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The crawling robot uses its HLEC skin to sense
its physical state and environment (i.e., proprio-
ception and exteroception). The capacitance of the
HLEC changes with pneumatic actuation (Fig. 4B
and data S8) and externally applied pressure (Fig.
4, C and D, and data table S9) (10). Actuation of
the three underlying pneumatic chambers results
in capacitance changes (A C) of up to 1000% when
the chambers are fully inflated. Additionally, each
HLEC panel is largely decoupled from the state of
the surrounding pneumatic chambers (fig. S4 and
data table S11) (28). The ability to identify the
actuated state of the robot using the capacitive
sensor readings enables proprioception. To dem-
onstrate the tactile sensing capabilities of the elec-
tronic skin, we pressed each of the HLEC panels
on the robot and measured the capacitive response
(Fig. 4C). A firm finger press resulted in a ~25%
increase in capacitance. The relative capacitance
versus applied pressure, ranging from 0.9 to
30.9 kPa, remained nearly constant over a period
of 120 hours (Fig. 4D). Arrays of these tactile sen-
sors enable exteroception in soft robotic systems.

An array of three HLEC panels patterned into
the three-chambered crawling robot enables eight
distinct illuminated states (Fig. 4E). The embedded
HLEC remains functional as the robot is actuated
through its crawling sequence (Fig. 4F and movie
S3). During actuation, the embedded HLEC un-
dergoes stretches of A; = 2.63 and A, = 242 in the
longitudinal (front to rear) and transverse (side to
side) directions, respectively, to produce a ~635%
increase in the skin’s surface area (fig. S5). Sim-
ilar to the single-panel HLEC (movie S1), the
luminescence of the embedded skin increases
during actuation as its thickness is decreased.

Integrating these highly stretchable and com-
pliant displays into soft actuators enables two
new capabilities in soft electronics: (i) displays
that actively change their shape and (ii) robots
that actively change their color. Using replica
molding, we fabricated a multipixel array of in-
dividually addressable HLECs, and we used the
same process to monolithically integrate these
displays into a soft robot capable of changing
posture. The HLEC array imparts both dynamic
coloration and the potential for feedback control,
which would be useful in epidermal electronics
(31) and robotics (32). Although the luminous ef-
ficacy of our HLEC (43.2 mlm W) is not as high
as that of commercial AC powder electrolumine-
scent devices (~4 Im W) (32), it can be greatly
improved by tuning the materials system and
device architecture (such as higher-transmissivity
encapsulation layers, reduced thickness, and opti-
mized particle size). For applications requiring
higher display resolution, HLECs could be made
compatible with photolithography and other
microfabrication techniques by using photo-
polymerizable polymers. These techniques would
also allow us to decrease the thickness of the
electroluminescent layer, thereby reducing the
voltage required to power the HLEC.
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HUMAN ALTRUISM

The brain’s functional network
architecture reveals human motives

Grit Hein," Yosuke Morishima,">"® Susanne Leiberg,' Sunhae Sul,* Ernst Fehr'

Goal-directed human behaviors are driven by motives. Motives are, however, purely mental
constructs that are not directly observable. Here, we show that the brain’s functional
network architecture captures information that predicts different motives behind the same
altruistic act with high accuracy. In contrast, mere activity in these regions contains no
information about motives. Empathy-based altruism is primarily characterized by a
positive connectivity from the anterior cingulate cortex (ACC) to the anterior insula (Al),
whereas reciprocity-based altruism additionally invokes strong positive connectivity from
the Al to the ACC and even stronger positive connectivity from the Al to the ventral
striatum. Moreover, predominantly selfish individuals show distinct functional
architectures compared to altruists, and they only increase altruistic behavior in response
to empathy inductions, but not reciprocity inductions.

he theory of revealed preference (I) pro-
vides the choice-theoretic foundations for
modern economics. In this view, prefer-
ences cannot be identified independently
of behavior, and motives play no causal role
in economists’ explanatory toolbox—a view that
is in direct contradiction to the neuroeconomic
approach (2-4). In psychology, motives are also
considered to be independent drivers of goal-
directed human behavior (5). Motives are, however,
mental constructs that are not directly observable
and frequently not even accessible introspectively,
meaning that asking people does not provide rel-

evant information about motives (6, 7). There-
fore, human motives have been typically inferred
from individuals’ behavior by assuming that dif-
ferent motives lead to different behaviors.
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Here we ask whether different motives have a
distinct neurophysiological representation that
is generalizable across individuals. That is, even
if we had no information about individuals’ be-
haviors or if these behaviors would not allow us to
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Fig. 1. Example trial in the allocation task in
which subjects could allocate money to them-
selves (indicated by the green bars in the sec-
ond screen) and one of their partners (indicated
by the blue bars in the second screen). Subjects
could either maximize their own monetary payoff
(selfish decision) or maximize the paired partner’s
monetary payoff by giving up their own payoff (al-
truistic decision). They faced several trials during the
allocation task that differed in the subject’s cost of
maximizing the partner’'s payoff (21). In each trial,
subjects from the empathy induction group were
paired with the empathy partner (empathy condition)
or the baseline partner (baseline condition). Likewise,
in each trial, subjects from the reciprocity induction
group were paired with a reciprocity partner (reci-
procity condition) or the baseline partner (baseline
condition). The arrow in the first screen indicates the
partner with whom the subject was paired in a trial.
The choice problems in the empathy, the reciprocity,
and the baseline conditions were identical.

make inferences about motives, could we still iden-
tify and predict their motives merely on the basis
of their functional neural network architecture?

We tackled this question in the context of human
altruistic decisions (8-14). Subjects participated
in an allocation task in which they could make
selfish or altruistic decisions. We studied the role
of two key motives for altruistic behaviors—the
empathy motive and the reciprocity motive, two
important drivers for human altruism (8-14). We
induced these motives experimentally in two dif-
ferent groups of subjects, i.e., subjects were ran-
domly assigned to either the empathy induction
group or the reciprocity induction group. After
the motive inductions, subjects participated in
the allocation task in which they could allocate
money to other individuals at a cost to them-
selves. All subjects faced the same allocation task
regardless of the previous motive-induction group.
Therefore, their underlying motive cannot be
inferred from the mere fact that they behave
altruistically. Can we now predict the induced
motive solely on the basis of the subject’s func-
tional neural architecture?

We used dynamic causal models (DCMs) of
functional magnetic resonance imaging data
(15-17) collected during the allocation task and
used the estimated DCM parameters to predict
subjects’ “hidden” motivational state with ma-
chine learning—an approach known as genera-
tive embedding (7). More specifically, the DCM
analyses of subjects’ brain data during altruistic
decision-making gave us information about indi-
viduals’ network architecture in the different mo-
tive conditions. These parameters then provided
the “raw” material for our predictions and for
the mechanistic insights that follow from our
examination (17).

Both in the empathy and the reciprocity in-
duction group, subjects were paired with two
partners (confederates of the experimenter), who
were sitting on either side of the subject. In the
empathy induction group, the subject repeatedly
observed one of the confederates (the empathy
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partner) receiving pain shocks in a number of
trials, a situation known to elicit an empathic re-
sponse (I8, 19). The reciprocity motive is defined
as the desire to reciprocate perceived kindness
with a kind behavior (13, 14). Therefore, in the
reciprocity induction group, we activated the
reciprocity motive by instructing one of the con-
federates (the reciprocity partner) to give up
money in several trials to save the subject from
painful shocks (13, 14, 20). No motives were
induced toward the respective second partner
(baseline partner), who played the same role
in both the empathy- and the reciprocity induc-
tion group [for details of motive induction, see
supplementary materials (21)]. It is important to
stress that the subjects received painful shocks
not only in the reciprocity induction group but
also in the empathy induction group, and that
the number of painful shocks was identical across
conditions (21). This feature has two advantages.
First, by equalizing the shock frequency across con-
ditions, we can be sure that the two motive in-
ductions contain the same number of aversive
events. Second, the application of painful shocks
to the subject in the empathy condition is likely
to enhance the ability to empathize with the em-
pathy partner because subjects know how the
shock feels. Finally, to assess the success of the
motive inductions, the subjects also completed
emotion ratings where they indicated in each trial
how they felt.

In the allocation task, subjects were in the
scanner. In each trial, they allocated money be-
tween themselves and one of the partners (Fig. 1).
They could choose between maximizing the other
person’s monetary payoff by reducing their own
monetary payoff (altruistic behavior), or maxi-
mizing their own payoff (selfish behavior) at a
cost to the partner. Depending on the type of
partner subjects faced in the allocation task,
there were three conditions—the empathy condi-
tion, the reciprocity condition, and the baseline
condition. Because neither reciprocity nor empathy
motives were induced in the baseline condition
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Fig. 2. DCM-based classification of different motives that resulted in the
same altruistic decision. (A) Dynamic causal model (DCM) that was used to
investigate the impact of the empathy and the reciprocity motive on brain
connectivity during altruistic decisions. Straight arrows indicate interregional
connections (four components), and dashed arrows represent stimulus inputs
from outside of the network (three components). (B) Discriminative compo-
nents. The figure visualizes the weights with which each of the seven network
components contributed to the classification of the empathy and reciprocity
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Network components Network components

motive. (C) Accuracy for each level of the stepwise classification, based on the
order of classification weights in (B). (D) Log P-value of stepwise classification,
based on the order of classification weights in (B). Al, anterior insula; ACC,
anterior cingulate cortex; VS, ventral striatum. Network components: 1 = Al- VS;
2 = plus ACC-AI; 3 = plus AI-ACC; 4 = plus ACC input; 5 = plus VS input; 6 =
plus Al input; 7 = plus ACC-VS. The highest accuracy is reached when only the
first three of the seven connectivity and input parameters are used to classify
the empathy and the reciprocity motive [(A), highlighted in red].
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(i.e., vis-a-vis the baseline partner), the behavior
in this condition measures subjects’ “raw” or
“homegrown” unconditional altruism. This al-
truism is unconditional in the sense that the
baseline partner did not do anything during the
motive induction on which the subjects could
condition their behavior during the allocation
task. Homegrown unconditional altruism can
play a role in all three conditions, but the in-
duced empathy motive plays an additional role
in the empathy condition and the reciprocity
motive plays an additional role in the reciproc-
ity condition.

Empathy means that if an individual observes
someone else in pain, the individual also feels or
“shares” that pain (I8). Stronger empathizing
during the empathy induction should therefore
induce worse feelings (due to “shared” pain),
which should then lead to a stronger empathy
motive for altruistic behavior. We indeed ob-
served that the worse a subject felt when seeing
the empathy partner in pain, the more frequent
the altruistic decision toward this person in the
subsequent allocation task [7(18) = -0.51, P =
0.03]. Because the reciprocity partner is willing
to incur cost to remove painful shocks, the partner
is likely to be perceived as kind, which should
result in positive feelings and higher frequencies
of altruistic decisions toward the reciprocity part-
ner. We found indeed that the better a subject
felt after the reciprocity partner’s decision during
motive induction, the more altruistic the decisions
toward this person in the subsequent allocation
task [r(16) = 0.57, P = 0.021]. Reciprocity in-
duction also induced significantly higher likabil-
ity ratings—which were collected after scanning
(“How much do you like the other person™ 9 = very
much to 1 = not at all)—for the reciprocity part-
ner as compared to the baseline partner [#(15) =
3.24, P = 0.005]. The overall frequency of altruistic
decisions toward the empathy partner and the
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Fig. 3. Average best models and mean DCM parameters. Best models
and mean DCM parameters for (A) Altruistic decisions driven by the empathy
motive, (B) altruistic decisions driven by “homegrown” unconditional altruism
in the baseline condition, and (C) altruistic decisions driven by the reciprocity
motive. For visualization purposes, the baseline data for subjects from the
empathy and the reciprocity group were pooled in (B), because there were no
significant differences in the corresponding best-model parameters [ACC-AI,
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reciprocity partner was significantly higher than
toward the baseline partner [motive induction ver-
sus baseline, F(1,32) = 12.5, P = 0.001; empathy ver-
sus baseline, #(17) = 2.5, P = 0.022; reciprocity
versus baseline, #(15) = 2.7, P = 0.017]. There was,
however, no significant difference in the increase
of altruistic decisions between the two motive in-
ductions [empathy versus baseline compared to
reciprocity versus baseline, /(1,32) = 0.2, P = 0.64].
In addition, the results of a Bayesian analysis show
that the null hypothesis that the two motive in-
ductions cause the same increase in altruism
relative to baseline is more than five times more
likely (84% versus 16%) than the hypothesis of a
differential increase (21).

Our imaging analyses focused on altruistic de-
cisions during the allocation task. First we used a
conventional general linear model (GLM) analysis
for a whole-brain search of regions with signifi-
cantly different activity during altruistic decisions
driven by empathy versus altruistic decisions
driven by reciprocity. There were no significant
differences even at the very liberal threshold of
Puncorrected < 0.05. This suggests that empathy-
driven and reciprocity-driven altruism activate
similar brain regions. We therefore compared
brain activations under altruistic decisions in both
motive-induction conditions with the activations
involved in altruistic decisions in the baseline
condition. The results revealed a network con-
sisting of left anterior insula (AI), left ventral
striatum (VS), and anterior cingulate cortex (ACC)
[P < 0.05; family-wise error (FWE) corrected; see
table S1 for details]—regions that were reported
by previous studies on the reciprocity (22-24) and
the empathy motive (I8, 19, 25).

In a second step, we determined the pattern
of neural connectivity within this network for
each subject, using DCM. We extracted the time
series of activations during altruistic decisions
toward the empathy partner, the reciprocity part-

c
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baseline partner.

ner, and the respective baseline partner from in-
dividual regions of interest (ROIs) in left Al left
VS, and ACC (table S2).

The DCM analyses were based on the anatom-
ical model shown in Fig. 2A, which is charac-
terized by seven components: three inputs (dashed
arrows) and four interregional connectivities (solid
arrows). Because most VS projections target the
cortex via the thalamus (26, 27), ascending pro-
jections from VS were not included in the anato-
mical model. We used Bayesian model averaging
(28) to determine the DCM parameters for the
seven components for each subject. For a subject
of the empathy group, for example, we calculated
(i) how activation in ACC, Al, and VS during
altruistic decisions is changed as a result of im-
pulses from outside the network under the em-
pathy and under the baseline conditions (dashed
arrows in Fig. 2A), and (ii) how activation in every
(target) region is changed by the level of activation
in the other regions during altruistic decisions
under the empathy and the baseline conditions
(effective connectivity, solid arrows in Fig. 2A).
The same computations were also done for sub-
jects of the reciprocity group. We thus obtained
14 DCM parameters per subject, seven for altruistic
decisions under the respective motive-induction
condition (empathy or reciprocity), and seven for
altruistic decisions under the baseline condition.
‘We then subtracted the individual DCM param-
eters of the baseline condition from the DCM
parameters of the motive-induction condition. The
resulting seven A-DCM parameters reflect the in-
dividual pattern of neural connectivity specific for
altruistic decisions driven by empathy or reciprocity.

In a third step, we submitted these individual
A-DCM parameters to a classification algorithm
(support vector machine, SVM) to test if the in-
dividual patterns of brain connectivity can be
used to detect the specific motive for altruism
that the experimenter induced (7). This approach
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t(1,32) = -0.57, P = 0.58; Al-VS, t(1,32) = -1.03, P = 0.31; ACC input, t(1,32) =
0.55, P =0.59]. In (A) to (C), dashed arrows indicate direct inputs to an area;
solid arrows indicate directed interregional connectivities. Al, anterior insula;
ACC, anterior cingulate cortex; VS, ventral striatum. (D) Correlation between
the individual parameters of the ACC—AI connection under baseline condi-
tions and the individual average number of altruistic decisions toward the
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significantly predicted the subjects’ induced al-
truistic motives, i.e., whether subjects went through
the empathy or the reciprocity induction condi-
tion (classification accuracy = 68.4%, P = 0.016).
The computation of classification accuracy with
the associated P-value is based on the posterior
probability of balanced accuracy as in (7). We
also tested if the two motives can be classified on
the basis of conventional functional activations.
We extracted the corresponding beta values from
the traditional GLM analysis (empathy versus
baseline condition; reciprocity versus baseline
condition) from the same ROIs that were used
for the DCM analyses and submitted them to
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Fig. 4. Differential impact of the empathy and
the reciprocity motive on individuals with pre-
dominantly selfish and prosocial preferences.
(A) Change in the frequency of altruistic decisions
after the empathy and the reciprocity induction, com-
pared to baseline, in selfish and prosocial individ-
uals. The empathy induction only increases the
frequency of altruistic decisions in more selfish
subjects, whereas the reciprocity induction only
increases the frequency of altruistic decisions in
subjects with more prosocial preferences. (B) Change
in brain connectivity from the ACC to the Al after
the empathy and reciprocity induction, compared
to baseline, in selfish and prosocial individuals.
(C) Change in brain connectivity from the Al to the
VS after the empathy and reciprocity induction, com-
pared to baseline, in selfish and prosocial individuals.
Error bars indicate SEM.
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the classification algorithm. This analysis did
not yield classification accuracy significantly
above chance (classification accuracy = 55.2%,
P = 0.3). It was also not possible to classify the
motives based on the increases in the frequency
of altruistic decisions in the two motive-induc-
tion conditions relative to the baseline condi-
tion [classification accuracy = 41%, P = 0.93;
see also (29)].

To better understand which DCM parameters
jointly enabled the distinction between the em-
pathy and the reciprocity motive, we calculated
the average classification weights with which each
of the seven different network components con-
tributed to the classification (Fig. 2B), and the
stepwise classification performance of the sequen-
tial combination of network components (Fig. 2, C
and D). The strongest classification weight was
attached to the connection from Al to VS, followed
by the directional connection from the cingulate
cortex to the insular cortex and vice versa (see
red arrows in Fig. 2A). The combination of these
three network components was sufficient for
classifying the induced motives behind subjects’
altruistic decisions with an accuracy of 77% (P =
0.0007; Fig. 2, C and D).

To identify the motive-specific functional net-
work architectures, we selected the best average
network for altruistic decisions under the empa-
thy, reciprocity, and baseline conditions. The
selection procedure was based on 28 different
models (fig. S3). To define this model space, we
used the criteria of anatomical plausibility, net-
work coherence, and functional plausibility [see
methods section in supplementary materials (21)
for details]. We used random-effect Bayesian
model selection (30) to select the models whose
structure and patterns of inputs and effective
connectivity fit best with the neural processes
evoked by altruistic decisions under the differ-
ent conditions (21).

Figure 3 shows the best models of neural con-
nectivity during empathy-driven, reciprocity-driven,
and “homegrown” altruism in the baseline condi-
tion (see figs. S3 and S4 for details). A comparison
between Fig. 3, A and B, shows a marked simi-
larity in the functional network architecture of
empathy-driven and homegrown altruism. Both
models show a positive connectivity between ACC
and Al, and a slightly negative connectivity be-
tween Al and VS, with no significant differences
in the respective DCM parameters [ACC to Al,
t(1,17) = -0.24, P = 0.8; Al to VS, #(1,17) = -0.66,
P = 0.52; ACC input, #1,17) = 0.89, P = 0.34].
This contrasts sharply with the best model for
reciprocity-driven altruism (Fig. 3C). In this model
there is, first, a strong bidirectional projection
between Al and ACC. Second, there is a strong
positive connectivity between AI and VS, which
significantly differs from the negative Al-to-VS
connectivity under the baseline [#(1,15) = 2.8, P =
0.015] and empathy conditions [#1,32) = 2.91, P =
0.006; 0gonferroni-corrected) < 0.025]. There were no
significant differences with regard to the con-
nectivity from ACC to Al [reciprocity versus base-
line, #(1,15) = 0.03, P = 0.9; reciprocity versus
empathy, #(1,32) = -0.28, P = 0.78].

These findings also raise the question whether
the differential network components present in
the reciprocity condition are related to particular
psychological features. Inspired by previous evi-
dence that has linked the social evaluation of
other individuals to activation in ventral striatal
regions (31, 32), we correlated subjects’ likability
ratings of the reciprocity partner with the individ-
ual strengths of the AI—VS connectivity. There
was a significant positive correlation [7(16) = 0.59,
P =0.016], whereas no such correlation was present
in the empathy and the baseline conditions [em-
pathy condition: 7(18) = -0.29, P = 0.25; baseline
condition: 7(16) = 0.001, P = 0.99].

There is, however, also a common network
feature—the ACC—AI connectivity—that is pres-
ent in all three conditions. We thus hypothe-
sized that this component of the network might
reflect basic prosocial motivation. To test this
conjecture, we correlated individuals’ frequency
of altruistic decisions toward their baseline part-
ner with their DCM parameters of the ACC—AI
connection. The results show a significant posi-
tive correlation [r (34) = 0.4, P = 0.017] (Fig. 3D).
The stronger a person’s connectivity from ACC to
Al, the higher the baseline level of altruism. In-
deed, if we divide our sample of subjects in pro-
social and selfish individuals on the basis of a
median split in the frequency of altruistic de-
cisions in the baseline condition, we find that
prosocial individuals display a positive connec-
tivity from ACC to AI of 0.16, whereas selfish
individuals show a negative connectivity of -0.17—
a difference that is highly significant [F(1,32) =
9.49, P = 0.004].

If selfish and prosocial subjects display differ-
ent network architectures, they may also respond
differently to the empathy and the reciprocity in-
duction. We sorted the selfish and prosocial in-
dividuals by the respective motive-induction
condition; this resulted in nine prosocial sub-
jects in both the empathy and the reciprocity
condition, nine selfish subjects in the empathy
condition, and seven selfish subjects in the reci-
procity condition. Figure 4A shows that the in-
duction of the empathy motive significantly
increased altruistic decisions in selfish indi-
viduals, whereas there was no such effect after
the induction of reciprocity. In contrast, the
induction of reciprocity resulted in a further
enhancement of altruistic behavior in prosocial
individuals, whereas the empathy induction had
no effect on these individuals. Thus, the two
types of subjects respond very differently to the
two motive inductions [motive induction x indi-
vidual type, F(1,30) = 8.8, P = 0.006].

We next compared the differences in brain con-
nectivity between the motive-induction and the
baseline conditions. Empathy induction increased
effective connectivity from ACC to Al in selfish
subjects, while there was no such effect after the
selfish subjects received a reciprocity induction
and in prosocial individuals [motive induction x
individual type, F(1,30) = 4.1, P = 0.05] (Fig. 4B).
In contrast, the reciprocity induction led to an
enhancement of neural connectivity from Al to
VS in prosocial individuals, which is not the case
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after the empathy induction and in selfish types
[motive induction x individual type, F(1,30) =
4.9, P = 0.034] (Fig. 4C).

Motives are purely mental constructs that are
not directly observable. Here we show, however,
that distinct motives have a distinct neurophys-
iological representation in the brain. Although
the empathy and the reciprocity motive increase
the frequency of altruistic acts by the same amount
relative to the baseline condition, they are asso-
ciated with different patterns of brain connectivity
that enabled us to predict the different motives
with relatively high accuracy. We predicted each
subject’s induced motive with a classifier whose
parameters were not influenced by that subject’s
brain data (nor by that subject’s behavioral data).
Instead, the parameters of the classifier were solely
informed by other subjects’ brain data. This means
that the motive-specific brain connectivity patterns
are generalizable across subjects. The distinct and
across-subject-generalizable neural representa-
tion of the different motives thus provides evi-
dence for a distinct neurophysiological existence
of motives.

The findings also provide mechanistic insights
into the neural underpinnings of important al-
truistic motives and how motive inductions change
the underlying neural network. In particular, pre-
dominantly selfish individuals were character-
ized by a low or even negative connectivity from
ACC—ALI in the baseline condition, whereas pre-
dominantly prosocial individuals displayed a pos-
itive connectivity between these regions. However,
when we induce the empathy motive, the selfish,
but not the prosocial, types become more altruistic
and show a substantial increase in ACC—AI con-
nectivity. Thus, after the empathy induction, selfish
individuals resemble “homegrown” unconditional
altruists in terms of both brain connectivity and
altruistic behavior. This contrasts with the effect
of inducing the reciprocity motive, which ren-
ders the prosocial, but not the selfish, types more
altruistic and increases only the prosocial types’
AI—VS connectivity.

We obtain these mechanistic insights because
the inputs into the support vector machine are
not merely brain activations but small brain
models of how relevant brain regions interact
with each other (i.e., functional neural architec-
tures). Thus, by correctly predicting the induced
motives, we simultaneously determine those
mechanistic models of brain interaction that best
predict the motives. And it is these models that
deliver the mechanistic insights into brain func-
tion and how changes in brain function relate
to behavioral changes due to motive inductions.
Our study, therefore, also demonstrates how “mere
prediction” and “insights into the mechanisms”
that underlie psychological concepts (such as
motives) can be simultaneously achieved if func-
tional neural architectures are the inputs for the
prediction.
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Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in
protection against lethal disease, but the characteristics of the human antibody response
to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific
monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who
survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live
EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in
complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the
viral membrane. Neutralizing antibodies targeting this site show potent therapeutic
efficacy against lethal EBOV challenge in mice. The results provide a framework for the
design of new EBOV vaccine candidates and immunotherapies.

n recent years, Ebola virus (EBOV) outbreaks
have increased in frequency, duration, and
geographical spread, underscoring the need
for pre- and post-exposure treatments (7). The
membrane-anchored EBOV glycoprotein (GP)

trimer is the sole known target for protective
antibodies and is currently the primary target for
antiviral vaccines and therapies (2, 3). A small num-
ber of protective monoclonal antibodies (mAbs)
to GP have been isolated from immunized mice,
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