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Abstract This paper compares ordinary least squares (OLS), weighted least squares
(WLS), and adaptive least squares (ALS) by means of a Monte Carlo study and
an application to two empirical data sets. Overall, ALS emerges as the winner: It
achieves most or even all of the efficiency gains of WLS over OLS when WLS
outperforms OLS, but it only has very limited downside risk compared to OLS when
OLS outperforms WLS.

1 Introduction

The linear regression model is still a cornerstone of empirical work in the social
sciences. The standard textbook treatment assumes conditional homoskedasticity
of the error terms. When this assumption is violated—that is, when conditional
heteroskedasticity is present—standard inference is no longer valid. The current
practice in such a setting is to estimate the model by ordinary least squares (OLS)
and use heteroskedasticity-consistent (HC) standard errors; this approach dates back
to [14].

[13] propose to ‘resurrect’ the previous practice of using weighted least squares
(WLS), which weights the data before applying OLS. Theweighting scheme is based
on an estimate of the skedastic function, that is, of the function that determines the
conditional variance of the error term given the values of the regressors. In practice,
the model for estimating the skedastic function may be misspecified. If this is the
case, using standard inference based on theweighted datawill not be valid. Therefore,
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136 M. Sterchi and M. Wolf

[13] propose to also use HC standard errors for weighted data (as would be done
for the original data) and prove asymptotic validity of the resulting inference under
suitable regularity conditions.

[13] also propose adaptive least squares (ALS) where a pretest for conditional
heteroskedasticity decides whether the applied researcher should use OLS (with
HC standard errors) or WLS (with HC standard errors). Asymptotic validity of the
resulting inference is established as well.

In addition to providing asymptotic theory, [13] examine finite-sample perfor-
mance of WLS and ALS compared to OLS via Monte Carlo simulations. But these
simulations are restricted to univariate regressions (that is, regressions where there is
only one regressor in addition to the constant). In applied work, though, multivariate
regressions are more common.

The purpose of this paper is two-fold. On the one hand, we provide extensive
Monte Carlo simulations comparing WLS and ALS to OLS in multivariate regres-
sions, covering both estimation and inference. On the other hand, we compare the
results of WLS and ALS to OLS for two empirical data sets.

The remainder of the paper is organized as follows. Section2 gives a brief descrip-
tion of the methodology for completeness. Section3 examines finite-sample perfor-
mance via a Monte Carlo study. Section4 provides an application to two empirical
data sets. Section5 concludes.

2 Brief Description of the Methodology

For completeness, we give a brief description of the methodology for WLS and ALS
here. More details can be found in [13].

2.1 The Model

We maintain the following set of assumptions throughout the paper.

(A1) The linear model is of the form

yi = x ′
iβ + εi (i = 1, . . . , n), (1)

where xi ∈ RK is a vector of explanatory variables (regressors), β ∈ RK is a
coefficient vector, and εi is the unobservable error term with certain properties
to be specified below.

(A2) The sample
{
(yi , x ′

i )
}n
i=1 is independent and identically distributed (i.i.d.).

michael.wolf@econ.uzh.ch



Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence 137

(A3) All the regressors are predetermined in the sense that they are orthogonal to
the contemporaneous error term:

E(εi |xi ) = 0. (2)

(A4) The K × K matrix Σxx
..= E(xi x ′

i ) is nonsingular (and hence finite). Further-
more,

∑n
i=1 xi x

′
i is invertible with probability one.

(A5) The K × K matrix Ω ..= E(ε2i xi x ′
i ) is nonsingular (and hence) finite.

(A6) There exists a nonrandom function v : RK → R+ such that

E(ε2i |xi ) = v(xi ). (3)

Therefore, the skedastic function v(·) determines the functional form of the
conditional heteroskedasticity. Note that under (A6),

Ω = E
[
v(xi ) · xi x ′

i

]
.

It is useful to introduce the customary vector-matrix notations

y ..=

⎡

⎢⎣
y1
...

yn

⎤

⎥⎦ , ε ..=

⎡

⎢⎣
ε1
...

εn

⎤

⎥⎦ , X ..=

⎡

⎢⎣
x ′
1
...

x ′
n

⎤

⎥⎦ =

⎡

⎢⎣
x11 . . . x1K
... . . .

...

xn1 . . . xnK

⎤

⎥⎦ ,

so that Eq. (1) can be written more compactly as

y = Xβ + ε. (4)

Furthermore, assumptions (A2), (A3), and (A5) imply that

Var(ε|X) =

⎡

⎢⎣
v(x1)

. . .

v(xn)

⎤

⎥⎦ .

2.2 Estimators: OLS, WLS, and ALS

The well-known ordinary least squares (OLS) estimator of β is given by

β̂OLS
..= (X ′X)−1X ′y.

Under the maintained assumptions, the OLS estimator is unbiased and consistent.
This is the good news.
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A more efficient estimator can be obtained by reweighting the data (yi , x ′
i ) and

then applying OLS in the transformed model

yi√
v(xi )

= x ′
i√

v(xi )
β + εi√

v(xi )
. (5)

Letting

V ..=

⎡

⎢⎣
v(x1)

. . .

v(xn)

⎤

⎥⎦ ,

the resulting estimator can be written as

β̂BLUE
..= (X ′V−1X)−1X ′V−1y. (6)

It is the best linear unbiased estimator (BLUE) and is consistent; in particular, it
is more efficient than the OLS estimator. However, it is generally not a feasible
estimator, since the skedastic function v(·) is generally unknown.

A feasible approach is to estimate the skedastic function v(·) from the data in
some way and to then apply OLS in the model

yi√
v̂(xi )

= x ′
i√

v̂(xi )
β + εi√

v̂(xi )
, (7)

where v̂(·) denotes the estimator of v(·). The resulting estimator is the weighted least
squares (WLS) estimator. Letting

V̂ ..=

⎡

⎢⎣
v̂(x1)

. . .

v̂(xn)

⎤

⎥⎦ ,

the WLS estimator can be written as

β̂WLS
..= (X ′V̂−1X)−1X ′V̂−1y.

It is not necessarily unbiased. If v̂(·) is a consistent estimator of v(·), than WLS is
asymptoticallymore efficient thanOLS.But even if v̂(·) is an inconsistent estimator of
v(·), WLS can result in large efficiency gains over OLS in the presence of noticeable
conditional heteroskedasticity; see Sect. 3.

The idea of adaptive least squares (ALS) is that we let the data ‘decide’ whether
to use OLS or WLS for the estimation. Intuitively, we only want to use WLS if there
is ‘noticeable’ conditional heteroskedasticity present in the data. Here, ‘noticeable’
is with respect to the model used for estimating the skedastic function in practice.
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[13] suggest applying a test for conditional heteroskedasticity. Several such tests
exists, the most popular ones being the tests of [2, 14]; also see [9, 10]. If the null
hypothesis of conditional homoskedasticity it not rejected by such a test, use the OLS
estimator; otherwise, use the WLS estimator. The resulting estimator is nothing else
than the ALS estimator.

2.3 Parametric Model for Estimating the Skedastic Function

In order to estimate the skedastic function v(·), [13] suggest the use of the following
parametric model:

vθ(xi ) ..= exp
(
ν + γ2 log |xi,2| + . . .+ γK log |xi,K |

)
, (8)

with θ ..= (ν, γ2, . . . , γK )
′, assuming that xi,1 ≡ 1 (that is, the original regression

contains a constant). Otherwise, the model should be

vθ(xi ) ..= exp
(
ν + γ1 log |xi,1| + γ2 log |xi,2| + . . .+ γK log |xi,K |

)
,

with θ ..= (ν, γ1, . . . , γK )
′.Such amodel is a special case of the formofmultiplicative

conditional heteroskedasticity previously proposed by [5] and Sect. 9.3 of [8], among
others.

Assuming model (8), the test for conditional heteroskedasticity specifies

H0 : γ2 = . . . = γK = 0 versus H1 : at least one γk ̸= 0 (k = 2, . . . , K ).

To carry out the test, fix a small constant δ > 0, estimate the following regression by
OLS:

log
[
max(δ2, ε̂2i )

]
= ν + γ2 log |xi,2| + . . .+ γK log |xi,K | + ui , (9)

with ε̂i ..= yi − x ′
i β̂OLS, and denote the resulting R2-statistic by R2.1 Furthermore,

denote by χ2
K−1,1−α the 1 − α quantile of the chi-squared distribution with K − 1

degrees of freedom. Then the test rejects conditional homoskedasticity at nominal
level α if n · R2 > χ2

K−1,1−α.
Last but not least, the estimate of the skedastic function is given by

v̂(·) ..= vθ̂(·),

where θ̂ is an estimator of θ obtained by the OLS regression (9).

1The reason for introducing a small constant δ > 0 on the left-hand side of (9) is that, because one
is taking logs, one needs to avoid a residual of zero, or even very near zero. The choice δ = 0.1
seems to work well in practice.
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2.4 Inference: OLS, WLS, and ALS

2.4.1 Confidence Intervals

A nominal 1 − α confidence interval for βk based on OLS is given by

β̂k,OLS ± tn−K ,1−α/2 · SEHC(β̂k,OLS), (10)

where tn−K ,1−α/2 denotes the 1 − α/2 quantile of the t distribution with n − K
degrees of freedom. Here SEHC(·) denotes a HC standard error. Specifically [13]
suggest to use the HC3 standard error introduced by [12].

A nominal 1 − α confidence interval for βk based on WLS is given by

β̂k,WLS ± tn−K ,1−α/2 · SEHC(β̂k,WLS), (11)

where again [13] suggest to use the HC3 standard error.
A nominal 1 − α confidence interval for βk based on ALS is given by either (10)

or (11), depending on whether the ALS estimator is equal to the OLS estimator or
to the WLS estimator.

2.4.2 Testing a Set of Linear Restrictions

Consider testing a set of linear restrictions on β of the form

H0 : Rβ = r,

where R ∈ Rp×K is matrix of full row rank specifying p ≤ K linear combinations
of interest and r ∈ Rp is a vector specifying their respective values under the null.

A HC Wald statistic based on the OLS estimator is given by

WHC(β̂OLS) ..= n
p
· (Rβ̂OLS − r)′

[
R ÂvarHC(β̂OLS)R′]−1

(Rβ̂OLS − r).

Here ÂvarHC(β̂OLS) denotes a HC estimator of the asymptotic variance of β̂OLS, that
is, of the variance of the limiting multivariate normal distribution of β̂OLS. More
specifically, if √

n(β̂OLS − β)
d−→ N (0,Σ),

where the symbol
d−→ denotes convergence in distribution, then ÂvarHC(β̂OLS) is

an estimator of Σ . Related details can be found in Sect. 4 of [13]; in particular, it is
again recommended to use a HC3 estimator.
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A HC Wald statistic based on the WLS estimator is given by

WHC(β̂WLS) ..= n
p
· (Rβ̂WLS − r)′

[
R ÂvarHC(β̂WLS)R′]−1

(Rβ̂WLS − r).

For a generic Wald statistic W , the corresponding p-value is obtained as

PV (W ) ..= Prob{F ≥ W̃ }, where F ∼ Fp,n .

Here, Fp,n denotes the F distribution with p and n degrees of freedom.
HC inference based on the OLS estimator reports PV (WHC(β̂OLS)) while HC

inference based on the WLS estimator reports PV (WHC(β̂WLS)). Depending on the
outcome of the test for conditional heteroskedasticity, ALS inference either coincides
with OLS inference (namely, if the test does not reject conditional homoskedasticity)
or coincides withWLS inference (namely, if the test rejects conditional homoskedas-
ticity).

3 Monte Carlo Evidence

3.1 Configuration

We consider the following multivariate linear regression model

yi = β0 + β1xi,1 + β2xi,2 + β3xi,3 + εi . (12)

The regressors are first generated according to a uniform distribution between 1 and
4, denoted by U [1, 4]. The simulation study is then repeated with the regressors
generated according to a Beta distribution with the parameters α = 2 and β = 5,
denoted by Beta(2,5). In order to guarantee a range of values comparable to the one
for the uniformly distributed regressors, the Beta distributed regressors have been
multiplied by five. [11] chooses a standard lognormal distribution for the regressors
and points out that, as a result, HC inference becomes particularly difficult because
of a few extreme observations for the regressors. Since both the standard lognormal
distribution and the Beta(2,5) distribution are right-skewed, the second part of the
simulation study is in the spirit of the one in [11].

The error term model in (12) is given by

εi ..=
√
v(xi )zi (13)

where zi ∼ N (0, 1) and zi is independent of all explanatory variables xi . Here, v(·)
corresponds to the skedastic function and will be specified below. Alternatively, a
settingwith error terms following a t-distributionwith five degrees of freedom (scaled
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Table 1 Parametric specifications of the skedastic function
S.1 v(xi ) = z(γ) · |xi,1|γ · |xi,2|γ · |xi,3|γ with γ ∈ {0, 1, 2, 4}
S.2 v(xi ) = z(γ)

(
γ|xi,1| + γ|xi,2| + γ|xi,3|

)
with γ ∈ {1, 2, 3}

S.3 v(xi ) = z(γ) exp
(
γ|xi,1| + γ|xi,2| + γ|xi,3|

)
with γ ∈ {0.5, 1}

S.4 v(xi ) = z(γ)
(
|xi,1| + |xi,2| + |xi,3|

)γ with γ ∈ {2, 4}

to have variance one) will be tested. Without loss of generality, the parameters in
(12) are all set to zero, that is, (β0,β1,β2,β3) = (0, 0, 0, 0).

We consider four parametric specifications of the skedastic function as shown in
Table1. For the sake of simplicity, all specifications use only one parameter γ. (For
example, Specification S.1 uses a common power γ on the absolute values of xi,1,
xi,2, and xi,3.) It would in principle be possible to use more than one parameter in a
given specification, but then the number of scenarios in ourMonte Carlo study would
become too large. [11] proposes the use of a scaling factor for the specifications in
order to make sure that the conditional variance of εi is on average one, while the
degree of heteroskedasticity remains the same. For that reason, all the specifications
in Table1 contain a scaling factor z(γ). [4] suggest measuring the aforementioned
degree of heteroskedasticity by the ratio of the maximal value of v(x) to the minimal
value of v(x). Consequently, in the case of conditional homoskedasticity, the degree
of heteroskedasticity is one. The full set of results is presented in Table4; note
that in specification S.2, the degree of heteroskedasticity does not depend on the
value of γ.

3.2 Estimation of the Skedastic Function

The following parametric model is used to estimate the skedastic function:

vθ(xi ) = exp(υ + γ1 log |xi,1| + γ2 log |xi,2| + γ3 log |xi,3|). (14)

It can be reformulated as

vθ(xi ) = exp(υ) · |xi,1|γ1 · |xi,2|γ2 · |xi,3|γ3 . (15)

Formulation (15) is equivalent to specification S.1 with exp(υ) = z(γi ). Hence, in
the case of specification S.1, we assume the correct functional form of the skedastic
function when estimating it. For all other specifications mentioned in the previous
section—namely S.2–S.4—model (14) is misspecified.
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The parameters of model (14) will be estimated by the following OLS regression:

log[max(δ2, ε̂2i )] = υ + γ1 log |xi,1| + γ2 log |xi,2| + γ3 log |xi,3| + ui , (16)

where the ε̂2i are the squared OLS residuals from regression (12). [13] suggest using
a small constant δ > 0 on the left-hand side of (16) in order to avoid taking the
logarithm of squared OLS residuals near zero; as they do, we use δ = 0.1.

Denote the fitted values of the regression (16) by ĝi . Then weights of the data for
the application of WLS are simply given by v̂i ..= exp(ĝi ), for i = 1, . . . , n.

3.3 Estimation, Inference, and Performance Measures

The parameters in the regression model (12) are estimated using OLS and WLS.
In addition, we include the ALS estimator. As suggested in Remark 3.1 of [13], a
Breusch-Pagan test will be applied in order to determine the ALS estimator. Condi-
tional homoskedasticity is rejected if nR2 > χ2

3,0.9, where the R
2 statistic in this test

is taken from the OLS regression (16). If conditional homoskedasticity is rejected,
ALS coincides with WLS; otherwise ALS coincides with OLS.

To measure the performance of the different estimators, we use the empirical
mean squared error (eMSE) given by

eMSE(β̃k) ..= 1
B

B∑

b=1

(β̃k,b − βk)
2, (17)

where β̃k denotes a generic estimator (OLS, WLS, or ALS) of the true parameter βk .
As is well known, the population mean squared error (MSE) can be broken down
into two components as follows:

MSE(β̃k) = Var(β̃k)+ Bias2(β̃k). (18)

Thus, the MSE corresponds to the sum of the variance of an estimator β̃k and its
squared bias. While OLS is unbiased even in the case of conditional heteroskedastic-
ity, WLS and ALS can be biased. Therefore, using the eMSE makes sure that OLS,
WLS, and ALS are compared on equal footing.

We also assess the finite-sample performance of confidence intervals of the type

β̃k ± tn−4,1−α/2 · SE(β̃k), (19)
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where SE is either the HC standard error or the maximal (Max) standard error2 of
the corresponding estimator β̃k and tn−K ,1−α/2 denotes the 1 − α/2 quantile of the t
distribution with n − K degrees of freedom.

First, we compute the empirical coverage probability of nominal 95% confidence
intervals. Second, for OLS-Max, WLS-HC,WLS-Max, ALS-HC and ALS-Max, we
compute the ratio of the average length of the confidence interval to the average
length of the OLS-HC confidence interval, which thus serves as the benchmark. All
the performance measures are chosen as in [13] to facilitate comparability of the
results.

3.4 Results

We discuss separately the results for estimation and inference. For compactness of
the exposition, we only report results for β1. (The results for β2 and β3 are very
similar and are available from the authors upon request.)

3.4.1 Estimation

Tables5 and 6 in the appendix present the basic set of results when the regressors
are generated according to a uniform distribution while the error terms are normally
distributed. If the specification used to estimate the weights corresponds to the true
specification of the skedastic function (Table5),WLS is generallymore efficient than
OLS, except for the case of conditional homoskedasticity (γ = 0). For γ = 0, OLS
is more efficient than WLS, which is reflected by ratios of the eMSE’s (WLS/OLS)
that are higher than one for all of the sample sizes. As n increases the ratios get
closer to one, indicating a smaller efficiency loss of WLS compared to OLS. On the
other hand, for positive values of γ, WLS is always more efficient than OLS and the
efficiency gains can be dramatic for moderate and large sample sizes (n = 50, 100)
and for noticeable conditional heteroskedasticity (γ = 2, 4). ALS offers an attractive
compromise between OLS and WLS. Under conditional homoskedasticity (γ = 0),
the efficiency loss compared to OLS is negligible, as all the eMSE ratios are no larger
than 1.03. Under conditional heteroskedasticity, the efficiency gains over OLS are
not as large as for WLS for small sample sizes (n = 20) but they are almost as large
as for WLS for moderate sample sizes (n = 50) and equally as large as for WLS for
large sample sizes (n = 100) (Tables2 and 3).

2See Sect. 4.1 of [13] for a detailed description of the Max standard error. In a nutshell, the Max
standard error is the maximum of the HC standard error and the ‘textbook’ standard error from an
OLS regression, which assumes conditional homoskedasticity.
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Table 2 OLS and WLS results for the CEO salaries data set. WLS/OLS denotes the ratio of the
WLS-HC standard error to the OLS-HC standard error. For this data set, ALS coincides with WLS
Response variable: log(salary)

OLS

Coefficient Estimate SE-HC t-stat

constant 4.504 0.290 15.54

log(sales) 0.163 0.039 4.15

log(mktval) 0.109 0.052 2.11

ceoten 0.012 0.008 1.54

R2 = 0.32 R̄2 = 0.31 s = 0.50 F = 26.91

WLS

Coefficient Estimate SE-HC t-stat WLS/OLS

constant 4.421 0.240 18.45 0.83

log(sales) 0.152 0.037 4.13 0.94

log(mktval) 0.126 0.044 2.91 0.84

ceoten 0.015 0.007 2.31 0.88

R2 = 0.33 R̄2 = 0.32 s = 1.73 F = 29.04

Table 3 OLS and WLS results for the housing prices data set. WLS/OLS denotes the ratio of the
WLS-HC standard error to the OLS-HC standard error. For this data set, ALS coincides with WLS
Response variable: log(price)

OLS

Coefficient Estimate SE (HC) t-stat

constant 11.084 0.383 28.98

log(nox) −0.954 0.128 −7.44

log(dist) −0.134 0.054 −2.48

rooms 0.255 0.025 10.10

stratio −0.052 0.005 −11.26

R2 = 0.58 R̄2 = 0.58 s = 0.27 F = 175.90

WLS

Coefficient Estimate SE (HC) t-stat WLS/OLS

constant 10.195 0.272 37.43 0.71

log(nox) −0.793 0.097 −8.17 0.76

log(dist) −0.127 0.035 −3.62 0.65

rooms 0.307 0.016 19.23 0.63

stratio −0.037 0.004 −8.78 0.90

R2 = 0.68 R̄2 = 0.68 s = 1.33 F = 267.8

The higher the degree of heteroskedasticity, the higher the efficiency gain is of
WLS over OLS. For instance, γ = 4 results in very strong conditional heteroskedas-
ticity, as can be seen in Table4. As a result, the ratio of the eMSE of WLS to the
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eMSE of OLS is below 0.05 for large sample sizes (n = 100). However, in the case
of conditional homoskedasticity (γ = 0), OLS is more efficient than WLS, which is
reflected by ratios of the eMSE’s (WLS/OLS) that are higher than one for all of the
sample sizes (though getting closer to one as n increases).

Figure1 displays density plots of the three estimators of β1 in the case of the
four different parameter values of specification S.1 and for n = 100. The four plots
visualize the potential efficiency gains of WLS and ALS over OLS as presented in
Table5 numerically. In the cases of γ = 2 and γ = 4, the density of ALS is virtually
equal to the density of WLS, as there is no visible difference. It can be clearly seen
how the variances of WLS and ALS get smaller relative to OLS when the degree of
conditional heteroskedasticity increases.

What changes if the specification used to estimate the skedastic function does not
correspond to the true specification thereof? The results for this case are presented
in Table6. First of all, the linear specification S.2 results in WLS being less efficient
than OLS. Although the linear specification represents a form of conditional het-
eroskedasticity, it is of a different form than our parametric model used to estimate
the skedastic function (that is, misspecified model). Due to the linearity of specifica-
tion S.2, any choice of γ will result in the same degree of heteroskedasticity, given
the sample size n. Therefore, the results of the simulation study were the same for
different values of γ. Next, in specification S.3, WLS is more efficient than OLS for
both choices of γ and all sample sizes. Finally, specification S.4 results inWLS being
less efficient than OLS for small andmoderate sample sizes (n = 20 and n = 50) and
γ = 2, whereas WLS is clearly more efficient when γ = 4. Unsurprisingly, γ = 4
corresponds to a considerably higher degree of heteroskedasticity than γ = 2. Again,
ALS offers an attractive compromise. It is never noticeably less efficient than OLS
(that is, eMSE ratios never larger than 1.03) but is nearly as efficient (n = 50) or as
efficient (n = 100) as WLS when WLS outperforms OLS.

Do the results differ if the regressors are not uniformly distributed or if the error
terms are not normally distributed? In order to answer this question, the simulation
study has been repeated with two different settings.

First, the regressors were chosen to follow a Beta(2,5) distribution, as specified in
Sect. 3.1. As a consequence, the degree of heteroskedasticity is higher in most cases
(except for specification S.3). compared to when the regressors follow a uniform
distribution; see Table4. A comparison of the two results reveals that, once again,
the main factor relevant for the efficiency of WLS compared to OLS seems to be
the degree of heteroskedasticity. Interestingly though, these results do not seem to
apply to any degree of heteroskedasticity. Consider for example the first specifica-
tion S.1. In the case of conditional homoskedasticity, the ratios of the eMSE’s are
similar, whereas introducing conditional heteroskedasticity (γ = 1 and γ = 2) leads
to considerably stronger efficiency gains of WLS compared to OLS in the case of
the Beta-distributed regressors. Unsurprisingly, the degree of heteroskedasticity for
these two specifications is substantially higher in the case of Beta-distributed regres-
sors. However, for γ = 4, WLS is more efficient in the case of uniformly distributed
regressors, although the degree of heteroskedasticity is considerably lower than with
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Beta-distributed regressors. The results for the other specifications (S.2–S.4) gener-
ally support the findings described in this paragraph.

Second, the basic setting has been changed by letting zi follow a t-distributionwith
five degrees of freedom (scaled to have variance one). For small andmoderate sample
sizes (n = 20, 50), the efficiency gains of WLS over OLS are more pronounced
compared to normally distributed zi , whereas the efficiency gains are similar for
n = 100.

As before, ALS offers an attractive compromise: (i) it is never noticeably less
efficient than OLS and (ii) it enjoys most (n = 50) or practically all (n = 100) of the
efficiency gains of WLS in case WLS outperforms OLS.

Remark 1 (Graphical Comparison)We find it useful to ‘condense’ the information
on the ratios of the eMSE’s contained in Tables5, 6, 7, 8, 9 and 10 into a single
Fig. 2. For each sample size (n = 20, 50, 100) and each method (WLS and ALS)
there are 27 eMSE ratios compared to OLS. Here the number 27, corresponds to
all combinations of specification of the skedastic function, corresponding parameter,
distribution of the regressors, and distribution of the error term. For each sample
size (n = 20, 50, 100), two boxplots are juxtaposed: one for the 27 eMSE ratios of
WLS and one for the 27 eMSE ratios of ALS. In each case, a dashed horizontal line
indicates the value of 1.0 (that is, same efficiency as OLS).

It can be seen that for each sample size, ALS has smaller risk of efficiency loss
(with respect to OLS) than WLS: the numbers above the horizontal 1.0-line do not
extend as far up. On the other hand, ALS also has a smaller chance of efficiency
gain (with respect to OLS) than WLS: the numbers below the horizontal 1.0-line do
not extend as far down. But the corresponding differences diminish with the sample
size: There is a marked difference for n = 20, a moderate difference for n = 50, and
practically no difference for n = 100.

Therefore, it can also be seen graphically that ALS offers an attractive com-
promise: (i) it is never noticeably less efficient than OLS and (ii) it enjoys most
(n = 50) or practically all (n = 100) of the efficiency gains of WLS in case WLS
outperforms OLS. ⊓-

3.4.2 Inference

As described in Sect. 3.3, we use two performance measures to evaluate confidence
intervals: the empirical coverage probability of a nominal 95% confidence interval
and the ratio of the average length of a confidence interval to the average length of
the OLS-HC confidence interval.3

The results for the basic setting, in which the regressors are uniformly distrib-
uted and the error terms are normally distributed, are presented in Tables11 and 12.

3The second performance measure does not depend on the nominal confidence level, since by
definition (19), it is equivalent to the ratio of the average standard error of a given method to the
average OLS-HC standard error.
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In general, confidence intervals based on WLS-HC standard errors tend to under-
cover for small and moderate sample sizes (n = 20, 50). The empirical coverage
probabilities for the OLS-HC confidence intervals, on the other hand, are generally
satisfactory. Based on the theory, we would expect that all the HC confidence inter-
vals tend to undercover in small samples due to the bias and increased variance of HC
standard error estimates. Yet, the results here indicate that the HC confidence inter-
vals for the WLS estimator are more prone to liberal inference. [6, p. 137] points out
that the large-sample approximations forWLS are often unsatisfactory becauseWLS
requires the estimation of more parameters (the parameters of the skedastic function)
than OLS. Increasing the sample size improves the adequacy of the WLS-HC con-
fidence intervals and the empirical coverage probabilities are always above 94% for
n = 100. ALS-HC confidence intervals exhibit better coverage thanWLS-HC confi-
dence intervals: Already for n = 50, the empirical coverage probabilities are always
over 94%.

When the degree of heteroskedasticity is high, then the average length ofWLS-HC
confidence intervals can be substantially shorter than the average length of OLS-HC
confidence intervals. For instance, for specification S.1 with γ = 4 and n = 100,
the average length of the WLS-HC confidence interval amounts to only 18% of the
average length of the OLS-HC confidence interval, while the empirical coverage
probability is more than satisfactory (95.8%). It is important to note that on aver-
age short confidence intervals are only desirable if, at the same time, the empirical
coverage probability is satisfactory. These findings have important implications for
empirical research. It is crucial to only apply WLS in combination with HC standard
errors when the sample size is large enough, that is, n ≥ 100. For smaller sample
sizes, the results of the simulation study have shown that the empirical coverage
probabilities can be too low. On the other hand, the ALS-HC confidence interval
appears trustworthy for moderate sample sizes already, that is, for n ≥ 50. Further-
more, the efficiency gains of the ALS-HC confidence interval over the OLS-HC (in
terms of average length) are generally also substantial in the presence of notice-
able conditional heteroskedasticity. For instance, for specification S.1 with γ = 4
and n = 100, the average length of the ALS-HC confidence interval also amounts
to only 18% of the average length of the OLS-HC confidence interval, while the
empirical coverage probability is more than satisfactory (95.8%).

As before, we want to analyze what happens when the regressors follow a Beta
distribution as specified in Sect. 3.1, instead of a uniform distribution. As can be
seen in Tables13 and 14, for most of the specifications, the WLS-HC confidence
intervals do not have a satisfactory empirical coverage probability, especially for
small sample sizes. In the case of S.1 with γ = 2 or γ = 4, however, the empirical
coverage probability is surprisingly high even for small sample sizes. [3] note that in
the case of severe heteroskedasticity, the HC standard errors might be upward biased.
In fact, the degree of heteroskedasticity is quite extreme for these two specifications
and it is much higher than in the case of uniformly distributed regressors; see Table4.
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In contrast to the WLS-HC confidence intervals, the ALS-HC confidence intervals
exhibit satisfactory coverage for moderate and large sample sizes (n = 50, 100)with
all empirical coverage probabilities exceeding 94%.

Themain result shown in [3] is that the bias ofHC standard errors not only depends
on the sample size, but also on whether or not a sample contains high leverage points.
In empirical work, an observation is usually considered as a high leverage point if
its diagonal element of the hat matrix is larger than 2p/n, where p is the rank of
the design matrix X .4 A comparison of the diagonal elements of the hat matrix for
both distributional assumptions of the regressors reveals that the samples created by
Beta-distributed regressors generally containmore high leverage points. For instance,
when n = 100, the sample with Beta distributed regressors contains six high leverage
points, while the samplewith uniformly distributed regressors only contains two high
leverage points. Interestingly, for n = 100, the empirical coverage probability, for
both OLS-HC and WLS-HC, is always larger for uniformly distributed regressors,
that is, samples with fewer high leverage points, except for S.1 with γ = 2, 4 (which
was discussed above).

Remark 2 (Maximal Standard Errors) The problem of undercoverage for small and
moderate sample sizes (=20, 50) can be mitigated by using maximal standard errors,
that is, by the use of WLS-Max and ALS-Max. Using maximal standard errors is
proposed in Sect. 8.1 of [1], for example. However, these intervals can overcover by
a lot for large sample sizes (n = 100), exhibiting empirical coverage probabilities
sometimes near 100%. (This is also true for OLS-Max, although to a lesser extent.)
Therefore, using maximal standard errors to mitigate undercoverage for small and
moderate sample sizes seems a rather crude approach. A more promising approach,
not leading to sizeable overcoverage for large sample sizes, would be the use of
bootstrap methods. This topic is currently under study. ⊓-
Remark 3 (Graphical Comparison) We find it useful to ‘condense’ the information
on the ratios of the average lengths of confidence intervals contained in Tables11,
12, 13, 14, 15 and 16 into a single Fig. 3. We only do this for the sample size n = 100
to ensure a fair comparison. Comparisons for n = 20, 50 would not be really fair
to OLS, given that WLS confidence intervals tend to undercover for n = 20, 50 and
that ALS confidence intervals tend to undercover for n = 20.

It can be seen that bothWLS and ALS are always weakly more efficient than OLS
in the sense that none of the average-length ratios are above 1.0. It can also be seen
that, for all practical purposes, ALS is as efficient as OLS. ⊓-

4 Empirical Applications

This section examines the application of OLS, WLS, and ALS to two empirical data
sets. As will be seen the use of WLS and ALS can lead to much smaller standard

4It can be shown [7, e.g.] that p/n corresponds to the average element of the hat matrix.
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errors (and thus much shorter confidence intervals) in the presence of noticeable
conditional heteroskedasticity.

The two data sets are taken from [15].5 In the first example, we model CEO
salaries while in the second example, we model housing prices.

4.1 CEO Salaries

This cross-sectional data set from 1990 contains the salaries of 177 CEOs as well as
further variables describing attributes of the CEOs and the corresponding companies.
Themodel considered in this section tries to explain the log of the CEO salaries.6 The
variables (one response and three explanatory) used in the regression model under
consideration are as follows:

log(salary): log of CEO’s salary (in US$1,000)
log(sales): log of firm sales (in million US$)
log(mktval): log of market value (in million US$)
ceoten: years as the CEO of the company

The sample size is n = 177 and the number of regressors (including the constant)
is K = 4. Based on the results of the Monte Carlo study in Sect. 3, the sample size
is large enough so that WLS and ALS inference can both be trusted.

The model is specified as in [15, p. 213] and is first estimated using OLS. The
results are shown in the upper part of Table2. The estimated coefficients are all
positive, which intuitively makes sense. Examining the t-statistics (based on HC
standard errors) shows that all estimated coefficients are significant at the 5% level
except for the estimated coefficient on ceoten, which is insignificant.

The lower part of Table2 shows the WLS results. The WLS estimates do not
substantially differ from the OLS estimates. However, the HC standard errors are
always smaller for WLS compared to OLS and generally noticeably so, with the
ratios ranging from 0.93 to 0.84. In particular, now all estimated coefficients are
individually significant at the 5% level, including the estimated coefficient on ceoten.

To determine the nature of ALS, we run a Breusch-Pagan test as described in
Sect. 2.3.7 The critical value of the test is χ2

3,0.90 = 6.25 and the value of the test
statistic is 8.25. Hence, the test detects conditional heteroskedasticity and ALS coin-
cides with WLS.

5The two data sets are available under the names CEOSAL2 and HPRICE2, respectively at http://
fmwww.bc.edu/ec-p/data/wooldridge/datasets.list.html.
6The log always corresponds to the natural logarithm.
7This regression results in taking the log of log(sales) and log(mktval) on the right-hand side;
taking absolute values is not necessary, since log(sales) and log(mktval) are always positive.
Furthermore, some observations have a value of zero for ceoten; we replace those values by 0.01
before taking logs.
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4.2 Housing Prices

This cross-sectional data set from 1970 contains 506 observations from communities
in the Boston area. The aim is to explain the median housing price in a community
by means of the level of air pollution, the average number of rooms per house and
other community characteristics. The variables (one response and four explanatory)
used in the regression model under consideration are as follows:

log(price): log of median housing price (in US$)
log(nox): log of nitrogen oxide in the air (in parts per million)
log(dist): log of weighted distance from 5 employment centers (in miles)
rooms: average number of rooms per house
stratio: average student-teacher ratio

The sample size is n = 506 and the number of regressors (including the constant)
is K = 5. Based on the results of the Monte Carlo study in Sect. 3, the sample size
is large enough so that WLS and ALS inference can both be trusted.

Themodel follows an example in [15, p. 132]. The results from theOLS estimation
are reported in the upper part of Table3. All the estimated coefficients have the
expected sign and are significant at the 1% level.

The lower part of Table3 shows the WLS results. The WLS estimates do not
substantially differ from the OLS estimates. However, the HC standard errors are
always smaller for WLS compared to OLS and generally noticeably so, with the
ratios ranging from 0.90 to 0.63. As for OLS, all estimated coefficients are signifi-
cant at the 1% level. But the corresponding confidence intervals based on WLS are
shorter compared to OLS due to the smaller standard errors, which results in more
informative inference. For example, a 95% confidence interval for the coefficient
on rooms is given by [0.276, 0.338] based on WLS and by [0.258, 0.356] based on
OLS. Needless to say, the smaller standard errors for WLS compared to OLS would
also result in more powerful hypothesis tests concerning the various regression coef-
ficients.

To determine the nature of ALS, we run a Breusch-Pagan test as described in
Sect. 2.3. The critical value of the test is χ2

4,0.90 = 7.78 and the value of the test
statistic is 92.08. Hence, the test detects conditional heteroskedasticity and ALS
coincides with WLS.

5 Conclusion

The linear regression model remains a cornerstone of applied research in the social
sciences.Many real-life data sets exhibit conditional heteroskedasticity whichmakes
text-book inference based on ordinary least squares (OLS) invalid. The current prac-
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tice in analyzing such data sets—going back to [14]—is to use OLS in conjunction
with heteroskedasticity consistent (HC) standard errors.

In a recent paper, [13] suggest to return to the previous practice of using weighted
least squares (WLS), also in conjunction with HC standard errors. Doing so ensures
validity of the resulting inference even if the model for estimating the skedastic
function is misspecified. In addition, they make the new proposal of adaptive least
squares (ALS), where it is ‘decided’ from the data whether the applied researcher
should use either OLS or WLS, in conjunction with HC standard errors.

This paper makes two contributions. On the one hand, we have compared finite-
sample performance of OLS,WLS, andALS formultivariate regressions via aMonte
Carlo study.On the other hand,we have comparedOLS,WLS, andALSwhen applied
to two empirical data sets.8

The results of the Monte Carlo study point towards ALS as the overall winner.
When WLS outperforms OLS, then ALS achieves most (for moderate sample sizes)
or even all (for large sample sizes) of the gains of WLS; and these gains can be
dramatic. When OLS outperforms WLS, then it also outperforms ALS but by a
much smaller margin. Consequently, when comparing ALS to OLS, there is large
upside potential and only very limited downside risk.

The application to two empirical data sets have shown that WLS and ALS can
achieve large efficiency gains over OLS in the presence of noticeable conditional
heteroskedasticity. Namely, smaller standard errors result in shorter (and thus more
informative) confidence intervals and in more powerful hypothesis tests.

A Figures and Tables

8[13] only use univariate regressions in their Monte Carlo study and do not provide any applications
to empirical data sets.
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Fig. 1 Density plots for the estimators of β1 for Specification S.1 and its four parameter values.
The sample size is 100, the regressors are U [1, 4]-distributed and the error terms follow a standard
normal distribution

Table 4 Degree of heteroskedasticity for the different specifications of the scedastic function. The
degree of heteroskedasticity is measured as max(v(x))/min(v(x))

S.1 S.2 S.3 S.4
Uniform Beta Uniform Beta Uniform Beta Uniform Beta

γ = 0 γ = 1 γ = 0.5 γ = 2

n = 20 1.0 1.0 1.9 3.0 14.4 10.0 3.8 8.7

n = 50 1.0 1.0 2.0 5.3 15.2 24.0 4.1 28.0

n = 100 1.0 1.0 2.8 6.4 34.0 25.2 7.9 41.1

γ = 1 γ = 2 γ = 1 γ = 4

n = 20 9.7 174.1 1.9 3.0 206.2 99.5 14.3 76.0

n = 50 10.4 439.3 2.0 5.3 231.8 576.9 16.5 781.9

n = 100 24.3 682.5 2.8 6.4 1,157.5 633.8 62.5 1,689.3

γ = 2 γ = 3

n = 20 93.3 30,323.5 1.9 3.0

n = 50 108.3 193,011.0 2.0 5.3

n = 100 590.5 465,764.5 2.8 6.4

γ = 4

n = 20 8,699.6 0.92 × 109

n = 50 11,737.4 37 × 109

n = 100 348,646.3 217 × 109
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Fig. 2 Boxplots of the ratios of the eMSE of WLS (left) and ALS (right) to the eMSE of OLS. For
a given sample size n = 20, 50, 100, the boxplots are over all 27 combinations of specification of
the skedastic function, parameter value, distribution of the regressors, and distribution of the error
terms

michael.wolf@econ.uzh.ch



Weighted Least Squares and Adaptive Least Squares: Further Empirical Evidence 155

Fig. 3 Boxplots of the ratios
of the average length of
WLS confidence intervals
for β1 (left) and ALS
confidence intervals for β1
(right) to the average length
of OLS confidence intervals
for β1. For the given sample
size n = 100, the boxplots
are over all 27 combinations
of specification of the
skedastic function, parameter
value, distribution of the
regressors, and distribution
of the error terms
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Table 5 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE
of the OLS estimator. The regressors are U [1, 4]-distributed and the error terms follow a standard
normal distribution.

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.064 0.077 (1.19) 0.066 (1.03)

n = 50 0.029 0.032 (1.13) 0.029 (1.03)

n = 100 0.013 0.014 (1.08) 0.013 (1.02)

S.1 (γ = 1)

n = 20 0.071 0.065 (0.92) 0.070 (0.98)

n = 50 0.026 0.022 (0.85) 0.025 (0.93)

n = 100 0.011 0.008 (0.72) 0.008 (0.73)

S.1 (γ = 2)

n = 20 0.084 0.042 (0.50) 0.062 (0.73)

n = 50 0.028 0.012 (0.42) 0.014 (0.49)

n = 100 0.010 0.003 (0.27) 0.003 (0.27)

S.1 (γ = 4)

n = 20 0.097 0.019 (0.20) 0.041 (0.42)

n = 50 0.034 0.004 (0.10) 0.004 (0.12)

n = 100 0.010 0.000 (0.04) 0.000 (0.04)
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Table 6 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specifications
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are U [1, 4]-distributed and the error terms follow a
standard normal distribution

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.066 0.077 (1.17) 0.068 (1.03)

n = 50 0.028 0.030 (1.10) 0.028 (1.03)

n = 100 0.012 0.013 (1.04) 0.012 (1.02)

S.3 (γ = 0.5)

n = 20 0.077 0.064 (0.83) 0.073 (0.94)

n = 50 0.028 0.022 (0.79) 0.024 (0.88)

n = 100 0.011 0.007 (0.65) 0.008 (0.67)

S.3 (γ = 1)

n = 20 0.092 0.036 (0.39) 0.058 (0.63)

n = 50 0.030 0.010 (0.33) 0.012 (0.39)

n = 100 0.011 0.002 (0.20) 0.002 (0.20)

S.4 (γ = 2)

n = 20 0.069 0.074 (1.08) 0.070 (1.02)

n = 50 0.027 0.028 (1.03) 0.027 (1.01)

n = 100 0.012 0.011 (0.92) 0.011 (0.93)

S.4 (γ = 4)

n = 20 0.076 0.063 (0.83) 0.072 (0.94)

n = 50 0.027 0.021 (0.79) 0.024 (0.88)

n = 100 0.011 0.007 (0.61) 0.007 (0.62)
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Table 7 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE
of the OLS estimator. The regressors are Beta(2,5)-distributed and the error terms follow a standard
normal distribution

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.142 0.172 (1.21) 0.147 (1.03)

n = 50 0.032 0.037 (1.13) 0.033 (1.03)

n = 100 0.013 0.014 (1.09) 0.013 (1.02)

S.1 (γ = 1)

n = 20 0.122 0.081 (0.66) 0.106 (0.87)

n = 50 0.034 0.016 (0.46) 0.020 (0.58)

n = 100 0.016 0.006 (0.36) 0.006 (0.36)

S.1 (γ = 2)

n = 20 0.129 0.049 (0.38) 0.095 (0.74)

n = 50 0.033 0.006 (0.18) 0.010 (0.31)

n = 100 0.017 0.002 (0.13) 0.002 (0.13)

S.1 (γ = 4)

n = 20 0.136 0.038 (0.28) 0.115 (0.84)

n = 50 0.025 0.003 (0.13) 0.013 (0.52)

n = 100 0.014 0.003 (0.18) 0.003 (0.19)
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Table 8 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specifications
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are Beta(2,5)-distributed and the error terms follow a
standard normal distribution

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.131 0.152 (1.16) 0.134 (1.02)

n = 50 0.033 0.035 (1.04) 0.034 (1.01)

n = 100 0.014 0.014 (0.97) 0.014 (0.99)

S.3 (γ = 0.5)

n = 20 0.123 0.121 (0.99) 0.122 (0.99)

n = 50 0.035 0.029 (0.81) 0.032 (0.91)

n = 100 0.018 0.013 (0.70) 0.014 (0.72)

S.3 (γ = 1)

n = 20 0.111 0.070 (0.63) 0.098 (0.88)

n = 50 0.036 0.013 (0.37) 0.018 (0.50)

n = 100 0.025 0.007 (0.28) 0.007 (0.28)

S.4 (γ = 2)

n = 20 0.123 0.124 (1.01) 0.123 (1.00)

n = 50 0.035 0.029 (0.82) 0.032 (0.92)

n = 100 0.016 0.012 (0.72) 0.012 (0.74)

S.4 (γ = 4)

n = 20 0.115 0.079 (0.69) 0.103 (0.89)

n = 50 0.037 0.016 (0.44) 0.020 (0.54)

n = 100 0.021 0.007 (0.33) 0.007 (0.33)
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Table 9 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.1. The numbers in parentheses express the ratios of the eMSE of a given estimator to the eMSE of
the OLS estimator. The regressors areU [1, 4]-distributed but the error terms follow a t-distribution
with five degrees of freedom

OLS WLS ALS

S.1 (γ = 0)

n = 20 0.064 0.070 (1.10) 0.064 (1.01)

n = 50 0.028 0.030 (1.08) 0.029 (1.01)

n = 100 0.013 0.013 (1.04) 0.013 (1.01)

S.1 (γ = 1)

n = 20 0.071 0.060 (0.84) 0.067 (0.94)

n = 50 0.026 0.022 (0.82) 0.024 (0.91)

n = 100 0.011 0.008 (0.70) 0.008 (0.72)

S.1 (γ = 2)

n = 20 0.084 0.038 (0.45) 0.058 (0.70)

n = 50 0.028 0.011 (0.41) 0.014 (0.50)

n = 100 0.011 0.003 (0.28) 0.003 (0.28)

S.1 (γ = 4)

n = 20 0.096 0.016 (0.17) 0.038 (0.39)

n = 50 0.034 0.004 (0.11) 0.004 (0.13)

n = 100 0.011 0.001 (0.05) 0.001 (0.05)
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Table 10 Empirical mean squared errors (eMSEs) of estimators of β1 in the case of Specification
S.2–S.4. The numbers in parentheses express the ratios of the eMSE of a given estimator to the
eMSE of the OLS estimator. The regressors are U [1, 4]-distributed but the error terms follow a
t-distribution with five degrees of freedom

OLS WLS ALS

S.2 (γ > 0)

n = 20 0.065 0.070 (1.07) 0.066 (1.00)

n = 50 0.027 0.029 (1.05) 0.028 (1.01)

n = 100 0.012 0.012 (1.00) 0.012 (1.00)

S.3 (γ = 0.5)

n = 20 0.077 0.058 (0.76) 0.069 (0.90)

n = 50 0.027 0.021 (0.76) 0.024 (0.87)

n = 100 0.012 0.007 (0.63) 0.008 (0.66)

S.3 (γ = 1)

n = 20 0.091 0.031 (0.35) 0.055 (0.60)

n = 50 0.030 0.010 (0.32) 0.012 (0.40)

n = 100 0.011 0.002 (0.21) 0.002 (0.21)

S.4 (γ = 2)

n = 20 0.068 0.068 (1.00) 0.067 (0.99)

n = 50 0.027 0.026 (0.98) 0.027 (0.99)

n = 100 0.012 0.011 (0.89) 0.011 (0.94)

S.4 (γ = 4)

n = 20 0.076 0.058 (0.76) 0.068 (0.90)

n = 50 0.027 0.020 (0.76) 0.023 (0.87)

n = 100 0.012 0.007 (0.60) 0.007 (0.62)
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Table 11 Empirical coverage probabilities of nominal 95%confidence intervals forβ1 in the case of
Specification S.1 (in percent). The numbers in parentheses express the ratios of the average length of
a given confidence interval to the average length of OLS-HC. The regressors areU [1, 4]-distributed
and the error terms follow a standard normal distribution

OLS-HC OLS-Max WLS-HC WLS-Max ALS-HC ALS-Max

S.1 (γ = 0)

n = 20 96.4 97.1 (1.02) 92.7 (0.91) 93.6 (0.93) 95.4 (0.98) 96.1 (1.00)

n = 50 95.5 96.2 (1.02) 93.3 (0.97) 94.1 (0.99) 94.9 (0.99) 95.7 (1.01)

n = 100 95.4 95.9 (1.02) 94.1 (0.99) 94.7 (1.01) 95.1 (1.00) 95.6 (1.01)

S.1 (γ = 1)

n = 20 96.6 97.1 (1.01) 93.0 (0.81) 93.9 (0.82) 95.0 (0.91) 95.6 (0.93)

n = 50 95.7 96.7 (1.04) 93.9 (0.85) 94.7 (0.88) 94.2 (0.91) 95.1 (0.93)

n = 100 95.5 96.7 (1.06) 94.3 (0.81) 95.2 (0.84) 94.1 (0.82) 95.1 (0.85)

S.1 (γ = 2)

n = 20 96.3 96.6 (1.00) 92.9 (0.58) 93.9 (0.59) 94.4 (0.70) 94.4 (0.71)

n = 50 95.4 96.3 (1.03) 94.1 (0.60) 95.1 (0.62) 94.3 (0.62) 94.8 (0.64)

n = 100 95.4 97.2 (1.09) 94.3 (0.50) 96.7 (0.56) 94.3 (0.50) 96.7 (0.56)

S.1 (γ = 4)

n = 20 96.1 96.2 (1.00) 94.2 (0.31) 94.9 (0.32) 94.2 (0.40) 94.8 (0.41)

n = 50 94.8 95.2 (1.01) 94.6 (0.27) 97.1 (0.31) 94.5 (0.27) 97.0 (0.31)

n = 100 95.7 97.6 (1.11) 95.8 (0.18) 99.9 (0.32) 95.8 (0.18) 99.9 (0.32)
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