of test statistics and sufficient conditions for (asymptotic) validity of the proposed stepdown procedures –
depend on the context; see Romano and Wolf (2005a,b) and Romano et al. (2008, Section 3).

There are S individual hypothesis testing problems:

Hs vs. H ′

s for s = 1, . . . , S,

where Hs denotes a null hypothesis and H ′
s denotes an alternative hypothesis. The corresponding test statistics are denoted

by t1, . . . , tS . They are designed in a way such that large values are indicative of the alternative. (In particular, for two-sided
testing problems, the test statistics would usually be based on absolute values.)

Stepdown multiple testing procedures are generally based on a set of null resampling test statistics t∗,m
:= (t∗,m

1 ,
. . . , t∗,m

S ), form = 1, . . . ,M , whereM denotes the number of resampling repetitions. Depending on context, the resampling
can be carried out by a bootstrap method, a permutation method, or a randomization method. Details for the bootstrap
method can be found in Romano andWolf (2005a, Section 4.2), Romano andWolf (2005b), and Romano et al. (2008, Section
4.3). Details for the permutation and randomization methods can be found in Romano and Wolf (2005a, Section 3.2).

Following Davison and Hinkley (1997, Chapter 4), an unadjusted (or marginal) p-value for Hs, denoted by p̂s, can be
defined as

p̂s :=
#{t∗,m

s > ts} + 1
M + 1

. (2.1)

Note that this definition of unadjusted p-values is not unique. For example, some people instead use the definition

p̂s :=
#{t∗,m

s > ts}
M

. (2.2)

Clearly, whenM is reasonably large (such asM = 1000), the difference between (2.1) and (2.2) is not practically relevant.

3. Stepdownmultiple testing at fixed significance level

It will be convenient to first describe the generic stepdown multiple testing procedure that controls the FWE at fixed
significance level α in the stylized notation of this paper. In this way, the algorithm to compute the adjusted p-values in the
next section will be easier to understand.

The hypotheses are relabeled in descending order of the observed test statistics. More specifically, let {r1, r2, . . . , rS}
denote a permutation of {1, 2, . . . , S} that satisfies tr1 > tr2 > · · · > trS . In this way, Hr1 is the ‘most significant’ hypothesis
and HrS is the ‘least significant’ hypothesis.

Let max∗,m
t,j denote the largest value of the vector (t∗,m

rj , . . . , t∗,m
rS ), that is,

max∗,m
t,j := max{t∗,m

rj , . . . , t∗,m
rS } for j = 1, . . . , S and m = 1, . . . ,M.

Furthermore, let ĉ(1−α, j) denote an empirical 1−α quantile of the collection {max∗,m
t,j }

M
m=1. (There is no unique definition

of an empirical quantile.2 But as long asM is reasonably large, the differences are not practically relevant.)
The algorithm for the stepdown multiple testing procedure at significance level α is as follows.

Algorithm 3.1 (Stepdown Multiple Testing at Significance Level α).

1. For s = 1, . . . , S, reject Hrs iff trs > ĉ(1 − α, 1).
2. Denote by R1 the number of hypotheses rejected. If R1 = 0, stop; otherwise let j = 2.
3. For s = Rj−1 + 1, . . . , S, reject Hrs iff trs > ĉ(1 − α, Rj−1 + 1).
4. (a) If no further hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the number of all hypotheses rejected so far and, afterwards, let j := j + 1. Then return to
step 3.

Remark 3.1 (Alternative Description). It is easy to see that Hrs will be rejected at level α by Algorithm 3.1 if and only if

trj > ĉ(1 − α, j) for all j = 1, . . . , s.

Therefore, the set of hypotheses rejected at level α is given by the collection {Hr1 , . . . ,Hrn}, where n is the largest integer in
the set {1, . . . , S} such that trj > ĉ(1 − α, j) for all j = 1, . . . , n. If no such n exists, then no hypothesis is rejected. �

2 For example, the statistical software R offers nine different versions of empirical quantiles in its function quantile. Our recommendation would be
to simply use the default version.
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4. Adjusting p-Values for Stepdownmultiple testing

Wedenote the adjusted p-value for hypothesisHs by p̂adjs . The following algorithm describes how these adjusted p-values
can be computed in an efficient manner.

Algorithm 4.1 (Computation of p-Values Adjusted for Stepdown Multiple Testing).

1. Define

p̂adjr1 :=
#{max∗,m

t,1 > tr1} + 1

M + 1
.

2. For s = 2, . . . , S,
(a) first let

p̂initialrs :=
#{max∗,m

t,s > trs} + 1
M + 1

,

(b) then enforce monotonicity by defining

p̂adjrs := max{p̂initialrs , p̂adjrs−1
}.

Remark 4.1 (Enforcing Monotonicity). Step 2(b) in Algorithm 4.1 is essential. Without it, the adjusted p-values for the
hypotheses Hr2 , . . . ,HrS would generally be too optimistic (in the sense of providing evidence against the null). This fact
is easiest to see by considering HrS . Without step 2(b), it would hold that p̂adjrS = p̂rS , so that the adjusted p-value would be
equal to the unadjusted p-value. �

It is straightforward to see that the adjusted p-values are correct in the sense that, as long as M is reasonably large, Hs
will be rejected at fixed level α by Algorithm 3.1 for all practical purposes if and only if the adjusted p-value forHs computed
by Algorithm 4.1 satisfies p̂adjs 6 α. The addition of ‘‘for all practical purposes’’ to this statement is due to the fact that, as
previouslymentioned, there exists a uniquedefinitionneither for the empirical quantiles ĉ(1−α, j)used inAlgorithm3.1 nor
for the resampling-based p-values used in Algorithm 4.1. But as long asM is reasonably large (such asM = 1000), violations
of the if-and-only-if statement could not occur before the third decimal place of α, which is not practically relevant.
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