A Panel Data Approach for Spatial and Network Selection
Models

-PRELIMINARY VERSION-

Sophia Ding* and Peter Egger**

May 2, 2018

Abstract

Many data in the social sciences at large and in economics in particular feature some form
of spatial or network interdependence. For instance, firms that share the same geography or
the same input-output network relations have been shown to adopt certain strategies (market
entry, exporting, foreign plant set-up, etc.) in a way that suggests spatial or network inter-
dependence. Often data on these firms are incomplete (in the sample- or treatment-selection
sense). However, there are no models to date that would allow researchers to account both for
selection on unobservables as well as spatial or network patterns with panel-data. The present
paper contributes to the literature by proposing a two-step approach towards selection on unob-
servables in the spirit of Heckman (1976, 1979) and Wooldridge (1995) but for panel-data with
spatial or network interdependencies in both the selection and the outcome equation. Apart
from outlining the econometric model and the associated estimation procedure for parameter
point estimates as well as their variance-covariance matrix, the paper illustrates the suitability
of the proposed approach in finite samples by way of Monte Carlo simulations. Moreover, we
intend to apply the model to illustrate the relevance of self-selection of firms into exporting

when analyzing the size of the exporter-wage premium in the city of Shenzhen, P.R. China.

Keywords: Spatial and network interdependence; Sample selection; Treatment selection; Panel

data

JEL-codes: C23; C33; C34.

*Sophia Ding, ETH Zurich, LEE G104, Leonhardstrasse 21, 8092 Zurich, Switzerland, E-mail: ding@kof.ethz.ch.;

**Peter Egger: ETH Zurich and CEPR, LEE G101, Leonhardstrasse 21, 8092 Zurich, Switzerland, E-mail: eg-
ger@kof.ethz.ch. The authors gratefully acknowledge financial support by the Swiss National Science Foundation
grant CRSII1.154446 ”Inequality and Globalization: Demand versus Supply Forces and Local Outcomes”.




1 Introduction

Cross-sectional interdependence through spatial or network relations among economic units or
agents is a salient feature of many data in the social sciences in general and in economics in partic-
ular. For instance, firms that share the same geography, the same product market, the same factor
market, or vertical links through input-output relations have been shown to adopt certain strate-
gies (market entry, exporting, foreign plant set-up, etc.) in a way that suggests spatial or network
interdependence. The latter means that economic outcomes of firms — conditional on observable
characteristics that may account for part of the unconditional interdependence in outcome — feature
a pattern of geographical or network interdependence. There is also evidence that individuals adapt
their behaviour (learning effort, sports performance, etc.) depending on their peers or friends in a
social network. Also with individuals, it appears that conditioning on their characteristics alone is
not sufficient to explain the interdependence in outcome. Similarly, jurisdictions such as countries,
subnational macro regions, or municipalities adopt policies (subsidization of certain firm activities,
investments of specific types, implementation of particular rules, etc.) in an interdependent way.
And also there, the feature of interdependence tends to prevail after conditioning on observables.
There is evidence on the salience of interdependence of economic outcome both in cross sections as

well as in panels of data at all levels, micro, meso, and macro.!

IFor example, Conley and Ligon (2002) and Ertur and Koch (2007) find evidence that economic growth is
correlated between countries, e.g. due to technological interdependencies. There is also empirical evidence for the
existence of productivity spillovers on the region-level (Holtz-Eakin, 1994), the industry-state level (Audretsch and
Feldmann, 1996) and on the plant-level (Martin, Mayer and Mayneris, 2011). Furthermore, spatial interdependence
seems to play a role for bilateral trade flows (Behrens, Ertur, and Koch, 2012; Egger, and Pfaffermayr, 2016) as
well as bilateral FDI (Blonigen, Davies, Waddell, and Naughton, 2007; Baltagi, Egger, and Pfaffermayr, 2007, 2008).
Several studies focus on the spatial interdependence of (local) government policy-making regarding value-added
taxes (Egger, Pfaffermayr, and Winner, 2005), corporate taxes (Devereux, Lockwood, and Redoano, 2008), and
fiscal policy (Case, Hines, and Rosen, 1993). The spatial correlation of firm-level decision-making has also been
studied extensively: for instance, Pinkse, Slade, and Brett (2002) examine spatial price competition among gasoline
wholesalers. More recently, the role of export spillovers has been scrutinized both for the composition of the export
basket of countries (Bahar, Hausmann, and Hidalgo, 2014) and the formation of importer-exporter links between
firms (Kamal and Sundaram, 2016). Finally, there is a large body of literature concerned with the study of networks
in social interactions, which has brought forth both theoretical (Ballester, Calvé-Armegol, and Zenou, 2006; Lee,
2007b; Blume, Bock, Durlauf, and Jayaraman, 2015) as well as applied contributions, e.g., on the role of peer
effects among students in a class room (Calvé-Armengol, Patacchini, and Zenou, 2009; Cohen-Cole, Liu, and Zenou,

forthcoming), for labor market participation (Ioannides, and Loury, 2004), and for criminal activities of individuals



In practice, cross-sectional interdependence poses a problem whenever the data at hand are
incomplete. As incompleteness rarely occurs at random, interesting cases are the censoring (e.g.,
through top- or bottom-coding) or truncation of data, where selection into sample versus treatment
can be distinguished. With sample selection, outcome is observed only for a non-random sample.
With treatment selection, counterfactual outcome is unobserved for any (binary) treatment state. In
the latter case, the average treatment effect (ATE) as a parameter on a binary treatment indicator is
of interest beyond the other model parameters. However, to date there are no suitable econometric
models to generically cover the case of, e.g., truncation in the presence of interdependence, in
particular not with panel data.?

The present paper contributes to closing this gap in the literature by outlining panel-data
approaches for sample and treatment selection as two related cases in the presence of cross-sectional
spatial or network interdependence. Specifically, the paper proposes a two-step approach towards
selection on unobservables in the spirit of Heckman (1976, 1979) for panel-data as in Wooldridge
(1995) but with spatial or network interdependencies in both the selection and the outcome equation.
Specifically, we adapt the selection-correction approach to the case of selection into the sample or
treatment under spatial or network interdependence.

The estimation procedure of the spatial or network sample-selection model (SNSS) and the
spatial or network treatment-selection model (SNTS) follows three steps: first, we estimate the
selection equation using a pooled Bayesian Spatial/Network Error Probit Model to obtain consis-
tent estimates of slope parameters and the spatial autoregressive parameter; second, we use these
estimated parameters to construct a spatial/network adjustment factor and a (generalized) Inverse

Mills’ Ratio; finally, we add the estimated spatially/network adjusted (generalized) Inverse Mills’

(Patacchini, and Zenou, 2012).
2Clearly, there are cross-section models (see, e.g., Kelejian and Prucha, 1998, 1999, 2010; Lee, 2004, 2007a;

and the survey article by Anselin and Bera, 1988) and panel-data models (see Kapoor, Kelejian, and Prucha,
2007; Lee, 2007b) which feature interdependence with complete data. Moreover, there are cross-section models (see
Heckman, 1976, 1978; Greene, 1995) and panel-data models (see Nijman and Verbeek, 1992; Wooldridge, 1995; Vella
and Verbeek, 1999; Semykina and Wooldridge, forthcoming) for the analysis of data-incompleteness in the form of
truncation, mostly focusing on sample selection. Also, there are a few models to tackle data truncation in the form of
sample selection with cross-section data (see McMillen, 1995; Flores-Lagunes and Schnier, 2012; Dogan and Tagpinar,
2017). However, to date there is no approach which would support the analysis of data-incompleteness in the form
of truncation generically — covering both sample and treatment selection — with cross-sectional interdependence in

panel-data.



Ratio in a control function in the respective outcome equation to obtain consistent estimates of
the slope parameters as well as the spatial-/network-interdependence parameter using pooled Non-
Linear Least Squares. Apart from point estimates, we derive an estimator of the variance-covariance
matrix of the model parameters which builds on the insights of Heckman (1979) as well as Murphy
and Topel (1985, 2002) but is adapted to accommodate the inherent interdependence among the
cross-sectional units.

We illustrate the suitability of the proposed approach in finite samples by way of Monte Carlo
simulations and compare it to other approaches which ignore selection and/or ignore cross-sectional
interdependence. There are three main insights from these experiments: first, as expected, the
SNSS/SNTS models outperform other ones in the presence of spatial/network interdependence. The
bias of these estimators tends to increase with the magnitude of absolute deviations of the spatial-
/network-interdependence parameter from zero. Second, even in the absence of interdependence,
the proposed estimator is only marginally outperformed by its more efficient competitors. Third,
overall, the performance of the proposed SNSS/SNTS estimators increases with the number of
cross-sectional units.

We intend to apply the proposed SNTS estimator to study the exporter-wage premium on
average wages paid in Chinese firms when considering the spatial clustering of exporters as well as
a spatial element in wages. Specifically, doing so we will use data from the Chinese Annual Survey of
Industrial Firms Database (CASIF) for the city of Shenzhen in the Peoples’ Republic of China. The
exporter-wage premium, i.e., the fact that exporting firms pay higher wages per worker than non-
exporters on average, has been documented in many data-sets for various countries, always assuming
that firms’ selection into exporting was independent of other firms (and often even random), and
that wages were set independently as well (see Klein, Moser, and Urban, 2013; Egger, Egger, and
Kreickemeier, 2013; Egger, Egger, Kreickemeier, and Moser, 2017). Indeed, we are expecting the
presence of interdependence in both participating in export markets as well as in wage payments
and that ignoring them will lead to a bias in the data at hand.?

The remainder of this paper is organized as follows: Section 2 sets up the econometric model

3There is both theoretical and empirical evidence suggesting that shocks to the profitability of exporting dissipate
across firms due to spatial and network interdependence (see Antras, Fort, and, Tintelnot, 2017; Baltagi, Egger, and
Kesina, 2017; Tintelnot, 2017; Chaney, 2014). Moreover, there is theoretical and empirical work suggesting that
the wages paid have a spatial pattern and might therefore be correlated across firms due to local labor markets and

worker flows (see Moretti, 2011).



for the spatial/network sample selection and the spatial/network treatment selection case. Section
3 outlines an estimation procedure for these models. To examine the finite sample properties of
our estimators we conduct Monte Carlo experiments and report the associated design as well as
results in Section 4. We then derive the analytical variance-covariance matrix of the parameters and
provide an estimation strategy in Section 5. In Section 6 we give a brief overview of the empirical

application that we intend to do next. Section 7 concludes.

2 Econometric Model

In this section, we outline panel-data approaches for sample selection versus treatment selection as
two closely-related cases in the presence of spatial or network interdependence among the cross-
sectional units. With sample selection, outcome is observed only for a non-random sample. With
treatment selection, we still have truncation due to a lack of observability of counterfactual outcome
for the treated and the untreated and a non-random selection into treatment. In the latter case,
the average treatment effect (ATE) as a parameter on a binary treatment indicator is of additional
interest. Overall, what we will discuss and consider is an approach of selection on unobservables
in the spirit of Heckman (1976, 1979) and Wooldridge (1995) but for panel-data with spatial or

network interdependencies along the lines of Kapoor, Kalejian, and Prucha (2007).

2.1 Some General Notation

Let us use indices ¢t = 1, ..., N and t = 1, ..., T to refer to a unit, e.g. a firm or an individual, and time
period, respectively. For example, we could think of IV as those firms among all potential producers
that actually, owed to a lucky productivity draw, produce during the period of investigation of
length T. We could then consider the emergence and disappearance of firms as a random process
conditional on the aforementioned observables. In any case, the number of firms present in year ¢,
Ny, may vary with ¢, and so may the number of years in which firm ¢ is observed, T;, vary with .
We denote the number of observations in the data by n = Zle N, = Zfil T;.

Models of the kind we are interested in involve two equations. We will generally use superscript
¢ = {A, B} to refer to the selection equation (A) and the outcome equations (B), respectively,
of the model. Moreover, we will refer to latent dependent variables as yf¥ and to their observed

counterparts as y.;. While outcome yZ will be continuous, y; will be a binary selection indicator.



We will refer to the non-stochastic, exogenous, time-variant explanatory variables in equation ¢ by
x¢,, to the parameters on them by 3, and to the disturbances which feature spatial or network
interdependence by ef;. We will refer to the rank of zf; by k* and assume that z;} contains 25,
whereby kA > kB4

Finally, the subsequent analysis will involve different types of disturbances: efi will be ones that
feature spatial or network interdependence among the cross-sectional units (E [ef;ef;] # 0 at least
for some i # j); an error component ,uf will capture time-invariant shocks which are specific to
individual ¢ but independent between ¢ and any j # ¢; and an error component Efi are idiosyncratic
shocks which vary by ¢ as well as ¢ and which are independent between 7 and any j # i as well as ¢
and any s # t. We will refer to the later two error components jointly as &f; = pf + &f,.

We will see that an introduction of some further notation below will help simplifying the sub-

sequent model outline.

2.2 Selection Equation

Let the latent outcome underlying ;1 linearly depend on the k“ x 1 vector x{} through

yr = aVpt e, foreach t=1,...,T;i=1,..,N,

yii = 1y > 0.

Consider that eg features spatial or network interdependence along the lines of Kapoor, Kalejian,

and Prucha (2007). Then, we can specify

efi = o> wijely + 3Nt + ¢ (1)
JEN:
A _ A, _A
§i = Wi tew (2)

where 9; is the set of N; cross-sectional units which exist at time ¢, wy;; is a known scalar which
parametrizes the neighborliness in some space or the network at time ¢ between two cross-sectional

units 4 and j, p4 is an unknown parameter which scales the strength of interdependence between

any two cross-sectional units at time ¢, #{1/64 is a parametrization of the individual-specific fixed

4A well-known disadvantage of the situation with k4 = kB under sample selection is that identification of the
parameters relies exclusively on the functional form of the model. This problem pertains to small samples. With

treatment selection, the problem is even absent (see Vella, 1998).



effect of ¢ along the lines of Mundlak (1978), Chamberlain (1982), and Wooldridge (1995) with

7A:

=T
A =771, xf and parameter vector 64

2.3 Outcome Equation

In general terms, we assume that outcome follows a similar generic model structure as selection.

However, here we must distinguish between the cases of sample selection with

B B/gB |, B
Yiw = a5 B° tey
s Joun i yi=1
Yii = . A
— if yi; =0
and treatment selection with
B B B B B
Yii = Yu =y +rg v +eg.
Regarding disturbances, we assume
B B B | =B/sB | B
€ = P Z wiijer; + ;07 + &g (3)
JEM:
B _ ,B, _B
i = i teg- (4)

The interpretation of parameters is similar to the one on latent outcome in the selection equation
so that we can suppress a detailed discussion here. However, what is important to note with regard
to sample selection, is that the number of units underlying latent outcomes ({Ny, T;,n} for time
period, individual, and the overall sample) and observed outcomes ({IN, < N;, T, < T;,n < n})

differ, and the aforementioned processes for eZ and ¢Z are generated on the full sample.

2.4 Variance-covariance Matrix for the System of Selection and Outcome

Equations

Before stating the variance-covariance matrices of different concepts of disturbances in the above
model, let us state some assumptions.

Assumption 1: {uf ef}

We assume that ,uf and 5@ are distributed independently each, whereby E {(ue)ﬂ = O'ZZ and



E [/if/if] =0 fori # j as well as E [(ez)fl} = 0% and F [g;e S]] = 0 for ¢ # j and/or t # s.
Moreover, we assume that E [,ufsfj] = 0 for any tuple {tij}.

Assumption 2: E [{éfg]

We assume that the elements of ¢Z are linear in the respective elements of ft‘?, whereby ¢£ =
T{f} + v and vf is a residual term that does not depend in any way on the selection equation
and whose i-specific and ti-specific components are identically and independently distributed each.
Of this linear relationship, joint normality is a special case, and we will outline the analysis for
this case, here, as the derivation of truncated-variance expressions is transparent, even though
most of the results would apply also under the milder assumption of ££ being linear in §f} (see

Wooldridge, 1995, for the case without spatial/network dependence). Under joint normality and

after defining B [pfuf] = 0% and E [ufuf] = 0%as, E [ee;] = 02 and B [efiefl] = 0245, as
well as E [£f¢f] = 5[ = U’ .+ 02 and E [ = §AB = 0¢pa = 0yaB + 048, we have for

observation ti

o

i 0 0’2 O¢AB
o~ A (5)

O'EAB O’?B

ool
o

te

and, after stacking the ffi first within a year into the N; x 1 vectors & and then into the TN x 1

vectors £¢ = (&7, ..., %), and after defining the T'x T matrix of ones Jr and the size-T and size-N

identity matrices I7 and Iy, respectively, we obtain

A
0 Q Q
5 ~ N bl EA EAB ) With
¢B 0 Qepa Qs
Qe = (Jr®o2sly)+02(Ir ® Iy),
Qepa = Q/fAB = (Jr ®o,paln) +oma(lr ® In),

where Q¢pa = QéAB.

Let wy;; be a typical element of the N; x N; matrix W, Iy, be an Ni-size identity matrix, ¢y,
be an Ny-size vector of ones, and Rf = (rf;;) = (In, — p"W;)~". When stacking the vector Z{ into
the matrix ¢ = (z{,...,z%)" and stacking e, in the same way as £, we can state the reduced

forms ef = RE(z"6% + ¢f) and e = R*((17r @ )6 + ¢%), where R = diag:(Ry).



Assumption 3: p’ and Wiij
Following Kelejian and Prucha (2010) we assume that the elements wy,;; are normalized so that
either Wiiy, is an Ny x 1 vector of ones (row normalization) or the minimum of the maximum
entries of the row-sum vector Wyiy, and the column-sum vector W/ty, is bounded from above by
unity. Moreover, assuming that |pf| < 1 is a sufficient condition for the inverses R{ to exist and to
be finite.

When using uf; = Z;V=1 rfijgfj as well as uf = R/¢! and u® = R°¢’, we can state the variance-

covariance matrix

u? 0 Q, Q.
~ N , T with
UB O QuAB QuB
Qe = R'QuRY
and,
Qs = RPQeasRY.

For observation ti, the latter can be stated as

4 2 N A2 N . B.A
LY 02a i (riyy)”  oean 3001 vl
b
B N B A 2 N B\2
Y 0 Oepa Y i1 ThijTiiy  O¢n Dij—1 (rf)

2.5 Control-function-augmented Outcome Equation

In order to correct for (sample/treatment) selection bias, we first compute the expectation of the
outcome equation, conditional on being selected into the sample/into treatment. Note, that as
we do not observe the latent variable y;}*, the disturbances of the selection equation uf} are un-
known. Therefore, we condition on the selection indicator y;; instead of uii. Since we condition

on the set of covariates {CL‘AO, scB} this problem reduces to finding the truncated expectations of ug :

Spatial/Network Sample Selection

N
Elyflyfy = 1,227 = 285 +> rfzP'6" + Elufllyft = 1,2, 2”]

=1

N
= .Ig/BB + Z T'gjij/(sB + thiAti (6)
j=1



Spatial/Network Treatment Selection

[yt1|y£7 Ao’xB] = aytz +xt2 5B +Zrtzg ] 53 +E[ut2|y£’ AO7$B]7
= aytz + Ly ﬂB + Z TS] 'B/(;B + T’lpti)\gz’ (7)
j=1
where 249 are the elements of matrix z4 = (:1:’14', ey xj‘\‘,’) that are not contained in 22 = (mf', . xﬁ’)
and where we have defined
N
. (TEBA o Z] 1 7"5]7’2?] o xtzﬂA + Z] 1 Ttl_] AéA
T = 5 ) Q;Z)t’i - N A4\ 2 s Rti =
Tga X5 (i) LD ()
N ¢(Zti) g ?Jf} — O (24)
Ati = s A =9 (26) :
P (21) P (243) [1 — @ (213)]

¢(-) and ®(-) denote the Standard Normal PDF and Standard Normal CDF respectively.

We have replaced the truncated expectations of uf, i.e. Euf|y/t = 1,249 5] (sample selec-
tion) and E[uf |y}, 24°, 2B] (treatment selection), with the Inverse Mills’ Ratio \;; and generalized
Inverse Mills’ Ratio A{;, which are multiplied by the spatial/network adjustment factor t; (see
Appendix 1 for proofs).

When estimating the regression equation, ignoring these truncated expectations would lead to
biased parameter estimates stemming from omitted variable bias. Therefore, in order to correct for
sample selection (treatment selection) bias, we can include the spatially /network adjusted Inverse
Mills’ Ratio 1 Ae; (¢4A7;) as additional regressor in the outcome equation akin to Heckman (1979).
The spatially /network adjusted Inverse Mill’s Ratio has previously been used as correction function
to correct for sample selection in McMillen (1995) and Flores-Lagunes & Schnier (2012) for cross-

sectional data.?

50nce having conditioned on uﬁ, ug is mean independent of xt and hence x (this is essentially the approach
taken in McMillen (1995) and Flores-Lagunes and Schnier (2012) for the cross-sectional case).The main drawback of
this approach (which essentially is a special case of the assumptions made in Wooldridge (1995)) compared to e.g.
Nijman and Verbeek (1992), Vella and Verbeek (1999) is that by conditioning on only u;} and not u#*, the selection
cannot depend on past values of the selection indicator y .. At the same time, this allows for the serial correlation
in utl to be fully unrestricted. If we wanted to include a spatial lag of y“ in the selection equation, we would have

to condition on uf

10



3 Estimation Strategy

The estimation of the parameters of the outcome equation follows three steps: First, we estimate
the selection equation using a Pooled Bayesian Spatial/ Network Error Probit Model to
obtain consistent estimates of parameters 04 = {B:A,gB,ﬁA}, where BA = % and 04 = %.
We then use these estimated parameters to construct the Spatial/Network Adjustment/Network
Factor 1&1' and the Inverse Mills’ Ratio ;\ti or the Generalized Inverse Mills’ Ratio 5\th Finally,
we add 1/;75\” or 1[)1;\% as additional regressor to the respective outcome equation. We then esti-
mate the outcome equation using Pooled Non-Linear Least Squares to obtain the vector of
parameters 68 = {BB,SB,%,/SB} (spatial/network sample selection) or 68 = {OLBAB,(S]B,ﬁﬁB}
(spatial /network treatment selection). The remainder of this section gives more detail on each of

the estimation steps.

Step 1: Pooled Bayesian Spatial/Network Error Probit Model

Recall the selection equation:

N N
Ax Al pA A AIsA | A . A A
Yii =Ty B+ E Th; T 07 +ug; with ug; = E Tii&t
=1

j=1
This equation cannot be estimated directly, as rg%j is a function of the unknown spatial autocorre-
lation parameter pt. However, R = (In, — pW;)~t = 32, p MW/} is a geometric progression,

In, + pAW; + (p1)?W? (Kelejian & Prucha, 1998). The

Q

which we can approximate by R{
selection equation then becomes:
N N
vt = B+ ) w060 + > wiE! (01267 + uf) (8)
j=1 j=1
We estimate (8) using a Pooled Bayesian Spatial/Network Error Probit Model with
binary yii as dependent variable (LeSage & Pace, 2009).57 Pooling the data results in consistent

estimation of the regression parameters. Note, however, that (as in standard Pooled Probit Models,

6We chose to estimate the first stage using a Bayesian Spatial Error Probit Model as alternatives currently avail-
able to estimate non-linear spatial models seemed unattractive: the Pinkse & Slade (1998) GMM estimator performs
poorly in Monte Carlo studies (Calabrese and Elkink, 2014). Maximum Likelihood estimation faces computational
issues as taking into account the spatial structure of the variance-covariance matrix of uﬁ requires multidimensional

integration in addition to computing the log determinant of a large matrix (Fleming, 2004).
Since it is tedious to find the joint posterior distribution of the first-stage parameters analytically, we can sample

11



see, e.g., Arulampalam, 1999) estimates of coefficients 34 and 6# are scaled by Tea 2 We therefore

obtain the vector of estimated parameters 68 = {BB ,SB ,7,pP} from our first-stage regression,

~ A ~ A
where 4 = 8= and 64 = 2=,
TeA OeA

Step 2: Compute Correction Terms

We use the estimated first-stage parameters to construct the spatial adjustment/network factor ’(/AJZ

and the Inverse Mills’ Ratio S\ti or the Generalized Inverse Mills’ Ratio S\fi:

A, o Z;V 1 rt’b]/rz?] 3 ) o d) (gtl) 19 _ s y{? - (p (2t1)
S I Ten M TR e TEm))
1= L,

5A A SA
~ xtzﬂ + Z] 1 thg 4
where Z; = ,

Z] 1(7"233)

and f{}j is the ij-th element of the matrix (I, — pAW;)~*

Step 3: Pooled Non-Linear Least Squares

Akin to Heckman (1976, 1979) we add the correction terms 1/315\,52 or 1@5\% as additional regressor
to the respective outcome equation.

Outcome Equation (Spatial/Network Sample Selection)
[ytz |ytz - ’ AO7$B] = ﬁB + Zrtlj B/(SB + 71&25\21

ZN rBpd
mtl ﬂB + Z Tt’L] ] =1 tUAtZ] )\ti
Z] I(Ttlj)

them using a Monte Carlo Markov Chain (MCMC). Essentially, the estimation procedure involves sequentially

sampling the model parameters from their respective conditional distributions. Doing this for a large number of
repetitions results in a sequence of draws for the first-stage parameters that converge to the unconditional joint
posterior distribution. We sample the T'x N parameters in the latent variable vector yA"7 which follows a multivariate
truncated normal distribution, using an m-step Gibbs-Sampler suggested in Geweke (1991) as discussed in LeSage
and Pace (2009). Note that we cannot simply sample a sequence of 7' x N conditional univariate truncated normal
distributions as initially proposed in LeSage (2000) and which is implemented in the LeSage Spatial Econometrics

Toolbox for the SEM Probit Model.
8 As in the non-spatial /non-network Probit model, we face an identification problem, since the several parameter

A A
values result in the same value of the likelihood function. Therefore, only JB—A and :—A are identified.
3 3

12



Outcome Equation (Spatial/Network Treatment Selection)
[ytv |yﬁ7 AO? :EB] = ayﬂ + L; BB Z sz_j 'B/(;B =+ Tlrbi)‘tgl

N
Zal—tw”ﬁav

Since rﬁj is a non-linear function of the unknown spatial autocorrelation parameter p?, we

B
= aytz + xtz B + Zrtw _]

estimate the outcome equation using Pooled Non-Linear Least Squares to obtain the vector
of parameters 0 = {33753,%,,63} (spatial /network sample selection) or 68 = {d,BB,SB,%,ﬁB}

(spatial /network treatment selection).

4 Monte Carlo Evidence

In order to explore the finite-sample performance of the Spatial /Network Sample Selection Esti-
mator and the Spatial/Network Treatment Selection Estimator, we conduct a set of Monte Carlo
simulations. In this section, we outline the design of the respective experiments and summarize the

associated results.

4.1 Monte Carlo Design

For the model outline in this subsection, it is useful to stack the data within a time period t.
Moreover, the matrix of exogenous regressors in the selection equation will generally have two

columns and contain one exogenous variable from the outcome equation, z2, and an additional

regressor which exclusively appears in the selection equation, z{°, so that 7[xtB ,x{w] and

zA = [zB, 2]

, where bars indicate individual-specific averages over time ¢ as above. Moreover,
we will use the reuced-form expressions for residuals of uf* = R (u? + &f'), uf = RE(u® + &B).
Then, the data-generating processes for the latent selection variable y{**, the selection indicator y;*,

and outcome y? can be written as follows:

Selection Equation
=2V + RN 4w

yle[yf* > 0]

13



Outcome Equation (Spatial/Network Sample Selection)

vt = Blal + 7RI +uf
5 yrr iyt =1
Yoo = . A

— if y*=0

Outcome Equation (Spatial/Network Treatment Selection)
yP = ayi + BPxP + 6PRPZE 4 uf.

Hence, the outcome equation contains only one time-variant exogenous regressor, xtB, while
the selection equation contains two time-variant exogenous regressors, [zf,27*°]. Each of the
elements in [mtB ,xfo] will be generated independently by randomly drawing from a univariate
standard normal distribution, A'(0,1). The N; X N; spatial/network weights matrix W; underlying
R! = (In — p*W;)~! will be based on a row-normalized 5-before-5-behind wrap-around structure,

akin to the design in Kapoor, Kelejian, and Prucha (2007) and Baltagi, Egger, and Kesina (2017).°

Hence, the elements of W; are either 0 or 0.1.

The error components u, u?, e, and & are drawn from the following joint normal distribu-
tions (except for one configuration for each model, where p*f = B4 =0, and A% =24 =0, i.e.
T =0).

pt Y 0 , 1 05
uB 0 05 1
el Y 0 ’ 1 05
eB 0 05 1

The following parameter configurations stay the same throughout all experiments:

Selection Equation:
The parameters on P and zfo in the selection equation are 8{*=1, B4'=1, and the parameters

on P and 749 in the selection equation are d;'=1, 63'=1. Accordingly, the actually estimated

9In the case of 20 ordered individuals, such a structure entails that individual 1 has the neighbors
{16;17;18;19;20} “before” it and the neighbors {2;3;4;5;6} “behind” it, individual 2 has the neighbors
{17;18;19;20; 1} ”before” it and the neighbors {3;4;5;6; 7} “behind” it, etc.
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parameters in the selection equation are 51420.7077 Bf:0.707, 5{‘20.707, 5;‘:0.707

Outcome Equation (Spatial/Network Sample Selection):
With spatial/network sample selection, The parameters on 2 and The parameters on z” in the

outcome equation are BIB =1 and (51’3 =3, respectively.

Outcome Equation (Spatial/Network Treatment Selection):
Finally, with spatial/network treatment selection, the average-treatment-effect parameter on the
binary treatment indicator y;! in the outcome equation is a=1 and the other parameters are iden-

tical to the case of sample selection: SZ=1, and §8=3.

In any case, the spatial/network autocorrelation parameters take on different values, namely
p? ={0;0.5;0.75} and p® = {0;0.5;0.75}. We run experiments for two cross-sectional sample sizes

of N = {250;500}, we generally set T = 3, and conduct M = 1000 draws.'? Hence, we end up with

36 different simulations which are based on 9 configurations of (p, p?) at 7 = UngA = % = 0.707
TeA

for each one of the two cases of sample and treatment selection. Moreover, there are 2 simulations

which are based on 1 configuration with (p? = 0, p® = 0,7 = 0) for each one of the two cases of

sample and treatment selection. The corresponding results are presented in the subsequent section.

4.2 Results

We report the results of our Monte Carlo experiment in the following two tables, where Table 1 is
devoted to the case of sample selection, while Table 2 is devoted to the case of treatment selection.
In each table, we report on the cross-sectional sample size underlying the selection equation in the
first column and on the employed estimation procedure in the second column. We generally compare
the parameters of three alternative estimators. The Spatial/Network Sample Selection Estimator
(SNSS) and the Spatial /Network Treatment Selection Estimator (SNTS) at the top. This estimator
is based on the model outline and routines presented above and involves the selection equation in

(8) and the outcome equations in (6) and (7). Wooldridge’s (1995) estimator for sample selection

10For each one of these 1000 draws, we generate a chain of 2500 draws for the selection equation in the first step,
of which we discard the first 500 ones (burn-in) and use all of the remaining 2000 ones (i.e., use a thinning of zero)

to compute moments of the parameters of the selection equation before proceeding to the second step.
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with panel-data (WSS) and an adapted version thereof for treatment selection (WTS) either of
which ignores the spatial/network interdependence in the data. This estimator is based on the

following selection and outcome equations:

Selection Equation:

yé* = Ty ﬁA + xA/(SA + /”Lz + Etza

vi = 1y >0 )

Outcome Equation (WSS)
ElyBlyt =1,24° 28] = 2888 4 zPB'6B 72\ (10)

Outcome Equation (WTS)

w
[ytz ‘y;‘? A0 xB] = aytl + Ly ﬁB iB,(SB + T)\gi ’ (11)

. (2 w vh—a(2V AgA | zAgA
with A = S 3 = 0 () ey e o -

O'sA
Finally, we present the results for a pooled non-linear least-squares (NLLS) model of the form

E[ytz|z } = 5B+Zrtzy BléB? (12)

B § : B -B/sB
aytz + xtz B + rtzg ;0 ’
j=1

Elyg "]

which ignores the issue of endogenous selection (and, hence, the spatial/network adjusted Inverse
Mills’ Ratio/generalized Inverse Mills’ Ratio) in Step 2.

In the third column, we indicate which statistic the cells to the right reflect, namely the Mean
(parameter point estimate), the Bias, and the RMSE (root mean-squared error). The remaining
columns pertain to statistics of the individual model parameters of interest which are mentioned at
the top of the table.

In a vertical dimension, each one of the two tables is organized in 10 panels (dubbed Panel a
to Panel j), each of which contains the results for one configuration of (p#, p?, 7). We assume that
7 = 0.707 for any configuration of (p, p?) in Panels a-i. Hence, for one of the configurations in

those panels, namely where (p* = 0, p® = 0), the WSS (WTS) estimator is the right one to use,

16



while SNSS (SNTS) is inefficient and NLLS is biased. In Panel j, (p# = 0,p® = 0,7 = 0), so that
NLLS, SNSS (SNTS) and the WSS (WTS) estimators are inefficient as each if them neglects to

restrict at least one of the above parameters to zero.
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Table 1: Spatial/Network Sample Selection:

Results for N={250;500}, T=3, M=1000

At

p3

of'

33

7

B

T P
Panel a True 0.707 0.707 0.707 0.707 0 1 3 0.707 0
N=250 SNSS Mean 0.739 0.740 0.743 0.744 -0.114 1.001 3.003 0.699 -0.024
Bias 0.032 0.033 0.036 0.037 -0.114 0.001 0.003 -0.008 -0.024
RMSE 0.092 0.085 0.193 0.177 0.245 0.082 0.185 0.126 0.189
WSS Mean 0.715 0.716 0.719 0.718 0.999 3.011 0.705
Bias 0.008 0.009 0.011 0.010 -0.001 0.011 -0.002
RMSE 0.082 0.075 0.143 0.140 0.082 0.180 0.127
NLLS Mean 0.996 2.955 -0.119
Bias -0.004 -0.045 -0.119
RMSE 0.082 0.191 0.227
N=500 SNSS Mean 0.721 0.723 0.730 0.718 -0.066 0.999 3.000 0.703 -0.006
Bias 0.014 0.016 0.023 0.011 -0.066 -0.001 0.000 -0.004 -0.006
RMSE 0.055 0.059 0.133 0.133 0.176 0.050 0.127 0.087 0.107
WSS Mean 0.709 0.711 0.714 0.706 0.998 3.002 0.707
Bias 0.002 0.004 0.007 -0.001 -0.002 0.002 0.000
RMSE 0.052 0.056 0.102 0.102 0.050 0.125 0.087
NLLS Mean 0.988 3.006 0.012
Bias -0.012  0.006 0.012
RMSE 0.052 0.126 0.109
Panel b True 0.707 0.707 0.707 0.707 0.5 1 3 0.707 0
N=250 SNSS Mean 0.732 0.735 0.736 0.734 0.449 1.000 3.004 0.700 -0.024
Bias 0.025 0.028 0.029 0.027 -0.051 0.000 0.004 -0.007 -0.024
RMSE 0.091 0.084 0.198 0.185 0.131 0.081 0.183 0.125 0.187
WSS Mean 0.653 0.670 0.681 0.708 0.997 3.012 0.676
Bias -0.054 -0.037 -0.026 0.001 -0.003 0.012 -0.031
RMSE 0.096 0.081 0.140 0.134 0.081 0.178 0.125
NLLS Mean 0.995 2.953 -0.114
Bias -0.005 -0.047 -0.114
RMSE 0.081 0.189 0.222
N=500 SNSS Mean 0.716 0.719 0.721 0.711 0.482 1.000 2.998 0.702 -0.001
Bias 0.009 0.012 0.014 0.004 -0.018 0.000 -0.002 -0.005 -0.001
RMSE 0.055 0.060 0.134 0.140 0.074 0.050 0.127 0.090 0.102
WSS Mean  0.660 0.657 0.686 0.671 0.999 2998 0.671
Bias -0.047 -0.050 -0.022 -0.036 -0.001 -0.002 -0.036
RMSE 0.069 0.074 0.098 0.109 0.050 0.125 0.093
NLLS Mean 0.990 2.997 0.014
Bias -0.010 -0.003 0.014
RMSE 0.051 0.126 0.107
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Table 1: Spatial/Network Sample Selection: Results for N={250;500}, T=3, M=1000 (cont.)

. R . Y A & T

Panel c True 0.707 0.707 0.707 0.707  0.75 1 3 0.707 0
N=250 SNSS Mean 0.736 0.739 0.738 0.728 0.735 1.000 3.005 0.705 -0.025
Bias 0.029 0.032 0.030 0.021 -0.015 0.000 0.005 -0.002 -0.025

RMSE 0.102 0.095 0.206 0.203 0.056 0.080 0.180 0.149 0.191

WSS Mean  0.509 0.533 0.587 0.643 0.997 3.011 0.581
Bias -0.198 -0.174 -0.121 -0.065 -0.003 0.011 -0.126
RMSE 0.211 0.18 0.174 0.140 0.079 0.173 0.175

NLLS Mean 0.997 2.952 -0.107
Bias -0.003 -0.048 -0.107
RMSE 0.080 0.185 0.221

N=500 SNSS Mean 0.721 0.722 0.714 0.707 0.746 0.999 2.999 0.703 -0.002
Bias 0.014 0.015 0.007 0.000 -0.004 -0.001 -0.001 -0.004 -0.002
RMSE 0.061 0.067 0.147 0.150 0.036 0.049 0.127 0.103 0.103

WSS Mean  0.528 0.521 0.603 0.580 0.997 2.997 0.572
Bias -0.179 -0.186 -0.104 -0.127 -0.003 -0.003 -0.135
RMSE 0.186 0.193 0.137 0.159 0.049 0.124 0.158
NLLS Mean 0.991  2.993 0.009
Bias -0.009 -0.007 0.009
RMSE 0.050 0.125 0.107
Panel d True 0.707 0.707 0.707 0.707 0 1 3 0.707 0.5

N=250 SNSS Mean 0.739 0.740 0.743 0.744 -0.114 1.000 3.010 0.701 0.488
Bias 0.032 0.033 0.036 0.037 -0.114 0.000 0.010 -0.007 -0.012
RMSE 0.092 0.085 0.193 0.177 0.245 0.098 0.196 0.183 0.111

WSS Mean 0.715 0.716 0.719 0.718 0.963 3.043 0.628
Bias 0.008 0.009 0.011 0.011 -0.037 0.043 -0.079
RMSE 0.082 0.075 0.143 0.140 0.104 0.196 0.209

NLLS Mean 0.988  2.993 0.423
Bias -0.012 -0.007 -0.077
RMSE 0.097 0.192 0.149

N=500 SNSS Mean 0.721 0.723 0.730 0.718 -0.066 0.999 3.003 0.705 0.495
Bias 0.014 0.016 0.023 0.011 -0.066 -0.001 0.003 -0.002 -0.005
RMSE 0.055 0.059 0.133 0.133 0.176 0.063 0.143 0.131 0.063

WSS Mean 0.709 0.711 0.714 0.706 0.982 3.226 0.758
Bias 0.002 0.004 0.007 -0.001 -0.018 0.226  0.051
RMSE 0.052 0.056 0.102 0.102 0.065 0.268 0.146

NLLS Mean 0.988 2.997 0.506
Bias -0.012 -0.003 0.006
RMSE 0.063 0.143 0.064
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Table 1: Spatial/Network Sample Selection: Results for N={250;500}, T=3, M=1000 (cont.)

. R . Y A & T

Panel e True 0.707 0.707 0.707 0.707 0.5 1 3 0.707 0.5
N=250 SNSS Mean 0.732 0.735 0.736 0.734 0.449 0.999 3.011 0.699 0.487
Bias 0.025 0.028 0.029 0.027 -0.051 -0.001 0.011 -0.009 -0.013

RMSE 0.091 0.084 0.198 0.185 0.131 0.095 0.192 0.173 0.109

WSS Mean 0.653 0.670 0.681 0.708 0.964 3.038 0.679
Bias -0.054 -0.037 -0.026 0.001 -0.036  0.038 -0.028
RMSE 0.096 0.081 0.140 0.134 0.102 0.192 0.189

NLLS Mean 0.987 2.988 0.421
Bias -0.013 -0.012 -0.079
RMSE 0.095 0.189 0.149

N=500 SNSS Mean 0.716 0.719 0.721 0.711 0.482 0.999 3.001 0.702 0.497
Bias 0.009 0.012 0.014 0.004 -0.018 -0.001 0.001 -0.005 -0.003
RMSE 0.055 0.060 0.134 0.140 0.074 0.061 0.141 0.127 0.061

WSS Mean  0.660 0.657 0.686 0.671 0.982 3.222 0.808
Bias -0.047 -0.050 -0.022 -0.036 -0.018 0.222 0.101
RMSE 0.069 0.074 0.098 0.109 0.064 0.264 0.170
NLLS Mean 0.990 2.987 0.508
Bias -0.010 -0.013 0.008
RMSE 0.061 0.141 0.064
Panel f True 0.707 0.707 0.707 0.707  0.75 1 3 0.707 0.5

N=250 SNSS Mean 0.736 0.739 0.738 0.728 0.735 0.999 3.012 0.699 0.487
Bias 0.029 0.032 0.030 0.021 -0.015 -0.001 0.012 -0.008 -0.013
RMSE 0.102 0.095 0.206 0.203 0.056 0.093 0.189 0.189 0.112

WSS Mean  0.509 0.533 0.587 0.643 0.968 3.028 0.659
Bias -0.198 -0.174 -0.121 -0.065 -0.032 0.028 -0.048
RMSE 0.211 0.188 0.174 0.140 0.098 0.187 0.195

NLLS Mean 0.989 2.981 0.420
Bias -0.011 -0.019 -0.080
RMSE 0.092 0.184 0.154

N=500 SNSS Mean 0.721 0.722 0.714 0.707 0.746 0.998 3.001 0.700 0.497
Bias 0.014 0.015 0.007 0.000 -0.004 -0.002 0.001 -0.007 -0.003
RMSE 0.061 0.067 0.147 0.150 0.036 0.058 0.140 0.136 0.061

WSS Mean  0.528 0.521 0.603 0.580 0.982 3.215 0.789
Bias -0.179 -0.186 -0.104 -0.127 -0.018 0.215 0.082
RMSE 0.186 0.193 0.137 0.159 0.061 0.258 0.160

NLLS Mean 0.990 2.982 0.507
Bias -0.010 -0.018 0.007
RMSE 0.059 0.140 0.065
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Table 1: Spatial/Network Sample Selection: Results for N={250;500}, T=3, M=1000 (cont.)

. R . Y A & T

Panel g True 0.707 0.707 0.707 0.707 0 1 3 0.707  0.75
N=250 SNSS Mean 0.739 0.740 0.743 0.744 -0.114 1.000 3.015 0.701 0.740
Bias 0.032 0.033 0.036 0.037 -0.114 0.000 0.015 -0.006 -0.010

RMSE 0.092 0.085 0.193 0.177 0.245 0.149 0.247 0.306 0.071

WSS Mean 0.715 0.716 0.719 0.718 0.890 3.215 0.485
Bias 0.008 0.009 0.011 0.011 -0.110 0.215 -0.222
RMSE 0.082 0.075 0.143 0.140 0.183 0.321 0.422

NLLS Mean 0.972 3.035 0.707
Bias -0.028  0.035 -0.043
RMSE 0.143 0.239 0.091

N=500 SNSS Mean 0.721 0.723 0.730 0.718 -0.066 0.999 3.005 0.706 0.746
Bias 0.014 0.016 0.023 0.011 -0.066 -0.001 0.005 -0.001 -0.004
RMSE 0.055 0.059 0.133 0.133 0.176 0.098 0.194 0.225 0.040

WSS Mean 0.709 0.711 0.714 0.706 0.963 3.702 0.886
Bias 0.002 0.004 0.007 -0.001 -0.037  0.702 0.179
RMSE 0.052 0.056 0.102 0.102 0.105 0.731 0.314
NLLS Mean 0.990 2.983 0.753
Bias -0.010 -0.017 0.003
RMSE 0.097 0.196 0.040
Panel h True 0.707 0.707 0.707 0.707 0.5 1 3 0707  0.75

N=250 SNSS Mean 0.732 0.735 0.736 0.734 0.449 0.999 3.017 0.695 0.740
Bias 0.025 0.028 0.029 0.027 -0.051 -0.001 0.017 -0.012 -0.010
RMSE 0.091 0.084 0.198 0.185 0.131 0.145 0.241 0.275 0.071

WSS Mean 0.653 0.670 0.681 0.708 0.894 3.201 0.656
Bias -0.054 -0.037 -0.026 0.001 -0.106  0.201 -0.051
RMSE 0.096 0.081 0.140 0.134 0.176  0.307 0.359

NLLS Mean 0.967 3.033 0.703
Bias -0.033  0.033 -0.047
RMSE 0.140 0.232 0.095

N=500 SNSS Mean 0.716 0.719 0.721 0.711 0.482 0.999 3.002 0.700 0.747
Bias 0.009 0.012 0.014 0.004 -0.018 -0.001 0.002 -0.007 -0.003
RMSE 0.055 0.060 0.134 0.140 0.074 0.095 0.191 0.205 0.039

WSS Mean  0.660 0.657 0.686 0.671 0.962 3.696 1.063
Bias -0.047 -0.050 -0.022 -0.036 -0.038 0.696 0.356
RMSE 0.069 0.074 0.098 0.109 0.103 0.724 0.443

NLLS Mean 0.991  2.968 0.755
Bias -0.009 -0.032 0.005
RMSE 0.094 0.196 0.040
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Table 1: Spatial/Network Sample Selection: Results for N={250;500}, T=3, M=1000 (cont.)

At

p3

of'

33

5 T

B

P P
Panel i True  0.707 0.707 0.707 0.707  0.75 1 3 0707 0.75
N=250 SNSS Mean 0.736 0.739 0.738 0.728 0.735 0.998 3.019 0.691 0.739
Bias  0.029 0.032 0.030 0.021 -0.015 -0.002 0.019 -0.016 -0.011
RMSE 0.102 0.095 0.206 0.203 0.056 0.138 0.237 0.276 0.072
WSS  Mean  0.509 0.533 0.587 0.643 0.907 3.179 0.755
Bias  -0.198 -0.174 -0.121 -0.065 -0.093  0.179 0.048
RMSE 0.211 0.188 0.174 0.140 0.163 0.290 0.367
NLLS Mean 0.967 3.026 0.697
Bias -0.033  0.026 -0.053
RMSE 0.133  0.224 0.101
N=500 SNSS Mean 0.721 0.722 0.714 0.707 0.746 0.998 3.002 0.694 0.747
Bias  0.014 0.015 0.007 0.000 -0.004 -0.002 0.002 -0.013 -0.003
RMSE 0.061 0.067 0.147 0.150 0.036 0.088 0.187 0.203 0.038
WSS Mean 0.528 0.521 0.603 0.580 0.962 3.680 1.168
Bias  -0.179 -0.186 -0.104 -0.127 -0.038 0.680 0.461
RMSE 0.186 0.193 0.137 0.159 0.097 0.708 0.536
NLLS Mean 0.991 2.957 0.756
Bias -0.009 -0.043 0.006
RMSE 0.088 0.196 0.041
Panel j True  0.707 0.707 0.707 0.707 0.5 1 3 0 0
N=250 SNSS Mean 0.739 0.741 0.744 0.752 -0.123 0.998 3.001 0.004 -0.014
Bias  0.032 0.034 0.037 0.045 -0.123 -0.002 0.001 0.004 -0.014
RMSE 0.093 0.084 0.197 0.184 0.248 0.085 0.189 0.140 0.199
WSS  Mean  0.715 0.717 0.719 0.721 0.997 3.011 0.001
Bias  0.007 0.010 0.012 0.014 -0.003 0.011 0.001
RMSE 0.083 0.073 0.147 0.144 0.085 0.186 0.141
NLLS Mean 0.998  3.001 -0.014
Bias -0.002  0.001 -0.014
RMSE 0.085 0.189 0.199
N=500 SNSS Mean 0.721 0.720 0.726 0.723 -0.064 0.998 2.997 0.002 -0.001
Bias  0.014 0.013 0.019 0.016 -0.064 -0.002 -0.003 0.002 -0.001
RMSE 0.056 0.061 0.133 0.135 0.175 0.051 0.131 0.100 0.111
WSS  Mean  0.708 0.709 0.711 0.709 0.998 3.002 0.002
Bias  0.001 0.001 0.004 0.002 -0.002  0.002 0.002
RMSE 0.053 0.057 0.103 0.104 0.052 0.131 0.101
NLLS Mean 0.998  2.997 -0.001
Bias -0.002 -0.003 -0.001
RMSE 0.051 0.131 0.111
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Table 2: Spatial/Network Treatment Selection: Results for N={250;500}, T=3, M=1000

st

p3

b

o3

i

P o T P
Panel a  True  0.707 0.707 0.707 0.707 0 1 1 3 0.707 0
N=250 SNTS Mean 0.739 0.740 0.743 0.744 -0.114 1.005 1.000 3.006 0.697 -0.009
Bias  0.032 0.033 0.036 0.037 -0.114 0.005 0.000 0.006 -0.010 -0.009
RMSE 0.092 0.085 0.193 0.177 0.245 0.112 0.051 0.132 0.106 0.137
WTS Mean 0.715 0.716 0.719 0.718 1.000 0.999 3.009 0.706
Bias  0.008 0.009 0.011 0.011 0.000 -0.001 0.009 -0.001
RMSE 0.082 0.075 0.143 0.140 0.112 0.050 0.130 0.106
NLLS Mean 1.350 0.942 2.973 0.067
Bias 0.350 -0.058 -0.027 0.067
RMSE 0.362 0.076 0.130 0.148
N=500 SNTS Mean 0.721 0.723 0.730 0.718 -0.066 1.003 0.999 3.002 0.701 -0.006
Bias  0.014 0.016 0.023 0.011 -0.066 0.003 -0.001 0.002 -0.006 -0.006
RMSE 0.055 0.059 0.133 0.133 0.176 0.086 0.033 0.099 0.076 0.087
WTS Mean 0.709 0.711 0.714 0.706 1.001 0.999 3.002 0.705
Bias  0.002 0.004 0.007 -0.001 0.001 -0.001 0.002 -0.002
RMSE 0.052 0.056 0.102 0.102 0.086 0.033 0.096 0.076
NLLS Mean 1.358 0.942 2.935 -0.016
Bias 0.358 -0.058 -0.065 -0.016
RMSE 0.365 0.066 0.114 0.093
Panel b  True  0.707 0.707 0.707 0.707 0.5 1 1 3 0.707 0
N=250 SNTS Mean 0.732 0.735 0.736 0.734 0.449 1.006 1.001 3.004 0.694 -0.008
Bias  0.025 0.028 0.029 0.027 -0.051 0.006 0.001 0.004 -0.013 -0.008
RMSE 0.091 0.084 0.198 0.185 0.131 0.108 0.050 0.132 0.107 0.135
WTS Mean 0.653 0.670 0.681 0.708 0.995 1.000 3.010 0.684
Bias  -0.054 -0.037 -0.026 0.001 -0.005 0.000 0.010 -0.023
RMSE 0.096 0.081 0.140 0.134 0.108 0.050 0.130 0.107
NLLS Mean 1.343  0.945 2.974 0.052
Bias 0.343 -0.055 -0.026 0.052
RMSE 0.355 0.073 0.130 0.143
N=500 SNTS Mean 0.716 0.719 0.721 0.711 0.482 1.003 0.999 3.000 0.699 -0.004
Bias  0.009 0.012 0.014 0.004 -0.018 0.003 -0.001 0.000 -0.008 -0.004
RMSE 0.055 0.060 0.134 0.140 0.074 0.083 0.033 0.099 0.085 0.077
WTS Mean  0.660 0.657 0.686 0.671 0.991 1.000 3.004 0.685
Bias  -0.047 -0.050 -0.022 -0.036 -0.009 0.000 0.004 -0.022
RMSE 0.069 0.074 0.098 0.109 0.084 0.033 0.096 0.078
NLLS Mean 1.355 0.944 2.936 -0.031
Bias 0.355 -0.056 -0.064 -0.031
RMSE 0.361 0.064 0.114 0.097
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Table 2: Spatial/Network Treatment Selection: Results for N={250;500}, T=3, M=1000 (cont.)

st g st & a BP0 T

Panel c True 0.707 0.707 0.707 0.707  0.75 1 1 3 0.707 0

N=250 SNTS Mean 0.736 0.739 0.738 0.728 0.735 1.007 1.002 3.004 0.692 -0.007
Bias 0.029 0.032 0.030 0.021 -0.015 0.007 0.002 0.004 -0.016 -0.007
RMSE 0.102 0.095 0.206 0.203 0.056 0.110 0.050 0.133 0.122 0.135

WTS Mean 0.509 0.533 0.587 0.643 0.988 1.001 3.010 0.598
Bias -0.198 -0.174 -0.121 -0.065 -0.012 0.001 0.010 -0.109
RMSE 0.211 0.18 0.174 0.140 0.111 0.049 0.130 0.153

NLLS Mean 1.323 0.954 2.976 0.034
Bias 0.323 -0.046 -0.024 0.034
RMSE 0.334 0.066 0.129 0.138

N=500 SNTS Mean 0.721 0.722 0.714 0.707 0.746 1.003 1.000 2.999 0.699 -0.004
Bias 0.014 0.015 0.007 0.000 -0.004 0.003 0.000 -0.001 -0.008 -0.004
RMSE 0.061 0.067 0.147 0.150 0.036 0.084 0.032 0.100 0.086 0.084

WTS Mean 0.528 0.521 0.603 0.580 0.976 1.002 3.007 0.606
Bias -0.179 -0.186 -0.104 -0.127 -0.024 0.002 0.007 -0.101
RMSE 0.186 0.193 0.137 0.159 0.088 0.032 0.097 0.125
NLLS Mean 1.336  0.952 2.941 -0.046
Bias 0.336 -0.048 -0.059 -0.046
RMSE 0.342 0.057 0.111 0.103
Panel d True 0.707 0.707 0.707 0.707 0 1 1 3 0.707 0.5

N=250 SNTS Mean 0.739 0.740 0.743 0.744 -0.114 1.006 1.000 3.006 0.699 0.493
Bias 0.032 0.033 0.036 0.037 -0.114 0.006 0.000 0.006 -0.008 -0.007
RMSE 0.092 0.085 0.193 0.177 0.245 0.215 0.062 0.139 0.149 0.095

WTS Mean 0.715 0.716 0.719 0.718 0.856 1.023 3.075 0.816
Bias 0.008 0.009 0.011 0.011 -0.144 0.023 0.075 0.108
RMSE 0.082 0.075 0.143 0.140 0.259 0.066 0.159 0.190

NLLS Mean 1.367 0.940 2.949 0.532
Bias 0.367 -0.060 -0.051 0.032
RMSE 0.402 0.083 0.143 0.095

N=500 SNTS Mean 0.721 0.723 0.730 0.718 -0.066 1.004 0.999 3.003 0.702 0.495
Bias 0.014 0.016 0.023 0.011 -0.066 0.004 -0.001 0.003 -0.005 -0.005
RMSE 0.055 0.059 0.133 0.133 0.176 0.165 0.041 0.106 0.110 0.057

WTS Mean 0.709 0.711 0.714 0.706 1.038 0.993 3.158 0.711
Bias 0.002 0.004 0.007 -0.001 0.038 -0.007 0.158 0.004
RMSE 0.052 0.056 0.102 0.102 0.170 0.041 0.191 0.118

NLLS Mean 1.372  0.940 2.936 0.496
Bias 0.372 -0.060 -0.064 -0.004
RMSE 0.391 0.070 0.118 0.059
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Table 2: Spatial/Network Treatment Selection: Results for N={250;500}, T=3, M=1000 (cont.)

st g st & a BP0 T

Panel e True 0.707 0.707 0.707 0.707 0.5 1 1 3 0.707 0.5

N=250 SNTS Mean 0.732 0.735 0.736 0.734 0.449 1.006 1.002 3.005 0.694 0.494
Bias 0.025 0.028 0.029 0.027 -0.051 0.006 0.002 0.005 -0.013 -0.006
RMSE 0.091 0.084 0.198 0.185 0.131 0.207 0.060 0.138 0.146 0.091

WTS Mean 0.653 0.670 0.681 0.708 0.849 1.023 3.076 0.873
Bias -0.054 -0.037 -0.026 0.001 -0.151 0.023 0.076 0.166
RMSE 0.096 0.081 0.140 0.134 0.257 0.065 0.159 0.231

NLLS Mean 1.379 0.940 2.951 0.528
Bias 0.379 -0.059 -0.049 0.028
RMSE 0.411 0.082 0.142 0.094

N=500 SNTS Mean 0.716 0.719 0.721 0.711 0.482 1.004 0.999 3.002 0.698 0.495
Bias 0.009 0.012 0.014 0.004 -0.018 0.004 -0.001 0.002 -0.009 -0.005
RMSE 0.055 0.060 0.134 0.140 0.074 0.160 0.040 0.105 0.108 0.055

WTS Mean 0.660 0.657 0.686 0.671 1.027 0.995 3.160 0.779
Bias -0.047 -0.050 -0.022 -0.036 0.027 -0.005 0.160 0.072
RMSE 0.069 0.074 0.098 0.109 0.163 0.040 0.193 0.140
NLLS Mean 1.390 0.939 2.938 0.490
Bias 0.390 -0.061 -0.062 -0.010
RMSE 0.408 0.071 0.117 0.060
Panel f True 0.707 0.707 0.707 0.707  0.75 1 1 3 0.707 0.5

N=250 SNTS Mean 0.736 0.739 0.738 0.728 0.735 1.008 1.002 3.005 0.688 0.495
Bias 0.029 0.032 0.030 0.021 -0.015 0.008 0.002 0.005 -0.019 -0.005
RMSE 0.102 0.095 0.206 0.203 0.056 0.204 0.059 0.138 0.162 0.088

WTS Mean  0.509 0.533 0.587 0.643 0.834 1.022 3.077 0.867
Bias -0.198 -0.174 -0.121 -0.065 -0.166  0.022 0.077 0.160
RMSE 0.211 0.188 0.174 0.140 0.265 0.062 0.160 0.233

NLLS Mean 1.378  0.948 2.956 0.521
Bias 0.378 -0.052 -0.044 0.021
RMSE 0.409 0.075 0.139 0.092

N=500 SNTS Mean 0.721 0.722 0.714 0.707 0.746 1.004 1.000 3.000 0.696 0.496
Bias 0.014 0.015 0.007 0.000 -0.004 0.004 0.000 0.000 -0.011 -0.004
RMSE 0.061 0.067 0.147 0.150 0.036 0.157 0.038 0.104 0.114 0.054

WTS Mean 0.528 0.521 0.603 0.580 1.007 0.998 3.164 0.787
Bias -0.179 -0.186 -0.104 -0.127 0.007 -0.002 0.164 0.080
RMSE 0.186 0.193 0.137 0.159 0.159 0.038 0.196 0.148

NLLS Mean 1.395 0.944 2.944 0.482
Bias 0.395 -0.056 -0.056 -0.018
RMSE 0.412 0.066 0.113 0.062
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Table 2: Spatial/Network Treatment Selection: Results for N={250;500}, T=3, M=1000 (cont.)

st g st & a BP0 T

Panel g True 0.707 0.707 0.707 0.707 0 1 1 3 0707  0.75

N=250 SNTS Mean 0.739 0.740 0.743 0.744 -0.114 1.010 1.001 3.002 0.699 0.743
Bias 0.032 0.033 0.036 0.037 -0.114 0.010 0.001 0.002 -0.009 -0.007
RMSE 0.092 0.085 0.193 0.177 0.245 0.432 0.097 0.176 0.245 0.065

WTS Mean 0.715 0.716 0.719 0.718 0.593 1.066 3.311 1.036
Bias 0.008 0.009 0.011 0.011 -0.407 0.066 0.311 0.330
RMSE 0.082 0.075 0.143 0.140 0.592 0.115 0.358 0.434

NLLS Mean 1.412  0.938 2.919 0.764
Bias 0.412 -0.062 -0.081 0.014
RMSE 0.520 0.105 0.194 0.063

N=500 SNTS Mean 0.721 0.723 0.730 0.718 -0.066 1.005 0.999 3.002 0.702 0.747
Bias 0.014 0.016 0.023 0.011 -0.066 0.005 -0.001 0.002 -0.005 -0.003
RMSE 0.055 0.059 0.133 0.133 0.176 0.330 0.066 0.144 0.185 0.037

WTS Mean 0.709 0.711 0.714 0.706 1.109 0.982 3.532 0.741
Bias 0.002 0.004 0.007 -0.001 0.109 -0.018 0.532 0.033
RMSE 0.052 0.056 0.102 0.102 0.349 0.066 0.551 0.222
NLLS Mean 1.407 0.933 2.936 0.749
Bias 0.407 -0.067 -0.064 -0.001
RMSE 0.471 0.086 0.149 0.037
Panel h True 0.707 0.707 0.707 0.707 0.5 1 1 3 0707  0.75

N=250 SNTS Mean 0.732 0.735 0.736 0.734 0.449 1.010 1.003 3.001 0.692 0.744
Bias 0.025 0.028 0.029 0.027 -0.051 0.010 0.003 0.001 -0.015 -0.006
RMSE 0.091 0.084 0.198 0.185 0.131 0.419 0.092 0.174 0.062 0.228

WTS Mean 0.653 0.670 0.681 0.708 0.584 1.064 3.312 1.211
Bias -0.054 -0.037 -0.026 0.001 -0.416 0.064 0.312 0.504
RMSE 0.096 0.081 0.140 0.134 0.591 0.112 0.358 0.586

NLLS Mean 1.452 0.936 2.914 0.764
Bias 0.452 -0.064 -0.086 0.014
RMSE 0.550 0.105 0.195 0.063

N=500 SNTS Mean 0.716 0.719 0.721 0.711 0.482 1.006 0.999 3.001 0.696 0.747
Bias 0.009 0.012 0.014 0.004 -0.018 0.006 -0.001 0.001 -0.011 -0.003
RMSE 0.055 0.060 0.134 0.140 0.074 0.324 0.063 0.141 0.170 0.035

WTS Mean 0.660 0.657 0.686 0.671 1.096 0.984 3.534 0.940
Bias -0.047 -0.050 -0.022 -0.036 0.096 -0.016 0.534 0.232
RMSE 0.069 0.074 0.098 0.109 0.339 0.064 0.553 0.327

NLLS Mean 1.456  0.928 2.932 0.747
Bias 0.456 -0.072 -0.068 -0.003
RMSE 0.514 0.090 0.149 0.037
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Table 2: Spatial/Network Treatment Selection: Results for N={250;500}, T=3, M=1000 (cont.)

st g st & a BP0 T

Panel i True 0.707 0.707 0.707 0.707  0.75 1 1 3 0707  0.75

N=250 SNTS Mean 0.736 0.739 0.738 0.728 0.735 1.013 1.003 3.002 0.683 0.745
Bias 0.029 0.032 0.030 0.021 -0.015 0.013 0.003 0.002 -0.024 -0.005
RMSE 0.102 0.095 0.206 0.203 0.056 0.411 0.086 0.171 0.235 0.060

WTS Mean 0.509 0.533 0.587 0.643 0.555 1.060 3.314 1.334
Bias -0.198 -0.174 -0.121 -0.065 -0.445 0.060 0.314 0.627
RMSE 0.211 0.18 0.174 0.140 0.609 0.105 0.360 0.706

NLLS Mean 1.485 0.941 2.914 0.763
Bias 0.485 -0.059 -0.086 0.013
RMSE 0.574 0.099 0.193 0.062

N=500 SNTS Mean 0.721 0.722 0.714 0.707 0.746 1.007 1.000 3.000 0.690 0.747
Bias 0.014 0.015 0.007 0.000 -0.004 0.007 0.000 0.000 -0.017 -0.003
RMSE 0.061 0.067 0.147 0.150 0.036 0.319 0.059 0.136 0.169 0.034

WTS Mean 0.528 0.521 0.603 0.580 1.069 0.989 3.540 1.087
Bias -0.179 -0.186 -0.104 -0.127 0.069 -0.011 0.540 0.379
RMSE 0.186 0.193 0.137 0.159 0.328 0.059 0.558 0.453
NLLS Mean 1.499 0.929 2.934 0.744
Bias 0.499 -0.071 -0.066 -0.006
RMSE 0.551 0.087 0.145 0.038
Panel j True 0.707 0.707 0.707 0.707 0 1 1 3 0 0

N=250 SNTS Mean 0.739 0.741 0.744 0.752 -0.123 0.998 0.999 3.004 -0.005 0.003
Bias 0.032 0.034 0.037 0.045 -0.123 -0.003 -0.001 0.004 -0.005 0.003
RMSE 0.093 0.084 0.197 0.184 0.248 0.120 0.052 0.130 0.145 0.112

WTS Mean 0.715 0.717 0.719 0.721 0.996 0.999 3.009 0.004
Bias 0.007 0.010 0.012 0.014 -0.004 -0.001 0.009 0.004
RMSE 0.083 0.073 0.147 0.144 0.120 0.052 0.130 0.114

NLLS Mean 0.999 0.998 3.004 -0.005
Bias -0.001 -0.002 0.004 -0.005
RMSE 0.099 0.051 0.130 0.145

N=500 SNTS Mean 0.721 0.720 0.726 0.723 -0.064 0.999 0.999 2.998 -0.002 0.001
Bias 0.014 0.013 0.019 0.016 -0.064 -0.001 -0.001 -0.002 -0.002 0.001
RMSE 0.056 0.061 0.133 0.135 0.175 0.091 0.034 0.098 0.091 0.079

WTS Mean 0.708 0.709 0.711 0.709 1.000 0.999 3.001 0.001
Bias 0.001 0.001 0.004 0.002 0.000 -0.001 0.001 0.001
RMSE 0.053 0.057 0.103 0.104 0.091 0.034 0.097 0.079

NLLS Mean 1.000 0.999 2.998 -0.002
Bias 0.000 -0.001 -0.002 -0.002
RMSE 0.073 0.032 0.097 0.091
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The main insights from an inspection of Tables 1 and 2 can be summarized as follows. First
of all, whenever p# # 0 and/or p? # 0, neither WSS (WTS) nor NLLS should be used. The bias
of these estimators tends to increase with the magnitude of absolute deviations of (p?, p?)) from
zero. To see this, e.g., compare the results in Panel ¢ with those of Panel b of Table 1, or those of
Panel i with the ones of Panel g in the same table.

Second, as the sample from which the parameters are estimated are bigger for treatment selection
than for sample selection by the chosen design, these biases tend to be more pronounced for the case
of treatment selection in Table 2 than for the case of sample selection in Table 1 when comparing
identically-labelled panels.

In Panel j, all three estimators are inefficient, as parameters are estimated that could have been
restricted to be zero: in the SNSS (SNTS) estimators, (p? # 0,p® # 0) and 7 # 0, in the WSS
(WTS) model, (p =0, p® = 0) and 7 # 0, and in the NLLS, (p* # 0, p® #0),7 = 0.

None of the estimators clearly outperforms the others for this configuration. Note however, the
SNSS (SNTS) model also performs at an acceptable rate in the cases where it is inefficient.

Third, overall, the performance of the proposed SNSS (SNTS) estimator increases as we increase
the sample size. To see this, compare the lower block in a panel with the corresponding upper one
in each one of the tables. L.e., the bias in 7 drops by almost one-quarter in Panel i of Table 1 for
the SNSS estimator, and it drops by more than one-quarter in Panel i of Table 2 for the SNTS

estimator.

5 Variance-covariance Matrix of Parameters

In this section we derive the variance-covariance matrix of the two parameter vectors 4 and 65.
We pay special attention to the derivation of the variance-covariance matrix of the parameters of
the outcome equation. Two issues have to be taken into account:

(1) We use estimated parameters 0 4 for the estimation of @ B, as both Spatial Adjustment/Network
Factor and Inverse Mills’ Ratio are functions of parameters of the first stage. In order to address
this problem, we use a Murphy & Topel (1985, 2002) type of correction, which we adapt to our
estimation procedure (pooled Bayesian Spatial Probit and pooled Non-Linear Least Squares) fol-
lowing steps outlined in Greene (2008). Note that for the Murphy & Topel correction y; and

Ati (AY;) have to be twice continuously differentiable in 64. Tt further requires a consistently
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estimated vector of first-stage parameters éA, which is asymptotically normal and for which a con-
sistent Variance-Covariance matrix estimate QQA exists. We therefore make use of the fact that
the Bayesian posterior distribution of 64 is asymptotically equivalent to the MLE éﬁ 1 u (LeSage
& Pace, 2009).11

(2) The corrected variance-covariance matrix is a function of the truncated variance and trun-
cated covariance of the spatial error components of the outcome equation. We derive these and

outline an estimation procedure along the lines of Heckman (1979).

5.1 Variance-covariance Matrix of /4
5.1.1 Analytical Variance-covariance Matrix
Using the familiar result regarding the asymptotic distribution of the MLE, the asymptotic distri-
bution of first-stage parameters # is given by:
VIN(@fire —6%) % N (0,Q94)
with Qg4 = TNZ(O4) L.

I(04) = —-E {80?7;{914’} denotes the Information Matrix. To derive the Information Matrix, we need

to compute the Hessian of [, which is the log-likelihood function of the first stage:
Z(QA QO _ _} A\—1 _} Ar A
Qea) = K 2ln|QgA|+ln\(R )7 5V
where 14 = QE_A% (RH ™! [y — 2t — RAr ® z4)54]

and where K is a constant independent of parameters.'> The elements of the Information Matrix

and their derivation can be found in Appendix 2.

1Tn order to perform inference, the Bayesian approach simply uses the standard deviation of the MCMC-draws
of parameters as an estimate of the standard error. This is why, in order to derive the analytical second-stage
Variance-covariance matrix, we use the asymptotic variance-covariance matrix of the MLE as they are asymptotically

equivalent.
12The Bayesian Spatial/Network Error Probit Model first samples the vector of parameters yA* before sampling

64 from the same conditional marginal distributions as in the linear Bayesian spatial/network error model. To find
the analytical variance-covariance matrix of §4 we therefore derive the Information Matrix of this linear model to
simplify the calculations. Derivations of the Information Matrix follow steps outlined in Anselin (1988) and can be

found in Appendix 2.
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5.1.2 Estimation

Since we pool the data to estimate the first-stage parameters, we cannot simply use the standard
deviation of MCMC draws (minus Burn-In) to obtain a consistent estimate of the standard error
of 84. However, we can replace true parameters 4 by their estimated counterparts 64 in the
information matrix, which we have derived above.

To compute the estimated matrix of error components ﬁgA =Jr® &EA IN)+62.(Ir ® In), we
estimate the variances of the error components &i 4 and 63 . as follows:

First we derive vector of estimated error components EA by pre-multiplying the vector of resid-
uals from the first stage 44 = §4* — (484 + RAz4'64) by the inverse of the estimated matrix of

weights (Ir @ R{*)~1.
= 1y 0 ) 1a
Then, following Baltagi (2005):

EVQEr  , _fvpér ., 6f -6k
, 01 ="———, O —_—
tr(Q)
; — Jr _ Jr
with Q = (IT—T) ®Iy and P = 7L ® Iy.

2
UEA =

5.2 Variance-covariance Matrix of 6%

Before we derive the analytical variance-covariance matrix and outline the estimation procedure,
we need to introduce some further notation. First, we define the score vector of the log-likelihood

function of the first stage as

ol

904 = gA(eA)a
B 1
gB(eA) _ ﬁgA(QA)«

Second, let vZ denote the residual of the augmented outcome equation.

Spatial/Network Sample Selection
N
vl =yl — @85 + > i w68 + ridi)
j=1
Spatial/Network Treatment Selection

N
B __ . B A B/ B B =B/sB g
Vi = Yy — (o — oy B7 + E T3 07 + T AY;)
i=1
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Further, define the sum of squared residuals of the augmented outcome equation as

Abbreviating ¢ = q(24°,28,64,07), the score vector (gradient) of the sum of squared residuals is

given by
Jq d 3(%3-)2 B(pA pB
_— = 2 = 9 9
PO = (00, 07)
We define the Hessian of the sum of squared residuals with respect to 8% and 6% as
d%q > ( Vt B(pA B
-4 _ L = H” (67,0
00BoHE! ; ; 00BoHE! (67,67,
HB(04,08) = ﬁHB(HA 67)
and the Hessian of the sum of squared residuals with respect to 88 and 4 as
dq >( Vt ApA pB
-1 L — H2(04,0
00BooA ; ; 068 994 (67,67,
1
HA(64,65) ﬁHA(GA, 67)

5.2.1 Murphy-Topel Correction

To account for the fact that estimated first-stage parameters 4 are being used in the estimation
of second-stage parameters A7, we adjust the variance-covariance matrix using well-known results
regarding two-step estimators (Murphy & Topel, 1985, 2002). The asymptotic distribution of

second-stage parameters is given by (see Appendix 3.1 for proof):

VTN(68 — 08) 4 N (0,Qz)

where Qgs = E [-HB(04,6%)] ' Qs E[-HP(64,07)]

Standard NLLS VC Matrix
—HB(64,6%)] " E [HA(6%,07)] Qoa E [HA(04,6%)] E [-HP(64,67)]

+ E|
+ E[-HP0%,65)] 7 QueaQeaE [HA(04,65)) E[-HP(04,65)]
+ E| !

—HB(64,6%)] 7" E[HA(6%,67)] QpaQyas E [~ HP (64,67)]

£

using Q5 = Var [ g2 (04, 95)} and Qgs4 = Cov [\/79 (04,68),VTNg* (0 )]
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5.2.2 Spatial/Network Truncated Variance-covariance Matrix

The elements of matrix Qs are functions of the following conditional expectations (see Appendix

3.2.2 for the specific elements of this matrix and Appendix 3.3.1-3.3.3 for proofs):

N
2
E [(Vtz) ‘y > OaxAOVTB] = 0—23 Z (Ttlj) 27/%1(:&1 (13)
j=1
N N A B
> A ThimTE
E[wivily > 0,227 = ofs Z T m — Tzqﬁti%@i
m=1 > j=1 (rtij)
N A B

N
OuAB Z] thz]rsU

A0 ,.B _ 2
E[Vn Sl\y > 0,277, x ] = o.5 rtj 5” — Ty (14)
j=1 \/ §A \/ j= 1 rt’Lj
N
J AB Z ’r’
A0 B _ 2 B m=1 tim” S]m
E[Vtz sg‘y > 0,27,z ] - O—HB E Ttim™T sgm_
m=1 A/ §A \/ = 1 Tt”

A A SArsA A B
zmﬁ +Z] 17’”sz 4 CO’U[U”,USJ]

\/ A EN( t1]) )‘tz and Q \/Va'r' uu \/Var ug]

with (i = A2 +

Similarly, the elements of matrix Qg a5 are functions of the following conditional expectations:

N
E [utzl/tz |y > OvajAnyB] = O¢AaB ngjrt’tj [ Ctz}
j=1
N
E [unutj i > O,JCAO,JJB] = O¢an Z r;‘}mrgm [1— el
m=1
N
E [un vBlysr > O,xAO,xB] = OpaB Zr;‘jrﬁj [1— ¢l (15)
N
E [utz 5]|y > OvirAOaxB] = U,LLAB Z TﬁmrsBjm [1 - Ctz]

5.2.3 Estimation

In order to compute QQB, we replace Qa4 with QgA. The remaining elements can be obtained by
first deriving the Hessian matrices H4(64,07) and HZ(64,67). Then we substitute the estimated
parameters 64 and 6B for the true parameters 04 and 65,

However, the variances and covariances of the error components U?B, and o¢as as well as the

variances and covariances of the individual-specific time-invariant component ai B, and 0,45 are
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unknown to us. We can estimate them using the following formulas (see Appendix 3.3.4 for proofs,

which closely follow Heckman (1979)):

2 1 Zt 12 (7 B) AQ%
T ——— ( TN Y C)

&gBA -

—1

~An B N
u
& an _ Zs<tz 1 tiVsi 2 :7” 2 :7” TJBC

~Bn~ B ~ N A.B
2 _ 1 Zs<t Zq 1 V4 Vsi . OpAB Zjil Tj Tj

uB - - TN +7 ~9 1/} N A 2
N
S P VI T )

where bars indicate averages across both time and individuals.

6 Application: Export-wage Premium Among Firms in Shen-

zhen, P.R. China (Future Work)

We intend to apply the spatial/network treatment selection model to study the relevance of self-
selection of firms into exporting (treatment) when analyzing the size of the exporter-wage premium.
In order to do so we use Chinese firm-level panel-data from the Chinese Annual Survey of Industrial
Firms Database (CASIF) on firms in the city of Shenzhen, P.R. China, for the years 1999-2009. The
data contains accounting information of all state-owned enterprises (SOEs) as well as all non-SOEs
with sales above 500 Mio RMB per year. Moreover, they include information on firm addresses and
industry affiliation, permitting a spatial/network analysis. The number of firms vary by year due
to entry/exit (i.e. the spatial/network weights change across years).

The exporter-wage premium, i.e. the fact that exporting firms pay higher wages per worker
than non-exporters, has been documented in many data-sets for various countries, always assuming
that firms’ selection into exporting was independent of other firms (and often even random), and
that wages were set independently as well (see Klein, Moser, and Urban, 2013; Egger, Egger, and
Kreickemeier, 2013; Egger, Egger, Kreickemeier, and Moser, 2017).
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However, random assignment of exporter status seems unlikely, given that it appears that only
firms above a certain profitability threshold export and that more profitable firms are more likely
to pay higher wages. We will compute log wages per employee yZ in firm i at time ¢ in the city
of Shenzhen, P.R. China. These are likely to depend on covariates x5, such as firm productivity
(e.g., captured by relative domestic sales of total domestic sales in a Melitz-style model) as well as
binary exporting y;} (treatment indicator).

Some firms are exporters and others are not. The exporting decision is assumed to be determined
by latent export profitability yﬁ*. The latter depends on theoretically motivated factors z5: factor
costs, market potential, location, etc. of firm 7 at ¢. Shocks to export profitability have been
found to spatially dissipate across firms due to, e.g. industry networks or input-ouput linkages (see
Antras, Fort, and, Tintelnot, 2017; Baltagi, Egger, and Kesina, 2017; Tintelnot, 2017; Chaney,
2014). Shocks to the average wage at a firm might follow a spatial pattern and might therefore be

correlated across firms due to local labor markets and worker flows (see Moretti, 2011).

7 Conclusions

Missing data generate difficulties in case that the units of observation are not missing at random,
in particular, if the data are not independent of each other. A rapidly growing literature in the
social sciences at large and in economics in particular is concerned with understanding the effects of
networks on outcomes, often on outcomes which are repeatedly observed over time. However, often
the data are generated from surveys, or they are incomplete due to confidentiality clauses, legal (e.g.,
size) thresholds imposed for data delivery requirements, etc. Similarly, self-selection of households
or firms into certain states such as unemployment and exporting, respectively, entails that units
are systematically unobserved in the counterfactual state. Associated panel-data situations in the
presence of networks cannot be analyzed with existing methods.

The purpose of the present paper was to outline econometric models which are suited for prob-
lems of selection (and truncation) with panel data, where the units of observation depend on each
other through potentially time-variant network structures. We derived two-step, control-function
procedures for the cases of both sample selection as well as treatment selection. We reported on a
set of Monte Carlo simulations to show that the proposed models work well for both point as well

as variance-covariance-matrix estimation of the parameters of interest.
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Finally, we have described an application, for which we expect our model to be crucial: the
analysis of the role of interdependent export decisions for wage premia in Chinese firms in the city
of Shenzhen. In those data, we anticipate that the decision to export or not is interdependently
made among firms in close-by neighborhoods, and wages appear to have a spatial component as
well. No competing model could be used for the analysis of the respective data, as such models do

either not feature interdependence, or they cannot be used for panel data.
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Appendix

1 Deriving the Correction Functions
Spatial Sample Selection: The Spatially Adjusted Inverse Mills’ Ratio
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and ¢(-) and ®(-) denote the Standard Normal PDF and Standard Normal CDF respectively.
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Treatment selection: The generalized inverse Mills ratio
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2 Deriving the Asymptotic Distribution of 64

The likelihood of the RE SEM model is:

L(04,Q¢a)

1

1 1 a4 _ _ . _
soys [ Qual Feap § =5 [y — 284 — (Ir ® R (er @ 74)84) Qk [y — 2B — (Ir @ R{) (ir © 24)64] 5,

—pAI A

with Q,a = ( It ® Rf‘ ) Q§A (IT (39 Rf‘)l = (IT ®RZ4)[(JT ®JzAIN) -‘rOgA(IT ®IN)](IT & Rf‘)l
TNXTN TxT NxN TNxTN

A_ QT2 (] Ay—1 Ax _ LA gA (] A —A\ sA |13
¥ = el U@ RO | v e, ~ Ur @ B © L)X

The log-likelihood then is (with K a constant independent of parameters):

104, Q¢a)
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1 1 1
1SQ§A can be obtained using Cholesky decomposition, i.e. Q;A (Q;A)’ = Qg4, a symmetric matrix.



2.1 Asymptotic Normality of MLE

To proof the asymptotic normality of the MLE we follow closely Greene (2011) both with regard

to the notation as well as the steps taken in the proof.'*
We define
= Y M S S 0% = g0,
t=1 i=1 t=1 i=1
the gradiant or score vector of the log-likelihood function
821 T N 3211»1' L N A A
GoAgem = 2.2 ggAggm — 2. 2 Hul0h) = H(Y),

t=1 i=1 t=1 i=1

the Hessian of the log-likelihood function.
By definition of the MLE we know that
g'(6*) =0,

i.e. the gradient of the log-likelihood function evaluated at 04 is equal to zero, since 64 maximizes
the log-likelihood function.
Using a Taylor series expansion around the true parameter #4 (neglecting all higher order terms

except the second, which we can do by the mean value theorem), this set of derivatives becomes:
g (0%) = g (") + H(0M)(0" - 0") =0,
with 64 = k64 + (1 — k)#* for some 0<k < 1.
Solving for (éA — 0%) and multiplying both sides of the equation with vT'N yields:
VTN — 04y = [—~H(6Y)] [\/TTVgA(eA)
Since we have assumed consistency of 64

64 2 04,

it follows

o4 Ly g4,

14We refrain from proving consistency of the MLE and proceed directly with the proof for asymptotic normality

since it is instructive for the derivation of the asymptotic distribution of the second-stage estimator, i.e. the Murphy-

Topel correction. All proofs that follow assume implicitly that we can estimate all parameters consistently.
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By the Continuous Mapping Theorem:

VTN = 04) & [—H(0)] " [\/ﬁgA(oA)]

TN.

Expanding the right-hand-side by 1 = 75

-1
VTN —04) 2 {—TlNH(GA)] [\/ﬁTlNgA(eA)]
= [-HY) VTN (")

Finally:

Then by Slutzky’s Theorem:
[—H(04)] " VTNg*(0%)
S N(0{-B[HEY])} {-E @]} {-E[A0Y)]} )
Or since convergence in probability implies convergence in distribution:
VIN@* - 0% 4 N (0 {-E[HEY)]} )
4 N(0,TNZ(6M)7Y),

where Z(64) denotes the Information Matrix.
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2.2 Derivation of the Information Matrix of the Random Effects Spatial Error Model

The following derivations closely follow Anselin (1988, pp. 74-77).1%

15We use the following properties in our derivations of the score vector and the information matrix:

1. (A® B)"! = (R ® RP)

2. (A® B) = (A'® B')

3. (A® B)(C ® D) = (AC  BD)

4. BX(a) BX(a)]

5 amgz(«zn — 7 (X (@)1 259
6. 2X0 _ _ x(q)—12X(@) x(g)1
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2.2.1 Derivation of First-Order Derivatives

The score vector is defined as the vector of first-order derivatives of the log-likelihood function.
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2.2.2 Derivation of Second-Order Derivatives

The information matrix is defined as the Hessian matrix of the log-likelihood function.

forall k=1,...K;l=1,..,.K
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2.2.3 Information Matrix

Recall:
g = 2B+ (Ir © R (i ® 2404 + u?
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In this section we will make use of the following expected values (implicitly conditioning on covariates x4, z4):
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= [@"8% + (Ir @ R (or ® 2)64][2" B4 + (Ir @ RY) (or @ )64 +

+ [#28% + (Ir ® R (i ® )0 Eu™] + E[u][a* 8% + (Ir ® RY) (1r © 24)6%] + (Ir ® R{)Qea(Ir © R}

= [@"8% + (Ir @ R (or ® 264284 + (Ir @ RY) (br @ 24)64) + (Ir @ Ry)Qea (Ir © R}’

The Information Matrix Z(4) is defined as:

Al
I(04) = —E|———r
%) | 9640047
%1 o 9% %1 . %1 %1
apiras oplropg 9B as! opfrasy  apftaph
9%l L 8% %1 . %1 2%l
aBRasH BB 9BEIS] IBRISE  9BLopA
- _E %1 9% %1 %1 221
a5 ap8 258 0BE  96{ 957 25968 95{19pA
%1 . 221 921 o %1 %1
a5 8p 2580 9spas] 26885 96p0pA
3%l L 921 3% L 9% 9%
L 0p208{ 0pA0BE  9pA0sY 9pA96x  9pRop~ |
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The elements of the Information matrix are given by:

B [aﬁ;;‘aﬁf‘_

E[
_E{

0%l

02l

0B |

0%l

IBAopA

B —
{66;36/3;4_

_E[
_E[

0%l

021
2620571

0%l

d510p"

B [~a((Ir ® (R ™) (I @ (R Mat | = o ((Ir @ (RO ™)1 (I @ (R e

B |~ @ a0 (U @ (R x| = (i 2 2)05 Ir @ (RY)ait

“E [~ (g — 284 (Ir 0 W' (Ir © (R aft — v E (Ir © Wy)a
(E [y**] —2284) (Ir ® W) Qci(Ir @ (RY) Vi + E ] Qj (Ir @ Wy)zj
[#484 + (It ® R{) (er @ 2404 — 2 84) (Ir @ W) Qi (Ir @ (R )i

[(Ir ® B (i @ 74)04] (Ir © W) Q) (Ir @ (R ™Y )arf!

5 (vr @ 2%) (It ® R{) (Ir @ Wh)' Q4 (Ir @ (R{) ™)y

04 (1 © 24) (I © A™VW)Q (Ir © (RY) ™)aq

= -E [—mf"((IT ® (RN ™) (tr & :zﬁ)} = 2 ((Ir ® (R ™) (ir @ 7})

= —B[-(h o)t @ )] = (@ 5! (r @ 7))

= -E [— (v — 284 (Ir © W) Qi (o7 © gz;;‘)}

= (E[y™] —2*8%) (Ir @ W) Ql (o7 @ 7f)

= [#78%+ (Ir ® R (ir © 26 — 2454] (I @ Wo) Ok (o7 @ 77)
= Mr @) (Ir ® R (Ir @ W) Qi (or @ 7))

= rzt (Ir @ ATYWHQ L (1r @ 7))

A
k



GG

o1 o ) .
- [ap/*aﬂ;;‘] = —B |~ (Ir @ (ROl (U © W) (y* = o*8%) = v QL7 (Ir © Woa|

Ir @ Wy) (B [y*] — 2*8%) + E [v*] Qg7 (Ir © Wi)ait

)7 ) Qe
)Y Qo (I @ Wy) (484 + (Ir @ R (er ® 34)84 — 24 54)
)7 Qe
)7 ) Qea(

A

t
= 2 (Ir @ (R 1) Qd (Ir @ W) (Ir @ RY) (er @ 24)5%
= 2(Ir ® (R) ™)' Q. (Ir ® WeR?) (1r © 24) 57

Y T R
( )4 (Ir @ Wy) (B [y*] — 248%)

= (@) (Ir @ W) (2B + (Ir @ R (ir @ 24)0% — 2 B*)
( QA (Ir @ W) (It @ R (e @ 74) 64
( )i (Ir ® WiRY ) (ur @ 24) 5%

821
-k [8pAapA:| = -E [_TT (Ir © RAWRAW,) — (3 — 25 (Ir @ W) Qi (Ir @ We) (™ — :cABA)}
= E[Tr(Ir @ RW,RAW,)] + E [(yA* — 24BN (Ir @ WY Qg (I @ W) (v — g;AﬁA)}

= Tr(Ir ® R}WiRW,) + E [(yA* — 2 34) (Ir @ WY Qi (Ir @ Wa) (3 — xAb’A)]
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The second expectation in the above term requires some more detailed explanation. First, we introduce a trace operator as the

term inside the expectation is a scalar and the trace of a scalar a is itself, i.e. Tr(a) = a.

E|(y* —28%) (Ir @ W)Y (Ir © W) (y** — 2%

= B[Tr[(* - o8 (Ur e WY (Ir 0 W) (33 — 246%)] |

Then we make use of the cyclic property of the trace (i.e. the fact that it is invariant to cyclic permutations: Tr(ABCD) =
Tr(BCDA) =Tr(CDAB) =Tr(DABC) )

- <E{JW’“ITQ§MQY§QQ(ITQ§VWJ(yA*—-xABA)(yA*—'xABA)q}

= Tr [([T ® Wt)’QE‘Al(IT Q@ WyE {(yA* _ wAﬂA) (,yA* _ xAﬂA)’H
Next, we substitute y2* — 2484 = (Ir ® R (1r ® 24)04 4 u?.
= Tr[(Ir @ WO (Ir @ WOE [((Ir @ BY)(r @ 3)6% +u?) ((Fr @ BY) (g @ 2%)0% +u)'] |
To derive E [((IT ® R (v ® 24)64 + u?) ((Ir @ R (vr ® 24)64 + uA)’]7 we expand the term inside the expectation:

[ ((Ir ® R (er ® 34)64 + u?) (Ir ® R (ir © 34)64 + uA)’}

(I7 @ R (1r @ 240464 (v @ 24 (Ir @ R (1 @ ) + (I1 @ RY) (1 @ 2454w + w0 (1 @ 74)' (I1 @ R (1 @ 74
Ir @ R (ir ® 2646 (1r @ 2) (Ir @ R (or @ )] + E [(Ir ® R} (er @ 24) 64| +

E(
E(
B[

E [u¥ (1r @ ) (Ir ® R) (vr @ 7)) + E [uu®]

(It ® R} (e @ 2646 (o @ 24) (I @ R (1r @ ) + (Ir @ R (o @ 2464 E [u?] +
+ E w6V (r @2 (Ir @ RN (er @ 22 + (Ir @ R)Qea (It @ RY)

= (It ® RN (tr @ 646 (or @ 2%) (I @ R (1r @ 2) + (Ir ® R{)Qea (I7 @ RS

+ uAuA/

]
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Putting things together, we get

“E|gpiaa| = TrlremiwRAT) 4

+ Tr [(JT ® W) Qe (Ir @ Wi) [(Ir © Ry (er @ 24646V (or @ 24) (Ir @ RY) (or @ 84)' + (Ir @ R{)Qea (Ir @ R;“)’H



3 Deriving the Asymptotic Distribution of 6%

3.1 Murphy-Topel Correction

To derive the asymptotic distribution of our second-stage parameters we follow again closely
Greene’s (2011) derivation of the Murphy-Topel correction for the case of MLE and adapt it to
the NLLS case.!6

From Appendix 2.1 we know

VTN@G4 - 0% & [~H(O] ' VTNg (67
4 N(0,TNZ(6M)7Y),

where Z(64) denotes the Information Matrix.
In the following we will derive the asymptotic distribution of % using a similar line of argu-
mentation as in Appendix 2.1.

By the definition of the NLLS estimator we know that
g"(0%,6%) =0,

i.e. the gradient of the sum of squared residuals evaluated at 64 and 68 is equal to zero, since 64
and B minimize the sum of squared residuals.
Using a Taylor series expansion around the true parameter #4 and 7 (neglecting all higher

order terms except the second, which we can do by the mean value theorem), this set of derivatives

becomes:
g(éA7éB) _ gB(eA,eB) + HB(HA,HB)(éB _ 93) +
+ HA04,05)(04 - 04) =0,
with
04 = kO + (1 k)64,
0% = k0P +(1—k)0P for some 0<k<1.

16 Again, we refrain from proving consistency of the NLLS estimator. All proofs that follow assume implicitly that

we can estimate all parameters consistently.
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Solving for (68 — 65):

(6% —6%) = [~HP(04,0")] " [ (64, 6%) + HA(B*,07)(9* — 0]
= [ZHP(6%,0%)] 9P (6%,07) + [~HP(6%,07)] T HA(6%,0%)(0" - 6%)
Multiplying both sides of the equation with TN yields:

VIN(@GB —08) = [-HP(0*,05)] " VITNgB(04,07) +
+ [-HP04,0%)] 7 HA0,05)VTN (62 — 64)

Since we have assumed consistency of 64 and 6B.
it follows

By the Continuous Mapping Theorem:

VTIN5 —05) 2 [-HP(6,65)] " VT NgB(64,07) +
_|_

[—HP(64,07)] " HA(6*,05)VTN(* — 64)

Expanding the right-hand-side by 1 = %:

VTN (P —0%) L [—TlNHB(eA,eB)] B VTN 7=gP(0%,0%) +
+ [—TlNﬂB(eA,eB)] N A B4, 07 VTR (0 — 0%)
—  [—HP(6*,6%)] " VTNG®(64,67) +
+ [ZHP0%,05)] 7 HA04,05) VTN (64 - 64)

VTIN5 —05) L [—HP(04,05)] " VTNGB(64,07) +
+

[—HB(04,05)] " BHA(0,08) [-H(0M)] " VT NgA(04)
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Moreover:

Note that Q 4 = TNZ(64)~" = Qpa and that we will derive Q 5 in the next section. Finally:
_ _ 1 _
~He* 5 -E[H(OY] = ﬁI(HA) = Q)
—HA04,0%) 5 —E[HA(04,07)]
-HB04,05%) & —E[HP(04,07)]

Then again by Slutzky’s Theorem:
VTN - 68) & N (0,Qs)

where Qps = Var |VTN(§Z — 05)|.
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This VC matrix is given by:

— B[-HP04,0%)] Qe E[-BP(0%,05)] " +

+ E[-HP04,65)) " E[HA04,6%) E[—H0Y] ' QuE [-H(6Y)]) " E[HA04,6%)] E[-H504,6%)] " +
+ E[-HP(04,07%)] 7 QuaE [-HOY]) T E[BA64,07)) E[-BP(64,07%)] " +

+ E[-HP(64,6%) " E[HA0%,65) E[-H©0")]  QusE [-HP(64,6%)]

— E[-HP(6%,6%)] " Qe E[-BP(6%,6%)] " +

+ B[-HB(04,0%)] " BE[HA04,0%)] QpuE [HA(04,0%)] B [—HB(04,05)] " +

+ B[—HB(04,07)] " QuuaQea B [HA0A,05)]) E[-HB(04,07)] " +

+ E[-HP(64,6%)] " E[HA(0,65)] QaQyas E [-HP(6,65)]



3.2 Asymptotic Distribution of Score Vectors

The asymptotic joint distribution of the score vectors

TN 004

T

T N A
ﬂgA(eA) 1 ZZ 8(] (Itzve ) and
t 7

A pB
xtz 73%79 0 )

\/ﬁgB(eA’eB) ztjz dq”

5

is given by
VTNg*(64) Y 0 7 Qga Qgas 7
VT g (9’4 93) 0 QgBA QgB

by the Central Limit Theorem (CLM).
We know that (2,4 is the variance of the first stage score vector. Since the first stage is estimated
-1
by MLE, this is equivalent to Var [66A] which we know is the same as —F {%} =7(64)!
given the Information Matrix Equality (Greene, 2011).

To compute the remaining terms of the VC matrix of the score vectors, we need to derive

QgAB = Q;BA and QQB. In order to do so, we compute the score vector of the second stage.
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3.2.1 Derivation of First-Order Derivatives

Let

¢® =vPVP  with

VB =B — B8P — (Ir @ RP)(1r ® 25)6% — 1A
(Sample Selection)
B

v =yP —ay? — 2888 — (Ir @ RP) (1r ® 27)67 — 7A?

(Treatment Selection),

Where we have defined

Y111 (GPNH
YNAMN YNA N
A= : and AJ = :
pvel P17
| UNATN | | UNATN ]
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The first-order derivatives are then given by

o B o B, B o B o B o B

aq—a = Vaay = gTZ/B + VB’g—a = 21/3';7 = 208"y (Treatment Selection)

1x1

9B ouB/,B Br B B

e

1><Ti T T T T

OqP ovB B o ovPB ovB B

g5~ oop —aop” TV aop ~ 2 gop — 2 Ur@ RO @)

1x1

o B o Br,,B B B B

% = VaTV = (9(;—7_1/}3 + I/B/% = 21/3’% = —20P'A  (Sample Selection)

1x1

9B ouB,B Br B B

% = VaTV = %VB + VB’aaLT = 21/3’% = —20P'A9  (Treatment Selection)

T

1x1
9qP ovB B ouB ovB ovB ORE _ oA
8pB = apB = 8pB l/B + VBlal.ﬁ = 21/3,8’.ﬁ = —2I/B/ |:(IT ® ﬁ)(bT ® SUB)(SB + TapB:|
1x1

Br B B —B\sB OA :
= 207" |(Ir @ Ry W R )(1r ® 7)6° + T&.ﬁ (Sample Selection)

dqP ovB'yB o o o ovP 5 OVB B ORE Bv.p . OMNI
opF 9pF 9P v? 4+v P v F —2v [(IT®6PB)(LT®:C )o +TW:|

1x1

A9
= P {(IT ® REW,RE) (11 © 2B)6P + T:l (Treatment Selection)



g9

OA

The term 9o can be derived as follows. First recall that ¢;; =

9pB

oA
Op®B

P
a:f’é A11

6,
S NN

0y

BB AT1

0
FAAMN |

B

B
N 87t,1jTA
j=1 5,B "tij
2 >\11

X5y

N OTiNj A

=1 "5,B th‘,jA
N(.A 1IN

Zj (Tf,vlj)z

B
N OTiNj A
j=1 5,8 tij

X5 (rd,)?

ATN

N B _A
Zj:l TtijTtij
> (r

orl. . iy . ¢ . . .
"tii is the ijth element of the matrix %1;}3 = RBW,RE. Since \y; and MY are not functions of pP it follows that

and hence

oY1 \g
apF M1

YN 9
Dpb AN

Y1 v g
5o AT1

ey _

YN g
9pB TN |

B
N 9T oA

Z020 B T yrther, note that

()2

B
TN o1 FA
=1 5,8 "tii \g
2 11

>3y

N OriNj A
Zj:l 9,8 tij 2\
()2 LN

N ol a4

j:;v 2B Ttij )\g
——~ A3
Zj (th‘j 2 Tl

B
N OTiNg FA
j=1 5,B tij 2\
EN rA A)2 TN
J tij =
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3.2.2 Variance and Covariance of Score Vectors

Recall the first-order derivatives of the score vectors of the first and second stage:

First-order derivatives of [
/
ol
B

1x1

1 1 1
= vYQ. 2 (Ir ® (RN Nait = | Q.8 (Ir @ (RN ™Y [y — 228 — (Ir @ RN (er @ )54 | Q.2 (Ir ® (R ™y

uA

= wM(Ir e (RN I @ (R Ve = u(Ir @ (R ™Y Ir (R ait
ol
951
1x1

_1
2

= vY0 2 (r @ 7)) = u (Ir ® (RY) ™)' Qi (vr © 7))

ol B * - *
gpp = ~TrIr@RIW) +vM i (Ir @ W) (v —2p%) = =T (Ir @ RIW:) + ™ (Ir © (RY) ™) Qi (fr o W) |y — 2767
- (IT®RY) (b0 ®TA) 64 +uA

= =Tr (Ir ® REW;) +u (Ir @ (RY) ™)' Qg (Ir @ Wh) y A — gApA
N———’
(IT®@R{) (cr@z4)54A+us

= =Tr (Ir ® R{W) + ™ (Ir @ (RY) ™)' Qe (Ir @ Wy) [(Ir ® R (er @ 2%)6% + u?]

where we have used v* = QQA% (Ir ® (RM)™Y) [y* — 284 — (Ir @ R} (or @ 24)574].

wA
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First-order derivatives of ¢

9q"
oo

1x1
9¢”
opP
1x1
0qP
908
1x1
9"
or
1x1
0g”
or

1x1
oqP
OpPB

1x1
99"
0pB

1x1

= —2P'y" (Treatment Selection)

= w88

= 28I @ RB)(1r @ zP)

= —20%A (Sample Selection)

—20B'A9  (Treatment Selection)

= - |:(IT ® RPW,RB) (1 @ zP)6P

—ouB {(IT ® RBW,RB)(1p ® zP)6P

oA
+ 7 apﬁ
ON9

+7'a’ﬁ

} (Sample Selection)

} (Treatment Selection)
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Sample Selection
B B oq ' d oq 1’
0 = var[ 2] - p[ 2 (20 g2 pl o0
: o0 o0 lol7} 00 tolv}
- /- - — -
9q 9q Oq 9q
B aBP aBP By
Oq 9q 9q 9q
opE 2B B8 2B
dq dq dq 9q
- B 6B 855 _E 855 E 855
Oq 9q 9q 9q
968 963 963 963
9q 9q 9q 9q
orT orT orT orT
Oq 9q el 9q
L \ 9pB dpB J L\ 9p% / L\ 0p% /
) A ) ) ) @] A [
BB \ apB apB \0pB BB \ 855 pE \ 968 apF \or apF \ 9pB 98P 98P
! / ! ! i !
dq dq 9q 9q 9q 9q 9q 9q 9q [ 9q dq 9q dq dq
98g \ 987 oBR \9BR 9BR \ 957 9Bg \9oR B \ 07 o8 \9p” BB opz
0 (04 \ o (g )\  9q (09 ... ¢ (00 oq (04)" o ( 0q ) og aq
- E 68 \ 9pE o968 \9pB 68 \ 55B 68 \ 968 55 \ or 968 \ 9pB _E 958 E 358
! ! / ! ! Vi
dq Oq 9q 9q 9q 9q q q 9q ( 9q 9q 9q 9q g
968 \ 9p8 962 \0pB 868 \ 958 968 \ 968 268 \ or 255 \ 9pP 963 955
9q (_9q og (8q\  oq (g aq (04 \  oq (84 oa (04 9q 9q
ot \ 0BF or \ opE ot \ 968 or \ 9sE or \ or or \ 9pB or or
0 (9g ) 0q (0g ) _aq (g 0q (09 oq (04) 8q (g g 0q
| 9pB \ 885 opB \ 988 dpB \ 955 pB \ 858 opB \ or 9pB \9pB ) | L\ 9p® / U L \ 9p"
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The expectation of the elements of the vector of first derivatives are

Byge| = Bloawef] =28 ) <0
9 1
E [&53 = E[-20%(Ir ® RP)(ir  75)] = —2E [vP'] (Ir @ RP) (10 © 77) = 0
8q: Br B
El5-| = E[-20"'A] = 2E[vP']A=0
51]: B/ B B —~B\sB oA B/ B B ~B\sB
E 9pB = E|-207" |(Ir @ Ry Wi Ry ) (1r @ 27)0 +T8pﬁ = —2F [v"'] |(Ir ® REW, R ) (vr @ 27)67 +

Thus 2,5 reduces to the expectation of the matrix of all cross-products of first derivatives and its elements are given by

/
ElaaﬁqB (88;3) —E{ 208y B( 2082 B)} =4F [VB’xBxB’Z/B]

Since the expression inside the expectation operator is a scalar, we make use again of the fact that the trace of a scalar is the

trace itself and of the cyclic property of the trace:

AE [Tr [vP'2PaB'vP]]

AE [Tr [2P2D'vPuP]]

= ATy [2B22P'E [E [vPvP |y** > 0,24, 25]]]

Elaaﬁif‘ (8‘2‘23)/] = E[ 282 B (- QVB/(IT@)R?)(LT@JEB))} =4E [v"' 2l (vr @ 27)((Ir @ RP"))VP]
= AE[Tr [vP'2l (vr @ 2%)((Ir @ RY))WP]] = 4E [Tr [2F (o0 @ 27') (I ® RP))E [P0
= ATr [22(r @ 2%)((Ir ® RP))E [E [vPvP |y* > 0,240, 27]]]

dq dq ! /
E |f9675 () ] = E[ 208y B( 21/B'A),} =4F [I/B .Z‘EA’VB] — AE [Tr [VB/IFA/VBH

= AE [Tr [¢EANVPVP'|] = 4Ty [zPNE [E [VP0P |y > 0,29 2P]]]

|y

>0,xA0,;vB]]]



A
BB (_21/3/ |:(IT ® RPWiRP) (10 @ 28)07 +7-883]>

Jdq g\’ _
Elaﬂﬁ (W)] - F

I OA
= 4B [VP'2P |:(IT®Rt WiRE) (1r ® 27)67 +733} ”B]

= 4FE |Tr

A i
VBB [(IT@)RBWtR )(er @ 28)5P +78] VBH

= 4AFE |Tr

oA’
xk [(IT®RBWtR )(LT®£L'B)(5B+TapB:| uBuB’H

OA

= 4Tr T@’ﬁ

zk [(IT ® RBW,RB)(1r @ zP)6P +

}/E[E[ By BryAx >o,xA°,xB]]]

Similarly, we can derive the remaining elements of matrix {05 for the sample selection case.

-
E[ai% (a%qB) = AT [(Ir ® RY)(r @ 20)2 7B [B [pPvP|y™ > 0,29, 2P]]]
85%3 <863) = ATr [(Ir ® RP)(tr @ 2%)(or @ ') ((Ir @ RY))E [E [vPvP |y > O,xAO,xBH]
8573 (3q) = ATr [(Ir ® RP)(tr @ Z°)AN'E [E [vPvP [y > 0,249, 25]]]
p|2e ﬁ = ATy |(I7 @ RP)(1r @ 2P) |(Ir @ RPWRP) (11 @ 2P)6P + oaY E [E [VPvPly** > 0,20 2P]]
9B \ dpP = alr |Ur Ly )Ur QT T @ Ry Wity )(ir @ I TaB Y y L




1.

4Tr

4Tr

4Tr

4Tr

= ATr [AzP'E[E [vP0P |yt > 0,240

]

= ATr [A(r @ 2%)((Ir @ RP)E [E [vPvP |y > 0,24, 27]]]

= 4ATr [ANE[E [VBVB’\yA* > 0,249,

= 4Tr

. BA T
(It ® REW,RP) (17 @ 25)65 + ™58
. BA T
(It ® REW,RP) (17 @ 28)68 + TopE
. BA T
(It ® REW,RB) (11 ® zP)6P + TooE

OA T
(It ® REW,RB) (11 @ 2P)6P + 1=—

9p” |

="]]]

oA T’

A {(IT ® REW,RP)(ir ®2P)6P + 71— | E[E [I/BI/B/|yA* > O,xAO,xBH}

0pB

2P'E [E [VBVB/WA* S O,a:AO,xB]]]
(o7 ® EB’)((IT ® Rf'))E [E [VBVB’|yA* > O,wAO,xBH}
NE [E [VBVB/|yA* S O,xAO,xBH}

oA

/
(It ® RPEW,RB) (1 @ zP)6P +T8pB] E [E [vBvP |y > 0,36‘407963”]



¢l

r /
Q B ol [ 0q®
AB = — | —=
g 004 \ 068
- /-
9q
al aBP
2px i
9q
al opE
8[5}’3 an
= ol o
E 264 i
9q
al asE
54 g
ol or
apA dq
L opB i
[ o (o0 . o (0q ) o (g .. o (24 o (24) o (04 ]
957 \ 285 257 \ 052 2p% \ 267 257 \ 9o o5& \or o5& \9pP
o (g o (o e (o) o (o8¢ o (0q) o (g
ap% \ 9B 28 \ 9552 9pE \ 96P 9B% \ 968 apx \or apx \ 98
N (6q)' . a ( q)' al <8q)/ S a (8q>’ al (@)' ol (aq)’
257 \ap5 257 \ 92 257 \ @sP a7 \ 908 254 \ or 254 \ 9pP
ol (aq)’ il (8q>’ ol (aq)’ o (aq>’ ol (@)’ ol (8(1),
o5t \887 ) oot \o8% ) 2ot \oof ) oo \osg ) oo \or)  ae \opP )
ol [ _9q ... oL (_9q 0l ( Oq ... oL [ 9q ol (9q ol [ _9q
| 9p2 \ 0B apA \ 9BE dpA \ 96P dpA \ 96E opA \ ot opA \ 0pB ]

Thus Qga5 is given by the expectation of the matrix of all cross-products of first derivatives of the selection and outcome equation
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and its elements are given by

ol

(

ol

9\
DB

g\’
57

- B [uA’(IT ®

I Il
|
b
=

|

I
)
&
S
=

—

E[u (Ir @ (R Y Q7 (Ir @ (RY) it (- 2VB’xB)}

—2B [u(Ir ® (RY) ™) Q) (Ir @ (R )aialv® |

—

Tr |u(Ir @ (RY)YYQ7 4 (Ir © (RY) ™ )xﬁxB’yB”

[
—2F {Tr [(IT ® (R?)_l)’ﬂgj (Ir ® (R~ )x‘,me’VBuA’H
It ®

® (R Qe (Ir @ (R afal B [B [P |yl >o,xA°,xB}]}

(RO 0k (I @ (R ™Mait (<207 (I © RE)(er @ 27))|
—2E [u¥(Ir @ (R ™) Q! (I @ (BY) ) (i © 3%) (I @ REYvP|
[7r [ @ (B Qg (Ir © (BY) ail i @27) (Ir © RYY 7|

Ir & (B ™Y Qg (Ir & (R) Ml (r ©27) (Ir © Rf)’uBuA’H

B [u(1r @ (R Y0k (r @ (RY) ™ (~2078) |

_9FE [uA' Ir ® (RY)71)Q

—9E {Tr Ir ® (R~

|

e Ir & (R A"

(
Tr [UA/ (Ir ® Rt ) QE_A (It ® (R; )*1)33;3/\/1/3”
[

|

D (I @ (R )z Av P |

(Ur @ (RN YQg! (Ur © (B2l N B [B [Pu |yl > 0,02, 2] |
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ol [ g\’

Similarly, we can derive the remaining elements of matrix 2,45 for the sample selection case.

-
g | 9L (9
257 \ 98P

E uA/

—2F |u?

—2F

—2F

—2Tr

—2Tr

—2Tr

—2Tr

—2Tr

Tr

Tr

[IT® R4~
[IT® R4~
[

(It ® (RM)~

) Q.

) Q.

QgA(LT(X).%‘k)AE[ [V Bu? |yt >O7xA0,xB]H

1
EA

1
EA

(1r & (RAY 0 @ (R (<207 (1 @ REWRE)or 0 57)

0
(Ir @ (R{) ™)' Qe (Ir (R ~Hat! [(IT ® RPW,RE)(er @ 2%)8° + 7%

)+

(Ir ® (R ™N'Q il (Ir @ (RY) ™ Haf! [(IT ® RPW,RB) (11 @ 28)6P +

(Ir ® (R Qd (Ir @ (RN ™)y {(IT ® RPW,RP)(1r @ 2P)68 + 7

(vr ® )2 E (B [V7

aB

0
wir & (BAY 0 @ (R | (1 @ REWRE) o7 5057 4 7

u |y > O,xAO,xB]”

6B +7'8A}>

83

(10 ® 2 (ur ® 32) (Ir @ RE)'E [E [vBu® |y > 0,27, xB]]}

(Ir @ (RH™Y' QA (ir @ 7) | (It ® RPWRE) (1r @ 25)65
¢

oA
0pB

/
+T:| E[E [P u? |y >0,xA0,xB]]1
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The derivation of the following expectations require more details:

ol

0q

P

)

E H—Tr (Ir ® RAW,) +u™(Ir @ (R ™Yz (Ir @ W) [(Ir @ R (r 0 24)8 + uA]} (—205'2P) }

_92F [—Tr (Ir ® RAWL) 2B'vP 4w (Ip @ (RY) ' Q) (Ir © W) [(Ir @ R (i © 24)0% + u] xE’VB]
—2E[-Tr (It ® R{W;) 2P'vP

w(Ir @ (RY) ™)' Qe (Ir @ W) (It @ RY) (or @ 262207 + o (Ir © (R 1) Qd (Ir @ Wy)uta'vP)
—2B[-Tr (Ir ® R{*W) aP'vP

Tr [uA'(IT ® (R (Ir @ WoR) (ir @ )52 P 'y B] +u(Ir @ (R ™Y QpHIr @ Wou e PP
—2E[-Tr (Ir ® R{*W;) x50

Tr [(IT ® (R Qed (Ir @ WiRY) (o @ 2%) %420 A’] +u(Ir @ (RY) ™)' Qi (Ir @ W) uta v
2Tr (It ® R}W;) 2P E [vP]

=0
2Tr {(IT ® (RY) ™)' Qe (Ir @ WiRY ) (or @ 24)64 2" B [uBuA'H

2F [uA'(IT ® (R QA Ir Wt)quB'yB}

—21r {(IT ® (R%A)il)/QgAl(IT @ WiRM (1r @ 2404 2P'E [E [VBuA’\yfz‘»* > O,xAO,:rB]H
2F {E [uA’(IT ® (R ™Y Qe (Ir © Wl |[v?, a4, xB} wf’uB}

—2Tr [(IT ® (R Qi (Ir @ WiRY) (or @ )62 B [E [Py > 07:6140,953]”

2F {uA'(IT ® (Rf)fl)’ﬂgj(IT @ Wyut|vB, 24, xB} =P'E [I/B]
——

deterministic =0

—2Tr {(IT ® (Rf)_l)’QgAl(IT @ WiRM (vr @ 20642’ E [E [v By |yt > 0795’40,:103]]}
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ol

ol
ol

ol

Jq

asp

9q
or

0q

opB

—2Tr((Ir @ (R{) 1) Qgi (Ir @ Wi R ) (er @ 24)67 | (Ir @ REW,RE ) (10 @ 27)

E[E [VBuA’|y£* > O,SCAO,J}B]N

—2Tr {(IT ® (RtA)_l)’QgA1 (Ir @ Wi R (o ® 24)6* (vr @ 28)'(Ir © RP)'E [E [vPu|yt* > 0,24, xB]H

—2Tr {(IT ® (R ™' Qi (Ir @ WiR?) (e @ 2)§ N E [E [P u? |y} > 0,1‘A07x3m

oA
B
) + Ta’ﬁ
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Treatment Selection

Q.5

g

— Vor| 5k

068

9q
o

9q
98P

9q
opE

9q
908

dq ( 9q \' el 2] o
008 \ 008 068
= - -
9q 9q
da O
_9q_ _9q_
aBE oBy
_0q_ _9q_
BB oBE
9q _ 9q
858 E 6B
_0q_ _0q_
653 965
9q 0Oq
or or
_0q_ _0q_
OpB | L opB i

9q_( _9q_
opg \0B7

9q 9q
955 \ 98B

aq (0g )
da \ 0BE

dq dq
oBE

oBE \ opE
9q 9q
o5 \ 98B

/
dq
008
_ 8 _
da
Oq
oBE
Oq
opE
9q
967
9q
965
9q
or
9q
L 9pB |
9q (O
da \ 26F
9q Oq
2BF \ 858
9q 9q
258 \ 967
Oq Oq
857 \ 8sP
dq dq
065 \ 958
oq (g \
ar \ os8
9q 9q
apB \ 6P
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[ [ 9a \] 2q
O O
dq dq

dBF oBB
_Bq_ _0q_
oBE oBE
_E 0q E 9q
5B 5B
_0q_ _Oq_
58 5B
9q 9q
orT orT
_Oq_ _Oq_
L dpB i L dpB i

The expectation of the elements of the vector of first derivatives are

E [gﬂ = E[-2Py"] = 2B [Py = 2B WP E[y*] =0

The second to last equality follows from the fact that after correcting for selection into treatment, the treatment indicator and

the residual of the second stage are independent.

0q |
E L’?BTB_ = E[-2Y2P] = 2B ]2l =0
[ Jq ] _ _
Blgs| = Bl2"UroR)(rea”)] =28 "] (Ur o R ©3%) =0
p|%] - E[-20P'A = 2B [P A9 =0
[ 0q | _ __ B B B —B\sB ONY _ B/ B B =B\ sB
FE TpB = F|—-2v (Ir @ RPW R )(vr @ 7)0 +T78p3 = —2F [l/ ] (It @ REW R )(er @ T7)6

DA

+T75| =

0pB

Thus Q.5 reduces to the expectation of the matrix of all cross-products of first derivatives and its elements are given by

E

da \ Oa

-
9q (8(1) - E [_QVB/yA (_2VB/yA)’] = 4B [Py yNuB] = 4B [Tr [vB'yAyVuP]] = 4B [Tr |

yAyA/Z/B VBI] }



6.

Since v® and y* are independent:
=4ATr [E [yAyA'} E [I/BVB’]] =4ATr [E [yAyA'] E[E [VBVB’|yA* > O,xAO,xB]H

From the properties of the indicator function we know that

E [?Jm = Pr(yé =1)= ngq)(zti) = é(«zti), Var [ym = Pr(y;? =11 - Pr(y{? =1)) = &)(th)(l - é(ztz))v
and Couv [y, uly] = Plfi =10yl =1)— Py = Pyl = 1) = P(y;i* > 0Nyl > 0) — D(20) P (zs;)

(1= Fug ufy)) — ®(20) (2s5),

where F'(-) denotes the cumulative joint bivariate normal distribution.

Since Var [yst] = E [(yi1)?] — E [y{}] E [y31] it follows

E[(yi)?] = Var [yit] + E [yft] E [yit] = ®(20)(1 — ®(203)) + P(2) @ (213) = D(215) — P (201)D(215) + P (201)D(215) = P(200).
Finally, [yﬁy;ﬂ is given by
Eyivy] = Covlyu,uiy] +E i) Ev] =

= (1 F(uj,ufy))
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/!
E [gi (aaﬁqB) ] = F [—QVB’yA (—QVB/J?TB)/} =4F [Z/B/yAIF/l/B] =4F [TT [VB/yAxfg’VBH =4Tr [E [yA] xf'E [E [VBVB/\yA* > O,xAO,a:B]H

= ATr {&)(z)xf”E (B [vPuP |yt > 0795‘40,:103]]}

E [02;]4 (;{53) = E _—ZVB’yA (=20P(Ir ® RP) (11 ® EB))/} = 4Tr [i)(z)(aT ® %) (Ir ® RP) E [E [VPvP' |y** > O,mAO,:EB]”
/: _
E [gq <gq> = FE|-28y4 (72VB/A9)/] =4Tr [i)(z)AglE [E [VBvP |yt > O,zAO,xB]H
a \ Ot L
/: I g /
E [SZ <aa,o%9> = FE |-y (21/3’ [(IT ® REW,RE) (11 © 2P)6P + Tg;\BD ]
- g7’
= ATr |®(2) [(IT ® REW,RE) (11 @ 2P)6P + TS?B} E [E [VPvP |y* > 0,29, a:B]]]
99 (9q d B&(.) B, By, Ax A0 B
E 955 \ 9a = A4Tr {:c,,@(z)E[E[l/ v y™ > 0,27 @ ]”
i o
9q 9q d B, B B, Br, Ax A0 B
255 \ 958 = 4Tr [osrxs E[E [V vy > 0,270 x ]H
dq 9q d B ~BI B/ B, Br|, Ax A0 B
E 55 \ 968 = ATr [z (ur @ %) ((Ir ® RY))E [E [vPvP [y > 0,249, 27]]]
Jq dq d B gl B Bry, Ax A0 _.B
E 555  or = ATr [zPN'E [E [vPvP [y > 0,279, 27]]]
/: g !
[38;3 (38,0%3> = ATr 2P [(IT @ REW,RE)(1r @ 2B)6P + T% E[E [VBVBI‘yA* > O,wAO,a?B]]
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4Tr [(Ir @ RE)(ur @ 72)8(2) B [E [P0 |y > 0,02, 27] |
ATr [(Ir ® RP)(ur @ 28)2P'E [E [vPvP |y > 0,240, 2P]]]
ATr [(Ir ® RP) (v @ 28) (1r @ 27')((Ir @ RP))E [E [vPvP |y > 0,240, 27]]]

ATr (It ® RP)(vr @ 2P)AYE [E [vPvP [y > 0,249, 25]]]

g i
(It ® RB) (1r ® zPB) [(IT ® REW,RB)(1r @ zP)6P + T({)A} E [E [VBvP |y** > 0,240 2P]]

4Tr 9P

= aTr [MEY B [E [Py > 0,00, 27|

= ATr [N2lE [E [vPvP[y? > 0,24, 27]]]

= AT [A(r @ 27)((Ir @ RY)E [E [vP0P [y > 0,270, 27]]]
= ATy [MAYE [E [vPrP |y > 0,2, 25]]]

on7’

A9 {(IT ® REW,RP)(ir ®2P)6P + 71— | E[E [I/BZ/B/|yA* > 07xA0,xB]]

= 4Tr )P
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4Tr

4Tr

4Tr

4Tr

4Tr

(It ® REW,RE) (17 @ 2P)6P + 1

(It ® RBW,RB)(1r @ zP)6P + 1

T OA9]
(It ® REW,RP) (17 @ 28)6P + ™38

T ONI ]
(It ® REW,RP) (17 @ 28)0P + 71—

(It @ REW,RB) (10 @ 28)68 + 71—

E AgIE [E [VBVB/|yA* >07xA071,B:H:|

d(2)'E [E [VBVB’|yA* > O,xAO,xBH]

.’IJSB/E [E [VBZ/B/|yA* > O,SL‘AO,.Z'B]]:l

: (tr @ 2P ((Ir ® RY'))E [E [vPvP |y > 0733’40,:108]]}

A9]
(It ® RBW,RB) (1 @ B)6P +T§Pﬁ:| E[E [VBVB/\yA* > O,xAO,:EB]]]
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r i
Q B ol [ 0q®
AB = — | ==
g 004 \ 008
- =
9q
oo
ol dq
85{‘ oBE
Il dq
(’)Bﬁ Bﬂg
— al dq
E EI a5
_oL_ _Oq_
954 asE
al aq
OpA or
9q
L 9pB J
[ o (8 & dq
981 \ O 0Bt \ 9B
o (9a) o1 ( o
982 \ 9a / opx \ opF
- E al [ 9q ol 9q
267 \ 9a a5 \ 98P
ol (0q\ a1 ( oq
352 \ Da a5& \ 9BF
li
ol 0q al dq
L 90" (8a> op” <0ﬂ{3

)

B

al
984

al
a5

ol
Dok
ol
Ere

0B

al
pa

al
64t

ol
267
ol
OpA

ol
0Bt

al
pE

al
858

al
967

ol
OpA

ol
o

al
982

al
Er

al
Dok

ol
IpA

ol
9B%
al
as8

ol
Dok
ol
OpA

9q
dpB

9q
OpB

Thus Q a5 is given by the expectation of the matrix of all cross-products of first derivatives of the selection and outcome equation
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and its elements are given by

ol (oq\
E[%A (az[)] = =2 |u"(Ir @ (R{") ") Qg (Ir @ (R{) ™ )zy! (—QVB/yA)/}
k
= =28 [u¥(Ir & (B9 (Ir @ (BY) Maityv® ]

u(Ir @ (R 7Y Qg (U @ (R Maity?vP] |

I
|
[N}
=
———_— —
-

[
Tr (I @ (RY)YQE (I @ (RY) )ty Pu?]|

—2Tr (I & (RY) Qg (I © (RY) B [y"vPu] |

deterministic
— Ty [(IT ® (Rl (Ir © (R i d(2) E [vPu [y > O,xAO,xBH
al ([ 9q ] [ Ay—=1y/—1 AN—1\. A B/ B, Ar, Ax A0 B
E | 552 55 = —2Tr [(Ir ® (RY) ™)t (Ir © (R afta? B [E [vPu? |yl > 0,04 2 ]}]
k v .
ol 9q d [ Ay—1\/—1 Av—1y A ~By/ By B, Ar), Ax Ao B
E|—= = 2Tr |(Ir® (R}) )QgA(IT®(Rt) )z (vr @ 28) (Ir @ RP ) E [E [WPu |y > 0,27 2 ]H

= —92Tr _(IT ® (Rf)fl)’Q_l(IT ® (Rf)fl)x;?Ag'E [E [VBuAl|y£-* > O,on,xB]H

/ /
e _ _ NI .
= 2T |(Ir @ (R~ Qui (Ir @ (RY) )y (IT®RFWtRf)(LT®IB)5B+TW:| E [E [vBu® |y} >o,xA°,xB]]]
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Similarly, we can derive the remaining elements of matrix 2,45 for the sample selection case.

ol
E|—
[a(s;;‘

()

—2T'r

—2Tr

—2Tr

—2Tr

= 21r

(It ® (R~ QEAl(LT ® TP (2)'E [Z/BUA/|y£* > O,J;AO,xBH

(Ir ® (R~ QéAl(LT ® )zl E [E [vPu |y > O,J;AO,xB]H
(It ® (RM)~ QgAl(LT®9?‘,3)(LT®£Z‘B)’(IT®RtB)’E [E [P u® |y >O,;CAO,$B]H
(Ir @ (R ™) Q) (r @ 5N E [B [pPu |yt > 0,24, 7]
Ay—1y/(y—1 —A B B B, 0N By A A0 B
(Ir ® (R]) )QgA(LT(X)CEk) (It ® RBW,RB) (11 ® P)6 —l—Ta—B E[E[ lya* > 0,240 2 1]

= 2T {(IT ® (Rf)_l)’QgAl (It @ Wy R} (1r @ 24)64®(2)1E [VPu |y > 0,$A0,SL‘BH

= 2Tr

= =2Tr

= =2Tr

— —oTv(Ir ® (R})

x E[E[B A/|y

(Ir ® (R{) Q1 (Ir © WoRM) (i @ 2)54e 2 B [E [Pu yf* > 07951“0,:53]]}
(Ir ® (R~ Qed (Ir @ WiR) (1er @ %)% (er @ 7) (Ir © RP)'E [E [vPu|yfi* > O,xAO,:rB]H

(I ® (RY) ™) QpHIr © WaRM) (ir @ 2)5 A E [E [vPu [y > 0,27, xB]]]

A
(It @ Wy R} (1r @ 24)64 | (I1 @ REW,RE) (17 @ 2P)6P + T:| X

'ogh .
O’wBH]

> O,xA
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3.3 Spatial/Network Truncated Variance-covariance Matrix
3.3.1 Qs

The elements of matrix 5 are functions of the following conditional expectations (see Appendix 3.2.2 for the specific elements

of this matrix):
E [(Vtz) |y > 07561407%,3] ) E [Vtzl/t_]‘y > 07onaxB]

E [vivBlyr > 0,22 2", EwivBlyi* > 0,270, 27]

To calculate these expressions, we use the following theorems (adapted to our model):

Theorem 1: Variance of the incidentally truncated bivariate normal distribution (Greene 2008, p. 883; using

our notation and adapting to panel data case)
FE [(th) |y > O,xAO,xB} = Var [Vn|y > O,xAO,mB]
= VCLT’ [’U,g] [Qﬁfs,i:j (Q\t s z_]) <t1:|

Using our assumptions on the spatial /network error components:

2

N N A B
J N 2 N 2 ¢
J=1 UEA 2j=1 (ré;) ‘723 2=t (rf})

2
N B

N
_ 2 B \2 O¢gaB Zj:l réjrtij
= O¢s Z (rtij) - Ci
= i ()’
J=1 0—5“ j=1 \"tij
N

= O?B Z (’rtlj> thzctl

Jj=1
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Theorem 2: Covariance of the incidentally truncated trivariate normal distribution (Kotz, Balakrishnan, &

Johnson, 2000, pp. 317-318; using our notation and adapting to panel data case)

Evf z/tj|y > 0,24, 2]

= Cov [thyt]|y >O,xAO,xB]

BB AB AB
= \/ Var [u]] \/ Var [uf] [Qlt:s,i# - Qlt:s,izﬂlt:s,#ﬂti}

Using our assumptions on the spatial/network error components:

N N
2
— 2 B
= o2 P E rm Oin g (thi)
j=1 i=1
2 N B .B N A B N A .B
« UgB Em 1 TtimTtjm O¢AB ZJ 1 T4 ti5 O¢AB Zm 1 Ttim T tjm C
te
\/ EB Zg 1 rtlj \/ gB Zz 1 Tt]z \/ §A Z] 1 rtzg \/ EB Zg 1 rtlj \/ .fA Z] 1 thg \/ gB Zz 1 rtjl)
2
N N A .B A B
_ 2 B B O¢AB Zj l’rtljrt’bj Zm:l Ttimrtjm
= O’EB g Ttim’l“tjm — 2 5 ~ n 5
Tea \/Zj:l Tn‘j \/Zj:l (rtij)
N N A B
_ 2 B ..B 2, Dmel TtimTtjm
= O¢sB TtimTtjm — T i ———="Ct
S — ZN (’I”'A )2
m= =1 "tij
A A ZAIgA A B
TmB +Z, 1T11J J ‘s CO”[“m’“sj]

with i = M2 +

At and
s uiyr v and et

\/Var u;‘;] \/Var[ug] ’

Similarly:
E [Vtz sz|y > Oaonva]

= Cov [vfvBlyis > 0,249 25]

AB AB
= \/VCW' utz \/VCL?" Ugs [Q\tyés =7 Q|t:s,i:j‘9\t;£s,i:j<ti
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Again, using our assumptions on the spatial/network error components:

N N
= O' T’ 0'2
¢B tzy ¢B SZ]
j=1 j:l
2 N BB N A B
y g sz:1 Ttis T sij O¢AB Zj 1rtijrtij OuAB Zj 1Ttl_] aw

\/ §B j=1 (Ttlj) 53 Z] 1( blj) gA Z] 1 rtz] \/ gB j= 1 7ﬂtz_] \/ gA j=1 (Ttl])

N A B N A B
OuAE OgAB Z] 1 T4 45 Z] 17457 si5
= 'uB § Ttl] szy
Jj=1

_\/?\/?\/Zg 1 tzg \/Zj 1 m)

N A B
OuAB Z] 1rt”rszy

N
= 0 B E rtjrsm T
Jj=1 \/ §A \/ j= 1 rfzy

E [z/tz |y > O,ZEAO,ZEB]

Cov [vivBlyti > 0,20, 27]
AB AB
\/ Var [uf] \/ Var [ug [Quaés i#j Q|t:s,i:j9|t7ﬁs,i7§jcti}

Again, using our assumptions on the spatial/network error components:

gB Z] 1 ( 513)2

Cti
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N N
2 2
_ 2 B 2 B
= | E () "\ |o8s D (1)
j=1 i=1
2 N B ,.B N A B N A B
y [ o uB Zm 1 TtimTsjm O¢AB Z] 1 T4 ti5 OpAB Zm 1 Ttim " sjm
2
\/O-gB Zg 1 thg \/ 55’ Zz 1 sgz \/ gA E] 1 th; \/ 55‘ Z] 1 Tt’Lj \/ ;;-“A Z] 1 rt’bj \/ gB Zz 1 Sjl)
N N
N 2 B _ OuAB O¢AB Ej 1rt1]’rtl] Zm 1 tzm sgm
- O—p,B TtimT sgm
o] Vor o Y, ()P VX ()
N A
2 B OuAB Zm 1Tt1m S]m
= 0 r — T
- uB tim” e]m ti
m=1 \/ \/ j= 1 tzg
3.3.2 QgAB

The elements of matrix 2,45 are functions of the following conditional expectations:

E [ugvflyn® > 0,22 2] E[ujvf |yl > 0,27 2"
E[un Sl|y >O,xAO,xB], E[utZ 3J|y >0,xAO,xB]

These expressions can be derived base on the following theorem:

Cti

Theorem 3: Covariance of the incidentally truncated bivariate normal distribution (Kotz, Balakrishnan, &

Johnson, 2000, pp. 311-312; using our notation and adapting to panel data case)

E [utvyfz ‘y > vaAO; zB]

Cov [ugi, ugg] [1 = G

A B, Ax A0
= Cov [utia’/ti|yti >0,z
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Using our assumptions on the spatial /network error components:

N
A B
= O¢AB § T35 tig [T — Gl
j=1

And similarly:

A0 B
E [umvtj \y > 0,29 ¢ ] = Cov [um, Vi |y
A
= Cov [utl,ut]] [1
Again, using our assumptions on the spatial/network error components:
N
A B
= O¢aB Z ThimTtjm [ — Gtil
m=1
A0 B
E[un vBlyd* > 0,249 ] = Cov [u“, By
A B
= Cov[ug;,ul] 1
Again, using our assumptions on the spatial/network error components:
N
A
= OpuAB Zrt7] Tsij [ Ctl]
j=1
A0 B
E[utl S]\y > 0,29 z ] = Cov [un, \y
A B
= Cov [uf,uj][1
Again, using our assumptions on the spatial/network error components:
N
A B
= 0uAB Z TtimTsjm [1 - gtl]
m=1

> 0735‘40,:10

Ctz}

> O,xAO,m

— Gt

> O,xAO,x

— Gt

’]

7]

7]
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3.3.3 Derivation of ¢®Z and p*?

AB
Olt=s,i=j

AB
Olt=s,i#j

AB
Olts#s,i=j

AB
Olts#s, i

N N
Cov [ué, utB;] E [uéug] B E [Zj:l r;}'j (’%4 + 53) Zi:l ng(ﬂf + 55’)}

\/Var [uit] \/Var [uf] - \/Var [uit] \/Var [uf] \/Var [ut] \/Var [uf]

E [(r{y(u1 + ) + riia(ud +efs) + .+ riin(un +ein) (rii(ud +ef) +rha(ud + ) + .+ rin(uR +ely)]

\/Var [uzﬂ \/Var [ug}

N A B
O¢AB Ej:l TtigTtig

\/UEA Zjvzl (%%)2\/0?3 Z;vzl (rgj)Q
Cov [uﬂ,uﬁ] _ FE [uﬂug] B E {Z;\le Tﬁ'j(ﬂ}q + 5{3‘) Zf\;l Tgi(/izB + 55)]
\/Var [ui}] \/Var [ug] \/Var [ust] \/Var [ug] \/Var [uf] \/Var [ufB]]

E [(riy (g + ) + rita (s +ebs) + .+ riin(un +ein)) (rB1(uf +eB) +ro(uf +eB) + . + BN (uR +eby)]

\/Var [ué] \/Var [ug]

N A B
O¢AB Zm,:l Ttimrtjm

\/UEA Z;V:I (Téj)Q\/Ugs sz\; (rtB])'i>2

N N
Cov [ué, ug] E [uéuB] E [Zj:l réj (N;‘ + Eé) Dzt Tﬁj(ﬂf + 55‘)}

s1

\/Var [uﬁ] \/Var [ug] - \/Var [uﬁ] \/Var [uﬁ] - \/Var [ué] \/Var [ug]

E[(rd(pf +eft) +rit(nd +eib) + .+ rin(uy +ei) (B (uf +eB8) +rBy(uf +eB) + .+ rBy(uk +e5y))]

\/Var [ugﬂ \/Var [ug]

N A, B
OuAB Zj:l TtijTsij

2
\/”ZA ij:l (riij) "\ ot ij:l (ng)Q

N N
Cov [uf} ug] FE [uéug} _ E |:Zj:1 Tﬁj(#? + 5{;‘) D1 Tgi(ll? + 55)}

\/Var [ué] \/Var [uSBJ] - \/Var [ué] \/Var [ufﬂ - \/Var [ué] \/Var [ufﬂ

E[(riy(uit +eft) + ritg(ud +ed) + o+ riin (ui +ein)) (050 (uf +eB) +rBo(uf +el) + . + 7By (uR +e5y))]

\/Var [uf}] \/Var [ug]

N A .B
0,AB Zm:l Ttimrsjm

\/UEA Zjvzl (rﬁj)z 0?3 sz\il (@1)2
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C B B
And similarly B8 = ov[uft i) and hence

— VerluByVerfuB]’

N
BB _ §B Zj 1(7‘%)2
Q\t s,i=j 5
\/ gB j= 1 th] \/ BZ; 1 Tm)

§B Zm 1 Ttlmrt]m
Olt=s.i#j 5 —
\/%B 2j=1 rm»j) UgB Zi—l (thi)

BE] lrt’Lj 513

BB
Oltss,i=j

2
UEB Zj:l (rtij) UgB Zj:l (Tﬁj)
N
O-,QLB Zm:l Tgmrg'm

\/‘7523 Z;‘V:l (Tﬁj)Z\/UEB Zf\; (Tgi)Q

BB
Oltts, i



3.3.4 Estimation of &EB, Gean, &33, and 6,45

Note that for each individual i at time ¢, the true truncated variance of the residual vZ is given by
(13):

N

2,2
Z th] — T 3G

The sample average of the truncated variance converges in probability to
N

2

1%

r A
T DS 6 B ot > (P -

Jj=1

~

~~
Il
-
«
-

since

N
(7"5])2 LN Z(rf)Q and

> () B U

T N ~B\2
We estimate - Z;‘ll Zil 025 by Zt:l%# and solve the following equation for o¢5:
ti

B\2 N
RGO IR

Therefore, the estimates of the variance of the error components of the second stage &gB and

covariance of the error components of the first and the second stage a5 are given by

++2;22) and

6'2 _ 1 (Zt 12 ( 5)2
& — TN
N
Zj:l(/er)2
5 T
gBA - —
a?B

Next, in order to estimate ai 5, and 0,45 we follow a similar procedure as before but based on (14)
and (15). For each individual i at time ¢ and s, the true truncated covariance of residuals u;} and
is given by (15):

S’L

N N

N
A _ A B A B ~
OupvB = OpAB E T'tig T szy [1— Gl = OpA E TtijTsij — OpAB E Ttijrsijgtl

Jj=1 Jj=1 Jj=1

93



The sample average of the truncated covariance converges in probability to

N N
2 :} : } : . } : A..B
qu‘l vB —> OuAB T OuAB Tj r
s<t =1 j=1
since
1 N N N
A A A.B
TN Z ZT“J'T”J ZTJ "
s<t i=1 j=1
1 N N N
_ pA nB G A,.B
N g E g T4ijTsi5Cti g TS C.
t=11i=1 \j=1 J=1

T Tt (4305)?
TN

We estimate 7 >, _, Zivzl Guays by and solve the following equation for &,45:

~A A B N N

Z€<t Zz—l UtiVsi _ A,.B ~ A B

O’ AB rors O’

TN 2: i 2: ERK
j=1 j=1

Therefore, the estimate of the covariance of the individual-specific time-invariant component of the

first and the second stage G,,45 is given by

o — ——— —1
~A A B N
A _ Zs<t Zz* tz St Z _ Z A..B
Guam = TN ri riry ¢
=1
Finally, to obtain &fL we use (14), which gives us the true truncated covariance of residuals vZ and
B

st

N N A B

) B B w UAB Z] 1th]rsz]
OvByvB = OB TtiiTsi; — TVt

J=1 j 1 thg

The sample average of the truncated covariance converges in probability to

N N N A.B
1 P 0, AB Z‘_ TS
A 2 B,.B _ Iz Jj=1"J3J

TN Z ZUVEVSBi UHBZTJ' TS v N ¢

— — — A)2
s<t i=1 j=1 Tea /250 (1)
since
1 N [ N N
.B B B,.B
TN ZZ erijTSlJ - ZTJ ry and
s<t i=1 | j=1 J=1
T N N A B N [ A.B
1 - Zj:l TtiiTsij 2 P ijl iy
p— 2 7 = .
TN Ve ti = ¢

t=1

<.

7 SN S ()

94



Es<t Z‘L 1 Vul’m

We estimate =+ >, _, Z —10,8,8 by and solve the following equation for & UuB

—_— —_—
5BpB A N _A.B
Zs<t Zz 1 Y4 Vsi - &2 ZTBT‘B _z o Zjil Y] ¢
TN w2 5T 52 N 2
J=1 €4 Zj:l (Tj)

Therefore, the estimate of the covariance of the individual-specific time-invariant component of the

first and the second stage 6,45 is given by

—_—

A N A.B
~2 _ 1 Zs<t Zz 1Vtz sz A UHAB Ej:l rj Tj
T — TN T T e 3¢

g A
Z;V:1 7’}37’;3 Tea Zj:l (rj )
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3.4 Hessians of Second-Stage Parameters

The elements of the Hessian of ¢ with respect to 8% and 67 are given by:

(recall: v8 =yP —ay? — 2P — (It ® RP) (1 ® T7)67 — 7A9)

ol = %Ayt =t [

ajggf - —222;?4 =227"y"

oy = Sy =2 R 9]

38:;7 - _285f o = 207y

aigaqT B ‘2%?/’4 =2 |(Ir ® RPWRY) (er © 27)5"
T e
(‘95?’28(]5? = —QZZ;mf = 225/4B
s = 2o =2((Ur & R)er 830 oF
(‘35;187' = 72881/7]_3':57{3 =2A'zB  (Sample Selection)

9 Z;an = —28571_3/33? = 2A9z8  (Treatment Selection)
35(;% = —222;? =2 [(IT ® REWRP)(1p @ 27)°
3/3?325% = —22’;%5 =2 [(IT ® RYWRP)(ur @ 27)8"7

AN
+78Fﬁ yA

oA g
+Tﬁ x,,,.

oA’
#7 )

(Sample Selection)

(Treatment Selection)
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52 a B
4 — 2% (1y ® RB)(ir ® #P) = 2y (Ir ® RE)(1r ® 7P)

96Bda da
82 a B
W - 823 (It ® RE)(ur ® 78) = 225 (Ir ® RE)(ur  7P)
T32qs 81/3' -B B ~B\1/ B —-B
&q aVB/ =B / B =B ;
5589 — 8 (It ® R®)(1r @ 2%) = 2N (Ir @ RP) (17 ® 28)  (Sample Selection)
9%q o B -B g/ B ~B :
%5Bor -2 o (Ir @ R7)(er ®T7) =209 (I ® R ) (1 ® 7)  (Treatment Selection)
9%q o’ _ O[(Ir ® RE)(1r ® z8)]
9550 F 2{8 =(Ir ® R )(tr @ 27) + 7 9,8
By pB B 9A 7’ B _B Br By pB _B :
= —2{— |(Ir ® REWREP)(1r ® 2B)6% + Ta—B (I @ RS r @27 )+ v (I @ RFWRY )1 @ T7) (Sample Selection)
0%q o’ B B 50 [(IT @ RP) (v @ 25)]
96505 _2{8,03 (It @ R ) (er @ 7)) + v 9P

A9
-2 {— {(IT ® REWREP)(1r @ z8)68 + TZB] (It ® RE)(1r @ 28B) + vP' (I7 ® REW,RP) (17 ® a:B)} (Treatment Selection)

Sample Selection

({92(] aVB/

orda ? dox A=A

9%q ovB B
5958 = -9 957 A=2z"A

62 6VB/
S = S A=2 (e R ur @ aP)] A

9q ovP’ /

oror - or A=A

aQq 8VB/ B 8A B B B aA ! B aA
aropE —2{8p3A+V /5173}:—2 _[(IT®Rt WeRP)(er @ 27)5 +T<9B} A 131?
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Treatment Selection

d%q o’

orda —2 Oa A9 =2y A
2 B
afagB - ?’923 A = 227 A
82q B’ . B e
5008 — 255N =2[Ur@R)(r@z)] A
2 B/
88({;] — _285 Ag — 2AgIAg
TOT T
82q ovB’ B oA B 5 Ch B NI / B,aAg
oTopB = 2{3/)31\ +v /83} -2 [(IT®RtWth)(LT®x )o +TW:| A9+ v 55
Sample Selection
d°q vB ) aA .
ApBoa 25— |:(IT ® REW,RY ) (ur @ 27)5" +78p’3} — oy [([T ® REW,RE)(1r © z8)68 +7_8B:|
d°q I/B' . IA ) "
9pP05F — CopP [(IT @ RYWRY ) (or © 37)67 + T@pﬁ} pw: [(IT % REW,RB) (1 @ 3555 + TapB}
z 9 |(Ir @ REW,RE)(ur ® 3%)0% + 7 2%
apBgéB {853 IT ® REW,RP) (1r ® 2%)67 + T@pB} Y [ - 3 ]
A
- { e Rt e fB) [(IT N RFWtRf)(LT ® a‘:B)(SB +T 5] B} + VB/(IT ® Rt Wth )t ® ff)}
B B ~B\sB A
94 v .0 L0 [ © REWRP) (er @ 27)57 + 7 25
m { a7 IT@Rf Wth )(LT X T )5 +7'apB] 4 apB
OA OA
_B\sB B
2{ —A |: IT®Rt Wth )(LT®;(; )5 +TapB:| y /apB}
0? OB’ OA 0 (IT®RFWtRF)(LT®fB)5B+7—3/J\3
ﬁ { GI;B IT ® REW.RE) (ur @ 27)67 +783} + P [ 5o D }
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We derive the partial derivative in the second summand inside the curly bracket first:

9 |(Ir @ REW,RE)(1r @ B)68 + Ta(z)A }

B B 2
- {(IT® [8Rf3 WthB—i—RtBWaRt :|)(LT ) [ R oA }

dpP dp dpP dpBpP
Therefore:
apiiaqu = —2{- {(IT ® RPWRP)(ur @ 27)57 + T;}AB] [(IT ® RPWi R ) (1 @ 27)67 + raaﬂ
+ P {(IT ® BRB RE + R} ngf})(w ® z8)5P +788;AB }}
Treatment Selection
85;‘5& [I ® RPW,RP)(1r ® 2 )5B+72AB]
&ogzqﬂf = [IT®RBWt )(LT®$B)5B+TZSZ,:|
3532;57{3 = -2 {_(IT ® RY)(er © 27) [(IT ® REWRY ) (ir @ 2%)87 + TgAB} +vB(Ir @ REW,RP) (11 ® xf)}
a;?;g% - 2 {—Ag’ [(IT ® REW,RP) (11 © 78)8% + rgg] + VB’?)?;}
&gzﬁ = —%—%h@ﬂfWRﬂUT®fWW+Tg§]kﬁ@Rﬁ%RﬁUT®fmw+ ;ﬁ}

ORE
OpB

ORE
+ VB’{(IT@@ [ L W,RP + RPW

P })(w@xB)éB sl }}

dpBpB
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Finally, the expectation of these second-derivatives:

e
E?[ g

L o
E{ g

E

¢ [y

opPopP

d

oo
E [ O

d
d

0%q ]
[8a8a_
0%q
[504355 ]

OaddpB |
0%q ]
00T |

0a0T |

0%q
9B 0a |
0%q

_Pq
dBBaSE |

0BBOT |
0%q ]
OBBOT |
_ P
B op" |
8%q¢

9pEOp"P |

E [2T7“ [yAyA']] =2Tr [E [yAyA/

E [2x§’y‘4] =2P'E [yA] =22P'9(2)

2[(Ir ® RP)(r @ 2P)) (2)

209D ()

2%5@Rﬁvﬁmw®x%ﬁ+7

2 [(IT X RtB)(LT (2] i‘SB)]/l‘E
2028 (Sample Selection)

2092 (Treatment Selection)

2 {(IT @ REWREP)(1r @ 28)68 + 71—

2 |:(IT @ REWREP)(1r @ 28)68 + 71—

OA9
OpB

OA
OpB
ONI
OpB

/

|-
I

B
r

B
r

(Sample Selection)

(Treatment Selection)
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2
E[ g

0%q ]

E [85{?8@_
_Pq_
96P0B8 |

06BO6E |
0%q

E
{35{?37’_
0%q ]
25807 |

0%q
9672 0p" |

2
r| 04
96898

28(2) (Ir @ RP) (1 © 27)

2¢2' (It @ RP)(1r © zPB)

2 [(Ir ® RE)(ur © 28)]' (Ir © RP) (1r ® &)

2N (Ir ® RE) (1 @ 2P)  (Sample

Selection)

209 (It @ RP)(tr ® 28)  (Treatment Selection)

_2 {_ (Ir & RPWRP 12 27)

OA
B
5 + Ta’ﬁ

!/
2 |:(IT ® RPWRE) (1r @ 2P)68 + T&/OA] (It

—92 { {(IT ® REWRP) (ir @ 27)

o9’
2 [(IT @ REWREP)(1r @ 28)6% + T] (I7

OpB

] (Ir ® RP)(vr @ 28) + E [vP'] (It @ REWRP ) (1r ® ng)}

® R2)(1r ® )  (Sample Selection)

g] (It ® RP)(vr @ 28) + E [vP'] (Ir ® REWRP ) (11 @ geB)}

® RP)(1y ® ) (Treatment Selection)
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Sample Selection

0%q ] -,
{87’804_ = 20(2)'A
0%q ] B
E — 2 /A
[8785}?_ Lr
an ] B _B\1/
0%q ] ,
E {67’5)7’_ = 2AA
o . oA ]’ A
E {87’8/)3_ = -2 {_ {(IT ® RtBWthB)(LT ®3:B)5B +78p3] A+ E [VB/] 3’?
!
R Y
Treatment Selection
¢ i e
b [87’8&_ = 22(z)'A
82(] - Brpg
b {67-8,87{9_ = 2z7A
8261 - B _B\1/
b [87853 = 2[(Ir® RY)(r ®7,)] A
0% : grAg
E [8787_ = 2A7A
0%q ] B B BB A9 T L O
b [878,03_ = 2 {_ [(IT @ RPWiR: )ty @ 27)6 +T8p3} A+ E [P GoE

n9]’
- [(IT ® REWRY ) (er © 27)87 +TapB} a



€01

Sample Selection

0%q_] 5 B B _B\<B oA
[8/)38&_ — 28(z) [(IT®Rt WiRP)(ir @ #5)5 +T8pB]
a2q B B B _B\¢B oA
{W_ = 2! [(h@Rt W, RE)(ir © 25)8 +78p3]
32(] | B =B B B _B\¢B A B/ B B B
Elgpase| = —21 Ur®R)(r@z%) |(Ir @ RIWRY)(ir ©2°)8° +75 75 + E [vP'] (Ir ® REW,RE) (i1 ® zF)
oA
= 2(Ir ® RB)(1r @ 7P) {([T®RtBWthB)(LT®xB)5B_H_apB]
q_] B B _B\<B oA B OA
E [8;)387_ = —2{—[\’ |:(IT®R75 WiR: ) (i @ 7)6 +T8pB] +FE [l/ /] apB}
oA
= 2N [(IT © RBW,RP)(ur  25)55 + TapB}
O . oA ) oA
Bogis] = ot [t o ROWRDr 029097 2] [1r & REWRE ur & 2%)5° 47 24
3RB aRB agA
B B B ~B\sB
+ Bl /]{(IT@) {ap; WiRy + Ry Wap}tg])(bT(@l“ )d +TapoB}}
— 2 |((Ir ® REYWR? =BysB o OA N o pByy pB _pysp . OA
= ((T® t) t)(LT®$ ) “V‘Tal.ﬁ (T® " t t)(LT®x ) +7—3Pﬁ
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Treatment Selection

0%_] 5 B B _B\<B ONY
|:8pBaa_ = 2(13(2)/ |:(IT ® Rt Wth )([,T R T )6 + Tw]
0 _ DAY
Gag| = | mEWERD e 030+ 5
0%q ] B _B B B BB ANI . . B »
Elgm955| = ~2|"Ur@R)(r @) |(Ir & REWR)(ir ©3%)6% 4755 | + B W (I © REW,RE) (i © &7)
- ONY
= 2(Ir ® RP)(ir ® °) {([T®RtBWthB)(LT®xB)5B_H_apB]
&q | - ONY ANI
B gors| = —2{-av |tr e REWR0r 020)0% + + 5| 4 2 7] 505 ]
= 2\ |(Ir ® REW,RP 5055 4 - ON
o (Ir @ Ry Wi Ry ) (vr @ 27) +T8pﬁ
&q . DA ) oAs
o {W] = A {((IT ® R7)WRP)(er © 27)87 + T@pB] [(IT ® REWLRP) (vr @ 27)6" + TW:|
OR} ORB

WiRP + RPW

+ E[VY] {(IT ® {

’ [((IT @ RY)WR?) (o @ 27)07 + T«%B] [(IT ® RPW,RP)(ir @ 27)57 + rapB}

D29
—B\sB
apB apB])(LT®$ )0 +TapoB}}



