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These days, it is common practice to base inference about the coefficients in a hetoskedas-
tic linear model on the ordinary least squares estimator in conjunction with using het-
eroskedasticity consistent standard errors. Even when the true form of heteroskedasticity
is unknown, heteroskedasticity consistent standard errors can also used to base valid infer-
ence on a weighted least squares estimator and using such an estimator can provide large
gains in efficiency over the ordinary least squares estimator. However, intervals based on
asymptotic approximations with plug-in standard errors often have coverage that is be-
low the nominal level, especially for small sample sizes. Similarly, tests can have null re-
jection probabilities that are above the nominal level. It is shown that under unknown
hereroskedasticy, a bootstrap approximation to the sampling distribution of the weighted
least squares estimator is valid, which allows for inference with improved finite-sample
properties. For testing linear constraints, permutations tests are proposed which are exact
when the error distribution is symmetric and is asymptotically valid otherwise. Another
concern that has discouraged the use of weighting is that the weighted least squares esti-
mator may be less efficient than the ordinary least squares estimator when the model used
to estimate the unknown form of the heteroskedasticity is misspecified. To address this
problem, a new estimator is proposed that is asymptotically at least as efficient as both
the ordinary and the weighted least squares estimator. Simulation studies demonstrate the
attractive finite-sample properties of this new estimator as well as the improvements in
performance realized by bootstrap confidence intervals.

© 2018 EcoSta Econometrics and Statistics. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the problem of inference in a linear regression model. Under conditional homoskedasticity,
the ordinary least squares (OLS) estimator is the best linear unbiased estimator. Traditional inference based upon the or-
dinary least squares estimator, such as the F test or t confidence intervals for individual coefficients, relies on estimators
of asymptotic variance that are only consistent when the model is conditionally homoskedastic. In many applications, the
assumption of conditional homoskedasticity is unrealistic. When instead the model exhibits conditional heteroskedasticity,
traditional inference based on the ordinary least squares estimator may fail to be valid, even asymptotically.

If the skedastic function is known (that is, the function that determines the conditional heteroskedasticty of the error
term given the values of the regressors), the best linear unbiased estimator (BLUE) is obtained by computing the ordinary
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least squares estimator after weighting the data by the inverse of square root of the value of the skedastic function. Un-
fortunately, in all but the most ideal examples, the heteroskedasticity is of unknown form, and this estimator cannot be
used. However, if the skedastic function can be estimated, then weighting the model by the inverse square root of the esti-
mate of the skedastic function produces a “feasible” weighted least squares (WLS) estimator. Although this estimator is no
longer unbiased, it can often give improvements in efficiency over the ordinary least squares estimator. Even so, estimat-
ing the skedastic function is often challenging, and a poorly estimated skedastic function may produce an estimator that is
less efficient than the ordinary least squares estimator. Furthermore, when the estimated skedastic function is not consis-
tent, traditional inference based on the weighted least squares estimator may not be valid. Because of these difficulties the
weighted least squares estimator has largely fallen out of favor with practitioners.

As an alternative, White (1980) develops heteroskedasticity consistent (HC) standard errors which allow for asymptot-
ically valid inference, based on the ordinary least squares estimator, in the presence of conditional heteroskedasticity of
unknown form. Although this approach abandons any efficiency gains that could be achieved from weighting, the stan-
dard errors are consistent under minimal model assumptions. Despite the asymptotic validity, simulation studies, such as
MacKinnon and White (1985) who investigate the performance of several different heteroskedasticity consistent standard
errors, show that inference based on normal or even t approximations can be misleading in small samples. In such cases, it
is useful to consider bootstrap methods.

Following the proposal of White’s heteroskedasticity consistent covariance estimators, resampling methods have been
developed that give valid inference based on the ordinary least squares estimator. Freedman (1981) proposes the pairs boot-
strap which resamples pairs of predictor and response variables from the original data. Another popular technique is the
wild bootstrap which is suggested by Wu (1986). This method generates bootstrap samples by simulating error terms ac-
cording to a distribution whose variance is an estimate of the conditional variance for each predictor variable. The choice of
distribution used to simulate the error terms is discussed extensively in Davidson and Flachaire (2008), Chesher (1989), and
MacKinnon (2012). Recent numerical work comparing the pairs bootstrap and the wild bootstrap to asymptotic approxima-
tions is given in Flachaire (2005) and Cribari-Neto (2004). Godfrey and Orne (2004) conducts simulations suggesting that
combining heteroskedasticity consistent standard errors with the wild bootstrap produces tests that are more reliable in
small samples than using the normal approximation. Despite the improvements that the resampling methods produce over
asymptotic approximations, inference based on the ordinary least squares estimator may still not be as efficient as weighted
least squares.

Neither the solution of using heteroscedasticity consistent covariance estimators, nor using weighted least squares with
traditional inference seem entirely satisfactory. Even recently there has been debate about the merits of weighting. Angrist
and Pischke (2010) are of the belief that any potential efficiency gains from using a weighted least squares estimator are not
substantial enough to risk the harm that could be done by poorly estimated weights. On the other hand, Leamer (2010) con-
tends that researchers should be working to model the heteroskedasticity in order to determine whether sensible reweight-
ing changes estimates or confidence intervals.

Even in examples where the estimated skedastic function is not consistent for the true skedastic function, the weighted
least squares estimator can be more efficient than the ordinary least squares estimator in a first order asymptotic sense.
Arguably, a more satisfying approach to inference than simply abandoning weighting is to base inference on the weighted
least squares estimator in conjunction with HC errors. This proposal goes back to at least Wooldridge (2012) and is made
rigorous in Romano and Wolf (2017). Regardless of whether or not the parametric family used to estimate the skedastic
function is correctly specified, the weighted least squares estimator has an asymptotically normal distribution with mean
zero and a variance that can be consistently estimated by the means of HC standard errors (as long as some mild technical
conditions are satisfied).

There are two difficulties with basing inference on these consistent standard errors. As is the case with using White’s
standard errors, using heteroskedasticity consistent standard errors with the weighted least squares estimator leads to in-
ference that can be misleading in small samples. This problem is even more severe with the weighted estimator than with
the ordinary least squares estimator because the plug-in standard errors use the estimated skedastic function, and are the
same estimators that would be used if it had been known a priori that the model would be weighted by this particular esti-
mated skedastic function. Confidence intervals, for example, do not account for the randomness in estimating the skedastic
function and for this reason tend to have coverage that is below the nominal level, especially in small samples.

The other trouble is that inference based on the weighted least squares estimator using consistent standard errors may
not be particularly efficient, and investing effort in modeling the conditional variance may be counterproductive. In fact,
when the family of skedastic functions is misspecified (or the estimated skedastic function is not consistent for the true
skedastic function), the weighted least squares estimator can be less efficient than the ordinary least squares estimator,
even when conditional heteroskedasticity is present. Although this possibility seems rare, it is theoretically unsatisfying and
has been given as a reason to abandon the approach altogether.

In this paper, we will address these limitations of the weighted least squares estimator, namely the unsatisfying finite
sample performance of asymptotic approximations, and the potential asymptotic inefficiency relative to the ordinary least
squares estimator. Thus, the general goal is to improve the methodology in Romano and Wolf (2017) by constructing meth-
ods with improved accuracy and efficiency. We begin by establishing that the wild and pairs bootstrap approximations to
the sampling distribution of the weighted least squares estimator are consistent. Using resampling methods, rather than
asymptotic approximations, has the advantage that for each resample, the skedastic function can be re-estimated. This leads
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to approximations of the sampling distribution which account for the variability from estimating the weights that can have
better finite sample properties than asymptotic approximations, which are the same as if the weights had been specified in
advance and were non-random. This allows for confidence intervals and hypothesis tests with better finite sample perfor-
mance than t intervals or F tests. For testing, we further establish asymptotic validity of permutation tests, which also have
the advantage of re-estimating the function, but have the added benefit of finite sample exactness in some circumstances.
To address the concern of the possible inefficiency of the weighted least squares estimator, we propose a new estimator that
is a convex-combination of the ordinary least squares estimator and the weighted least squares estimator and is at least as
efficient (asymptotically) as both the weighted and the ordinary least squares estimator (and potentially more efficient than
either).

The remainder of the paper is organized as follows. Model assumptions are given in Section 2. Consistency of both the
pairs and wild bootstrap approximations to the distribution of the weighted least squares estimator is given in Section 3;
notably, the bootstrap accounts for estimation of the skedastic function as it is re-estimated in each bootstrap sample. Tests
for linear constraints of the coefficient vector using both bootstrap methods, as well as a randomization test, are given
in Section 3.2. Estimators based on a convex-combination of the ordinary and weighted least squares estimators that are
asymptotically no worse, but potentially more efficient than the ordinary least squares estimator, as well as the consistency
of the bootstrap distribution of these estimators, are given in Section 4. Here, the bootstrap is useful not only to account for
the randomness in the skedastic function but also the randomness in the convex weights. Section 5 provides an example
where the convex-combination estimator is strictly more efficient than either the ordinary or weighted least squares esti-
mators. Simulations to examine finite-sample performance, as well as an empirical application, are provided in Section 6.
Proofs are given in the appendix.

2. Model and notation
Throughout the paper, we will be concerned with the heteroskedastic linear regression model specified by the following
assumptions.
(A1) The model can be written
yi=x B+

i=1,...,n, where x; € RP is a vector of predictor variables, and ¢; is an unobservable error term with properties
specified below.

(A2) {(y;, x;)} are independent and identically distributed (i.i.d.) according to a distribution P.

(A3) The error terms have conditional mean zero given the predictor variables:

E(gilx;) = 0.

(A4) Xy 1= IE(xixlT) is nonsingular.
(A5) Q= ]E(eizx,»x,T) is nonsingular.
(A6) There exists a function v(-), called the skedastic function, such that

E(&7|x) = v(x).

It is also convenient to write the linear model specified by assumption (A1) in vector-matrix notation.

Y=XB+e,
where
Y1 &1 x] X1 ... Xip
Yei=| o |, =1 |, and X := = :
n &n pa) Xn1 ... Xnp

Finally, following the notation of Romano and Wolf (2017), define

Qqpp = ]E(xixiT Zg:;)

for any functions a, b : RP — R such that this expectation is finite. Using this convention, Xy = 1,7 and Q = Q5.

3. Estimators and consistency of the bootstrap

Under the model assumptions given in Section 2, it is common to use the ordinary least squares (OLS) estimator

Bois = (XTX)'XTY
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to estimate S. The ordinary least squares estimator is asymptotically normal, satisfying
3 d _ .
ﬁ(ﬁOLs - ,3) — N(O, Q1/]1 Qv/191/]1)

where the asymptotic variance, which will be referred to as Avar(BOLS) can be estimated by White’s heteroskedasticity
consistent covariance estimator
At Bos) = (x7X) L3~ (2 ) (Lx7x)
var(Bois) := (H ) 0 121: (8,' < XiX; )<ﬁ ) ,
with & = y; —x?ﬁOLs. Although the ordinary least squares estimator is unbiased, it is not efficient when the model is not
conditionally homoskedastic. Ideally, one would use the best linear unbiased estimator (BLUE) which is obtained by regress-
ing y;/+/v(x;) on x;/,/v(x;) by OLS. But this estimator requires knowledge of the true skedastic function and thus is not
feasible in most applications.
Instead, one can estimate the skedastic function and weight the observations by the estimate of the skedastic function.
Typically, the skedastic function is estimated by vs(), a member of a parametric family {Ue(-) 10 e Rd} of skedastic func-
tions. For instance, a popular choice for the family of skedastic functions is

Vg (x;) = exp(fo + 01 log |x; 1| + -~ + Oplog |x; p|).  with 6 := (0o, 61.....0,) e RPH!. (3.1)
The weighted least squares (WLS) estimator based on the estimated skedastic function is obtained by regressing
Yi/\/Vy(x;) on x;/,/v;(x;) by OLS and thus given by
Buwis = XTVIX) XYY,
where Vj := diag{vy (x1), ..., Vg (xn)}.
Provided the estimated skedastic function v,(-) is suitably close to some limiting estimated skedastic function, say vy (-)
for n large, then the weighted least squares estimator has an asymptotically normal distribution. Note that vy, (-) need not

correspond to the true skedastic function, which of course happens if the family of skedastic functions is not well specified.
Romano and Wolf (2017) assume that 6 is a consistent estimator of some 6 in the sense that

n4@ -6y 5 0, (3.2)

where 2 denotes convergence in probability. This condition is verified by Romano and Wolf (2017) for the family of skedas-
tic functions given in Lemma 3.1 under moment conditions. They also assume that at this 6, 1/v4(-) is differentiable in the
sense that there exists a d-dimensional vector-valued function

T, (%) = (T90,1 x),..., Teo,d(x))
and a real-valued function sq (-) (satisfying some moment assumptions) such that

1 1
B® U@ r9, (%) (0 — 0o)

for all € in some small open ball around 6 and all x.
If (3.2) and (3.3) are satisfied, then under some further regularity conditions,

A d
\/ﬁ<,3WLs - ,3> — N(O, Qf/lwgv/wzgl_/]w)

1
=510 - Bo1%sg, (X). (3.3)

where w(-) :=vg,(-) and 4 denotes convergence in distribution.
The matrices €21, and €, w2 appearing in the asymptotic variance can be consistently estimated by

XTV@*]X
Qi 1= —2—
1w n
and
A 10 &2
Q2 1= — L xx! |,
v n; )

respectively, for suitable residuals & that are consistent for the true error terms ¢. Then the asymptotic variance of the
weighted least squares estimator, denoted by Avar(fws), can be consistently estimated by

mr(gwm) = 07 Qe (3.4)

Remark 3.1. When the ‘raw’ OLS residuals, &; := y; *’Q‘BOLSv are used to compute Qv/wz, the estimator (3.4) is commonly
referred to as the HCO estimator. To improve finite-sample performance other variants of HC used scaled residuals instead.
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The HC1 estimator scales the OLS residuals by /n/(n — p), which reduces bias. When the errors are homoskedastic, the
variance of the OLS residual &; is proportional to 1/(1 — h;), where h; is the i diagonal entry of the ‘hat’ matrix H :=
X(XTX)~1XT. The HC2 estimator uses the OLS residuals scaled by 1/,/(1 — h;). The HC3 estimator uses the OLS residuals
scaled by 1/(1 — hy).

3.1. Confidence intervals

Using the plug-in estimator of asymptotic variance, E/a\r(BWLS) in (3.4), gives approximate t confidence intervals for the
coefficients having the form

/§WLS,I< Elhopil-ap- SE(BWLS‘k)’

where

SE(Bwis ) =/ Avar (Byis /.

and t,_p 1_q/2 s the 1 — /2 quantile of the t-distribution with n — p degrees of freedom. These intervals are asymptotically
valid; however, simulations suggest that the true coverage rates are often smaller than the nominal level, especially in small
samples. The standard errors for these confidence intervals are the same standard errors that would be used if we had
known before observing any data that the model would be weighted by 1/,/v;(-) and the intervals do not account for
variability in the estimation of the skedastic function. The coverage can be improved by reporting intervals based on the
“pairs” bootstrap confidence intervals where the skedastic function is estimated on each bootstrap sample separately.

The empirical distribution of a sample (xq, y1),..., (Xn, ¥n) is

. 1
P(s1,...,8p, t) i= — X1 <S1,...Xip, <Sp,y; <tj.
7 (81 po t) n;{:,l_l l,p_p.VI_}

The pairs bootstrap, which is commonly used for heteroskedastic regression models, generates bootstrap samples,
(x5, ¥7), ... (x5, y3) from P,. Alternatively, one could generate bootstrap samples (x,¥7), ..., (Xn,y;;) using the wild boot-
strap which simulates new response variables

yi= XiPwis + &,
where &} are sampled from any distribution F with mean zero and variance élz
Remark 3.2. Typically & := u;- & where u; is a random variable with mean zero and variance one. When the errors are
symmetric, a commonly used distribution (which will be referred to as the F, distribution) for u; takes values 41, each
with probability 1/2. For skewed errors, Mammen (1993) proposes simulating u; according to a distribution (which will
be referred to as the F; distribution) that takes values —(+/5 — 1)/2 with probability (v/5+ 1)/(2+/5) and (+/5 + 1)/2 with
probability (v/5 —1)/(2+/5). This distribution has third moment one, and accounts for skewness in the distribution of the

errors. Although this distribution has better theoretical properties, it may not always perform better in finite sample. Further
discussion and numerical comparisons between these distributions are given in Section 6.

When computing the weighted least squares estimator BW,_S, the parameter for the estimated skedastic function is re-
estimated on the bootstrap sample by 6*. The following theorem establishes that the distribution of \/ﬁ(ﬂ\*;us - /SWLS), using

the pairs or the wild bootstrap, is a consistent approximation of the sampling distribution of Jﬁ(BWLS - ,3).

Theorem 3.1. Suppose that (x1,y1), ..., (xn,yn) are ii.d. satisfying assumptions (A1) — (A6) above, and that {Ug ():0¢e ]Rd} is
a family of continuous skedastic functions satisfying (3.3) for some 6 for any functions rg, (-) and sg, (-) such that

2 2
E|x1y17(x1)|” <00 and E|x1y15(x1)]|” < oo.

Let & be an estimator satisfying (3.2). Further suppose that n1/4(9* —90) converges to zero in conditional probability. (These
assumptions are verified, under moment assumptions, for a particular parametric family of skedastic functions in Lemma 3.1). Let
Bwis = (xTvé—lxr]XTve:W and vg, =: w. If

2
v +20,%)
w2 (x;)

QWWZ qnd Qqw exist, and 21, is invertible, then the condjtiopal law of \/ﬁ‘(ﬁ{;‘m - /§WL§), based on a pairs boot§trap samp{e
or a wild bootstrap sample, converges weakly to the multivariate normal distribution with mean zero and covariance matrix

Q;}WQWWz Q;/lw in probability. Furthermore, for any k, the distribution of ‘/ﬁ('g\jVLS,k - BWLS,Ic)/V/ﬁ(BWLS,Ic)* is asymptotically
standard normal in probability, where ,/ﬁ/a\r(BWLS,k)* /n is the estimated standard error of BCVLs_k using the bootstrap sample.
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Remark 3.3. Of course, the bootstrap distribution is random and hence its weak convergence properties hold in a prob-
abilistic sense. As is customary, when we say that a sequence of random distributions, say G, converges weakly to G in

probability, we mean that p(Gy,, G) L 0 where p is any metric metrizing weak convergence on the space of distributions.
We also say that a sequence T,(X, Y) converges in conditional probability to zero almost surely if for almost every sequence
{xi, ¥i}, Ta(X*, Y*)— 0 in P, probability.

The approximation given in Theorem 3.1 guarantees the basic bootstrap confidence intervals computed by
(BWLS,k —q(1—0/2.P), Bursi — q(e/2, 13))

are asymptotically level «, where q(c, P) denotes the « quantile of
\/E(BGVLs_k - BWLS,I<)~

Rather than using the basic bootstrap confidence intervals, bootstrap-t intervals can be constructed. Again appealing to 3.1,
the bootstrap-t intervals

(BWLS -/ @(BWLS,k)/n (1 —a/2,P), Bwis — . Avar(Buisi)/n - t(e/2, 13))

are asymptotically level @ where t (o, P) denotes the « quantile of

\/E(BGVLS,k - BWLS,I()
v @(BWLS,U*

Remark 3.4 (Adaptive Least Squares). Romano and Wolf (2017) propose choosing between the OLS and WLS estimators by
applying a test for conditional heteroskedasticity and call the resulting estimator the adaptive least squares (ALS) estimator.
The confidence intervals reported for the ALS estimator, agree with either the confidence intervals for the WLS or OLS
estimators (using HC standard errors), depending on the decision of the test. Rather than using asymptotic intervals, the
corresponding bootstrap intervals for either the WLS or OLS estimators can be used for the ALS estimator.

In Theorem 3.1, it was assumed that we have a family of skedastic functions {vy(-)}, and an estimator of 6, say 6, such
that n1/4(9* —6p) converges in conditional probability to zero. We will now verify this assumption for a flexible family of
skedastic functions which includes the family specified in (3.1).

Lemma 3.1. For any functions g; : R? - R%, i=1,..., d, define the family {vy : 6 € R?} by

d
Vg (X) = exp [Z 6’jg,-(x)},
i=1
and let O be the estimator obtained by regressing hs(é;) :=log (max {82, éf}) (where & :=y; —x;Bos) on g(x;) =
(g1(X;), ..., 8q(x;)) by OLS, where 5> 0 is a small constant. Then, n”“(é* — o) converges in conditional probability to zero
for
o := E(g(x)g(x;))E(g(x;)hs (&)
provided E(g;(x;)gi(x;))*? and E(gj(x;)hs(e;))** are both finite for each j and k.

3.2. Hypothesis testing

Just as using a t approximation often produces confidence intervals with coverage below the nominal confidence level,
especially for small samples, using an F approximation to conduct F tests of linear constraints often gives rejection probabil-
ities that are above the nominal significance level, especially for small samples. And as with confidence intervals, using the
bootstrap can produce tests that have rejection probabilities that are closer to the nominal level. Consider the hypothesis

Ho:RB =q

where R is a ] x p matrix of full rank (with J<p) and q is a vector of length J. Two appropriate test statistics for this
hypothesis are the Wald statistic

N T . ~ ~ 1 ~
Wax.Y) = n- (RBws = a) [R: 1,20 LR (RBus — q). (35)
and the maximum statistic,

‘[RBWLS]k - Qk‘
M;(X,Y) := max

n =1 A A-1 pT
1<k<p [RQUWQWWZQUWR ]k,k

(3.6)
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It follows immediately from the results of Romano and Wolf (2017) that, under the null, the sampling distribution of
Wi(X, Y) is asymptotically chi-squared with | degrees of freedom and the sampling distribution of My(X, Y) is asymptoti-
cally distributed as the maximum of the absolute values of k correlated standard normal variables. Let Gp(x, P) denote the
sampling distribution of W, when (X, Y1) are distributed according to P.

Define ¢ (1 — a, P) to be the 1 — « quantile of the distribution of

N ~ LN N A 1 ~ N
(R(Bins — Bwss) )[R0 Q57T (R(Bias = Buus))
and dn(1 — &, P) to be the 1 — o quantile of the distribution of
(IRBins) — [RBwisl:)
max
1<k<p I:RQ*—l Q* Q*—1RT:|
k.k

1/w w2 " 1/w

using the pairs or wild bootstrap.

Theorem 3.2. Suppose that (x1,¥1),..., (Xn, yn) are iid. according to a distribution P such that RS = q. Then, under the as-
sumptions of Theorem 3.1,

PWa(X.Y) > cn(1 - . P)) > «

as n— oo. That is, the bootstrap quantiles of the Wald statistic converge to the corresponding quantiles of a chi-squared distribu-
tion with ] degrees of freedom when R = q. Similarly,

P(Mp(X.Y) > da(1 - . B)) > «
as n— oo.

We point out that hypothesis testing using the wild bootstrap is closely related to a commonly used randomization test
under symmetry assumptions.

Suppose that the ¢; follow a symmetric distribution conditional on X; in the sense that the distribution of ¢; given X; is
the same as the distribution of —¢; given X;. Then under H : 8 = 0, the joint distribution of the (X, Y;) is invariant under
the group of transformations G, := {g5 16 e {1, —1}"} such that g5 ((x1,¥1),---, Xn,¥n)) = ((X1, 81Y1)> - - -, (Xn, Snyn)) for any
X,y € R, Given a test statistic T, used to test the hypothesis H : 8 = 0, the permutation test rejects if Ty(X, Y) exceeds the
appropriate quantiles of the permutation distribution of T, which is given by

RE@) = 57 2 (g (0) =)
85€Gn

For any choice of test statistic, the invariance of the distribution of the data under the group of transformations is suffi-
cient to ensure that the randomization test is exact; see Lehmann and Romano (2005, Chapter 15) for details.

Typically for regression problems, the test statistic is chosen to be the usual F statistic in homoskedastic models, or the
Wald statistic in heteroskedastic models. While under the symmetry assumption this test is exact in either setting, Janssen
(1999) shows that this test is robust against violations of the symmetry assumptions (in the sense that the test is still
asymptotically valid when the distribution of the Y; is not symmetric).

When the symmetry assumption is satisfied, the randomization test using W, or M, — as defined in Egs. (3.5) and (3.6),
respectively, - is exact in the sense that the null rejection probability is exactly the nominal level for any sample size. Even
when this assumption is not satisfied, the test is still asymptotically valid, as the following theorem demonstrates.

Theorem 3.3. Suppose that (xi, y1),..., (Xa, yn) are iid. according to a distribution P such that B =0. Suppose that
n1/4(0(gs(X,Y)) —60y) converges in probability to zero conditionally on the X’s and Y's for any uniformly randomly chosen
gs € Gy. (This assumption is verified, under moment assumptions, for a particular parametric family of skedastic functions in
Lemma 3.2). Then, under the assumptions of Theorem 3.1, the permutation distribution I?‘,QV” of Wy, satisfies

sup [R¥" (t) — " (t.P)| - 0

teR
in probability as n — oo where ],‘f’” (-, P) is the sampling distribution of Wy under P. Similarly, the permutation distribution I?nM” of
M, satisfies

sup |[R¥ () — Ji (. P)| — 0

teR
in probability as n — oo where ]nM” (-, P) is the sampling distribution of My under P.

Once again, this theorem makes assumptions about the convergence in probability of the estimate of the parameter in
the skedastic function. We verify this assumption for a particular family of skedastic functions.
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Lemma 3.2. For any functions g; : RY — R4, i=1,...,d, define the family {ve 10 € ]Rd} by

d
vp(x) :=exp | > 0;g;(x) |.
i1
and let § be the estimator obtained by regressing hs(¢;) := log (max {62, £2}) on g(x;) = (g1 (%)) ... 84(x;) by OLS, where § >0

is a small constant. Then, for any randomly and uniformly chosen gs € Gp, nl/4 (é(gs X,Y)) — 90) converges in conditional prob-
ability to zero for

Bo := E(g(x)g(xi)")E (g(xi)hs (€:)
provided E(gj(x;)gi(x;))*> and E(gj(x;)hs(e;))*? are both finite for each j and k.

4. A convex linear combination of the ordinary and weighted least squares estimators

When the family of skedastic functions is misspecified, the weighted least squares estimator can be less efficient than
the ordinary least squares estimator, even asymptotically.

When interested in inference for a particular coefficient, say B, practitioners might be tempted to decide between the
ordinary and weighted least squares estimators based on which estimator has the smaller standard error In particular, it
might be tempting to report the estimator

Bk = {BAWLS"‘ if A/"a\r(éOLS,k) > A/Va\r(/?st,k)
V ﬁOLS,k if Avar(ﬂ()]_s_k) < Avar(,BWLS’k)

along with the corresponding confidence interval

. 1 . — .
BmiNk £ tn-p1-as2 - \/n min {Avar (Bws ). Avar (Bors i) |- (4.1)

Asymptotically, this estimator has the same efficiency as the better of the ordinary least squares and weighted estimators.
However, the confidence interval (4.1) tends to undercover in finite samples due to the minimizing over the standard error.
The next theorem establishes consistency of the bootstrap (and also bootstrap-t) distribution, which can be used to produce
confidence intervals with better finite-sample coverage than those given by (4.1).

Theorem 4.1. Under the conditions of Theorem 3.1, the sampling distribution of \/E(BMIM - ﬁk) converges weakly to the normal
distribution with mean zero and variance

Oy i= min {AV&T(BWLs,kl AV&T(BOLs,k)}

The distribution of */ﬁ(ﬁﬁ;lm K ﬁk) where the samples (x},yF) are generated according to the pairs bootstrap or the wild

bootstrap, converges weakly to the normal distribution having mean zero and variance 01511N in probability. Furthermore, for any

k, the distribution of \/E(BR‘MN e ﬁMIN’k)/ﬁl\’;”N is asymptotically standard normal in probability, where

Oy ‘= Min {\/AV&I"(BWLs,k)*, \/Avar(BOLS,k)* }

When the estimated skedastic function is consistent for the true skedastic function, the estimator BMIN,,C is asymptotically
as efficient as the best linear unbiased estimator. On the other hand, when the skedastic function is misspecified, one can
find an estimator which is at least as efficient as BMIN, regardless of whether or not the skedastic function is well modeled,
but can potentially have smaller asymptotic variance. With the aim of creating such an estimator, consider estimators of the
form

B, := ABows + (1 — 1) Pwis (4.2)

for A €[0, 1], which are convex-combinations of the ordinary and weighted least squares estimators. To study the asymptotic
behavior of these estimators, it is helpful to first find the asymptotic joint distribution of the ordinary and weighted least
squares estimators.

Theorem 4.2. Under the assumptions of Theorem 3.1,

B 0 QlQ Q] Q-1 QU/WQ’]
(i) (0)*+(0) (ia el
Bors B 0 Q1/11 Qv/wﬂl/lw Q1/11 Qvﬂ Q1/11

as n— oQ.
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It follows that for any A <]0, 1], \/ﬁ(ﬁ)\ - ,B) asymptotically has a normal distribution with mean zero and covariance
matrix

Avar(B;) i= A2Q7E Q,me QL +20(1 - L))

1/w

Qu/wQ1/1 +(1-21)%Q 1, 1 v/ls2

1/w 1/w / 1/1°

which can be consistently estimated by

Avar(B;) = [A2Q 1 Qe 2L, + 201 = QL Qo + (1= 2020 20 0.

1/w

For any particular coefficient Sy, it then holds that \/ﬁ(ﬁ)\yk - ﬂk) is asymptotically normal with mean zero and variance
Avar(B,\yk), which denotes the kth diagonal entry of Avar(B,\). This variance can be consistently estimated by /@(3ka),

the kth diagonal entry of /ﬁ(ﬁx). In conjunction with this standard error, the estimator BM can be used for inference
about B,. For instance, asymptotically valid ¢ confidence intervals are given by

/§A,k *lhpi-as2y/ Avar(By i) /n.

These intervals suffer from the same shortcomings as the asymptotic confidence intervals based on the weighted least
squares estimator. But using the bootstrap can once again lead to improved finite-sample performance, and the following
theorem establishes consistency of the bootstrap (and also bootstrap-t) distribution.

Theorem 4.3. Under the conditions of Theorem 3.1, \/ﬁ(B; - B,\) using the pairs or the wild bootstrap, converges weakly to the
normal distribution with mean zero and variance Avar(BA), in probability for any fixed A. Furthermore, for any k, the distribu-

tion of \/ﬁ(Bik - EM)/,/@(BM)* is asymptotically standard normal in probability, where 1/E/a\r(,gk_k)*/n is the estimated

standard error of B; « using the bootstrap sample.

Although inference for §; can be based on BA for any A €0, 1], we would like to choose a value of A that results in an
efficient estimator. The asymptotic variance Avar(ﬁk,k) is a quadratic function of A, and therefore has a unique minimum,
say Ao, over the interval [0,1] unless Avar(B,\vk) is constant in A (which may occur if there is homoskedasticity); in this case,
define Ay = 1. Asymptotically, Bko,k is the most efficient estimate of B, amongst the collection {BM 1A €0, 1]}. Because
this collection includes both the weighted and ordinary least squares estimators, Bko,k is at least as efficient as the ordi-
nary least squares estimator, and may have considerably smaller asymptotic variance when the skedastic function is well
modeled. In fact, this estimator can have smaller asymptotic variance than both the ordinary and weighted least squares
estimators. Unfortunately, without knowing the asymptotic variance, we cannot find Aq and we cannot use the estimator
5»\0,/« Instead, we can estimate Ay by 5»0, the minimum of E/a\r(ﬁ‘M) over the interval [0,1], provided there is a unique

minimum (otherwise set io = 1). In particular, the minimizer is given by

[91/19'//191/1 - Q1/]WQ"/WQ ]k k

[91/w§2v/w291_/w 2 Q]/WQV/WQUl QmQWlQm]

Ao =

if this quantity lies in the interval [0,1], or otherwise 5\0 is zero or one depending on which gives a smaller variance. If we
choose to use the estimator, ﬁ;\o - then the confidence interval

~ [1— A
ﬂio,k + tn—p,]—a/Z . HAV&I‘(/%\OJ()

will tend to have a coverage rate that is (much) smaller than the nominal level in finite samples, since the smallest estimated
variance is likely downward biased for the true variance. Instead, reporting bootstrapped confidence intervals where the g
is recomputed for each bootstrap sample may give more reliable confidence intervals. The next theorem demonstrates that
the bootstrap distribution of ﬁ(ﬂig,k - ,3;\0’,() consistently approximates the sampling distribution of \/ﬁ(ﬂxo,k - By)-

Theorem 4.4. Under the conditions of Theorem 3.1, the sampling distribution of \/ﬁ(ﬁ’;\o e ,Bk) converges weakly to the nor-

mal distribution with mean zero and variance Avar(B)\O,k) and the bootstrap distribution of ﬁ(ﬁ; 0 B;\O k) also converges
5, .

weakly to the normal distribution with mean zero and variance Avar(BAo,k) in probability. Also, for any k, the distribution of

ﬁ(ﬁ; 0 B/\o.k)/* /E/}r(ﬁi )" converges to the standard normal distribution in probability, where | /A/va\r(Bi )/ is the esti-
o . .

mated standard error of Bi r using the bootstrap sample.
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Table 5.1
Empirical mean squared error of estimators of 8 as well as coverage and average length
of confidence intervals based on the normal approximation.

A 0 0.25 0.50 0.75 1 14/23
n=20 eMSE 0.1449 0.1380 0.1345 0.1344 0.1378 0.1340
Coverage  0.9613 09596 09575  0.9553 0.9527 0.9573
Width 1.6645 1.6267 1.6066 1.6057 1.6247 1.6038
n =50 eMSE 0.0564 0.0539  0.0527 0.0528 0.0540  0.0525
Coverage 09524 09487 09465 0.9449 0.9448  0.9465
Width 0.9589  0.9371 09258  0.9253 0.9360  0.9242
n=100 eMSE 0.0270  0.0259  0.0254  0.0254  0.0261 0.0255
Coverage  0.9520  0.9514 09506  0.9486  0.9481 0.9483
Width 0.6592  0.6448 0.6375 0.6376 0.6450  0.6366

5. Toy examples of linear combinations with lower variance

We will now give an example of a regression model where the optimal A is in [0,1] followed by an example where the
optimal A is outside of [0,1].
For both examples, we will consider the simplest case, namely univariate regression through the origin:

Yi=Bxi+éi.

For the first example, let x; be uniform on the interval [-1,1] and ¢&; have conditional mean zero and conditional vari-

ance var(g;|x;) = 1/|x;|. In this example, we will estimate the skedastic function from the family {vy(x) =6 - |x| : 6 > 0} by
regressing the squared residuals, é,? on the |x;|. Consequently,

1 6
6o = E(1x:1%) E(Ixile?) = E(Ix[)E(Ix*?) = 3
The estimator (1 — A)ﬁWLS + ABOLS has variance

(1 a2 BV (1— ) il 2Bl

+21(1
2 X2 2
(Elxi]) E[x;|Ex; (Ex?)
which is minimized by
_ Elx”? Elx[*?
. 2 2
)\'O —1_ E|x;|EX? (]Exf)
Kl 5 ExP? B2
ElD?  TENIEE T (ga)?
12 18
1. _—5*t7
8 12, 18
3-25+7
14
=33

Table 5.1 presents the empirical mean squared error (eMSE) of this estimator for various A, as well as the coverage and
average length of t intervals (with nominal coverage probability 95%) based on 10,000 simulations. For these simulations,
the error terms are normally distributed.

For the second example, let the x; be standard normal, and ¢; have conditional mean zero and conditional variance

var(&;|x;) :xl?. For the weighted least squares estimator, we will again use the incorrectly specified family of skedastic
functions {vy(x) =6 - |x| : 0 > 0}.

In this example, the value of A minimizing the asymptotic variance of (1 — )L)BWLS + ABOLS is

g B0 EEDER) - E(u E(6P)ERE)
B ]E(x?)_lE(x;‘)IE(x,?)_l — 2+ E(lxi]) "EXE(Ix])
3-2

w/2—-4+3

~ —0.75.

=1-

Although choosing values of lambda outside the interval [0,1] may give estimators with lower variance, we recommend
restricting lambda to the interval [0,1]. In situations where Avar(f,) is nearly constant in lambda (such as homoskedastic
models), the estimates of A can be highly unstable when not restricted, and the resulting intervals can have poor coverage.
We recommend choosing % =0 if the minimizing A is negative, or % = 1if the minimizing A is positive. Even if the optimal
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lambda is outside the interval [0.1], choosing estimators in this way gives an estimator that asymptotically has the same
variance as the better of the ordinary and weighted least squares estimators.

6. Monte Carlo simulations and empirical application

In this section, we present simulations studying the accuracy of the bootstrap approximations, as well as the efficiency
of the convex-combination estimator in comparison with the ordinary and weighted least squares estimators. Simulations
are given for univariate regression models in Section 6.1 and for multivariate models in Section 6.2. An empirical application
is given in Section 6.3. We give the coverage and average length of bootstrap and asymptotic approximation confidence
intervals. Because of the duality between intervals and testing, we omit simulations for tests. The tables presented compare
the ordinary least squares estimator, the weighted least squares estimator, the estimator chosen between the ordinary and
weighted estimators based on which has smaller sample variance, and the convex-combination estimator giving smallest
sample variance (referred to as OLS, WLS, Min, and Optimal, respectively). Simulations are also given for the adaptive least
squares (ALS) estimator. For this estimator, two methods of wild bootstrap-t intervals are given. The first recomputes the
ALS estimator by performing a test for heteroskedasticity on each bootstrap sample (and is referred to as ALS1 in the tables)
and the other reports the bootstrap-t interval of the estimator chosen by the test for heteroskedasticty (and is referred to
as ALS2 in the tables).

Each of the covariance estimators given in Remark 3.1 can be used for computing standard errors. For covariance esti-
mation, the HC2 and HC3 estimators outperform either the HCO or HC1 estimators. The HC3 estimator may not always out-
perform the HC2 estimator, but is claimed in Flachaire (2005) to outperform the HC2 estimator in many situations. For this
reason, in each of the simulations presented, the HC3 covariance estimator is used. Further simulations, which are omitted
here, indicated that the performance of the bootstrap intervals are relatively insensitive to the choice of covariance esti-
mator, but the HC3 estimator performed noticeably better for the asymptotic intervals than the other estimators. Intervals
based on a t-approximation use 10,000 simulations, while bootstrap intervals use 10,000 simulations with 1,000 bootstrap
samples. The bootstrap intervals presented are given by the wild bootstrap-t methods. Unless otherwise specified, the errors
for the wild bootstrap distribution are generated using the F, (or Rademacher) distribution, which puts equal mass on +1
(as defined in Remark 3.2). In the bootstrap simulations, we scale the residuals (from the ordinary least squares estimator)
by 1/,/1 — h; when generating bootstrap samples, where the h; are defined as in Remark 3.1. All confidence intervals are
constructed with a nominal coverage probability of 95%.

Throughout, the parametric family used to estimate the skedastic function is

Vg (x) :=exp (6p + 01 log |x1| + - - - + Oy log |xp]),
and 0 is found by the OLS solution to the regression problem
logmax {&7, 8%} = 6 + 61 log [x1| + - - + 6, log [x, | + u;

where u; is the error term and § :=.1. This method of estimating the skedastic function is also used in Romano and Wolf
(2017). For the ALS estimator, the test for conditional heteroskedasiticity is the usual F-test of the hypothesis H: 0; =--- =
0p = 0 at the 5% level.

6.1. Univariate models

Simulations are given using the model

Yi=a+xB+/vx)e;, (6.1)

where x; ~U(1, 4) and ¢; are i.i.d. according to a distribution specified in several scenarios below. Several forms of the true
skedastic function v(-) are used, and are specified in the tables. In each of the simulations, («, ) = (0,0) and a confidence
interval is constructed for .

Table 6.1 gives the empirical mean squared error when the errors, ¢;, are N(O, 1). Table 6.2 gives the coverage of and
average length of t intervals. To understand the effect of skewness of the error distributions, these simulations are repeated
using exponential (with parameter one, centered to have mean zero) errors in Table 6.4 (with HC3 estimators).

Table 6.3 give the coverage and average length of wild bootstrap-t intervals when the errors are N(0, 1). Simulations with
exponential errors are given in Table 6.5. Table 6.6 repeats the simulations in Table 6.5, but instead uses the F; distribution
(as defined in Remark 3.2) to generate the wild bootstrap error terms.

The empirical mean squared error of the weighted least squares estimator (Table 6.1) can be considerably smaller than
that of the ordinary least squares estimator when the skedastic function is well modeled. When the family of skedastic
functions is misspecified or there is conditional homoskedasticity, the weighted least squares may have worse mean squared
error. While in several of the simulations, the empirical mean squared error of the weighted least squares estimator can be
reduced by the ordinary least squares estimator, using the optimal combination, or the estimator with smallest estimated
variance gives similar performance to the better of the ordinary and weighted least squares estimators. The adaptive least
squares estimator has mean squared error that is close to the better of the ordinary and weighted least squares estimators,
but can have somewhat larger mean squared error than the optimal combination estimator.
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Table 6.1
Empirical mean squared error of estimators of B (from Model 6.1).
OLS WLS Min Optimal  ALS

n=20vx =1 0.0754  0.0838  0.0795 0.0794 0.0764
n=>50vx =1 0.0284  0.0297  0.0294  0.0292 0.0282
n =100, v(x) =1 0.0136  0.0140 0.0140 0.0138 0.0137
n = 20, v(x) = x? 0.5611 04550 04824 04775 0.5291
n = 50, v(x) = x? 0.2107 0.1555 0.1637 0.1627 0.1787
n = 100, v(x) = x? 0.0511 0.0352  0.0363  0.0360 0.0745
n = 20, v(x) = log(x)? 0.0654  0.0457  0.0483  0.0487 0.0582
n = 50, v(x) = log(x)? 0.0249  0.0137 0.0138  0.0146 0.0152
n = 100, v(x) = log(x)? 0.0123  0.0063  0.0062  0.0065 0.0063

n = 20, v(x) = 4exp(0.02x + 0.02x?) 0.3613 0.4088 03943  0.3816 0.3651
n = 50, v(x) = 4exp(0.02x + 0.02x?) 0.1368 0.1450 0.1390 0.1405 0.1392
n = 100, v(x) = 4exp(0.02x + 0.02x>)  0.0667 0.0686  0.0682  0.0677 0.0678

Table 6.2
Coverage and average length of confidence intervals for 8 (from Model 6.1) based on an asymptotic approxi-
mation using HC3 standard errors.

OLS WLS Min Optimal  ALS
n=20vx =1 Coverage 0.9507 0.9353 0.9340 0.9338 0.9477
Length 11950 11608 11341 11301 1.1866
n=>50vkx) =1 Coverage  0.9491 0.9423  0.9412 0.9411 0.9483
Length 0.6805 0.6755 0.6669  0.6659 0.6789
n =100, v(x) =1 Coverage  0.9500 0.9449 0.9457 0.9463 0.9479
Length 0.4661 0.4646  0.4616 0.4612 0.4656
n =20, v(x) = x2 Coverage  0.9476 09425 09355  0.9349 0.9401
Length 3.2361 2.8017 2.7418 2.7117 3.0106
n =50, v(x) = x* Coverage  0.9438 09433 09380  0.9359 0.9380
Length 1.8600 1.5711 1.5637 1.5500 1.6275
n = 100, v(x) = x? Coverage  0.9465 0.9482 09469  0.9458 0.9475
Length 1.2761 1.0641 1.0634 1.0574 1.0817
n = 20, v(x) = log(x)? Coverage  0.9463 0.9495 0.9406 0.9388 0.9421
Length 1.1017 0.8774  0.8687  0.8595 0.9496
n = 50, v(x) = log(x)? Coverage  0.9461 0.9516 0.9498  0.9466 0.9443
Length 0.6375 04706  0.4704  0.4675 0.4746
n = 100, v(x) = log(x)? Coverage  0.9465 0.9498 0.9496  0.9477 0.9516

Length 04379 03134 0.3134 0.3125 0.3130
n = 20, v(x) = 4exp(0.02x + 0.02x?) Coverage  0.9548 0.9388 0.9358  0.9368 0.9470
Length 2.6677  2.6016 2.5252 2.5134 2.6386
n = 50, v(x) = 4exp(0.02x + 0.02x?) Coverage 0.9512 0.9431 0.9435 0.9437 0.9516
Length 1.5151 1.5042 1.4807 1.4778 1.5099
n = 100, v(x) = 4exp(0.02x + 0.02x>)  Coverage  0.9516 09497 09484  0.9492 0.9529
Length 1.0375 1.0338 1.0245 1.0234 1.0351

For normal errors, the asymptotic approximation intervals have coverage that is very close to the nominal level when
using the ordinary least squares estimator. However, for each of the other estimators, the corresponding asymptotic inter-
vals can have coverage that is noticeably under the nominal level (especially in small samples). Furthermore, coverage of
the t intervals based on either the minimum variance or optimal convex-combination estimator is somewhat lower than
the coverage of intervals based on either the ordinary or weighted least squares estimators. By comparison, the intervals
using the wild bootstrap-t method have coverage that is closer to the nominal level than those based on an asymptotic
approximation. For any estimator, the bootstrap intervals have comparable width to the corresponding t intervals.

In homoskedastic models, the size of the bootstrap-t intervals based on the convex-combination estimator are only very
slightly wider than those given by the ordinary least squares estimator using the asymptotic approximation, and the inter-
vals have comparable levels of coverage for each of the sample sizes studied. In the heteroskedastic models, the convex-
combination estimator performs comparably to the weighted least squares estimator, even in small samples (e.g., n = 20).
By comparison, the adaptive least squares estimator gives intervals that tend to be somewhat wider than the weighted least
squares estimator in small samples. In moderate and large samples, the adaptive least squares estimator performs compara-
bly to the weighted least squares estimator. In each of the simulations, intervals based on the convex-combination estimator
perform similarly to using the weighted least squares estimator in situations when this estimator is more efficient, but never
perform noticeably worse than intervals based on the ordinary least squares estimator.

As with normal errors, when the errors follow an exponential distribution, the wild bootstrap-t intervals improve cov-
erage over the asymptotic approximation intervals. However, even when using the bootstrap intervals, the coverage can be
much below the nominal level for any of the estimators aside from the ordinary least squares estimator. In this setting, the
performances of the optimal convex-combination estimator, and the adaptive least squares estimator are very similar.
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Table 6.3
Coverage and average length of confidence intervals for 8 (from Model 6.1) based on the wild bootstrap-t method with
HC3 covariance estimates.

oLS WLS Min Optimal  ALS1 ALS2
n =20 vk =1 Coverage 09463 09447 09439 09438  0.9448 0.9435
Length 11935 12535 12298 12262 12157 11952
n =50 vk =1 Coverage 09503 09484 09514 09506  0.9486 0.9471
Length 06775 0.6967 06889 06969  0.6804  0.6748
n =100, v(x) = 1 Coverage 09476 09479 09481 09477  0.9485 0.9482
Length 04640 04706 04677 04671  0.0.4699  0.4697
n =20, v(x) = x Coverage 09432 09470 09447 09449 09425 0.9403
Length 33621 3.0161 3.0451 3.0251 332317 31048
n =50, v(x) = x2 Coverage 09483 09478 09459 09465  0.9471 0.9414
Length 18844 15971 16253 16144 1.6889 1.6472
n = 100, v(x) = 22 Coverage 09475 09515 09512 09527  0.9504 0.0.9511
Length 12874 10733 10791 10782 1.0698 1.0832
n = 20, v(x) = log(x)? Coverage 09417 09510 09487 09494 09418 0.9353
Length 11823 09407 09718 09648  1.0645 0.9703
n = 50, v(x) = log(x)? Coverage 09487 09516 09521 09508  0.9484 0.9436
Length 06505 04704 04774 04793  0.4828 0.4739
n =100, v(x) = log(x)? Coverage 09490 09485 09497 09486  0.9488 0.9492

Length 0.4424  0.3116 0.3116 0.3140 0.3126 0.3126
n = 20, v(x) = 4exp(0.02x + 0.02x?) Coverage  0.9445 09420  0.9431 0.9428 0.9456 0.9439
Length 2.6782  2.8347 27696  2.7579 2.7275 2.6663
n = 50, v(x) = 4exp(0.02x + 0.02x?) Coverage  0.9474 09484  0.9461 0.9485 0.9450 0.9440
Length 1.5091 1.5522 1.5309 1.5256 1.5183 1.5050
n = 100, v(x) = 4exp(0.02x + 0.02x*)  Coverage  0.9526  0.9492  0.9507  0.9513 0.9511 0.9504
Length 1.0336 1.0459 1.0384 1.0369 1.0372 1.0364

Table 6.4
Coverage and average length of confidence intervals for 8 (from Model 6.1) based on the asymptotic ap-
proximation using the HC3 covariance estimator with exponential errors.

OLS WLS Min Optimal ~ ALS
n=20vkx =1 Coverage 09636 0.9274  0.9280 0.9266 0.9422
Length 1.1500 1.0756 1.0464  1.0410 11127
n =20, v(x) =x? Coverage  0.9185 0.9101 09035  0.9013 0.9121
Length 3.0413 25939 25196  2.4868 2.7363
n = 20, v(x) = log(x)? Coverage  0.9099  0.9058 0.8992  0.8981 0.9046
Length 1.0341 0.8317 0.8161 0.8058 0.8750

n =20, v(x) = 4exp(0.02x +0.02x*)  Coverage  0.9605 0.9266  0.9247  0.9240 0.9426
Length 25280 23657 < 2.2899 22742 2.4477

Table 6.5
Coverage and average length of wild bootstrap-t confidence intervals for S (from Model 6.1) using the HC3 covariance
estimator with exponential errors.

oLsS WLS Min Optimal  ALS1 ALS2
n=20vx =1 Coverage 09557 09292 09322 09348 09388  0.9355
Length 11364 11334 11167 11112 11181 1.0967
n =20, v(x) = x Coverage 09316 09355 09221 09201 09210  0.9201
Length 3.0863 27799 27749 27494  2.8986  2.7847
n =20, v(x) = log(x)? Coverage 09171 09238 09040 09070 09045  0.8998

Length 1.1605 0.9568  0.9093  0.9009 0.9294  0.8847
n =20, v(x) = 4exp(0.02x + 0.02x?)  Coverage  0.9680 09429 09357  0.9363 09392  0.9351
Length 2.7516 2.7648  2.5510 2.5103 2.5088  2.4565

Table 6.6
Coverage and average length of wild bootstrap-t (generated using Mammen’s error distribution) confidence intervals
for B (from Model 6.1) using the HC3 covariance estimator with exponential errors.

OLS WLS Min Optimal ~ ALS1 ALS2
n=20vx =1 Coverage  0.9193 0.8849  0.8885  0.8890 0.9008  0.8948
Length 1.0042 1.0078 09890  0.9838 0.9976 0.9711
n =20, v(x) = x> Coverage  0.8851 0.8966  0.8929  0.8943 0.8882  0.8747
Length 26845 24739 24387 24162 25394 24354
n = 20, v(x) = log(x)? Coverage  0.8691 0.8939  0.8864  0.8860 0.8828  0.8666

Length 0.9151 0.7735 0.7753 0.7676 0.8106 0.7730
n = 20, v(x) = 4exp(0.02x + 0.02x?>)  Coverage  0.9166 0.8857 0.8878  0.8873 0.8963 0.8922
Length 2.2245 22604  2.2023 2.1942 2.2201 2.1609
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Table 6.7
Coverage and average length of confidence intervals for 8, (from Model 6.2 with p = 0) based
on an asymptotic approximation.

OLS WLS Min Optimal ~ ALS
n=20vkx =1 Coverage  0.9665 0.9264 0.9284 0.9280 0.9586
Length 1.3649 1.2433 1.2063 1.1962 1.3529
n=>50vkx) =1 Coverage  0.9547 0.9281 0.9303 0.9305 0.9525
Length 0.7127 0.6927 0.6779 0.6747 0.7072
n =100, v(x) =1 Coverage  0.9501 0.9401 0.9384 0.9404 0.9510

Length 0.4767 0.4715 0.4654 0.4641 0.4759

20, v(x) =11 (x) Coverage  0.9675 0.9482 0.9398 0.9387 0.9533
Length 248500  19.1977 18.5013 18.0865 22.7933

n = 50, v(x) = v (x) Coverage  0.9572 0.9551 0.9473 0.9460 0.9440

Length 13.3704 8.8556 8.7810 8.5842 9.6507

n =100, v(x) =v1(x)  Coverage  0.9535 0.9604 0.9577 0.9544 0.9588

Length 9.0588 5.4373 5.4267 5.3342 5.4555

n = 20, v(x) = 5(x) Coverage 0.9607 0.9234 0.9215 0.9195 0.9562
Length 10.4320 9.5058 9.0461 8.9017 10.2254

n = 50, v(x) = v, (x) Coverage  0.9541 0.9362 0.9346 0.9334 0.9469

Length 5.4633 5.1493 4.9956 4.9407 5.3603

n =100, v(x) = v, (x) Coverage  0.9532 0.9358 0.9364 0.9375 0.9431

Length 3.6640 3.4356 3.3935 3.3643 3.5411

n = 20, v(x) = v3(x) Coverage  0.9621 0.9238 0.9209 0.9208 0.9566

Length 6.2806 5.6983 5.4457 5.3680 6.1906

n = 50, v(x) = v3(x) Coverage  0.9562 0.9321 0.9303 0.9318 0.9473

Length 3.2997 3.1127 3.0222 2.9923 3.2495

n =100, v(x) =v3(x)  Coverage  0.9551 0.9411 0.9407 0.9412 0.9475

Length 2.2141 2.0956 2.0678 2.0522 21572

n = 20, v(x) = v4(x) Coverage  0.9645 0.9324 0.9248 0.9245 0.9550
Length 21.2127 171633 16.5004  16.1612 20.2824

n = 50, v(x) = v4(x) Coverage  0.9537 0.9454 0.9387 0.9379 0.9386

Length 11.4171 8.5834 8.4802 8.3146 9.4878

n = 100, v(x) = v14(x)  Coverage  0.9503 0.9485 0.9452 0.9427 0.9497

Length 7.7106 5.5034 5.4869 5.4028 5.6219

n

Theoretical results, such as those given in Liu (1988), suggest that using the F; distribution may have better coverage than
the F, distribution when the errors are skewed. The simulations indicate that even with skewed errors, the F, distribution
has better small-sample performance. The findings here are in agreement with the simulation study provided in Davidson
and Flachaire (2008). This paper asserts that “the F, distribution is never any worse behaved than the F; version, and is
usually markedly better.”

In the univariate setting with normally distributed errors, there is very little downside to using the optimal convex-
combination estimator when compared with the ordinary least squares estimator, and this estimator often significantly
improves efficiency. In small samples, the bootstrap intervals have coverage that is closer to the nominal level than the
corresponding asymptotic approximation intervals. When the errors are very skewed, weighting can improve efficiency, and
the bootstrap intervals again give better coverage, although the coverage can be much lower than the nominal level. If
the errors are severely skewed, it may not be worth weighting in very small sample sizes as the coverage for any of the
estimators other than the ordinary least squares estimator can be severely below the nominal level.

6.2. Multivariate models

Simulations are given using the model

Vi=a+x181+Xi2P2 + X33 +/V(X)E;, (6.2)
where £;~N(0, 1). The x; ; are generated as x; ; = 14 3®(Z; ;) where (Z; 1, Z; 5, Z; 3) follows a multivariate normal distribu-
tion with means zero, variances one, and pairwise correlations o (specified later). Therefore, marginally x; ; ~U(1, 4). Several
forms of the true skedastic function v(-) are used, and are specified in the tables. Without loss of generality, the regression
coefficients are all set to zero, and a confidence interval is constructed for 8;. In this section, simulations are given for
homoskedastic models as well as heteroskedastic models using the following skedastic functions:

* v1(x) :=exp (2log |x1| + 2log |x2| + 2log |x3])
12 (%) = (x| + %] + [xa])?
c v3(0) = (Ix1” + [x2]? + [x3 )
« vg(x) 1= exp (51%1] + 51xa2| + 5 1x3))
Table 6.7 gives the coverage and average length of ¢t intervals and Table 6.8 gives the coverage and average length of
wild bootstrap-t intervals for p = 0. To explore the effect of dependence between predictor variables, Table 6.9 gives the
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Table 6.8
Coverage and average length of confidence intervals for 8; (from Model 6.2 with p = 0) based on the wild
bootstrap-t method.

OLS WLS Min Optimal ~ ALS1 ALS2
n=20vkx =1 Coverage  0.9420 0.9376 0.9381 0.9360 0.9418 0.9383
Length 1.3119 1.4537 1.4140 1.4017 1.3421 1.3106
n=>50vkx) =1 Coverage  0.9517 0.9473 0.9479 0.9486 0.9473 0.9448
Length 0.6960 0.7470 0.7280 0.7222 0.6983 0.6904
n =100, v(x) =1 Coverage  0.9496 0.9510 0.9499 0.9471 0.9492 0.9476

Length 04696 04889 04813 04773 04726  0.4698
n=20,v(x)=v;(x) Coverage 09467 009496 09494 09490 09434  0.9350
Length 244902 227113 224493 221392 23795  22.6830
n=50v(x) =v;(x) Coverage 09492 09533 09547 09545 09517 09349
Length 131570 93530 95490 93708  9.4461 10.4717
n =100, v(x) =v;(x) Coverage 09514 09582 09573 09568 09569  0.9553
Length 89963 54756  5.5501 54863 55503  5.4984
n=20,v(x)=v(x) Coverage 09424 09404 09391 09398 09377 09337
Length 100941 112374 107655  10.6653 102414  9.9523
n=50v(x)=v(x) Coverage 09517 09528 09510 09506 09480  0.9458
Length 53449 55378 54130 53408 53900 52702
n =100, v(x) = v,(x)  Coverage 0.9512 09494 09504 09485 09481  0.9430
Length 36078 35658 35518 34946  3.6213  3.5610
n=20,v(x) =vs(x) Coverage 09373 09349 09370 09369 09382 09377
Length 60691 67292 64700 64147 6.0984  6.0871
n=50,v(x)=vs(x) Coverage 09487 09454 09465 09488 09482  0.9432
Length 32075 33498 32673 32264 32659 31943
n =100, v(x) =v3(x) Coverage 09492 009501 09493 09484 09470  0.9450
Length 21843 21817 21620 21316 21957 21632
n=20,v(x)=va(x)  Coverage 0.9471 09434 09461 09450 09440  0.9376
Length 208139 205321 200122 197953  20.8253  19.9887
n=50,v(x)=vs(x) Coverage 09504 009489 09501 009490 09447 09338
Length 111697 91714 92610 91012 101090  9.6712
n =100, v(x) = va(x) Coverage 09516 09496 09501 09492 09552  0.9505
Length 76657 56528  5.7152 56237 58274 57378

Table 6.9
Coverage and average length of confidence intervals for §; (from Model 6.2 with p = 0.6) based
on an asymptotic approximation.

OLS WLS Min Optimal ~ ALS

n=>50vkx) =1 Coverage  0.9550 0.9295 0.9298 0.9320 0.9511
Length 0.9503 0.9160 0.8923 0.8883 0.9440
n =50, v(x) =v1(x) Coverage 0.9618 0.9641 0.9602 0.9580 0.9597
Length 19.6801 11.7063 11.6470 114130 12.1069
n =50, v(x) = v,(x) Coverage 0.9546 0.9292 0.9273 0.9268 0.9415
Length 7.3186 6.6239 6.4261 6.3475 6.9897
n =50, v(x) = v3(x) Coverage 0.9598 0.9322 0.9293 0.9304 0.9476
Length 4.3420 3.9319 3.8197 3.7757 41434
n =50, v(x) =v4(x) Coverage 0.9636 0.9490 0.9439 0.9425 0.9471
Length 16.1045 10.9949  10.8813 10.6428 11.4803

coverage and average length of t intervals and Table 6.10 gives the coverage and average length of wild bootstrap-t intervals
for p = 0.6.

These simulations for independent predictors demonstrate that intervals based on the weighted least squares estimator,
or the optimal convex-combination estimator found using an asymptotic approximation have coverage that is below the
nominal level. In small samples (n = 20), the coverage of the intervals based on the bootstrap is closer to the nominal level
than the asymptotic approximation intervals, although the coverage can be somewhat below the nominal level. In moderate
sample sizes (n = 50), the coverage of the bootstrap intervals is almost exactly at the nominal level in each of the examples,
whereas the asymptotic intervals can still have coverage that is noticeably below the nominal level. In each of the examples,
the optimal convex-combination estimator performs comparably to the better of the weighted and ordinary least squares
estimators. The simulations for correlated predictors show similar effects to those with independent predictors, although
the magnitudes of the standard errors are inflated.

In small samples, there appears to be little improvement in efficiency from weighting, but the coverage for each of
the weighted estimators tends to be somewhat lower than the coverage for the intervals based on the ordinary least
squares estimator. Therefore, in small sample sizes (n = 20), it may be better to use the ordinary least squares estima-
tor. In more moderate samples (n = 50), there can be substantial improvements in efficiency from weighting. The optimal
convex-combination estimator performs comparably to the better of the ordinary and weighted least squares estimators.
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Table 6.10
Coverage and average length of confidence intervals for 8; (from Model 6.2 with p = 0.6) based on the
wild bootstrap-t method.

OLS WLS Min Optimal ~ ALS1 ALS2

n=>50vkx) =1 Coverage  0.9491 0.9477 0.9493 0.9499 0.9485 0.9472
Length 0.9426 1.0181 0.9907 0.9838 0.9545 0.9404
n =50, v(x)=v1(x) Coverage 0.9487 0.9593 0.9607 0.9605 0.9582 0.9524
Length 18.6269 123135 124887  12.3381 12.8461 12.5446
n =50, v(x) =1,(x) Coverage  0.9429 0.9434 0.9407 0.9412 0.9390 0.9336
Length 71759 73575 72117 7.1056 73035 7.0816
n =50, v(x) =v3(x) Coverage  0.9472 0.9430 0.9430 0.9418 0.9444 0.9385
Length 42752 4.4116 4.3162 4.2605 4.3548 42234
n =50, v(x) =v4(x) Coverage  0.9462 0.9427 0.9429 0.9433 0.9439 0.9370
Length 154669  11.7561 11.8576 11.6725 12.2905  11.9827

Table 6.11
Estimated coefficients for each predictor included in the empir-
ical example described in Section 6.3.

Coefficient ~ OLS WLS Min Optimal
Constant 11.0838 10.1952 10.1952 10.1952
log (nox) -0.9535 07934 -0.7934 -0.7934
log (dist) —0.1343 —0.1265 —0.1265 —0.1265
rooms 0.2545 0.3065 0.3065 0.3065
stratio -0.0525  -0.0367 —-0.0525  -0.0451
Table 6.12
Confidence intervals for each predictor included in the empirical example described in Section 6.3.
Constant log (nox) log (dist) Rooms Stratio
OLS (10.3236, 11.8411)  (—1.2068, —0.7010)  (—0.2406, —0.0260)  (0.2047, 0.3046)  (—0.0614, —0.0433)
WLS (9.6224, 10.7555) (-0.9976, —0.5859)  (-0.2007, —0.0526)  (0.2741, 0.3396) (—0.0460, —0.0274)
Min (9.6079, 10.7598) (—0.9960, —.5872) (—0.1998, —0.0527) (0.2734, 0.3396)  (—0.0621, —0.0430)
Opt (9.6336, 10.7702) (-0.9970, —0.5924)  (-0.2001,-0.0537) (0.2732, 0.3399)  (—0.0541, —0.0361)
ALS1  (9.6096, 10.7613) (-0.9969, —0.5810)  (—0.1996, —0.0527) (0.2732, 0.3400)  (-0.0459, —0.0272)
ALS2  (9.6224, 10.7555) (-0.9976, —0.5859)  (-0.2007, —0.0526)  (0.2741, 0.3396) (—0.0460, —0.0274)

In comparison, the adaptive least squares can be more efficient than the ordinary least squares estimator, but is often less
efficient than either the convex-combination estimator, or the weighted least squares estimator. Therefore, if the sample size
is relatively small, it may be best to report the asymptotic intervals from the ordinary least squares estimator. In moderate
and large sample size, the optimal convex-combination estimator gives nearly best performance in each of the simulations.
Especially in moderate sample sizes (n = 50), the coverage of the intervals based on this interval is improved by using the
bootstrap.

6.3. Empirical example

The dataset under consideration is from a cross-sectional study of n = 506 communities in the Boston area conducted in
1970 (available from Wooldridge, 2012). Five of the included variables are:

log(price): log of median house price in US dollars

log(nox) log of nitrogen oxide in the air in ppm

log(dist) log of weighted distance from employment centers in miles
rooms average number of rooms per house

stratio average student-teacher ratio

For the purpose of explaining median house price in a particular community from the characteristics of the community,
a regression model is fit where the response variable is log(price), and the four remaining variables are the explanatory
variables. The family of skedastic functions used to estimate the true skedastic function, as well as the method of estimating
the parameter, is that used in Section 6.2 but extended to have one additional predictor. Table 6.11 gives the estimates of the
coefficients for each of the predictors. Table 6.12 gives the corresponding confidence intervals. Table 6.13 gives the lengths
of the intervals in Table 6.12.

The estimated coefficient of stratio from the optimal convex-combination estimator is between the ordinary and weighted
least squares estimator. For this coefficient, the interval is narrower for the convex-combination estimator than either the
ordinary or weighted least squares estimator (and also the adaptive least squares estimator which agrees with the weighted
least squares estimator). For the remaining variables, the estimated coefficients using the optimal convex-combination esti-
mator are identical to those using the weighted least squares estimator which produces narrower intervals than the ordinary
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Table 6.13
Length of intervals for each predictor included in the empirical example described in Section 6.3 and the
length expressed as a ratio of the length of the OLS intervals in parenthesis.

Constant log (nox) log (dist) Rooms Stratio

oLs 15175 0.5058 0.2146 0.0999 0.0181

WLS 11331 (0.7467) 04117 (0.8140)  0.1481 (0.6901)  0.0655 (0.6557)  0.0186 (1.0276)
Min 11519 (0.7591)  0.4088 (0.8082)  0.1471 (0.6855)  0.0662 (0.6627)  0.0191 (1.0552)
Opt 11366 (0.7490)  0.4046 (0.7999)  0.1464 (0.6822)  0.0667 (0.6677)  0.0180 (0.9945)
ALS1 11517 (0.7589)  0.4159 (0.8223)  0.1469 (0.6845)  0.0668 (0.6687)  0.0187 (1.0331)
ALS2 11331 (0.7467)  0.4117 (0.8140)  0.1481 (0.6901)  0.0655 (0.6557)  0.0186 (1.0276)

least squares estimator. For these coefficients, the intervals from the convex-combination estimator are nearly identical to
those from the weighted least squares estimator. This example confirms that for large sample sizes, the optimal convex-
combination estimator produces intervals that are nearly identical to the narrower of the intervals given by the weighted
and ordinary least squares estimators, if not even narrower.

7. Conclusion

Making some attempt to model the skedastic function and using a weighted estimator can result in large gains in ef-
ficiency when compared with inference based on ordinary least squares estimators. Still, there are some shortcomings to
basing inference on a weighted least squares estimator, with heteroskedasticity-consistent standard errors (which are valid
when the skedastic function is not consistently estimated), and using an asymptotic approximation to the sampling distribu-
tion. Simulations demonstrate that asymptotic approximations can give poor small sample performance, yielding confidence
intervals with coverage below the nominal level, or tests with type I error rates that can be larger than the nominal level.
Furthermore, a badly estimated skedastic function can result in an estimator that is less efficient than simply using the
ordinary least squares estimator irrespective of the sample size.

In this paper, we propose an estimator that is a convex-combination between the ordinary and weighted least squares
estimators. The convex-combination estimator takes advantage of weighting when weighting provides improvement in ef-
ficiency, and performs comparably to the OLS otherwise. There is little downside, even in homoscedastic models, to using
the convex-combination estimator rather than the OLS estimator. But in circumstances when the WLS estimator is advanta-
geous, the convex-combination estimator has comparable performance to the WLS estimator. Simulations confirm that the
convex-combination estimator performs similarly to the better of the WLS and OLS estimators. In contrast, the adaptive
least squares estimator may not realize all of the efficiency gains to be had by weighting, especially in small and moderate
sample sizes.

For either the weighted least squares estimator or the convex-combination estimator, inference based on asymptotic
approximations to the sampling distributions can have poor performance in small or even moderate sample sizes. This pa-
per established consistency of the pairs and wild bootstrap for both of these estimators. Simulations demonstrated that in
small or moderate samples, using the bootstrap approximations has improved coverage for confidence intervals. Of course,
the bootstrap often has higher-order accuracy when compared with asymptotic approximations as discussed in Hall (1992).
Proving improvements in accuracy from the bootstrap in our application is an open question, but would require accounting
for the data-driven choice of weights, and is beyond the scope of the paper. Inference using the convex-combination estima-
tor bridges the gap between the ordinary and weighted least squares estimator. Unless the sample size is very small relative
to the number of coefficients under consideration, in which case weighting may only provide relatively modest benefits, the
convex-combination estimator is never noticeably worse than the ordinary least squares estimator, and potentially much
better. In small and moderate samples, using a bootstrap approximation to the sampling distribution leads to more reliable
inference.

Appendix

Proof of Theorem 3.1. For a fixed function w(-), define W := diag{w(x;), ..., w(xn)} and
By = XTWIX)TIXTWY.

If the skedastic function is estimated from a family {vy} by v;, the weighted least squares estimator is given by
Buwis := XTVIX)TIXTVSY

where Vj := diag{vg(x1), ..., Vs (%n)}. We would like to show that the bootstrap distribution \/ﬁ(,@";m - Bwr.s) (conditional
on the data) consistently approximates the sampling distribution of Jﬁ(BWLS - ﬂ). To do this, we will first show that the
distribution of Jﬁ(B;V - Bw) consistently approximates the distribution of ﬁ(ﬁw - ﬂ) for a fixed W (satisfying some reg-
ularity conditions). We will then show that \/E(B(;,LS - BWLS) - «/ﬁ(ﬁ‘jv - Bw) converges in conditional probability to zero
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for W =V, assuming that the estimate 0* of the variance parameter is conditionally consistent for some fixed 6. That is,
the proof of Theorem 3.1 will rely on Lemmas A.1 and A.2 which are stated below. O

Lemma 8.1. Suppose that (x1,¥1), ..., (X0, yn) are iid. satisfying assumptions (A1) —(A6). Suppose that w : RY — R* is a fixed
and known function (although not necessarily the true skedastic function) and satisfies

(V7 + 20 1":21)
( w2 (x;) =

Define W := diag(w(x1), ..., w(xn)), and let 5W XTW-1X)="1XTW-1Y. Then, for almost all sample sequences the condi-

tional law of n (,BW ﬂw) converges weakly to the normal distribution with mean 0 and variance Q7! Q WZQ

1w/ 1/w*

Proof of Lemma 8.1 using the pairs bootstrap. Let Cp be the set of sequences {P,} such that

f W(X)xx TdPy — Q-

(B1) P, converges weakly to P (the distribution of (x;, y;)).
1

(B2) B (Py) := (f s dePn) [ s xydPy — B

(B3)

(B4)

B4) [ (1/wX)x™ (v — xBw () (1/WRXT (¢ = xBw (P))dPy — 2.

To prove the lemma, we will first show that the distribution of /n (Bw — Bw (Pn) ) under P, converges weakly to the
normal distribution with mean 0 and variance 7} Q, /WZQ whenever {Pp} e Cp, and then show that the empirical distri-

bution is in C, almost surely.
Let (X, i ¥n, i), i=1,...,n be independent and identically distributed according to P, such that {P,} e Cp.
Define residuals &, ; := Y ; — X, iBw (Pr) so that

ﬁ(,gw - ,BW(Pn)) = \/ﬁ(x;jwilxn)i]xgrwil (Sn +XnﬁW(Pn)) - ,BW(PH)

1/w

-1
_ (%X,IW’1XH) JIXTW ey

It follows immediately from the assumptions that
Lyrw-1x B Q7]
E n ” _) 1/w?
and we have the desired asymptotic normal distribution if we can show
YXTW e, & N, Qy0).

We will first consider the case of x; € R. Because

/XT-L (Vi — Xn,iBw (P))dP, = 0,

Mw(xni)

and

1
fxl"x"'wz(xm) ni AP = Sy,

the asymptotic normality follows from the Lindeberg-Feller Central Limit Theorem if we can verify that

1 1
E(X%lvvz(xn)g ]].{ n«lm nl>n5}>—)0

for all § >0, where 1{-} denotes the indicator function of a set. Since By/(Pn)— B and (X, i, ¥n.i) 4 X, Y)~P,

1 a X X
i ™ wea M = e

By assumption (B4), we also have that the second moments converge in addition to the convergence in probability. There-
fore, for any fixed y that is a continuity point of the distribution of Xe/w(X) and n > y /3, we have that

1 1 1 1
E(X%,lvmggjﬂ{xﬁ.lvmgﬁ,l > ”5}) = E("ﬁjweg.lﬂ{xﬁ,lwz(xmgﬁ,l > V})

- E(x Wzl(x)szn{xz W21()082 -7}).
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The Lindeberg-Feller condition is satisfied, since the right-hand side of this equation can be made arbitrarily small by
choosing y sufficiently large. The multivariate case follows analogously using the Cramér-Wold device. For any vector of
constants, C € RP, we must show

n
Eni d T
—— x,;C = N(0,C"'Q2,,,20).
Ew(xn,i)xn" = NG, ywC)

This convergence follows from the Lindeberg-Feller CLT if

2 2
En.i En
E((V\/(an)xn’lc> ]].:(W(XH,)XHIC> >n8}> -0

for all § > 0. This convergence holds by the same argument as in the one-dimensional case given above. It is easily seen that
the empirical distribution functions P, are almost surely in Cp, and the result of the theorem follows. O

Proof of Lemma 8.1 using the wild bootstrap. Let S be the set of sequences {x;, y;} satisfying the following conditions:
Bw — B.

1)
2) Q1/w - Q1/w’
) 2
)

S3) Qw2 = 22, and

(S
(S
(
(54 f(/gWLs - ﬁw) - 0.

Write
f(ﬁw ﬁw) A(XTWIX) X T W JE(BWLS - Bw)-

On S, (%X,ITW*X,,Y1 — Q1,y, and Jﬁ(ﬁWLS —BW> — 0. Thus, to show the desired asymptotic normality, it suffices

to show that, on S, W—14* 4 N(0, €2, ,,2) conditionally on the x’s and y’s. This convergence holds using the Cramér-Wold
device, since for each vector c € R?,

1
cTXTW-lg =) xc——&*
" 2 x w(x;)

which is asymptotically normal with mean zero and variance c'€2, w2 € by the Lindeberg-Feller Central Limit Theorem which
is applicable because condition (S3) holds.

The conditions specified by the set S do not hold almost surely, but they do hold in probability. By the Almost Sure
Representation Theorem, there exist versions of the X’s and Y’s such that S holds almost surely. It follows that the asymptotic
normality of the wild bootstrap distribution holds in probability. O

Lemma 8.2. Suppose that 0* is consistent for 6y, in the sense that n”“(é* - 00) converges in conditional probability to zero.
Suppose that BWLS = (XTV9T1X)’1XTV§_]Y and vy, =:w so that W := diag(vg, (X1), ..., Vg, (Xn)). Under the assumptions of
Theorem 3.1,

A* o) A* o) P
V(Bis — Bwis) — vn(Biy — Bw) — 0
in probability.
Proof of Lemma 8.2 using the pairs bootstrap. Let Cp be the set of sequences {P,} that satisfy the following conditions:

(C1) P, converges weakly to P

(c2) f W(X)xdePn — Quw

( 3) f(l/w(x)xT(y xBw (Pn) )T(I/W(X)XT(V—XﬁW(Pn))dPn N waz
(C4) n'/4(Bw (Pn) — B(P)) — 0

(C5) n/42p, (i~ XB (B, () = O for each i=1....p. I =1.....d

2
(C6) Ep, x,-srgm(x)‘ — ]Ep(’x,-ergOY,(x)yz) foreachi=1,...,p, 1=1,..., d

(€7) Epn|xi5590(x)|2 N IEP(|xi8590(x)|2) foreachi=1,...,p,1=1,...,d
(C8) n1/4(é — ) converges in Py-probability to zero

Suppose that (x, ;, ¥p i), i=1,...,n are ii.d. according to P, where {P;} is any sequence in Cp.
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Define the residuals

Ewoni = Yni— xn,i/sw (Pa).

Eni =Yni— Xn,iﬁ(Pn)a

and

Ew,ni :=Yni— Xn,iBw (P1)
where

1 T
. . T
By (Pn) = (/ Ué(x)xx dPn> /—vé(x)xydPn,
-1

B(P) = (/ xdePn) /xydPn,

and

Bw (Pr) = (/ ﬁxdePn)_1 f ﬁxyd&.
Then,
ﬁ(BWLs — Bwis (Pn)) - ﬁ(ﬁw - Bw (Pn)> = XWX TIX Wley,
— XWX TIXTW ey .

To show this quantity converges in probability to zero, it suffices to show that

%(x,jwflew,n X W lew,) S0
and
%(an WX, — X W 1X,) S 0.
We can write the first expression as
% [Xd (W= =W ) ewn + X W Xa (B (Pr) — B (P)].

By the assumptions on sequences in Cp, ﬁ(ﬂw - ,BW) Z 0. It will be seen later that %XJW*WH £ E(x"x/w(x)), so the
second tern in the above expression converges to zero in probability. The first term is

1 ~ 1 1 1
—XT(W'—-w e = — x| — — — — ew
Jn ”( ) wn \/ﬁz T\ vy (X)) Vg, (Xni) Wl

which, as in Romano and Wolf (2017), can be written as A + B where the j entry of A is
1 n K R
Aj= W an,i.j??w,n,i > 101 (Xni) (0 = 0,0),
i=1 1=1
and with probability tending to one,

2
Z ‘Xn,i.jgw,n,iseo (Xn,i)|-

1 |
Bj| < —‘9 -6
IBjl = 2Jn 0
Because n'/4(6; — 6p) 20, to show A; Z 0, we only need to show that

n
- P
N Xni jEwn,iTo,1 (Xni) = 0
i=1

for each I =1,..., K. We will do this by showing that the mean and variance converge to zero.
The variance converges to zero since

n
varp, (’73/4 ZXn.i,j8W<n.ir90,l(Xn,i)> = n~"2varg, (Xn jEw.n.igo.1 (Xn.i))
i1
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and, by the assumptions on Cp, the sequence of variances varp, (xn,i,jswynﬁireoy,(x,“-)) is bounded. To show that the mean
converges to zero, write

n n n
_3/4 ~3/4 _3/4
n= an,i,j8w.n,ireo,1(xn.i) =n—/ anj,an,ireg,l(Xn,i) +n Z(8w,n,i — €n,i)Xn,i,jT0y.1 (Xn,i)-
iz i1 i1

The expectation of the first term converges to zero by assumption and the expectation of the second term converges to zero,
since

1 ” ~
Ep” n’3/ anljgn 1r90 l(xn l) = EP,,( Xn 1xnl]r90 l(xnz)) 1/4(/3(1371) - ﬂW(Pn)) -0
i=1

Similarly, since v/n|0 —90|2 20, we have that |Bj] 2 0 provided 1y [%n.i,jEw.n.iSe, (%n.i)| = Op(1). As in the argument
for A;, this last sum has expectation tending to a constant, and variance tending to zero, and so it converges in probability
to a constant.

Finally we must show that

1, 1 1
~(XTW1X, — XTW1X,) = X; -
7 (% "o )= Z vy Gnt) Ve, Bnt)

converges in probability to zero. The argument proceeds as above.
Since /n (/3 /BW) converges to zero in probability, but not necessarily almost surely, the empirical distribution func-

tions B, do not lie in Cp almost surely. However, it is easily seen that the empirical distribution functions satisfy the moment
conditions on Cp in probability, so the asymptotic normality of the bootstrap distribution holds in probability. O

Proof of Lemma 8.2 using the wild bootstrap. Let S’ be the set on which (51)-(54) hold as well as
(85) & Xt

. 2 2 .
(S6) %Z?:l ’x,y,-seo (x)| — IEP(’X,-y,-SGO (x)} )foreachi=1,...,p,l=1,...,d, and
(S7) n1/4(é* — o) converges in probability to zero.

2
R 2 )
XiJirg, (x)’ - Ep(|xiy,-r90,,(x)] ) foreachi=1,....,p, I=1,....d,

We will show that
ﬁ(ﬁWLs - BWLS) - ﬁ(ﬁ‘}} - BW> :\/ﬁ[(XTW*qX)—lXTW*qg*
o e (b

converges to probability to zero, conditional on any sequence of x’s and y’s in §'.
By assumption, the second term converges to zero on S’. To show the first term converges in probability to zero, we will
show that
1

ﬁ(x,jv‘v**s* -Xjwe) Lo

and

1 N

STV - XWX, Lo

The first quantity can be written as
1 A 1 1 1

—X (W —wHer = —) "I - e

N ( ) Jn 2 X Vg (Xni) Vg, (xni) )
which again can be written as A+ B where the jth entry of A is

1 n K R
Aji=—= > Xnij& Y Topt (X)) OF = 60,),
v i=1 I=1

and with probability tending to one,

2
Z |x"v"v]'8i*590 (an)‘-

Bj| < —=
Bl <5

By assumption (S7), n1/4 (él* — 6, £ 0. Further, for each I, n=3/4 S Xni &} P Tgo.1(Xn,i) converges in probability to zero
since it has mean zero and variance

6+ — 6y

n n
_ _ R 2
var| n=3 4y " X 801 (i) | =172 (X €T, (Xni) )
i—1 i=1
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which converges to zero on S’ by assumption (S5). Consequently, A; converges in probability to zero for each j. Similarly, B
converges in probability to zero since ﬁ(él* - QOV,)Z converges in probability to zero, and %Z ’xn,,-,js;‘s% (x,“-)| converges in
probability to a constant.
The other convergence,
1
n
follows from a similar argument. O

(XWX = X W 1X,) S 0,

Proof of Lemma 3.1. We will first consider the estimate 0 obtained by regressing hs(e&;) on g(x;). By a similar argument to
Lemma A, Jﬁ(@* - 9) is almost surely asymptotically normal. Consequently, n'/4 (9* - 0) converges in conditional proba-
bility to zero, almost surely. We can express

n'4(0 — 6) = n"*((GTG)™'GTh — 6,)
=n4(G"G)"'G"e.
where G and h are the matrix and vector containing the g(x;) and hg(¢;), respectively, and e is the vector with entries
e; = hs (y;) — g(x)6p. Since (1GTG)~! converges almost surely to E(g(x;)Tg(x;)) and n=34GTe converges in almost surely to
zero, nl/4 (67 - 90) converges almost surely to zero.
Writing
nUA(G* — Bo) = nVA4 (6" — §) + (5 — ).
we see this quantity converges in conditional probability to zero, almost surely.
Now,

I 1 -1 N
0 — 0" = (E Zg(x;‘)gT(x;‘)) = 286 (hs (&1) — hs (e)))-

It is easily seen that (% Zg(x;‘)gT (x;*)) converges in conditional probability to [E(g(x)g(x)’) and
n-3/4 Zg(x;f)(h(; (&f) — hs (5;‘)) converges in conditional probability to zero, almost surely. O

Proof of Theorem 3.2. The bootstrap estimator Q’{ 7&@; /szz”{ 7‘}/ converges in conditional probability to Q;}WQ w2 QT/1W' As
a consequence of Theorem 2, the bootstrap distribution of «/nR(8;,, ¢ — Bwis) approximates the distribution of \/n(Rg — q). It
follows that the bootstrap distribution of W consistently approximates the distribution of W,. Moreover, both the bootstrap

distribution of M} and the sampling distribution of M, are asymptotically distributed as max;|Z;| where Z is a multivariate

normal random variable with mean zero and covariance matrix VQ;}WQU w2 Q{}WV, with V a diagonal matrix whose diagonal
-1

entries are equal to the square root of the diagonal entries of 2] /WQV w2 Q7 /1W. The claims of the theorem now follow from

Slutsky’s Theorem. O

Proof of Theorem 3.3 and Lemma 3.2. These claims follow from the same arguments as the wild bootstrap counterparts,
but with &; replaced by ¢;. O

Proof of Theorem 4.1. For almost all sequences {(x;, y;)}, E/\ar(ﬁ?OLs.k)* converges to Avar(BOLs_k) and A/v\ar(BWLS.k) converges
to Avar(BWLs_k) in conditional probability. The claim follows from applying Slutsky’s theorem conditionally. O

Proof of Theorem 4.2. Following the argument of Theorem 3.1 of Romano and Wolf (2017), we must only find the
asymptotic joint distribution of (8w — B) and vi(Bois — B) since vn(Bwis — Pw) L 0. We can write Va(Bw — B) =
(%XTW*lx)_lﬁXTW”S and vn(Bos - B) = (%XTX)_1 %XT& Because
(xw) " La( ) -oy
n w(x) ) T Tw

and

1 T ! p T -1 Q—]

EX X —>IE(xi xj) = Q)

it is enough to find the joint limiting distribution of ﬁXTW*]s and %XTE. These are scaled sums of ii.d. mean zero
random variables, so the Multivariate Central Limit Theorem gives

XTWle) @ ((0) (E(xigtl) Bl xiges)
(7)< 0((0) CRvas) Stein))

w(xi)

The claim follows from Slutsky’s Theorem. O
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Proof of Theorem 4.3. An argument analogous to the proof of Theorem 3.1 to the one presented above shows that for any
fixed A, the bootstrap distribution of

VA Bis + (1 =) Bas — Apwis — (1= 1) Bois) = v(B; — Br),

is asymptotically normal with mean zero and covariance matrix Avar(BA) in probability.
It follows from the weak law of large numbers for triangular arrays that Avar(g; )* converges in conditional probability
to Avar (g, ), almost surely. The second convergence follows from Slutsky’s Theorem. O

Proof of Theorem 4.4. We begin with the case where Avar(B,\,k) is non-constant. In order to show that \/ﬁ(ﬁk - /3) 4

N(0. Avar(B,)), we will show that vAi(B; — B) — vAi(B;, — B) = 0. Indeed,
ﬁ(ﬁio - ﬁ) - ﬁ(ﬁko - ﬁ) = \/ﬁ<3"0 - )"0) [BOLS - BWLS]

which converges in probability to zero.
Theorem 4.3 gives that for any fixed A, the bootstrap distribution of

O Bis + (1= 1) Bois — ABwis — (1= 2) Pors) = va(B; — Br).

is asymptotically normal with mean zero and covariance matrix Avar(/:?l) in conditional probability.
To prove the convergence of the bootstrap distribution stated in the theorem, we will first show that the bootstrap

distribution of Jﬁ(ﬁ;* - B;\*) is asymptotically normal with mean O and covariance matrix Avar(ﬁk) in probability and
then show that \/ﬁ(ﬁi* - Bi) - \/ﬁ(ﬁi* - Bi*) 2 0 in probability.

To show the desired asymptotic normality of v/n (ﬁi* - Bi*) we will show
(B, - o) - V(B - B.) 2o
We can write
ﬁ(ﬁfo - ,3,\0) - ﬁ( A{* - /§A) =/ = Ag) [BJVLS - BWLS]
V(=2 = (1= 20) ) [ Bos — Bors |
Because \/ﬁ(B",‘VLS - BWLS) and ﬁ(BgLS - BOLS) are asymptotically normal (in probability), the desired convergence fol-

lows from Slutsky’s Theorem if we can show A* 5 Ao. Note that A* is a continuous function of [Q’{;V},Q; /WZQ’{/‘J/] ,
kk

1w /w11 1/1 *fv/1°%11
almost surely, it follows from the continuous mapping theorem that A* converges in conditional probability to Aq.
Similarly,

(Bs. - By.) - via(Bs. - ;) =va(Bs. - Bs,)
=Vn(h* = ko) [BJVLS - BWLS]

2o

[Q**lﬁ* Q**l]kk, and [Q**lﬁ* Q**l]k .- Because these quantities converge in probability to the population versions

in conditional probability.
The case where Avar(, ) is constant is similar, but follows from a simpler argument. O
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