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Abstract
Applied researchers often test for the difference of the variance of two 
investment strategies; in particular, when the investment strategies under 
consideration aim to implement the global minimum variance  portfolio. 
A popular tool to this end is the F-test for the equality of variances. 
Unfortunately, this test is not valid when the returns are correlated, have 
tails heavier than the normal distribution, or are of time series nature. 
Instead, we propose the use of robust inference methods. In particular, 
we suggest constructing a studentized time series bootstrap confidence 
interval for the ratio of the two variances and declaring the two vari-
ances different if the value one is not contained in the obtained interval. 
This approach has the advantage that one can simply resample from the 
observed data as opposed to some null-restricted data. A simulation study 
demonstrates the improved finite-sample performance compared to exist-
ing methods. 
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1 Introduction
Many applications of financial performance analysis are concerned with 
the comparison of the variances of two investment strategies (such as 
stocks, portfolios, mutual funds, hedge funds, or technical trading rules). 
This is of particular interest when the investment strategies aim to imple-
ment the global minimum variance (GMV) portfolio. The GMV portfolio 
has received much renewed interest in the recent literature; for example, 
see Jagannathan and Ma (2003), Kempf and Memmel (2006), Garlappi et al. 
(2007), Elton et al. (2008), DeMiguel et al. (2009a,b), Candelou et al. (2010), and 
Güttler and Trübenbach (2010). 

Since the true quantities are not observable, the variances have to be 
estimated from historical return data and the comparison has to be based 
on statistical inference, such as hypothesis tests or confidence intervals. The 
most popular test for equality of variances is the classical F-test; for example, 
see Mood et al. (1974, Section IX.4.4). However, this test requires the data to 
come from a bivariate normal distribution with correlation zero and to be 
independent over time. This joint requirement is basically never met for 
financial returns. 
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In this article, we discuss inference methods that are more generally 
valid. One possibility is to compute a HAC standard error1 for the differ-
ence of the estimated variances by the methods of Andrews (1991) and 
Andrews and Monahan (1992), say. Such an approach works asymptoti-
cally but does not always have satisfactory properties in finite samples. 
As an improved alternative, we suggest a studentized time series boot-
strap.

From a purely academic point of view, this article can be considered a 
rather straightforward modification of our previous work (Ledoit and Wolf, 
2008), which deals with the comparison of the Sharpe ratios of two invest-
ment strategies. However, we feel that not all practitioners would have the 
time and energy to carry out the modification on their own, in particular 
as far as the programming code is concerned. Furthermore, an innovative 
variance-stabilizing transformation plays a key role in the modification in 
order to obtain inference methods with improved finite-sample properties; 
see Remark 3.1. We, therefore, hope that the finance profession will indeed 
find value in our new work.

2 The problem
We use the same notation as Jobson and Korkie (1981), Memmel (2003), and 
Ledoit and Wolf (2008), who study the related problem of testing for equal-
ity of two Sharpe ratios. There are two investment strategies i and n whose 
returns at time t are r

ti
 and r

tn
, respectively.2 A total of T return pairs (r

1i
, 

r
1n

),…, (r
Ti
, r

Tn
) are observed. It is assumed that these observations constitute 

a strictly stationary time series so that, in particular, the bivariate return 
distribution does not change over time. This distribution has mean vector m 
and covariance matrix Σ given by 

μ =
(

μι

μν

)
and

∑
=

(
σ 2

i σιn

σιn σ 2
n

)
.

The usual sample means and sample variances of the observed returns 
are denoted by m̂

i 
, m̂

n
 and ŝ

i
2, s

n
2 respectively. The ratio of the two variances 

is given by 

 Θ =   
s  2i ___ s  

n
2    
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and its estimator is 

 Θ̂  =    
ŝ

i
2

   
 

____
  ŝ

n
2 .   

The hypotheses of interest are 

 H
0
: Θ = 1 vs. H

1
: Θ ≠ 1. (1)

The c lassical F-test is based on the following test statistic: 

 F =   
ŝ

i
2

 ___ ŝ
n
2   

. 

Denote by Fλ,k1,k2
 the l  quantile of  F

k1,k2
, the  F distribution with k

1
 and k

2
 

degrees of freedom. The F-test rejects H
0
 at significance level a if and only 

if (iff) 

 F < Fa / 2, T–1, T–1
 or F > F

1–a / 2, T–1, T–1 
. 

Crucially, this test requires that the data come from a bivariate normal 
distribution with s

in 
=

 
0 and be independent over time. If the data are cor-

related in the sense of s
in 

≠
 
0, have tails heavier than the normal distribution, 

or are dependent over time, the test is not valid, not even in an asymptotic 
sense. Since financial data exhibit generally at least one of these three viola-
tions, one should not use the F-test when testing the equality of variances of 
investment strategies.

3 Solu tions
The exposition in this section follows closely Ledoit and Wolf (2008, 
 Section 3).

We start by re-formulating the testing problem. Define 

 Δ = log (Θ) = log (s
i
2) – log (s

n
2) 

with sample counterpart 

 Δ̂ = log (Θ̂ ) = log (ŝ
i
2) – log (ŝ

n
2). 

Then the testing problem (1) is equivalent to the following one: 

 H
0
: Δ = 0 vs. H

1
: Δ ≠ 0. (2)

Remark 3.1 The purpose of the log-transformation is to conduce better 
finite-sample properties of our proposed inference methods by means of 
being a variance-stabilizing transformation; for example, see Efron and 
Tibshirani (1993, Section 12.6). The naïve approach to modifying the method 
of Ledoit and Wolf (2008) would be to test 

 H
0
: s

i
2 – s

n
2 = 0 vs. H

1
: s

i
2 – s

n
2 ≠ 0 

instead. However, this approach would lead to inference methods with infe-
rior finite-sample properties.3 

Let g
i 
=

 
E (r 2

1i 
) and g

n 
= E (r 2

1n 
). Their sample counterparts are denoted by ĝ

i
 

and ĝ
n
, respectively. Furthermore, let n = (m

i 
, m

n
, g

i
, g

n
)' and n̂ = (m̂

i 
, m̂

n
, ĝ

i
, ĝ

n
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This allows us to write 

 Δ = f (n ) and Δ̂ = f (n̂ ) (3)

with 

 f (a,b,c,d) = log(c – a2) – log (d – b2). (4) 

We assume  that 

 √T (n̂  – n ) ⎯d⎯> N (0; Ψ ) , (5)

where Ψ is  an unknown symmetric positive semi-definite matrix. This rela-
tion holds under mild regularity conditions. For example, when the data 
are assumed i.i.d., it is sufficient to have both E(r4

1i 
)and E(r4

1n
) finite. In the 

time series case it is sufficient to have finite 4+d moments, where d is some 
small positive constant, together with an appropriate mixing condition; for 
 example, see Andrews (1991). The delta method then implies 

 √T (Δ̂ – Δ) ⎯d⎯> N (0; ∇' f(v)Ψ∇ f(v))  (6)

with 

 ∇' f (a,b,c,d) = (–   2a ____ c–a2  ,   
2b ____ d–b2  ,   

1 ____ c–a2  , –   1 ____ d–b2  ). 
Now, i f a consistent estimator Ψ̂ of Ψ is available, then a standard error 

for Δ̂ is given by 

 s(Δ̂) = √R   
∇' f (n̂ ) Ψ̂ ∇ f (n̂ )

  ______________ T   . (7)

3.1 HAC inference
As is well known, Ψ can be consistently estimated by heteroskedasticity and 
autocorrelation consistent (HAC) kernel methods. For details, the reader 
is referred to Ledoit and Wolf (2008, Subsection 3.1). Given the kernel 
 estimator Ψ̂, the standard error s(Δ̂) is obtained as in (7) and then combined 
with the asymptotic normality (6) to make HAC inference as follows.

A two-sided p-value for the null hypothesis H
0
: Δ = 0 is given by 

 p̂  = 2Φ (−    
| Δ̂ |

 ____ 
s (Δ̂)

  ) 
where Φ(⋅) denotes the c.d.f. of the standard normal distribution. Alternatively, 
a 1−a confidence interval for Δ is given by 

 Δ̂ ± z
1–a /2 

s(Δ̂), 

where zλ denotes the λ quantile of the standard normal distribution.
It is, however, well established that such HAC inference is often liberal 

when samples sizes are small to moderate. This means hypothesis tests tend 
to reject a true null hypothesis too often compared with the nominal sig-
nificance level and confidence intervals tend to undercover; for example, 
see Andrews (1991), Andrews and Monahan (1992), Romano and Wolf (2006), 
and Ledoit and Wolf (2008).

3.2 Bootstrap inference
There is an extensive literature demonstrating the improved inference accu-
racy of the studentized bootstrap over “standard” inference based on asymp-
totic normality; see Hall (1992) for i.i.d. data and Lahiri (2003) for time series 
data. Very general results are available for parameters of interests which are 
smooth functions of means. Our parameter of interest, Δ, fits this bill; see (3) 
and (4). Taking into account our specific definitions of Δ, f(·), and ∇f(·) the actu-
al implementation of the bootstrap inference is identical to that of Ledoit and 
Wolf (2008, Section 3.2). So the reader is referred there for the details.

–

–
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In particular, the test at significance level α is carried out by construct-
ing a two-sided symmetric bootstrap confidence interval for Δ with confi-
dence level 1−a and rejecting H

0
 iff Δ

0 
= 0 is not contained in the interval. 

The advantage of this “indirect” test by inverting a confidence interval is 
that one can simply resample from the observed data. A “direct” test, on the 
other hand, would require one to bootstrap from a null distribution where 
the two variances are indeed equal.

This approach is equivalent to constructing a two-sided bootstrap 
confidence interval for Θ and rejecting H

0
 iff Θ0 = 1 is not contained in 

the interval. Here, the bootstrap confidence interval for Θ is obtained by 
simply applying the exponential transformation to the two endpoints of 
the bootstrap confidence interval for Δ; see Efron and Tibshirani (1993, 
Section 12.6).4

In addition to carrying out a test at fixed significance level a, it is 
also very easy to compute bootstrap p-values, an approach which some 
researchers might find more informative; see Remark 3.2 of Ledoit and 
Wolf (2008).

4 Simulation study
The purpose of this section is to she d some light on the finite-sample per-
formance of the various methods via some (necessarily limited) simulations. 
We compute empirical rejection probabilities under the null, based on 5,000 
simulations per scenario. The nominal levels considered are a = 0.01, 0.05, 
0.1. All bootstrap p-values are computed employing M = 499 resamples. The 
sample size is T = 120 always.5

4.1 Competing methods
The following methods are included in the study: 

• (F) The classical F-test. 
•  (HAC) The HAC test of Subsection 3.1 based on the QS kernel with 

automatic bandwidth selection of Andrews (1991). 
•  (HAC

PW
) The HAC test of Subsection 3.1 based on the prewhitened QS 

kernel with automatic bandwidth selection of Andrews and Monahan 
(1992). 

•  (Boot-IID) The bootstrap method of Subsection 3.2.1 of Ledoit and 
Wolf (2008). 

•  (Boot-TS) The bootstrap method of Subsection 3.2.2 of Ledoit and 
Wolf (2008). We use their Algorithm 3.1 to pick a data-dependent 
block size from the input block sizes b ∈{1,2,4,6,8,10}. The semi-
parametric model used is a VAR(1) model in conjunction with 
bootstrapping the residuals. For the latter we employ the stationary 
bootstrap of Politis and Romano (1994) with an average block size 
of 5. 

4.2 Data-generating processes
In all scenarios, we want the null hypothesis of equal variances to be true. 
This is easiest achieved if the two marginal return processes are identical.

We start with i.i.d. bivariate normal with equal variance one and within-
pair correlation chosen as r = 0.5. The assumptions of normality and inde-
pendence over time are gradually relaxed. In total, we consider the same six 
data-generating processes (DGPs) as Ledoit and Wolf (2008, Section 4).

4.3 Results
The results are presented in Table 1 and summarized as follows: 

•  Not surprisingly, the F-test does not work for any DGP, as its joint 
requirement of zero-correlation bivariate normal data which are inde-
pendent over time is never met. Depending on the DGP, the inference 
can be conservative or liberal, sometimes by a large amount. 

•  HAC inference, while asymptotically consistent, is generally liberal in 
finite samples. This finding is consistent with many previous studies; 
e.g., see Romano and Wolf (2006), Ledoit and Wolf (2008), and the ref-
erences therein. 

•  Boot-IID works well for i.i.d. and GARCH data, but is liberal for VAR 
data. 

•  Boot-TS works well for all DGPs. 

Remark 4.1 We also included HAC and HAC
PW

 based on the (prewhitened) 
Parzen kernel instead of the (prewhitened) QS kernel. The results were virtu-
ally identical and are therefore not reported. Since the Parzen kernel has a 

Table 1: Empirical rejection probabilities (in percent) for various data-
generating processes (DGPs) and inferenc e methods; see Section 4 for a 
description. For each DGP, the null hypothesis of equal variances is true and 
so the empirical rejection probabilities should be compared to the nominal 
level of the test, given by `. We consider three values of `, namely ` = 1%, 
5%, and 10%. All empirical rejection probabilities are computed from 5,000 
repetitions of the underlying DGP, and the same set of repetitions is shared 
by all inference methods.

DGP F HAC HAC
pw

Boot-IID Boot-TS

Nominal level a = 1%

Normal-IID 0.2 1.2 1.4 0.9 0.9

t
6
-IID 4.2 1.5 1.7 0.8 0.8

Normal-GARCH 0.4 1.4 1.3 1.0 0.9

t
6
-GARCH 0.3 1.5 1.5 1.0 1.0

Normal-VAR 0.5 2.1 2.0 1.6 0.9

t
6
-VAR 3.8 2.1 2.0 1.1 1.0

Nominal level a = 5%

Normal-IID 2.4 6.1 6.1 5.1 4.9

t
6
-IID 11.5 6.8 7.0 4.9 4.7

Normal-GARCH 2.1 5.4 5.5 5.0 4.8

t
6
-GARCH 2.4 5.7 5.9 5.1 5.0

Normal-VAR 3.1 7.2 6.7 6.4 4.8

t
6
-VAR 10.9 6.9 6.5 5.3 4.9

Nominal level a = 10%

Normal-IID 5.9 11.3 11.1 10.2 9.8

t
6
-IID 18.3 11.4 10.4 10.1 9.7

Normal-GARCH 5.6 10.8 11.0 10.2 10.1

t
6
-GARCH 6.0 10.9 11.2 10.1 9.8

Normal-VAR 7.3 12.4 11.7 12.0 9.9

t
6
-VAR 17.8 12.4 12.0 10.2 10.0
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ENDNOTES 

1. In this article, a standard error of an estimator denotes an estimate of the true stand-
ard deviation of the estimator.
2. Strictly speaking, the previously mentioned works consider excess returns over a 
given benchmark. This more general scenario also suits our set-up by choosing the 
benchmark to be zero. 
3. Corresponding simulation results are not included in this article but are available from 
the authors upon request. 

finite support while the QS kernel does not, it is somewhat more convenient 
to implement; for example, see Andrews (1991). 

5 Conclusion
Testing for the equality of the variances of two investment strategies is an 
important tool for performance analysis; it is of particular relevance when 
the two strategies aim to implement the global minimum variance port-
folio. A common tool is the classical F-test. Unfortunately, this test is not 
robust against tails heavier than the normal distribution, non-zero correla-
tion of strategies’ returns during common return periods, and time series 
characteristics. Since all three effects are quite common with financial 
returns, the F-test should not be used.

We have discussed alternative inference methods which are robust. HAC 
inference uses kernel estimators to come up with consistent standard errors. 
The resulting inference works well with large samples but is often liberal for 
small to moderate sample sizes. In such applications, it is preferable to use a 
studentized time series bootstrap. Arguably, this procedure is quite complex 
to implement, but corresponding programming code will be made freely 
available at www.econ.uzh.ch/faculty/wolf.html. 
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4. The resulting bootstrap confidence interval for Θ will also be two-sided but, gener-
ally, no longer symmetric.
5. Many empirical applications use 10 years of monthly data.
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