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R-NL: Covariance Matrix Estimation for Elliptical
Distributions Based on Nonlinear Shrinkage

Simon Hediger, Jeffrey Naf

Abstract—We combine Tyler’s robust estimator of the dispersion
matrix with nonlinear shrinkage. This approach delivers a simple
and fast estimator of the dispersion matrix in elliptical models that
is robust against both heavy tails and high dimensions. We prove
convergence of the iterative part of our algorithm and demonstrate
the favorable performance of the estimator in a wide range of sim-
ulation scenarios. Finally, an empirical application demonstrates
its state-of-the-art performance on real data.

Index Terms—Heavy tails, nonlinear shrinkage, portfolio
optimization.

I. INTRODUCTION

ANY statistical applications rely on covariance matrix
M estimation. Two common challenges are (1) the presence
of heavy tails and (2) the high-dimensional nature of the data.
Both problems lead to suboptimal performance or even inconsis-
tency of the usual sample covariance estimator S. Consequently,
there 1s a vast literature on addressing these problems.

Two prominent ways to address (1) are (Maronna’s) M-
estimators of scatter [1], as well as truncation of the sample
covariance matrix; for example, see [2]. There also appear to
be two main approaches to solving problem (2). The first is to
assume a specific structure on the covariance matrix to reduce
the number of parameters. One example of this is the “spiked
covariance model”, as explored e.g., in [3], [4], [S], a second
i1s to assume (approximate) sparsity and to use thresholding
estimators [6], [7], [8], [9]. We also refer to [2] who present
a range of general estimators under heavy tails and extend to the
case n > p, by assuming specific structures on the covariance
matrix. If one is not willing to assume such structure, a second
approach is to leave the eigenvectors of the sample covariance
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One promising line of research to address both problems
at once 1s to extend (Maronna’s) M -estimators of scatter [1]
with a form of shrinkage for high dimensions. This approach is
in particular popular with a specific example of M -estimators
called “Tyler’s estimator” [17], which is derived in the context
of elliptical distributions. Several papers have studied this ap-
proach, using a convex combination of the base estimator and a
target matrix, usually the (scaled) identity matrix. We generally
refer to such approaches as robust linear shrinkage estimators.
For instance, [18], [19], [20], [21] combine the linear shrinkage
with Maronna’s M -estimators, whereas [22], [23], [24], [25]
do so with Tyler’s estimator. Since this approach of combining
linear shrinkage with a robust estimator entails choosing a hy-
perparameter determining the amount of shrinkage, the second
step often consists of deriving some (asymptotically) optimal
parameter that then can be estimated from data. The approach
results in estimation methods that are generally computationally
inexpensive and it also enables strong theoretical results on the
convergence of the underlying iterative algorithms.

Despite these advantages, several problems remain. First, the
performance of these robust methods sometimes does not exceed
the performance of the basic linear shrinkage estimator of [12]
in heavy-tailed models, except for small sample sizes n (say
n < 100). Infact, the theoretical analysis of [19], [26] shows that
robust M -estimators using linear shrinkage are asymptotically
equivalent to scaled versions of the linear shrinkage estimator
of [12]. Depending on how the data-adaptive hyperparameter
1s chosen, the performance can even deteriorate quickly as the
tails get lighter, as we demonstrate in our simulation study in
Section IV. Second, some robust methods cannot handle the
case when the dimension p is larger than the sample size n, such
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