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Abstract

This paper uses a contest setting to analyze the provision of intertemporal in-
centives in organizations. Should a principal repeatedly award small prizes or give
a large prize that takes past performance into account? A simple theoretical model
predicts higher efforts in the latter case. An experiment confirms this prediction,
but the size of the effect is smaller than expected. This result reflects two observa-
tions of independent interest. First, there is a revenge effect for laggards in repeated
contests: Laggards exert higher efforts than leaders with the same first-period effort
level. Second, there is an intimidation effect for laggards in the single-prize case:
Laggards exert lower efforts than leaders with the same first-period effort level.
Moreover, we observe polarization in laggard behavior.
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1 Introduction

Employees at General Electric in the 1980s and 1990s had a tough life: Every year,
supervisors ranked their personnel according to relative performance into the best 20%,
the middle 70%, and the worst 10% of their team. This ranking provided a basis for
bonuses, promotions, and even firing decisions (Welch), [2005). While GE has replaced this
rigid approach by more flexible mechanisms in the meantime,! the use of relative incentive
schemes — and, in particular, contests — for bonuses and promotions within companies is
still widespread (see, for example, Chlosta et al.l [2014]).2

As in the example of General Electric, contests are often dynamic. Firms usually make
their employees compete against each other repeatedly, generating a series of relative
performance signals. The dynamic nature of contests poses two interrelated questions:
(1) Should firms consider the entire performance history when distributing bonuses and
making promotion decisions, or should they focus only on the most recent performance
signals? (2) How should firms distribute rewards across periods?

The answer to these questions is not obvious. On the one hand, basing agents’ rewards
on past performance softens competition later on, as future effort has smaller effects on
winning chances. On the other hand, the expectation that effort will affect future winning
chances intensifies competition in early periods. The problem becomes more complex if
agents care about more than pure monetary preferences — risk aversion, loss aversion, joy of
winning and social preferences are known to be potentially important effort determinants
in contests. For instance, when organizations take past performance into account, some
agents may be handicapped in current competition by large performance lags. As a
result, they might experience frustration and give up competition. Conversely, when
organizations frequently restart the competition, opponents have a more realistic chance
to make up for past losses by exerting effort, and may even be willing to exert additional
efforts, reflecting revenge motives. Finally, agents may display heterogeneity with respect
to these motives. The effects of contest design on efforts are therefore hard to predict.

In view of the potentially complex agent responses to different incentive structures, this
paper deals experimentally with dynamic contest design by comparing two-period contests
with identical prize sum. The first contest consists of a sequence of two independent noisy
rank-order tournaments with identical prizes in each period. Thus, in each period the firm
only rewards the most recent performance signal. We compare this contest with one in
which the principal gives only one prize after the second period, but considers the entire
history and weighs the (noisy) performance observations from both periods equally. In

this latter contest, relative performance is revealed to the agents before the second period.

1See [McGregor| (2013) for an overview on recent developments.
2Contests also play a crucial role beyond the human resources context (Konrad and Kovenock (2009)).



Even in the benchmark case that agents only care about expected monetary payoffs,
the equilibrium analysis is non-trivial. Nevertheless, it is possible to show that both
contests have an equilibrium with symmetric efforts in both periods. When there is
only one prize, the equilibrium effort in the second period is decreasing in first-period
performance difference. Intuitively, with increasing first-period performance asymmetry
the second-period effort is less likely to determine the winner, which reduces the incentives
of both players. Moreover, we find that the expected effort in the treatment with one
prize is much higher than with two prizes (41% for our parameters).?

Some important aspects of the observed behavior are consistent with the equilibrium
analysis of our benchmark model. First, in the single-prize treatment, second-period
efforts depend negatively on performance differences. Second, the experiment shows that
efforts in the single-prize treatment are higher in the treatment with one large prize than
in the case with two small prizes. However, the difference in the two treatments is only
about 10%, rather than the predicted 41%. This observation reflects the fact that there
is substantial over-expenditure in the two-prize treatment in both periods, whereas with
one prize it is much smaller in the first period and absent in the second.

To understand the observed behavior, we focus on the second period. Unlike in the
one-prize case, with independent tournaments laggards (players whose first-period perfor-
mance was worse than their competitor’s) have the same winning chances in the second
period as leaders (whose performance was better than their competitor’s). Even though
both agents choose the same effort in equilibrium, we observe that laggards exert more
effort in the second period of the two-prize treatment than leaders. Next, we find a strik-
ing effect of relative first-period performance on second-period behavior in the single-prize
treatment: Laggards exert lower effort in the second period than leaders with the same
first-period effort, even though there is no difference in equilibrium. Together, these two
observations help to explain our main results: The behavior of laggards contributes to
the relatively low effort in the single-prize treatment as well as the high effort in the two-
prize treatment. However, an important qualification is necessary: The observed behavior
refers to the average laggard. A more careful look at the one-prize treatment reveals con-
siderable heterogeneity. Whereas about 25% of the laggards choose the minimal allowable
effort in the second period (most of them are lagging far behind), almost as many players
choose the maximal allowable effort (most of them are close to the leader).

To explain the second-period deviations from equilibrium, we enrich our simple theo-
retical framework with two sources of behavioral variation. First, the payoff from winning

includes a non-monetary component, interpreted as joy of winning, which varies across

3This is consistent with the more general analysis of two-period contests in |[Klein and Schmutzler| (2017)
according to which the contest with one big prize at the end is optimal in the sense that expected total
efforts are higher than for any other combination of prize distribution and performance weights.



players and depends on the history of the game. In the two-prize treatment, this compo-
nent is higher when a player has previously lost than when he has won. Joy of winning
is a standard explanation for excess expenditure in contests. The assumption that joy
of winning in two-prize treatments is higher for laggards than for leaders fits well with
behavioral notions such as inequity aversion: A player who has previously lost will typi-
cally have lower first-period payoff than the opponent; inequity aversion would therefore
increase the benefits from winning in the second period, suggesting that the observed high
efforts stem from a revenge effect.

Second, we allow for the possibility that players’ expected winning probabilities may
depend on factors that do not affect the equilibrium in the baseline model and that
players differ in the way in which they form these expectations. For instance, laggards
might interpret the better relative performance of the opponent as a signal of high joy of
winning and thus of high willingness to exert effort.

In this setup, we find that optimal behavior of laggards frequently involves exerting
maximal effort (a wake-up effect) or giving up completely (an intimidation effect), de-
pending on their joy of winning. This explains the polarization of laggard efforts in the
one-prize treatment. The observed low efforts of laggards (which are decreasing in the
size of the performance differential) then suggest that the intimidation effect prevails at
the aggregate level. All told, the augmented model can explain why multiple prizes do
not lead to much lower aggregate efforts than single-prize tournaments.

The rest of the paper proceeds as follows. In [Section 2, we sketch the model and its
results. develops treatments and hypotheses and describes the experimental
design. In we present the results. introduces the framework with
which we interpret the experimental observations. discusses the relation to the
literature. concludes.

2 The Benchmark Model

2.1 Assumptions

To capture the design problem of a principal that uses competitive incentives repeat-
edly, we use a particular parameterization of a two-stage contest analyzed in Klein and
Schmutzler| (2017).* Two risk-neutral agents, ¢ € {1,2}, choose efforts e; > 0 in periods
t € {1,2}, with costs K (ey) = k(ex)” /2 for k > 0. At the end of each period ¢, the
principal observes agent i’s performance s;; = e;; + €;;, an imperfect effort measure. €; is

a stochastic observation error, independently distributed across agents and periods. We

4We refer the reader to that paper for details and derivations.



assume that the difference of the observation errors Ae;; = €;; —€j; is normally distributed:
Aeir ~ N (0,0?). We denote this distribution and its density as F' () and f (), respectively.

The principal has a fixed budget W for prizes. She assigns the first-period prize
Wy € [0,W] to the agent with the highest performance in Period 1, so that agent i
receives the prize if s;; > s;;. The interim performance is revealed to both agents.
Furthermore, the principal assigns Wy = W — W as a second-period prize to the agent
with the highest weighted sum of performance in Period 1 and Period 2: Agent ¢ receives
Wy if sio + msi1 > sj2 + ns;1 for the performance weight > 0. Hence, the contest
is determined by the distribution of the prize money across periods (as implied by the

first-period prize W;) and the performance weight 7.

2.2 Equilibrium Predictions

We first characterize the behavior of the agents in Period 2 given relative first-period

performance As; = s;1 — sj1. Second-period efforts in the unique equilibrium are
ein (Asi) = f(nAsi) (W —Wh)/k. (1)

Intuitively, agents weigh the marginal effort cost ke}, against the marginal benefit from
higher effort (f (nAs;1) (W — Wi)). The resulting first-order condition implies that
greater asymmetry in first-period performance, i.e., higher |As;;| reduces the efforts of
leaders and laggards by the same amount whenever the first-period weight 7 is positive.
Moreover, an increase in 7 reduces second-period effort. First-period equilibrium efforts
in the symmetric equilibrium are

et (n,Wy) = <W1 L (w- W1)> . 2)

1
ko 27 V1+n?

Intuitively, when equalizing the marginal costs and benefits of higher first-period ef-
forts, agents consider the immediate positive effects on winning W as well as the improved
chances of winning Wy, = W — Wj. For fixed total budget W, an increase in the second-
period prize reduces the first-period prize by the same amount; the total effect always
is a reduction of first-period efforts. Moreover, an increase in the first-period weight n
increases first-period effort. Finally, the expected second-period efforts are
W —-w;

Bles (W) = 1ty )




Note that expected second-period efforts are decreasing in the size of the weight 7: The
expected handicap for the laggard in the second period increases with the weight of past

performance, which decreases (expected) second-period effort incentives for both players.

2.3 Optimal Contest

From and ([3), we can easily derive the optimal contest. We define total efforts as
e11+e12tea1 €99 and average efforts (of agent i per period) as (e;1+€;2)/2. Because efforts
are symmetric in both periods, maximization of expected total and expected average

efforts is equivalent, and we obtain the following result:

Proposition 1. (i) Whenever n > 0, the optimal first-period prize is Wy = 0.
(i) Whenever Wy > 0 and thus Wy < W, the optimal weight of past performance isn = 1.

Hence, the optimal contest has W = 0 and n* = 1: There is one prize at the end
of Period 2, with equal weight on both efforts. Result (i) captures a simple intuition: A
positive first-period prize not only reduces the funds for inducing second-period efforts,
it also weakens incentives for exerting first-period efforts with the goal of winning W.
These two adverse effects dominate the positive effect of a higher W, on first-period efforts.
Result (ii) is similarly intuitive. A higher n increases the marginal benefits of first-period
efforts and decreases those of second-period efforts. The first effect dominates for low 7;

the second one for high 7n; the optimum is when these incentives are balanced.

3 Experimental Design

3.1 Treatments and Hypotheses

In our experiment, we set parameter values k = 0.066, ¢ = 40, and W = 300.> We
compare the theoretically optimal single-prize contest (ONE) and a setting with two
independent tournaments (TWO). Thus, in ONE, W; = 0, Wy = W and n = 1, whereas
in TWO, W, = Wy = % and n = 0. [Table 1{ contains the predicted expected average
effort (in total and in each period). Our central hypothesis follows directly from this table

(and is implied by the general discussion in the previous section).

Hypothesis 1. Efforts for each player and period, and thus average efforts, are higher
under ONE than under TWO.

shows that the effects are substantial: Switching from two independent prizes

to the optimal single-prize contest increases expected efforts in each period by 41%.

5Ae;; ~ N (0,40?) corresponds to € ~ N (0, 28.28?)

>



Table 1: Point predictions of efforts

TWO INT ONE

Average effort 227 274  32.1
Effort in period 1  22.7 387 32.1
Effort in period 2 22.7 16.0 32.1

To improve our understanding of agent behavior, we add an intermediate treatment
INT with two identical prizes (which is not optimal), but optimal first-period performance
weight 7 = 1. This allows us to separate the effect of having one prize rather than two
from the effect of putting weight on past performance.® By construction, predicted average
efforts in INT must be higher than in TWO (approximately 20% by , because the
weight has been optimally adjusted. Predicted average efforts in ONE must be higher than
in INT (17% by [Table 1)), because the prize distribution in INT is not optimal. Finally,
in INT predicted efforts in Period 1 are higher than in the two main treatments, whereas
they are lower in Period 2: INT gives incentives for first-period efforts by a first-period

prize and a first-period weight rather than only by a first-period weight.

3.2 Laboratory Experiment

We conducted three sessions with 32 participants each, each consisting of 30 rounds.”
Within each session, every treatment was repeated for 10 rounds. The order of the
treatments varied across sessions (see .8 At the beginning of the sessions, the
participants were randomly assigned to matching groups of size 8. In every round, pairs
were randomly formed within matching groups.® Before the first treatment of a session,
we distributed instructions about the general structure of the experiment and instruc-
tions specific to the first treatment, and the participants had to answer general control
questions. Immediately before each treatment, the subjects received treatment-specific

instructions and control questions.!°

SMoreover, the INT treatment is interesting in its own right. It seems consistent with anecdotal evidence
that firms who have one prize to distribute in each period pay attention to past performance.

"The sessions took place at the computer lab of the University of Zurich, Switzerland, in December 2013
and lasted for about 120 minutes, using z-Tree (Fischbacher, 2007)). The subjects were recruited from
university students of all fields except economics and psychology.

8The design is not perfectly balanced, as TWO precedes ONE twice, whereas ONE precedes TWO only
once. However, as we show below, the main results are quite similar in the perfectly balanced subsample
with only observations from Sessions 1 and 3.

9The participants were aware that in every round, the other participant in their pair was randomly
chosen. The instructions did not mention the existence of matching groups.

10Gection 3 of the Web Appendix contains the instructions. The instructions were read out aloud whenever

they had been distributed. Section 4 of the Web Appendix contains the control questions.



Table 2: Order of treatments

Session 1 Session 2 Session 3

Rounds 1 — 10 TWO INT ONE
Rounds 11 — 20 INT TWO INT
Rounds 21 — 30 ONE ONE TWO

Each round consisted of two periods. In Period 1, the subjects simultaneously chose
efforts from the set {0,0.5, ...,54.5, 55}. Thereafter, random numbers were drawn from the
given normal distribution.!! Next, the computer determined the participants’ performance
as the sum of their effort level and the random number. We treated Period 2 in the same
way as Period 1.2 After Period 2, the computer calculated prizes. The participants’
payoff from a particular round was equal to the sum of an endowment of 200 points and
the prizes received in that round, net of effort costs. The endowment ensured that a
participant’s payoff from a round would never be below 0. At the end of each round,
the participants learned their prizes, costs and net payoff. At the end of the session, the
computer randomly chose one of the 30 rounds to determine payoffs. The participants
were informed about the chosen round and were allowed to review all information received
during the 30 rounds. Participants then received, individually and in private, their payoffs
from the laboratory experiment and a pre-experimental questionnaire (see below) plus a
participation fee of 10 Swiss Francs (CHF). The average total payoff was CHF 50.35,
consisting of an average of CHF 36.28 from the laboratory experiment and an average of

CHF 14.07 from the pre-experimental questionnaire.!®

Discussion of Design Decisions Some of our design decisions involved trade-
offs. First, even though the underlying model features continuous actions, we opted for
a discrete design because the continuous model is easier to solve, whereas the discrete
model is easier to present to subjects.!* Second, we limited the maximal per-period effort
to 55. As a budget limit is necessary, we could not completely avoid deviating from the
exact set-up of the model. A per-period constraint seemed more appropriate than a global

budget with potential spillover effects between rounds. In any event, our effort ceiling

' The instructions used a graph to illustrate the symmetry of the distribution and the greater probability
of small random numbers (see page 15 of the Web Appendix).

12First, the subjects simultaneously chose efforts. Then, the computer drew random numbers, calculated
the performance levels, and displayed both performance levels as well as relative performance As;s.

13In the laboratory experiment, 10 points were worth CHF 1. The exchange rate at the time of the
experiment was CHF 1.23 per EUR and CHF 0.91 per USD.

14The instructions contained a table and a graph depicting the costs of each allowable input level (see
page 14 of the Web Appendix).



is very generous: It is 2.4 (1.7) times as high as the predicted effort in each period in
ONE (TWO), and around 20% above any second-period equilibrium effort. Thus, the
equilibrium of the unconstrained game is also an equilibrium of the constrained game. In
Section we discuss how the effort constraint might have influenced results. Third, we
chose a within-subject design to increase statistical power.'> To mitigate the problem that
this makes the experiment harder to understand, we interrupted each session when the
treatment changed, read out the modified rules and asked control questions. Nevertheless,

we cannot rule out that with more time to learn over-expenditure might have been smaller.

3.3 Pre-experimental Questionnaire

We used a pre-experimental questionnaire to elicit individual attributes that may explain
variation in behavior.!® Earlier literature as, for example, reviewed by Dechenaux et al.
(2015) has shown that social preferences, risk aversion, loss aversion and non-monetary
preferences for winning (joy of winning) can potentially explain individual heterogeneity
in contests. To elicit social preferences, we used the SVO Slider Measure developed by
Murphy et al.| (2011).!17 The measure allows us to divide the participants into four clas-
sical social value orientation types, based on their choices in a sequence of six dictator
games: Altruists, who maximize the payoff of the other, prosocials, who maximize joint
payoft, individualists, who maximize their own payoff, and competitors, who maximize the
difference between their own and the other’s payoff. Elicitation of social value orienta-
tion identified no participant in the competitive category. Consistent with the findings of
Murphy et al.| (2011]), the majority of the participants (60 out of 96) were prosocials. The
remaining subjects were individualists.!® We therefore only distinguish between prosocial
and individualistic participants by using the dummy variable PROSOC to indicate proso-
ciality. To assess risk aversion and loss aversion, we used lottery tasks similar to those
used by Dohmen et al.| (2011) and |Géchter et al.|(2010).'" We attempted to capture het-
erogeneous preferences towards winning using the Revised Competitiveness Index (RCI)
of Houston et al.| (2002), which measures “a desire to win in interpersonal situations” (p.

31) based on questions about competition in daily life.?°

15Charness et al.| (2012) discusses the advantages and disadvantages of within-subject treatments.

16Subjects completed the questionnaire using the online tool Qualtrics at least eight days ahead of the
laboratory experiment.

"Murphy et al.|(2011)) argue that the SVO Slider Measure is a reliable and valid method to elicit social
value orientation. For further details, see Section 1.1 in the Web Appendix.

8There was also one altruist, which we added to the individualistic category.

19 According to these measures 80% (90%) of the subjects had risk (loss) aversion.

20Harris and Houston| (2010) argue that the index is reliable and correlates positively with other indices
of competitiveness (Houston et al., [2002). Section 1.4 of the Web Appendix contains further details.
We observe that the mean of RCI (45.7) is close to the mean reported by [Houston et al.| (2002) (48.5).



4 Experimental Results

We describe the main treatment effects in Section .1} Sections [4.2] and [4.3] compare the
behavior of leaders and laggards in Period 2 and investigate the effect of performance

differences. Section [4.4] shows how player characteristics influence behavior.

4.1 Main Treatment Effects

shows that mean efforts in Period 1(2) are 12% (7%) higher in ONE than in

TWO. These differences are at least marginally significant.?!

Average Effort Effort in period 1 Effort in period 2
g S g
8 8 8
g8~ g8~ g8~
() () ()
S - S - S -
o - o - o
TWO INT ONE TWO INT ONE TWO INT ONE

Figure 1: Means of efforts across participants. Heights of bars and values at bottom
of bars correspond to means of efforts. Lengths of whiskers at top of bars are equal
to standard errors of the means. Dotted lines depict Nash predictions. N = 960 per
treatment. Sample: All participants.

The central design implication of the benchmark model is confirmed: Average efforts
are higher with one large prize at the end (and equal weights) than with two prizes.
However, the treatment effects are smaller than predicted. Observed average efforts under
ONE are only 10% higher than under TWO rather than the predicted 41%, while the

difference is significant.???> We summarize our observations as follows:

21Observations are clustered within matching groups. We therefore use the signed-rank test proposed by
Datta and Satten| (2008). The unit of observation is the mean of a participant’s (average or period-
specific) effort across all 10 rounds within a treatment. The p-values are p = 0.005 and p = 0.076,
respectively. We obtain similar results with Wilcoxon signed-rank tests based on matching-group means
or Tobit estimations.

22The p-value is p = 0.006. When using only data from (S1) and (S3), second-period efforts no longer
differ significantly between ONE and TWO. Nevertheless, the difference between mean efforts in the
entire game becomes slightly higher (14%).

23When the efforts of different players are complementary, it may be more compelling to take the minimum
of these efforts as an objective. The difference between the minimal efforts of the players is even smaller
than the difference between average efforts (7%).




Result 1. Efforts in each of the periods t = 1,2, and thus average efforts, are higher in
ONE than in TWO, but the difference between treatments is smaller than predicted.

A careful look at suggests the following sharper statements; their significance
is confirmed by in the Appendix.

Result 2. In ONE and TWO, average efforts are higher than predicted. The same is true
for efforts in each period, except for the second-period efforts in ONE. In Period 1, there
1s less over-expenditure under ONE than under TWO.

Hence, the positive effect of moving from TWO to ONE is so small because there is
substantial over-expenditure in the former case and less over-expenditure in the latter.?4

While we focus on the comparison between ONE and TWO, the comparison with
INT is instructive. Average efforts in INT are similar to average efforts in TWO, even
though they are almost 21% higher in equilibrium.?® Thus, contrary to the prediction,
the adjustment of weights in itself (TWO — INT) does not have a positive effect on
efforts; only the combination of a weight and prize adjustment (TWO — ONE) increases
average efforts. However, the adjustment of weights changes the distribution of efforts

across periods.

4.2 Second-Period Efforts: Leaders vs. Laggards

We have identified two main deviations from equilibrium at the aggregate level. First,
average efforts are higher than predicted. Second, the difference between observed and
predicted efforts is higher for TWO than for ONE, in particular, in Period 2. The first
observation is not surprising: Excessive effort is widespread in contests, which is usually
attributed to joy of winning (see Dechenaux et al.,[2015).2° In the following, we therefore
focus on explaining why there is more over-expenditure in TWO than in ONE.

shows substantial excess spending in Period 1. In both treatments, the excess
spending of leaders (players with positive relative performance As;;) falls by about 40%
from Period 1 to Period 2. The mean over-expenditure of laggards (subjects with As;; <
0)) increases (by 1.7) in TWO, whereas it falls in ONE (by 2.0). Thus differences in the
behavioral adjustments of leaders and laggards across treatments help to explain why

over-expenditure is relatively high in TWO, but not in ONE.

24Gimilarly, when observations from (S2) are eliminated, there is substantial over-expenditure under
TWO, but not under ONE. Also, note that the above results refer to all rounds. in the
appendix shows that efforts under TWO are considerably lower in later rounds, in particular, in Period
1. This pattern is absent in ONE. Therefore, the difference in average efforts under ONE and TWO is
closer to the equilibrium prediction in later rounds than when all rounds are considered. Nevertheless,
Results 1 and 2 still apply in the final round.

25Mean efforts in Period 1 in INT are slightly below equilibrium, but above equilibrium in Period 2.

26However, over-expenditure is less common in rank-order tournaments (Dechenaux et al., 2015).
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Table 3: Means of over-expenditure for leaders and laggards

Policy TWO ONE
Over-expenditure Period 1 Period 2 Change Period 1 Period 2 Change
Leader 13.4 7.7 -5.7 8.1 4.9 -3.2
Laggard 6.2 7.9 1.7 0.6 -1.4 -2.0

Over-expenditure is calculated as observed effort minus predicted effort (conditional on first-
period performance difference for second period in ONE).

presents the results of OLS regressions of over-expenditure and the change
in over-expenditure on dummy variables for leaders and laggards, controlling for first-
period efforts (expressed as deviations from the mean). This procedure addresses the
potential endogeneity of a subject’s status as leader or laggard: With first-period effort
as a control, the coefficients of the dummy variables capture only the variation caused
by the random component in determining whether a player is leader or laggard (see the

robustness discussion at the end of this section).?

Column (1) of shows that in TWO a player with average first-period effort
chooses 4.88 units of efforts more than predicted in Period 2 when ending up as a leader,
whereas the over-expenditure is 10.91 when ending up as a laggard. Thus, even though
the outcome of the first period has no effect on the expected marginal monetary value of
effort in the second period and on the corresponding equilibrium, the chance component
links the two periods by influencing who becomes leader or laggard. The over-expenditure
of laggards is significantly higher than for leaders with the same first-period effort.

The massive over-expenditure of laggards in TWO disappears in ONE. Column (2) of
shows that the second-period behavior of average laggards in ONE is close to the
equilibrium prediction. At the same time, leaders still engage in excess spending (by 2.72
units), although less than in TWO. Thus, the difference between leaders and laggards
apparent in TWO is essentially reversed in ONE.

Focusing instead on the change of behavior between periods, Columns (3) and (4) of
[Table 4]show that a leader in TWO (ONE) who exerted average efforts in Period 1 reduces
efforts by 4.61 (1.65). The behavior of laggards differs sharply: Whereas there is even an

(insignificant) increase of over-expenditure in TWO between periods (+0.69), the decline

2TWhether a participant finishes the first period as a leader or a laggard depends on both first-period effort
choices, and the random shock. Her first-period effort choice is correlated with her second-period effort
choice if it reflects persistent traits. Therefore, LEADER and LAGGARD, the explanatory variables
of interest in are endogenous. By including first-period effort as an explanatory variable
(EFFORT 1%), the coefficients are identified only based on variation between leaders and laggards with
the same first-period effort level. As it is outside of the control of participants with the same first-period
effort level whether they finish the first period as leaders or laggards, the remaining variation between
leaders and laggards is exogenous. Similar arguments hold for the following regressions.
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Table 4: Effect of first-period outcome on second period

Model (1) (2) (3) (4)
Dep. var. Over-exp. in 2 Change of over-exp.
Policy TWO ONE TWO ONE
EFFORT 1* 0.86%**  0.57***  _(.29%FF  _(.43%**
(0.000)  (0.000)  (0.001) (0.000)
LEADER 4.88F** Q7KK 4 61K -1.65%*
(0.000)  (0.015)  (0.000) (0.082)
LAGGARD 10.91%% 0.70 0.69 -3.67HH*
(0.000)  (0.253)  (0.359) (0.000)
N 960 960 960 960
Number of clusters 12 12 12 12
Adj. R? 0.24 0.17 0.15
Log-likelihood -3408.58
Bootstrap samples 9999 9999 9999 9999

Tobit/ordinary least squares regressions. Dependent variable is calculated
as observed minus predicted second-period effort (conditional on first-
period performance difference for ONE) minus observed plus predicted
first-period effort, or observed second-period effort minus predicted second-
period effort (conditional on first-period performance difference for ONE).
EFFORT 1* is calculated as deviation from mean effort under the corre-
sponding policy. Bootstrapped p-values given in parentheses, computed
using pairs cluster bootstrap-t (see Section 2 in the Web Appendix) with
standard errors clustered on matching group. Sample: All participants.
*p < 0.01, **p < 0.05, *p < 0.1.

in over-expenditure in ONE is stronger than for leaders (-3.67). This is consistent with the
observations in [Table 3} As laggards increase their efforts relative to leaders between the
two periods in TWO, the initial difference between the two groups essentially disappears,
so that absolute second-period efforts of leaders and laggards are similar.

We summarize the main differences in the behavior of leaders and laggards as follows.

Result 3. (i) In TWO, efforts of laggards in Period 2 are higher than those of leaders.
(ii) In ONE, efforts of laggards in Period 2 are lower than those of leaders.

To conclude, the similarity of average efforts under ONE and TWO reflects the two
main observations above: Due to the low laggard effort in the former case and the high

laggard effort in the latter case, the treatment effect is smaller than predicted.

Robustness By controlling for first-period efforts, the above identification strategy
accounts for any endogeneity of first-period outcomes that may result from persistently

different propensities to exert effort. To address further endogeneity concerns, we perform
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two robustness tests: (a) including participant-level fixed effects in the regression, and
(b) using Propensity Score Matching (PSM) instead of a regression.

(a) Participant-level fixed effects further limit the identification of the coefficients to
within-participant variation of being a leader or a laggard. Because fixed effects demean
the data, we can only estimate the difference in over-expenditure between leaders and
laggards, not the absolute levels of over-expenditure. Our estimates imply that leaders
exert 4.2 units less (1.4 units more) over-expenditure than laggards in TWO (ONE), which
is consistent with the results reported in columns (1) and (2) of [Table 4%

(b) As an alternative identification strategy, we use PSM to compare participants with
the same likelihood of becoming a leader conditional on their first-period effort choice.
Again, the results are consistent with those reported in [[able 4] as we find that leaders
exert 5.4 units less (2.0 units more) over-expenditure than laggards in TWO (ONE).

4.3 Performance Differences and Effort Heterogeneity

The aggregate behavior of laggards (and, to a lesser extent, leaders) in the second period
of ONE conceals considerable heterogeneity. shows that many laggards (24%)
choose zero efforts, whereas about the same fraction (23%) chooses the maximal effort.
This result is remarkable as such polarization arises neither for leaders in Period 2 nor
for either type of players in Period 1.2 Moreover, note that, in ONE, more laggards
choose maximal efforts than leaders (23% vs 16%). This suggests that, in a completely
unconstrained setting, the intimidation effect might have been less pronounced, so that
the average behavior of laggards would have been closer to the theoretical prediction of
the benchmark model. In treatment TWO, a bias from the effort ceiling seems unlikely, as
the fraction of leaders and laggards at the effort ceiling is about the same (around 10%).

The dispersion in first-period efforts suggests that the dispersion in laggard behavior
revealed by Figure [2| partly reflects exogenous player heterogeneity. In addition, Figure
shows that heterogeneity reflects the size of performance differentials. In this figure, we
split the sample in two halves - pairs with weak and strong laggards, depending on the
difference to the leader. Around 40% of the weak laggards give up the race and exert zero
effort, whereas slightly less than 20% exert maximal effort. Conversely, around 30% the

strong laggards exert maximal efforts, whereas less than 10% give up completely. Thus,

ZIncluding fixed effects only (without including first-period effort) does not address endogeneity of
LEADER and LAGGARD, as the corresponding regressions would compare the same participants
at different first-period effort levels. The effect of becoming a leader or a laggard is likely to differ even
for the same participant depending on how much effort the participant has invested in the first period.

2 in the Appendix contains histograms of first- and second-period efforts for the other two
treatments. Extreme choices are very rare in TWO, but common in INT.

13



Leaders vs. Laggards in ONE

Effort 1, leaders Effort 2, leaders
[P ™
0 0
« «
c AN o c AN
<] ]
T w | Qo |
ol ol
& — w —
[To) [To)
QO O
o T T T T T T T o T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Effort 1, laggards Effort 2, laggards
@ @
10 0
N N
o AN c N
] o
Qo D w
[ o
c_ | -
0 0
< <
© T T T T T T T © T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60

N = 960. Sample: All participants.

Figure 2: Distribution of efforts under ONE

polarization reflects differences between strong and weak laggards as well as heterogeneity
within each type of laggard.

We therefore investigate the role of the first-period performance difference in more
detail. In TWO, performance differences have no effect on the second-period equilibrium,
as both periods are independent. Column (1) of confirms this prediction. In
ONE, the results are again very different. Column (2) shows that, as predicted, the
actual effort in ONE falls for both players as the asymmetry increases. However, contrary
to the prediction, this reduction is smaller for leaders than for laggards.?® Digging deeper,
Column (3) compares the behavior of marginal leaders and laggards in ONE for whom
first-period performance was the same, so that the second period determines the outcome.
For average first-period efforts and identical first-period performance (As;; = 0), the
second-period effort is 7.53 (6.59) units lower than in the Nash equilibrium for leaders
(laggards). As the asymmetry increases, both leaders and laggards move towards over-
expenditure, but the effect is stronger for leaders, as the respective interaction coefficients
0.30 and 0.22 show. This means that the adverse effect of increasing asymmetry on
efforts is not as strong as predicted, but greater for laggards than for leaders. As a result,
the observation for marginal leaders and laggards is reversed for average leaders and

average laggards (for whom the performance difference takes average values): The average

30The coefficients are -0.27 and -0.43, respectively.
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leader exerts 2.65 units more effort than in equilibrium; the corresponding (insignificant)

coefficient for average laggards is 0.78 (Column (4)).
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N = 480. Sample: Laggards with above (below) median first-period
performance difference.

Figure 3: Distribution of second-period efforts under ONE, strong and weak laggards

4.4 Other Determinants of Behavior

We now briefly summarize our results about the effects of player characteristics.

4.4.1 Second-Period Efforts

Social Preferences in the appendix investigates the role of social pref-
erences on second-period behavior. The high over-expenditure of laggards in TWO is
almost independent of whether they are prosocial or not (see Column (2)). Efforts of
individualistic leaders are similar to those of individualistic laggards. Prosocial leaders,
however, exert lower effort than individualistic leaders with the same first-period effort
(see the weakly significant coefficient on the interaction term in Column (2)). In ONE,
the interaction terms are not significant, casting doubt on a role of social preferences for

the low efforts of laggards.3!:32

Gender Effects Related to a substantial literature on gender effects in contests (see
Section@, Table A2|also shows regressions with a gender dummy. In treatment TWO, the

result that efforts are higher for laggards than for leaders when controlling for first-period

31'However, the coefficient of the interaction term for leaders in Column (5) is not far from significance,
suggesting similarly the possibility that prosocial leaders exert less effort than individualistic leaders.

32Column (1) of [Table A3[shows that, in INT, leaders and laggards behave similarly, whereas laggards
exerted higher effort in TWO and less in ONE. By Column (2), this conclusion does not depend on
prosociality. By Column (4), the effect of asymmetry on efforts lies between those in ONE and TWO.
Finally, by Column (3), the gender effects are similar in INT and in TWO.
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efforts is much stronger for females (see Column (3)). Not only do female laggards exert
significantly more efforts than male laggards; in addition, female leaders exert less efforts
than male leaders (though the difference is not significant). In ONE, however, there is no

clear gender effect (see Column (6)).%3

4.4.2 First-Period Efforts

Recall that in Period 1 there is more over-expenditure in TWO than in ONE, though the
difference is smaller than in Period 2. We therefore now summarize how exogenous player
characteristics and the previous experience of players affect first-period behavior, using

explanatory variables such as player characteristics, the number of rounds and measures
of previous exogenous performance shocks (see [Table A4|in the appendix).3

Result 4. Consider Period 1 of treatments ONE and TWO.

(1) The mean effort of prosocial types is lower than for individualists; this effect is signif-
icant under TWO.

(ii) Loss aversion reduces efforts, but the effect is not significant.

(1ii) There are no clear effects of competitiveness, risk aversion and past luck on efforts.

The results for prosociality and loss aversion are consistent with previous findings from
lottery contests.?> The low efforts of prosocial types are in line with their preference for
joint profit maximization.?¢-37 We note in passing that the results for INT are similar to
the other treatments in that loss aversion and prosociality have negative signs — however,
none of the coefficients is significant. While one might expect that previous luck would

lower efforts, the only significant results we obtain are for INT.

33Moreover, we do not find any gender difference in the effects of the size of the performance asymmetry
on behavior (regression output available upon request).

34These measures are (1) the sum of the first- and second-period effort difference (relative luck) in the
previous round, (2) the share of occurrences of favorable (positive) observation error differences in the
current treatments and (3) in the whole experiment.

35See [Kong| (2008), Shupp et al| (2013) and |[Hernandez-Lagos et al.| (2017), respectively.

36The Titerature does not provide a clear hypothesis on the relationship between social value orientations
and efforts. The SVO Slider Measure is difficult to compare to the social preference measures used in
previous contest experiments. (see, e.g. Balafoutas et al.| (2012))

3TPrevious research suggests that efforts should be decreasing in risk aversion (Millner and Pratt, (1991}
Anderson and Freebornl 2010 |Sheremeta and Zhang] |2010; [Price and Sheremeta), 2011}, [2015; |Sheremetaj,
2011; Sheremeta et al.| [2017) and loss aversion (Kong, 2008; [Shupp et al., 2013)) and increasing in the
preference towards winning (Sheremetal |2010; Price and Sheremetal 2011} 2015} Sheremeta et al.l 2017;
Brookins and Ryvkin| 2014).
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Table 5: Effect of first-period asymmetry on effort and over-expenditure in Period 2

Model (1) (2) (3) (4)
Dep. var. Effort 2 Over-exp. eff. 2
Policy TWO ONE ONE ONE
EFFORT 1% 0.86***  (.85%H*F  (.59%** (. 59HH*
(0.000) (0.000)  (0.000)  (0.000)
LEADER 28.44%H% 43 88HHK T 53¥HH 2. 65%*
(0.000) (0.000)  (0.000)  (0.030)
LAGGARD 33.34%**  47.29%KF  _6.50%** (.78
(0.000) (0.000)  (0.001) (0.222)
|As;| - LEADER -0.03 -0.27HFFF 0.30%F*
(0.133) (0.000)  (0.000)
|Asii|" - LEADER 0.30%**
(0.000)

|Asii| - LAGGARD  0.01  -0.43%%%  (.22%%
(0.736)  (0.000)  (0.000)

(0.000)
N 960 960 960 960
Number of clusters 12 12 12 12
Adj. R? 0.37 0.37
Log-likelihood -3408.06  -3144.02
Bootstrap samples 9999 9999 9999 9999

Tobit /ordinary least squares regressions. Over-expenditure in second-
period effort is calculated as observed second-period effort minus predicted
second-period effort (conditional on first-period performance difference).
EFFORT 1* is calculated as deviation from mean effort under the cor-
responding policy. |As;i|" is calculated as deviation from mean |As; |
under the corresponding policy. Bootstrapped p-values given in parenthe-
ses, computed using pairs cluster bootstrap-t (see Section 2 in the Web
Appendix) with standard errors clustered on matching group. Sample: All
participants. ***p < 0.01, **p < 0.05, *p < 0.1.
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5 Towards an Explanation of the Observations

The following observations made above deviate from the predictions of the benchmark

model.

1. Except for laggards in Period 2 of ONE, effort is higher than predicted.
2. In TWO, average laggards exert higher effort than average leaders.

3. In ONE, laggards often choose extreme effort, with a greater share of weak laggards

at the minimum and a greater share of strong laggards at the maximum.

4. In ONE, average laggards exert less effort than average leaders.

5.1 A Simple Framework

We now introduce a framework to explain these observations (and similar results in INT;

we discuss the latter in [subsection 8.2)in the appendix). The framework allows for non-

monetary payoffs and more general assessments of winning probabilities than the bench-

mark model.

Assumption 1: Player i’s total payoff from winning W is Il; = W + V;, where
(1) Vi is positive and can vary across players;

(ii) for fized i and |As;|, Vi is higher if i is a laggard than if i is a leader.

The assumption allows for joy of winning while remaining agnostic about its exact
source. The feature (ii) that, in an otherwise identical situation, joy of winning is higher
for a laggard than for a leader could reflect social preferences such as inequity aversion
(Fehr and Schmidt, [1999) or reciprocity (Dufwenberg and Kirchsteiger, 2004; Falk and
Fischbacher], 2006)).5® However, even without social preferences, higher joy of winning for
a laggard than for a leader could result from decreasing marginal benefits from obtaining
a prize (the second prize won is less valuable than the first one).3?

Next, in view of the complexity of the game, we relax the assumption made in Section
2 that the players assess winning probabilities based on equilibrium considerations and
distributional assumptions. Not only may players have difficulties dealing with normal

distributions, but they may also be unsure about the behavior of their opponent.

38In TWO, a laggard has non-positive payoffs from Period 1, whereas those of the leader are positive;
inequity aversion thus suggests a willingness to pay to reduce future payoffs of the opponent. In both
treatments, being a laggard suggests high opponent efforts in Period 1; reciprocity would correspond
to reacting to this unkind behavior with unkind behavior (high second-period efforts).

390mne might assume further that joy of winning depends on the size of the lag, reflecting social preferences
or greater pleasure from obtaining a favorable outcome in a more difficult situation. We did not impose
this additional restriction as we do not require it for our main arguments.
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Assumption 2: (i) In Period 2, each player i has an increasing belief function p (e;),
which can depend on his identity, the treatment and the history of play.

(ii) For any e;, increases in W and reductions in As; shift the belief function down
(reduce p weakly).

This assumption maintains the idea that higher efforts increase winning chances. An
example is the equilibrium belief function. This function is generated by assuming that
the opponent chooses the second-period equilibrium and that errors are distributed as
in [Section 2] It does not depend on the player’s identity. Furthermore, in treatment
TWO, it is independent of history: Player ¢ believes he wins with the probability of the
event that Aejo < e;0 — e*, where e* = € is the symmetric time and history independent
equilibrium effort in the one-period game; thus the belief function is the corresponding
cumulative (normal) distribution function of the error term. In treatment ONE however,
the equilibrium belief function depends on As;;: It is the given by the probability that
A€jo < ejo + Asjp — e5(As;y), where e5(As;y) is the symmetric equilibrium effort given as
in (1).

Crucially though, Assumption 2 provides additional flexibility. The probability as-
sessment can be subjective, allowing for belief heterogeneity. Moreover, the effects of the
history of the game can differ from those under equilibrium beliefs, for instance, because
players partly attribute As;; to hidden characteristics of the opponent. Given own past
effort e;1, having a low As;; (and, in particular, being a laggard) is a signal of high past
opponent effort and thus high opponent joy of winning. If player ¢ believes that joy of
winning is a persistent trait across periods, he rationally expects that winning chances
are increasing in As;;. This is because a low As;; makes high second-period efforts of
the opponent more likely, shifting p(e;2) downwards. This effect could be present in both
treatments and should not be confused with the equilibrium effect that greater asymmetry
reduces the winning chances of laggards; it arises in addition to the standard equilibrium
effect. For leaders, the reasoning implies that a greater positive performance differen-
tial should increase winning chances (even beyond the standard equilibrium logic that is
present in ONE).

To explain Observations 3 and 4, we will specify the belief function further, assuming

that e;» € [0,55] as in the experiment. We postulate the logistic form

1
1+ exp (—T’Z’ (eiQ — Az)) ’

(4)

Di (€i2) =

Here r; > 0 and A; are constants that characterize a player’s subjective assessment of
winning chances given the treatment, the size of the prize and the history of the game.

Before linking the shape of the belief function more directly to our assumptions and using
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Figure 4: Belief Functions

it to explain our observations, we show in Figure |4/ how the parameters affect the resulting
belief functions. We focus on r; = 0.5 and r; = 0.1. In the former case, the player has
strong opinions about which efforts are required to win, with p; close to 0 or close to 1 for
most effort levels. In the latter case, the player is less certain about the relation between
efforts and winning probability.*°

When explaining second-period observations below, we will emphasize the role of A;,
which we think of as capturing a player’s perception of winning chances. For fixed r;, an
increase in A; reduces p;, reflecting growing pessimism. In line with Assumption 2, A; can
have various determinants: Clearly, even with equilibrium beliefs it should be higher for
a player in ONE who lags further behind, reflecting lower winning chances. In addition,
A; will take up individual heterogeneity in pessimism. Moreover, as we lay out below, it

can reflect differences in information about the other player’s likely behavior.

5.2 Explaining Second-Period Observations

We now explain Observations 1 to 4, assuming that players maximize expected net payoffs
7Tz'(€¢2) = Di (€i2) IL; — K(€i2)-

Observation 1 can be explained by joy of winning (Assumption 1(i)). All else equal,
greater joy of winning increases 7}(e;2), the marginal effect of effort on expected net payoff,
fostering higher efforts. Thus, for fixed beliefs, the optimal second-period effort is higher
than with pure monetary preferences.*!

Observation 2 states that the average efforts of laggards in TWO are higher than

those of leaders. The reasoning is similar as for Observation 1: By Assumption 1(ii), joy

40The value of 7; may capture both how confident players are about the other player and to which extent
they are aware of the noise in the performance measure.

41A caveat is that players should also expect that the opponent increases efforts because of joy of winning.
Therefore, they should become more pessimistic about their winning chances, potentially reducing the
direct positive effect of joy of winning on efforts (see the discussion below).

20



leader with
I; = 450, A; = 20
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laggard with
II; = 350, A; = 55

Figure 5: Expected leader and laggard payoffs for different degrees of optimism and joy
of winning

of winning is higher for laggards than for leaders, which works in favor of the observation.
In line with the motivation of this assumption, we therefore attribute the observation to
a revenge effect:*?> Laggards exert higher efforts than leaders because they want to win at
least once — a motivation that is absent for a leader who is already partly saturated.

To discuss the remaining two observations, which concern treatment ONE, we use a
parametric specification. As in the experiment, we set K(e;) = k(e;2)? with & = 0.066.
We suppose that p (e;2) has the logistic shape . To capture a situation with substantial
subjective uncertainty, we fix r; = 0.1. To capture heterogeneity in pessimism, we will
somewhat arbitrarily set A; = 20 or A; = 55. Such differences could reflect exogenous
heterogeneity in players’ assessments. However, we focus on the interpretation that A; =
20 corresponds to a situation where As;; is relatively high (e.g., for a leader), while
A; = 55 corresponds to a situation where it is low (e.g., for a laggard facing this leader).
Finally, we allow II; to take values 350 and 450, reflecting differences in joy of winning
(for the given monetary price W = 300).

Figure [f] illustrates how Observation 3 can be explained. As argued above, higher joy
of winning increases the effort of both players. For the laggard, this effect can be much
larger than for the leader, potentially causing discontinuities in the optimal effort choice.
Intuitively, the laggard reasons that very high efforts will be necessary to have a winning
chance. This is not worthwhile with low joy of winning, and he gives up. In this case,
where being a laggard makes a player so pessimistic that the optimal effort falls close to
zero, we speak of an intimidation effect. By contrast, the laggard with high joy of winning
chooses the highest possible effort, reasoning that very high efforts will be necessary to

have a winning chance. Unlike the laggard with low joy of winning, he deems this effort

aln € evidence suggests a € JOy-0oI-winning errec ominates an otentlal countervalling errect.
42 Again, the evid ggests that the joy-of-winning effect dominat y potential tervailing effect
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worthwhile — pessimism then induces a wake-up effect. The two lower lines in Figure
illustrate these two possibilities.*3

Observation 4 is a statement on average behavior. We have argued that heterogeneity
in joy of winning can explain individual differences in behavior, with a pronounced ten-
dency for laggards to choose boundary solutions. The fact that average efforts of laggards
are lower than those of leaders in ONE suggests that the intimidation effect on laggards
with low joy of winning prevails over the wake-up effect on those with high joy of winning,
leading to an aggregate intimidation effect.**

To sum up, we attribute the asymmetries in the behavior of leaders and laggards in
Period 2 to the interplay of non-monetary payoffs and non-equilibrium beliefs with player
heterogeneity. We postulate that joy of winning differs across players and is strongest
when players have previously lost — a revenge effect.*> Moreover, we argue that players
take the history of play as informative of the opponent’s preferences and thus of his
likelihood to choose high efforts. This exacerbates the negative effect of a performance
disadvantage on perceived winning chances and leads to an intimidation effect in the
aggregate. While the effects are potentially present in both treatments, joy of winning
dominates only in TWO where laggards exert higher efforts than leaders. Intuitively, joy
of winning is likely to be higher for a player who has previously lost; moreover being a
laggard in treatment TWO does not directly reduce winning chances. By contrast, in
treatment ONE, the role of the performance differential on perceived winning chances is
particularly salient: Many players react to the pessimism resulting from a performance
gap by either giving up completely or by exerting maximal effort to keep their winning
chances alive.

In Subsection [8.3| in the Appendix, we strengthen the above arguments by showing
the consistency of the behavior of players in the two treatments. We find that even for
otherwise identical players who exerted the same first-period effort, the player in the role

of a laggard will exert higher effort than a leader, whereas the converse statement applies
in ONE.

43While our informational argument means that being a laggard should make a player more pessimistic
even in TWO, the effect should be smaller than in ONE where it arises on top of the direct negative
effect on winning chances. This explains why extreme choices are much less common in TWO.

4 Assuming that an increase in |s;1| results in higher pessimism, the above arguments not only help to
understand the differences in the behavior of leaders and laggards in ONE;, they also help to explain why
greater performance differentials lead to more polarization and to more pronounced effort differences
between leaders and laggards (See the comparison between strong and weak laggards in .

45We should, however, point out that there appears to be no statistically significant relation between the
RCT and behavior in Periods 1 and 2. This could reflect the fact that the RCI asks abstract questions
about whether individuals like competition, without directly addressing whether they like to win if
forced to compete (see Table 6 in the Web Appendix).
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5.3 Remarks on First-Period Behavior

Next, we sketch how we think about behavior in Period 1. Reflecting the independence of
the two contests, we assume that players in TWO maximize expected first-period payoffs.
Adapting Assumption 1(i), joy of winning can explain excess efforts. In ONE, there is
no first-period prize, but first-period efforts improve the player’s position in Period 2:
Higher effort today increases future winning chances and therefore pushes up the belief
function tomorrow. A joy-of-winning component increases the benefits from increasing the
probability of winning tomorrow, thus explaining above-equilibrium first-period efforts in
ONE.*® A more subtle question is why excess spending in Period 1 is small in ONE (and
in INT) compared to TWO. One possible reason could be that it is hard to understand
the rather complex positive effect of higher efforts today on the prospects of winning
tomorrow. A plausible conjecture would be that players are strategically myopic, meaning
that they underestimate the beneficial effect of today’s effort on strategic interaction
tomorrow (the upward push in the chances of success) relative to the costs which are
more directly visible and therefore more salient. As a result of such strategic myopia,

excess efforts are small in spite of joy of winning.

5.4 Discussion

The preceding analysis leaves several questions for future research.

First, to explain the differences between laggards and leaders in ONE, we argued that
players would infer from bad news that their opponent has high joy of winning, making
them more pessimistic about their future winning chances. With the current design, we
cannot rule out alternative explanations. For instance, suppose that subjects follow the
equilibrium logic in their probability assessment, understanding that, according to (1),
they should exert more effort when f(nAs;;) is higher. However suppose that — lacking
a correct understanding of the normal distribution — subjects do not understand that
the density f of this term is single-peaked at zero and instead think that it is strictly
increasing. In this situation, which may well be in line with Assumptions 1 and 2, (1)
implies that leaders will exert higher efforts than laggards in ONE, thereby providing an
alternative explanation of the observed behavior. To limit the scope for such confusion,
one could simplify the nature of the noise in the performance structure, for instance
by replacing the normal distribution with a discrete distribution where the performance
difference can be biased by the same amount in each direction with probability 1/2. In

such a setting, confusion would seem less likely. If the excess spending of laggards is

46 Again, players can differ with respect to joy of winning as well as the assessment of winning chances.
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still lower than for leaders, this would lend additional credibility to the informational
argument provided in Section 5.2.

Second, this informational argument assumes that players make inferences about the
opponent’s effort in Period 2 from behavior in Period 1. To validate this argument, one
could consider a setting where such inferences are unlikely to be relevant. For instance,
suppose some players are assigned to fresh opponents in Period 2 which they have not
previously interacted with (while maintaining the performance differential corresponding
to the first period), whereas other players play against their first-period opponents. If
there is asymmetry in the second-period behavior of leaders and laggards in the latter
case but not in the former, it would strengthen the informational argument.

Third, to disentangle the role of social preferences from other sources of joy of winning,
one could replace the contest with a single-agent decision problem where each subject
exerts an effort in each period which is measured with noise. Subjects would either get
one prize at the end of each period where performance in that period is above a threshold,
or one prize at the end if the sum of performance levels is above a threshold. If excess
spending in Period 2 is still present for subjects who did not win in the previous period
in the case with two prizes, it would suggest that the pronounced excess spending of
laggards in TWO may not just reflect social preferences, but a more general relation

between previous success and joy of winning.*”

6 Relation to the Literature

The theoretical literature on multi-stage contests is large. Even the more specific design
issues concerning prize structure and the role of past performance have received consid-
erable attention.*® The experimental literature on contests is vast as well.*> We therefore
focus on experiments that relate closely to the design of two-stage contests and to the

observations in our own experiment.

Comparison of Multi-Stage Contests |Schmitt et al| (2004) compare repeated

Tullock contests with multi-stage contests where efforts in one period increase winning

47Similarly, if subjects whose effort is low after bad first-period performance in a treatment with just one
prize at the end exert lower effort than those whose effort is high, then inferences about the opponent
are not likely to be the only reason behind the low efforts of laggard in treatment ONE.

48 Apart from Klein and Schmutzler| (2017), [Méller| (2012)), |Clark et al.| (2012), (Clark and Nilssen| (2013))
and |Kubitz| (2020)) discuss prize structure; Meyer| (1992)), [Harbaugh and Ridlon| (2011)), Ridlon and Shin
(2013), and |Denter and Sisak| (2015, 2016)) address the effects of incorporating past performance.

4IDechenaux et al.| (2015) provide a comprehensive survey. Most closely related, Harbring and Irlenbusch
(2003)), [Orrison et al| (2004) and |Chen et al. (2011) analyze the prize structure in static contests;
Delfgaauw et al.| (2015) and |Stracke et al.| (2014) do this for elimination contests.
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chances in future periods, resembling our treatments TWO and INT. Contrary to our rank-
order setting, total equilibrium efforts are the same in both cases. Somewhat reminiscent
of our results, the authors nevertheless observe a relative effort reduction in the latter

case with effort carry-over.®

Laggard Behavior in Multi-Stage Games In our rank-order contest, laggards
exert lower second-period efforts than leaders, even though there is no difference in equi-
librium. By contrast, Konrad| (2012)) discusses models in which laggards’ equilibrium
efforts are lower (a discouragement effect), such as|Harris and Vickers| (1985)), where play-
ers repeatedly carry out tournaments, and the first contestant who has won sufficiently
often gets the final prize.®! Whereas Zizzo| (2002) does not find support for the theoretical
results in such races, Mago et al.|(2013) show that leaders exert more effort than laggards.
Contrary to these authors who consider Tullock contests, Ederer and Fehr| (2017) ana-
lyze a rank-order contest (like our treatment ONE). Their paper focuses on very different
questions than ours, in particular, on the effects of dishonest feedback by principals.®?

In real-effort experiments, without a clear theoretical benchmark, the distinction be-
tween discouragement and intimidation effects becomes blurred. In Eriksson et al.| (2009),
even laggards with small winning chances exert effort; in |Casas-Arce and Martinez-Jerez
(2009) agents only reduce effort levels when the distance to the leader is high. Berger and
Pope, (2011) and |Goldman and Rao (2017) show that basketball teams who are slightly
behind their opponents at half time exert more effort and have higher winning chances
(similar to our marginal laggards in ONE). However, Gill and Prowse| (2014) show that,
in a repeated real-effort task, female subjects reduce effort after previous losses. This
resembles our intimidation effect with the twist that it arises even though, as in our treat-
ment TWO, there is no negative effect of past performance on current winning chances.
On a related note, Buser| (2016) shows how success (luck) in one real-effort contest influ-
ences the willingness to engage in competition thereafter even when previous success is
uninformative about future chances of success. While the aggregate effect of losing on the

willingness to seek challenges is zero, this masks a positive effect on men and a negative

®0Tong and Leung (2002) compare repeated rank-order tournaments with dynamic tournaments where
past performance affects future winning chances. However, in particular in the latter case, the analysis
is not clearly related to an equilibrium prediction for the underlying dynamic game.

51Gimilar discouragement effects arise in elimination tournaments.

52 As in our model, performance asymmetry reduces second-period efforts. The behavior of laggards seems
consistent with our intimidation effect. The paper does not consider independent contests (TWO).

53However, in a real effort task, past effort may affect future effort costs.
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effect on women.?* In our lab experiment, there is no intimidation effect for females. In

ONE, however, we find a (gender-independent) intimidation effect.

Discouragement in Asymmetric Static Contests A complementary literature
deals with asymmetric static contests. March and Sahm (2017) analyze static Tullock
contests where some players have an exogenous handicap. Contrary to their equilibrium
prediction, only laggards reduce their efforts as the asymmetry increases. [Llorente-Saguer
et al.|(2016]) find a discouragement effect in the all-pay auction setting of Baye et al.| (1996)).
Miiller and Schotter| (2010) consider static all-pay auctions with asymmetric abilities.
Depending on their costs, individuals either “drop out” or “become workaholics”. This is

related to the polarization among laggards in Period 2 of our treatment ONE.%

Behavioral Contest Design The literature has dealt with behavioral aspects of
contest design theoretically and empirically, mainly focusing on static contests. Confirm-
ing standard theory, Sheremeta; (2011)) shows experimentally that efforts are higher with a
grand contest than with multiple prizes and contests with two subcontests. |Lim (2010) ob-
serves that social comparisons may lead to higher effort when there is a higher proportion
of winners than losers. Mermer| (2017) shows theoretically that, with expectation-based
preferences as in Készegi and Rabin| (2006, 2007)), a designer may want to use multiple
prizes. These last two results are in line with our result that models with two prizes

perform better than expected, except that they refer to a static setting.

7 Conclusion

This study asks whether efforts should be rewarded with frequent small prizes or whether
a designer should give infrequent large rewards, which are based on a longer performance
history. A grand prize incentivizes efforts in every previous period, but softens competition
later on. While the former incentive effect dominates over the latter in our simple model,
one might wonder about additional motivational effects. With several small prizes, revenge
motives may lead losers in early periods to compete aggressively to make up for past losses;
with a single large prize, laggards may believe that they are facing a tough opponent, so

that they might regard it as pointless to exert high effort with a large performance lag.

54n a related real effort experiment by |Azmat and Iriberri| (2016) information on relative performance in
a piece-rate setting affects effort (positively), even though it should have no effect. However, contrary
to our observations, it does not matter whether the information is positive or negative.

55More broadly, our findings are related to some recent observations on peer effects. |[Feld and Zélitz
(2017) have found that the grades of students with low ability (GPA) deteriorate in the presence of
high ability peers in the classroom, which appears similar to the intimidation effect in our experiment.

26



These motivational effects both appear to matter. Even though overall efforts are
higher with a grand prize than with two prizes, the motivational effects tend to reduce
the difference. These observations relate to the agents’ reaction to the first-period relative
performance: The low second-period effort in the single-prize treatment reflects an intim-
idation effect for laggards, whereas the high effort in the two-prize contest corresponds to
a revenge effect. However, we observe considerable heterogeneity in behavior. Laggards
who are far behind the leader choose minimal efforts disproportionately often, whereas
laggards who are relatively close choose maximal efforts disproportionately often (though
in each case, a non-negligible part chooses the other extreme).

The analysis suggests that the frequency of prizes and past performance weights affect
efforts. Frequent small prizes are advisable if efforts are complementary, so that laggards’
behavior matters. More tentatively, our analysis suggests giving infrequent large prizes,
but putting more emphasis on recent efforts (to avoid intimidation). Obviously, a direct
test of this claim would require further treatments. More broadly, our analysis also begs
the question to which extent our insights are specific to contests. Would they also survive
for more general forms of relative performance evaluation? Would they even be relevant
in settings with individual efforts, in particular, for real-effort tasks? The answer to these
questions is not obvious, but we believe it would be worthwhile to study intertemporal
reward structures in organizations more broadly along the lines suggested by our work.

Our analysis potentially has wider implications as a microeconomic explanation of
the emergence of economic inequality. If we think of agents as interacting during their
education and their professional career in a sequence of contests, our experiment high-
lights the necessity of maintaining a level playing field, so as to avoid the intimidation
effect, while at the same time harvesting the benefits of the revenge effect. More broadly,
our study contributes to a discussion on the microfoundations of inequality. Real-world
incentive systems, in particular, in labor markets, take past performance into account to
some extent. Theoretical models such as the one underlying our experiment show that
this may result in low efforts after large performance differences. The implications of our
laboratory experiment are potentially more troubling: Because of the intimidation effect,
initial performance differences could become self-perpetuating, as many laggards become
less motivated and essentially give up competition. There are two conceivable policy con-
clusions. First, incentive systems should not rely too heavily on the distant past. Second,
the heterogeneity of responses to first-period losses suggests that interventions enabling

agents to cope with potentially upsetting experiences might be helpful.
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8 Appendix

8.1 Figures and Tables
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Figure Al: Means of efforts over rounds. N = 96 per round and policy. Sample: All
participants.
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Figure A2: Distribution of efforts under TWO and INT
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TWO INT ONE
Pred. Mean P-val. Pred. Mean P-val. Pred. Mean P-val.

Average effort  22.7 31.5 0.002 274 316 0.010 321 345 0.050
Effort 1 227 325 0.002 387 365 0381 321 364 0.015
Effort 2 227 30,5 0.002 16.0 26.7 0.001 321 32.6 0.507
Effort 2 |As; - - - 152 26.7 0.001 309 326 0.117

Table A1: p-values for level predictions. Signed-rank tests according to Datta and Satten
(2008) based on each participant’s mean effort under the corresponding policy (N = 96).
Two-sided hypotheses. Sample: All participants.
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Table A2: Effect of first-period outcome on over-expenditure in second-period effort

Model (1) (2) (3) (4) (5) (6)
Dep. var. Over-expenditure in effort 2
Policy TWO TWO TWO ONE ONE ONE
EFFORT 1* 0.86***  (0.85%**F  (.85%F* (.57 (.56 (0.5T7HHFF

(0.000) (0.000)  (0.000)  (0.000) (0.000) (0.000)
LEADER 4.88%HF R 2%k 5 QFkx kK 4 8FHK 2.91%*

(0.000) (0.002)  (0.002) (0.015) (0.021) (0.052)
LEADER - PROSOC -4.90%* -3.35

(0.062) (0.113)
LEADER - FEMALE -2.86 -0.53
(0.231) (0.753)

LAGGARD 10.91%%*  10.01%*%*  9.64%** 0.70 1.32 0.49

(0.000) (0.001)  (0.000) (0.253) (0.356) (0.591)
LAGGARD - PROSOC 1.37 -1.01

(0.469) (0.555)
LAGGARD - FEMALE 3.27%* 0.56
(0.036) (0.729)

N 960 960 960 960 960 960
Number of clusters 12 12 12 12 12 12
Adj. R? 0.24 0.24 0.24
Log-likelihood -3408.58  -3402.35 -3404.02
Bootstrap samples 9999 9999 9999 9999 9999 9999

Tobit /ordinary least squares regressions. Dependent variable is calculated as observed second-period
effort minus predicted second-period effort (conditional on first-period performance difference for
ONE). EFFORT 1* is calculated as deviation from mean effort under the corresponding policy.
Bootstrapped p-values given in parentheses, computed using pairs cluster bootstrap-t (see Section 2
in the Web Appendix) with standard errors clustered on matching group. Sample: All participants.

=p < 0.01, **p < 0.05, *p < 0.1.
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Table A3: Effect of first-period outcome (first-period asymmetry) on over-expenditure in
second-period effort (on second-period effort) in INT

Model (1) (2) (3) (4)
Dep. var. Over-expenditure in effort 2 Effort 2
Policy INT INT INT INT
EFFORT 1% 0.45%F*  (.45%**  0.47F**  (.5THH*

(0.000) (0.000) (0.000) (0.000)
LEADER 11.38%#*F  12.98%**  10.02%**  31.25%**

(0.000) (0.000) (0.000) (0.000)
LEADER - PROSOC -2.58

(0.176)
LEADER - FEMALE 3.60
(0.151)

LAGGARD 11.57%FF  12.374F%  10.10%**  35.87***

(0.000) (0.001) (0.000) (0.000)
LAGGARD - PROSOC -1.28

(0.586)
LAGGARD - FEMALE 4.17*
(0.055)
|As;1| - LEADER -0.16%**
(0.000)
(0.000)

N 960 960 960 960
Number of clusters 12 12 12 12
Adj. R? 0.38 0.38 0.39
Log-likelihood -3409.82
Bootstrap samples 9999 9999 9999 9999

Tobit /ordinary least squares regressions. Over-expenditure in second-period ef-
fort is calculated as observed second-period effort minus predicted second-period
effort (conditional on first-period performance difference for INT). EFFORT 1*
is calculated as deviation from mean effort under the corresponding policy. Boot-
strapped p-values given in parentheses, computed using pairs cluster bootstrap-t
(see Section 2 in the Web Appendix) with standard errors clustered on matching
group. Sample: All participants. ***p < 0.01, **p < 0.05, *p < 0.1.
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8.2 Interpreting the Observations in Treatment INT

The framework of Section [f] can explain several aspects of the behavior in INT.
shows that, as in ONE, there is substantial polarization in the second-period behavior of
laggards in treatment INT. As in ONE, subjects with a handicap from past performance
know that they will have to work hard to have a chance of winning. Whereas some
subjects may be sufficiently optimistic and/or value winning enough to “go for it”, others
will remain skeptical and therefore give up. The difference between INT and ONE in
the behavior of laggards in Period 2 (excessive effort in INT, but not in ONE) fits well
with the idea that joy of winning is higher for players who have already lost once: Even
though an intimidation effect should be present in INT as well as in ONE, the more
pronounced joy-of winning effect in INT (reflecting revenge motives due to not having
obtained the first prize) suggests that excess effort should be higher in this case. (Note
that efforts themselves should reasonably be expected to be higher in ONE as subjects
are still fighting for the full prize W rather that only for the second-period prize as in
INT).5¢ Similarly, efforts in Period 1 are slightly below the equilibrium level. This may
reflect strategic myopia, that is, the inability of subjects to fully understand the positive

effect of investments today on winning chances tomorrow.

8.3 Interpreting the Differences in Treatments ONE and TWO

In we explained the behavior in TWO without reference to the specific param-
eterization of the belief function that we used to explain the observations in ONE. We
now extend the parameterized example to TWO in such a way that it plausibly models
the same players in both treatments. We argue that it is perfectly plausible that, when
comparing such otherwise identical players who exerted the same first-period effort in
TWO, the player in the role of a laggard will exert higher effort than a leader, whereas
the converse statement applies in ONE. We continue to maintain that £ = 0.066 and, in
ONE, W = 300, whereas W = 150 in TWO. In line with the identical first-period effort,
we suppose both players are ex-ante symmetric with respect to joy of winning and beliefs

about the effectiveness of their efforts.

8.3.1 Treatment TWO

In treatment TWO, we suppose that both players have joy of winning (V; = 25) in Period
1, so that II; = 175. Moreover, we suppose that the belief functions are characterized

by r; = 0.1 and A; = 20. Given the initial symmetry, both players choose the same

% As to INT and TWO, behavior seems to be similar in Period 2, with substantial excess effort relative
to predictions.
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Laggards vs. Leaders in TWO and ONE

U

I, =375, A; = 20
laggard with

(a) Behavior of Leaders and (b) Behavior of Leaders and
Laggards in TWO Laggards in ONE

Figure A3: Laggards vs. Leader in TWO and ONE

initial effort, with the winner (say, Player 1) determined entirely by chance. Suppose that
(based on our informational argument that he believes he is facing an opponent with high
joy-of-winning) the laggard becomes slightly more pessimistic (say, Ay = 25), whereas the
leader becomes slightly more optimistic (A; = 15). Moreover, suppose that (in line with
Assumption 1(ii)) the laggard’s joy of winning increases to V5 = 50, while the leader’s joy
of winning remains V; = 25.

This leads to expected payoffs as depicted in the left part of Figure The dashed line
corresponds to expected payoffs in the benchmark case where both players still have the
initial symmetric level of pessimism. The lower solid black line corresponds to expected
payoffs of a laggard in Period 2 who, while being more pessimistic, has higher joy of
winning than the leader (whose joy of winning remains as in Period 1, but who is more
optimistic than the laggard). Hence, the laggard’s optimal effort in Period 2 is higher
than the leader’s.

8.3.2 Treatment ONE

Now consider ONE. As in and in line with treatment TWO, we assume that
W = 300. Further, we take joy of winning to be 50, so that II; = II, = 350 initially.
Moreover, we assume that both players are equally optimistic (meaning here that their
perceived chance of moving ahead of the other is determined by the same belief function).
As in TWO, we assume that r; = 0.1 and A; = 20. Again suppose that, in the first
period, player 1 gets lucky and moves ahead of the rival. Unlike in TWO, players in
ONE know that the advantage of player 1 increases his winning chances in Period 2. In
addition, the informational argument still remains. Together, one should therefore expect

the beliefs to be more asymmetric than in TWO. Therefore, suppose for instance that
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A; =0and Ay = 55. As in TWO, we assume that the laggard has higher joy of winning
after receiving the information (Il increases to 375, while II; remains at 350).

The curves in Part (b) of Figure display the expected payoffs for the optimistic
leader and the pessimistic laggard. Even though the latter has slightly higher joy of
winning, the effect of pessimism dominates and the laggard chooses much lower effort
than the leader (the intimidation effect).

To sum up, with suitable parameter values, we find that laggards exert higher second-
period efforts than (otherwise identical) leaders in TWO, but lower efforts in ONE. Even
if being a laggard increases joy of winning relative to leaders in both treatments (which
fosters relatively high efforts), the adverse effect of being a laggard on pessimism is more

substantial in the latter case than in the former and thus dominates.
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WEB APPENDIX

9 Details on pre-experimental questionnaire

9.1 Details on measure for social value orientation

The SVO Slider Measure developed by Murphy et al.| (2011)) consists of a sequence of
six dictator games. In each dictator game, the participants have to choose one of nine
allocations in terms of payoffs for themselves and another participant (see and
. As an example, game 5 involves the distribution of a total surplus of 150
points between oneself and the other.®” The allocations are constructed in a way that in
each dictator game, each of the classical types of social value orientation either strictly

prefers exactly one of the allocations, or is wholly indifferent between all of them.

Table A5: Possible allocation choices in SVO Slider Measure

Game # Receiver Allocation #
1 2 3 4 5 6 7 8 9
oneself 85 85 85 85 85 85 85 8 &85

L other 8 76 68 59 50 41 33 24 15
9 oneself 85 87 89 91 93 94 96 98 100
other 15 19 24 28 33 37 41 46 50
3 oneself 50 H4 59 63 68 72 76 81 85
other 100 98 96 94 93 91 89 87 85
4 oneself 50 54 59 63 68 72 76 81 85
other 100 89 79 68 58 47 36 26 15
5 oneself 100 94 88 81 75 69 63 56 50
other 20 56 63 69 75 81 88 94 100
6 oneself 100 98 96 94 93 91 89 87 &85

other 50 54 59 63 68 T2 76 81 85
Source: Adapted from Murphy et al.| (2011)).

The categorization of the participants into one of the orientation types is based on

their choices in these dictator games. Let A, be the average of what the participant

57Note that in this dictator game, the price of giving is 1. In the other games, the price of giving is not
equal to 1, so that the total surplus varies between choices.
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allocated to the other across the six games and A, the average of what the participant
allocated to him/herself. Murphy et al.| (2011)) then define a participant’s SVO index as

SVO = arctan M )
A, — 50

Intuitively, in [Figure A4] the index corresponds to the angle at vertex (50,50) between
the average allocation chosen and the horizontal. Note that each classical type would
generate a particular index value when faced with the dictator games. Following [Murphy
et al.| (2011]), we determine the participants’ social value orientation type as the classical
orientation type whose index value their own index value is closest to. contains
the index values implied by orientation types and the resulting intervals for the empirical

categorization.’
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Figure A4: Allocations in the SVO Slider Measure. The lines connect the allocations

in the six dictator games given in Source: Adapted from [Fehr and Williams
(2013).

We implemented the SVO Slider Measure in the following way. Before making deci-
sions in the dictator games, the participants were instructed that after the completion

of the questionnaire, they would be randomly paired with another participant, and that

58Note that there is a range of possible values for prosocials and individualists. This is due to the fact
that both orientation types are indifferent between the allocations in one of the six dictator games each.
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Table A6: Characterization of SVO types

Orientation type Implied index value Range for characterization

Competitive —16.26° < —12.04°
Individualist € [~7.82°,7.82° (—12.04°, 22.45°]
Prosocial € [37.09°,52.91°] (22.45°,57.15°]
Altruist 61.39° > 57.15°

Source: Adapted from Murphy et al.| (2011)).

one of the 12 decisions made by both participants in this pair would then be randomly
chosen to determine their payoffs. Then, every game appeared separately on the partic-
ipants’ computer screen. For every participant, the order of presentation was randomly

determined. All payoffs were expressed in CHF, using an exchange rate of CHF 1 per 10
points as given in

9.2 Details on measure for risk aversion

In the lottery task, the safe payoff varied between CHF X € {2,3,4,5,6,7}. The lottery
yielded CHF 10 or CHF 0 with equal chances. The choice situations were presented on
one screen, ordered in decreasing value of the safe payoff (see [Table A7)).

Table A7: Lottery task to elicit risk aversion

Situation # Safe payoft Lottery
1 CHF 7 50%: CHF 10, 50%: CHF 0
2 CHF 6 50%: CHF 10, 50%: CHF 0
3 CHF 5 50%: CHF 10, 50%: CHF 0
4 CHF 4 50%: CHF 10, 50%: CHF 0
5 CHF 3 50%: CHF 10, 50%: CHF 0
6 CHF 2 50%: CHF 10, 50%: CHF 0

We infer the participants’ degree of risk aversion from the position at which they
switched from choosing the safe amount to choosing the lottery. To this end, we use a
similar argument as Dohmen et al.| (2011): Since the expected value of the lottery is CHF
5, risk-loving subjects should switch before situation 3 (at which the safe payoff equals
the expected value of the lottery), and risk-averse subjects after situation 3. Hence, the

later an individual switches, the higher is the underlying degree of risk aversion. We thus
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define the variable SPRISK as the number of the situation at which the participants chose
the lottery for the first time.%%:6

After the completion of the questionnaire, the computer randomly selected one of the
six choice situations for each participant (Cubitt et al., [1998). The participants’ payoff
then followed from their decision for the selected situation — if they had chosen the safe
payoff, the payoff was equal to the safe payoff, while if they had chosen the lottery, the
payoff was randomly chosen between CHF 10 and CHF 0.

9.3 Details on measure for loss aversion

In this task, which was developed by |Gachter et al.| (2010]), the participants have to make
decisions for six choice situations involving a safe payoff of CHF 0 and a lottery. The

lotteries yields, with equal chances, a payoff of CHF 6 or a payoff of CHF —X, while
X €{2,3,4,5,6,7} (see|Table ASg)).

Table AS8: Lottery task to elicit loss aversion

Situation # Safe payoff Lottery
1 CHF 0 50%: CHF 6, 50%: CHF -2
2 CHF 0 50%: CHF 6, 50%: CHF -3
3 CHF 0 50%: CHF 6, 50%: CHF -4
4 CHF 0 50%: CHF 6, 50%: CHF -5
5 CHF 0 50%: CHF 6, 50%: CHF -6
6 CHF 0 50%: CHF 6, 50%: CHF -7

Source: Adapted from |Gachter et al.| (2010]).

The participants’ level of loss aversion follows from the point at which they start
rejecting the lottery in favor of the safe amount. Following |Gachter et al. (2010)), a
decision maker is indifferent between accepting and rejecting a lottery that yields a gain

of G and a loss of L with equal chances if

G=M\-L.

59With this definition, a participant who always chose the lottery — and is thus very risk-loving — receives
a value of 1, which is an upper bound for the switching point in the hypothetical case that there were
additional situations above situation 1 with a safe payoff of more than CHF 7. For a participant who
always chose the lottery — and is thus very risk-averse — we set SPRISK to 7, which is a lower bound
for the switching point in the hypothetical case that there were additional situations below situation 6
with a safe payoff of less than CHF 2.

60The measure which we use is a linear transformation of the measure of [Dohmen et al.| (2011)).
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Gachter et al. (2010) define A\ as the coefficient of loss aversion. They argue that A\ >
1 implies loss aversion, as losses are weighted more heavily than equally sized gains.®!

Gachter et al.| (2010) then calculate a participant’s A as

G(Z

A= —
Lo’

where G* and L® are the gain and the loss of the lottery with the highest loss that is still
accepted by a participant. Note that if a participants always (never) rejected the lottery,
we can only determine a lower (upper) bound for X\.52 Furthermore, if a participant was
inconsistent and rejected a first lottery but accepted a second that would have yielded a
higher loss than the first, it is not possible to determine \. shows the values for
A that follow from the possible choices in the lottery task.

Table A9: Possible choices and implied val-

ues for A

Choice implied A
Always reject >3
Accept #1, reject #2—#6 3
Accept #1 — #2, reject #3—#6 2

Accept #1 — #3, reject #4-4#6 1.5
Accept #1 — #4, reject #5-#6 1.2
Accept #1 — #5, reject #6 1
Never reject <0.87

Source: Adapted from |Géchter et al.| (2010).

As for the lottery task to elicit risk aversion, the computer randomly selected one
of the six choice situations for each participant after the completion of the questionnaire
(Cubitt et al.,|1998) and determined the payoffs according to the decisions for the selected

situation.

9.4 Details on measure for competitiveness

The Revised Competitiveness Index developed by Houston et al.| (2002)) consists of 14
statements about competition in daily life contexts (see [Table A10]). The participants
state on a Likert scale from 1 (strongly disagree) to 5 (strongly agree). According to

the definition of Houston et al.| (2002), a participant’s RCI value equals the sum of the

61This is a special case of the more general model of [Tversky and Kahneman (1992), who allow for
probability weighting and nonlinear utility.
62In these cases, we set A to 3 or 0.87, respectively.
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individual answers and ranges between 14 and 70.%% In the pre-experimental questionnaire,

the questions appeared separately on the screen in a randomly determined order.

Table A10: Statements in Revised Competitiveness Index

Statement

I like competition.

I am a competitive individual.

I enjoy competing against an opponent.

I don’t like competing against other people.

I get satisfaction from competing with others.

I find competitive situations unpleasant.

I dread competing against other people.

I try to avoid competing with others.

I often try to out perform others.

I try to avoid arguments.

I will do almost anything to avoid an argument.

I often remain quiet rather than risk hurting another person.

13 I don’t enjoy challenging others even when I think they are wrong.
14 In general, I will go along with the group rather than create conflict.

— =
S ©00 0 Otk w3k

—
[\]

Source: Adapted from Houston et al.| (2002)).

10 The pairs-cluster bootstrap-t procedure

Note that two issues complicate the estimation: (a) the clustering of observations within
matching groups, and (b) the small number of clusters, here equal to the number of
matching groups (12). For an unbiased estimation of the variance-covariance matrix,

64 Tt is well-known, however,

issue (a) requires to use cluster-robust standard errors.
that with few clusters (issue (b)), the conventional cluster-robust sandwich estimator for
the variance-covariance matrix may be biased as well (see, for example, (Cameron et al.,
2008). As a solution, we determine the p-values of the coefficients with the pairs cluster
bootstrap-t procedure. (Cameron et al.| (2008) show by simulation that in an ordinary
least squares estimation, this procedure maintains a reasonably correct size with both
clustered observations and a small number of clusters.

The following summary relies on (Cameron et al.| (2008, p. 427). Suppose there are

C clusters. The pairs-cluster bootstrap-t procedure starts with an ordinary least squares

63The answers to statements 4, 6, 7, 8, 11, 12, 13 and 14 are reverse-coded in the calculation of the overall
score.

64Clustering of the observations implies correlation in the error structure, which violates the assumption
of uncorrelated errors underlying the standard regression model. As a consequence, the conventional
estimation of the variance-covariance matrix may be biased.
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estimation of coefficient j, Bj, and a cluster-robust estimation of its standard error, 5,
based on the whole sample. In the next step, B bootstrap replications are executed. In
each replication, the procedure samples C' clusters (i.e., all of the observations from that
cluster) with replacement from the original sample of clusters and calculates t-statistics
based on the resampled data using cluster-robust standard errors. More precisely, let ijb
be the ordinary least squares estimate of the coefficient in the bth replication and s Bin the

cluster-robust estimate of its standard error. The bth t-statistic is then defined as

. ﬁj,b - ﬂ]
=
Sﬂj,b

In the last step, the p-value for parameter j results from comparing the regular t-statistic

t

_ B
Sﬁj

° Note that in some of the regressions, we

to the empirical distributions of the ¢;,.°
determine the estimates of the coefficients with the Tobit model instead of ordinary least

squares to take the censoring of effort choices at 0 and 55 into account.

65We implemented the bootstraps in R using the AER, censReg, doBy, doMC, doRNG, foreach, Imtest,
sampling and sandwich packages.
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11 Instructions

This section contains the instructions for session 1. The instructions for session 2 and 3

were analogous.

Instructions — Page 1/5

Instructions

General Information

Three parts, 10 This is experiment has 3 parts (Part |, Part I, and Part lll). Each part is
periods each divided into 10 periods. Thus, there are 30 periods in total.

The instructions on this page and on pages 2 and 3 are relevant for all three
parts. Instructions which are specific to Part | will follow on page 4.
Instructions which are specific to Part Il and Part Il will be distributed to you
before the corresponding part.

In each period, you will generate a payoff. The payoff depends on your
decisions in that period and the decisions of others in that period. How you
generate a payoff will be explained to you in the following.

Final payoff Your final payoff from the experiment will be a participation payment of 10
CHF plus the payoff you generated in one randomly chosen period. The
period that is randomly chosen will be the same period for all participants.
Every period is equally likely to be chosen. During the experiment, you will
not know which period will be chosen. Therefore, you should treat each
period as if it would be the one that is relevant for your final payoff.

Final payoff = 10 CHF + your payoff from a randomly chosen period

Upon completion of the experiment, you will be paid individually and in
private.

Exchange rate Throughout the experiment, payoffs are expressed in terms of “points”. At the
end of the experiment, payoffs in points will be converted into payoffs in CHF.
The exchange rate is:

10 points =1 CHF

Rules If you have any questions during the experiment, please raise your hand and
wait for an experimenter to come to you. During the experiment, you are not
allowed to communicate with other participants, exclaim, use personal
electronic devices, or use the computer in a way not specified by the
experimenter. If you are not following these rules, you may be excluded from
the experiment and might only receive the participation payment.

What happens in a period

Interaction with  In each of the 30 periods, every participant is assigned into a pair with one
Li%i%r:ly randomly chosen other participant. In the following, we will refer to the other
participant randomly chosen participant as the “other”. The participants will never know

the identity of the other, nor will the other know their identity.
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Two stages per
period

Stage 1: input

Stage 1: output

Stage 1:
information

Stage 2

Instructions — Page 2/5

Each period consists of two stages. In each stage, the participants must
make a decision. In the following, this is explained in further detail.

Stage 1 works in the following way:

First, each participant individually chooses an input level between 0 and 55 in
increments of 0.5. The numbers are entered in the corresponding field of the
computer screen. Choosing a positive input level is costly for the participants.
A detailed explanation of the costs the participants have to pay for choosing
a particular input level follows below.

Second, the computer determines each participant’s output level in Stage 1.
A participant’s output level depends on the participant’s input level in Stage 1
and on a random number. This random number is drawn for each participant
individually in Stage 1.

output level in Stage 1 = input level in Stage 1
+random number in Stage 1

On average, the random numbers are zero, but they can take up positive and
negative values. Positive and negative values are equally likely, and values
close to zero are more likely than values further away from zero. On page 2
of the appendix, you find a detailed explanation of the distribution of the
random numbers.

This means that on average, a participant’s output level corresponds exactly
to this participant’s input level. Thus, a higher input level results on average
in a higher output level. However, depending on the realization of the random
number (positive or negative), the output level can positively or negatively
deviate from the chosen input level. Positive and negative deviations are
equally likely, and small deviations are more likely than large deviations.

At the end of Stage 1, the computer screen displays the following information
to each participant: the participant’s own output level in Stage 1, the other’'s
output level in Stage 1, and the difference between the participant's own
output level and the other’s output level. Note that the participants will not
know the other’s input level, nor will the other know their input level.

Stage 2 works in the same way: Each participant chooses an input level.
Choosing a positive input level is costly to the participants. Then, the
computer draws another random number for each participant and determines
each participant’'s output level in Stage 2, which is the sum of the
participant’s input level in Stage 2 and the participant’'s random number in
Stage 2. Finally, the computer displays the corresponding information.
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Payments

Payoff

Costs

No predictions
possible

Instructions — Page 3/5

At the end of each period, the participants receive payments depending on
their own and the other's output in Stage 1 and in Stage 2. The rules
according to which these payments are made differ between the three parts
of the experiment. The payment rules in each part will be explained in the
instructions specific to this part, i.e., the payment rules for Part | are
explained on page 4.

A participant’s payoff is calculated in the same way in all three parts: It is
equal to the difference between the participant’s total payments and the costs
for the participant’s inputs in both stages, plus a fixed payment of 200 points.

payoff from a period = total payments
- costs for input in Stage 1
- costs for input in Stage 2
+ 200

A participant’s payoff is therefore higher when the participant’s payments are
higher and the participant’s costs for the inputs are lower. Note that a
participant’s payoff will never be negative.

On page 1 of the appendix, you find a table and a graph showing which costs
the participants have to pay for choosing a particular input level in a stage.
The costs are increasing in the input level chosen by a participant. That is,
the higher is the chosen input level, the higher are the costs the participant
has to pay.

Note that it is not possible to make predictions about future draws of random
numbers from draws of random numbers in the past. The random numbers
are newly drawn for every participant in every stage of every period, and
these draws are independent from each other.
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Instructions specific to Part |

In Part |, the payment rules after Stage | and Stage Il are the following:

e A first payment of 150 points is given to the participant in the pair who has higher
output in Stage 1. The participant with lower output in Stage 1 receives no payment. If
both outputs in Stage 1 are equal, the participant who receives the first payment is
randomly chosen.

e A second payment of 150 points is given to the participant in the pair who has higher
output in Stage 2. The participant with lower output in Stage 2 receives no payment. If
both outputs in Stage 2 are equal, the participant who receives the second payment is
randomly chosen.

150 points to participant with higher output in Stage 1
150 points to participant with higher output in Stage 2

This means that output in Stage 1 only counts for the first payment, and output in Stage 2
only counts for the second payment.

Example — Part |

In the following, you take up the perspective of some participant in one of the 10 periods of
Part |. Below, you see a picture of the computer screen after Stage 1 and Stage 2. Note
that the numbers only serve as an example to illustrate the rules of Part I, and are not a
recommendation towards what you should do.

Part I: Period 1/10

Stage 1

Your input level: 18.50

Your output level: 2396

The other's output level: 16.51

Difference between your and other's output level: 7.45
Stage 2

Your input level: 1050

Your output level: -1.72

The other's output level: 2784

Difference between your and other's output level: -29.56

Payments

You have higher output in Stage 1, so you receive 150 points.
The other has higher output in Stage 2, so the other receives 150 points.
Your total payments (in points): 150
Costs
Your costs for input in Stage 1 (in points): 11.29
Your costs for input in Stage 2 (in points): 3.64

Payoff
Your payoff from this period (in peints): 335.07

[
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In Stage 1, you chose an input level of 18.5. The computer then determined your output
level in Stage 1 as 23.96. This means that your random number was +5.46 (23.96 + 5.46 =
18.5). The other’'s output level in Stage 1 was 16.51. The computer thus displays the
difference between your and the other’s output level as 7.45 (23.96 - 16.51 = 7.45).

In Stage 2, you chose an input level of 10.50. The computer then determined your output
level in Stage 2 as -1.72. This means that your random number was -12.22 (10.5 - 12.22 =
-1.72). The other’s output level in Stage 2 was 27.84. The computer thus displays the
difference between your and the other’s output level as -29.56 (-1.72 - 27.84 = -29.56).

Then, you and the other received payments depending on your and the other’s output in
Stage 1 and in Stage 2. First, since your output in Stage 1 (23.96) was higher than the
other’s output in Stage 1 (16.51), a payment of 150 points was given to you. Second, since
your output in Stage 2 (-1.72) was lower than the other’s output in Stage 2 (27.84), a
payment of 150 points was given to the other. Thus, your total payments were 150 points
(150 + 0 = 150).

The costs for your input level of 18.5 in Stage 1 were 11.29 points, and the costs for your
input level of 10.5 in Stage 2 were 3.64 points.

Your payoff from this period are your total payments (150 points) minus your costs for
input in Stage 1 (11.29 points) and for input in Stage 2 (3.64 points), plus the fixed
payment of 200 points. Your payoff from this period is thus 335.07 points (150 - 11.29 -
3.64 + 200 = 335.07).

Suppose this period would be randomly chosen to be relevant for your final payoff. Your
final payoff would then be 45.51 CHF, which is the sum of the 10 CHF participation
payment and the payoff from this period converted into 33.51 CHF (= 355.07/10).
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Instructions specific to Part Il

In Part I, the payment rules after Stage | and Stage Il are the following:

e A first payment of 150 points is given to the participant in the pair who has higher
output in Stage 1. The participant with lower output in Stage 1 receives no payment. If
both outputs in Stage 1 are equal, the participant who receives the first payment is
randomly chosen.

e A second payment of 150 points is given to the participant in the pair whose sum of
output in Stage 1 and output in Stage 2 is higher. The participant whose sum of output
in Stage 1 and output in Stage 2 is lower receives no payment. If both participants have
the same sum of output in Stage 1 and output in Stage 2, the participant who receives
the second payment is randomly chosen.

150 points to participant with higher output in Stage 1
150 points to participant with higher sum of output

This means that output in Stage 1 counts both for the first payment and for the second
payment, while output in Stage 2 only counts for the second payment.

Example — Part I

Reconsider the example from Part I. You had an output level of 23.96 in Stage 1 and of
-1.72 in Stage 2. The sum of your output in Stage 1 and output in Stage 2 is then
22.24 (23.96 + (-1.72) = 22.24).

The other had an output level of 16.51 in Stage 1 and of 27.84 in Stage 2. The other's sum
of output in Stage 1 and output in Stage 2 is then 44.35 (16.51 + 27.84 = 44.35).

With the rules of Part I, payments are as follows:

First, since your output in Stage 1 (23.96) is higher than the other’'s output in Stage 1
(16.51), a payment of 150 points is given to you. Second, since your sum of output (22.24)
is smaller than the other’s sum of output (44.35), a payment of 150 points is given to the
other. Your total payments are thus 150 points (150 + 0 = 150).

Suppose you chose the same input levels as in the example for Part I. Your costs for input
are thus 11.29 for Stage 1, and 3.64 for Stage 2. Your payoff from this period is thus
335.07 points (150 - 11.29 - 3.64 + 200 = 335.07).
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Instructions specific to Part Il

In Part I, the payment rules after Stage | and Stage Il are the following:

e A payment of 300 points is given to the participant whose sum of output in Stage 1 and
output in Stage 2 is higher. The participant whose sum of output in Stage 1 and output
in Stage 2 is lower receives no payment. If both participants have the same sum of
output in Stage 1 and output in Stage 2, the participant who receives the second
payment is randomly chosen.

300 points to participant with higher sum of output

This means that output in Stage 1 and output in Stage 2 both count for the payment.

Example — Part lll

Reconsider the example from Part I. You had an output level of 23.96 in Stage 1 and of
-1.72 in Stage 2. The sum of your output in Stage 1 and output in Stage 2 is then
22.24 (23.96 + (-1.72) = 22.24).

The other had an output level of 16.51 in Stage 1 and of 27.84 in Stage 2. The other's sum
of output in Stage 1 and output in Stage 2 is then 44.35 (16.51 + 27.84 = 44.35).

With the rules of Part Ill, payments are as follows:

Since your sum of output (22.24) is smaller than the other's sum of output (44.35), a
payment of 300 points is given to the other. Your total payments are thus 0 points (0 + 0 =
0).

Suppose you chose the same input levels as in the example for Part I. Your costs for input
are thus 11.29 for Stage 1, and 3.64 for Stage 2. Your payoff from this period is thus
185.07 points (0 - 11.29 - 3.64 + 200 = 185.07).
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Costs for input level depending on choice of input level

. costs for ) costs for : costs for ) costs for
Ilnput input level input input level input input level input input level
evel | . . level | . . level | . ) level | . ;
(in points) (in points) (in points) (in points)
0.0 0.00 14.0 6.47 28.0 25.87 42.0 58.21
0.5 0.01 145 6.94 28.5 26.80 42.5 59.61
1.0 0.03 15.0 7.43 29.0 27.75 43.0 61.02
1.5 0.07 15.5 7.93 29.5 28.72 43.5 62.44
2.0 0.13 16.0 8.45 30.0 29.70 44.0 63.89
2.5 0.21 16.5 8.98 30.5 30.70 44.5 65.35
3.0 0.30 17.0 9.54 31.0 31.71 45.0 66.83
3.5 0.40 17.5 10.11 315 32.74 45.5 68.32
4.0 0.53 18.0 10.69 32.0 33.79 46.0 69.83
4.5 0.67 18.5 11.29 32.5 34.86 46.5 71.35
5.0 0.83 19.0 1191 33.0 35.94 47.0 72.90
5.5 1.00 19.5 12.55 33.5 37.03 47.5 74.46
6.0 1.19 20.0 13.20 34.0 38.15 48.0 76.03
6.5 1.39 20.5 13.87 34.5 39.28 48.5 77.62
7.0 1.62 21.0 14.55 35.0 40.43 49.0 79.23
7.5 1.86 21.5 15.25 35.5 41.59 49.5 80.86
8.0 211 22.0 15.97 36.0 42.77 50.0 82.50
8.5 2.38 225 16.71 36.5 43.96 50.5 84.16
9.0 2.67 23.0 17.46 37.0 45.18 51.0 85.83
9.5 2.98 23.5 18.22 37.5 46.41 51.5 87.52
10.0 3.30 24.0 19.01 38.0 47.65 52.0 89.23
10.5 3.64 245 19.81 38.5 48.91 52.5 90.96
11.0 3.99 25.0 20.63 39.0 50.19 53.0 92.70
11.5 4.36 255 21.46 39.5 51.49 53.5 94.45
12.0 4.75 26.0 22.31 40.0 52.80 54.0 96.23
12.5 5.16 26.5 23.17 40.5 54.13 54.5 98.02
13.0 5.58 27.0 24.06 41.0 55.47 55.0 99.83
13.5 6.01 275 24.96 41.5 56.83
100
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Distribution of the random numbers

In every stage of every period, a participant’s random number is drawn from a normal
distribution with expected value 0 and standard deviation 28.28.

The following graph shows the probabilities that the random number lies between two
values (in steps of 5 units):

probability of lying between two values (in steps of 5 units)
7.5%

7.0%
6.5% — —
6.0%
5.5%
5.0%
4.5% — —_
4.0%
3.5%
3.0% — —_
2.5%
2.0%
1.5%
1.0% =, —
0.5% = =

0.0%
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 70 80 90 100

value of random number

How to read the graph: The horizontal bars each represent a certain range of possible
values for the random number. On the horizontal axis, you can read the left and the right
boundary of a range. On the vertical axis, you can read the probability that the random
number lies within this range.

Example: The probability that the random number lies between +5 and +10 is about 6.8%.
This is equal to the probability that the random number lies between -10 and -5. This
means that if you choose an input level of, say, 20, the probability that your output level
lies between 25 and 30 is about 6.8%, and the probability that your output level lies
between 10 and 15 is also 6.8%.

Note that by adding up the probabilities of the four bars to the right of zero (7, 6.8, 6.4, 5.8)
and of the four bars to the left of zero (5.8, 6.4, 6.8, 7), you learn that the probability that
the output level is within +/- 20 units around your input level is about 52%.
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12 Control questions

This section contains the control questions that the participants had to solve at the

beginning of the experiment and before treatment T'WO (here shown for session 1). The
control questions for treatments (INT) and (ONE) were analogous to those for (TWO).

“Jamsue 1nof abueyd ued nok pue Jeadde |pm abessaw e ‘fjpoaniooul uonsanb e pasamsue nok § “Apeal ale nok uaym ,anunuod, Y2112 asesld

Buou
Y61y Aan a1am a6E)S JBY) UL ISQLUNU WOPUE] SJ3UJ0 aU 1o [8A8] Indul SJ8U10 auljey;
yB1y Aan sem a6E}S JEL) Ul J3GLUNU LWOPUE] S840 SULIELL

‘ybiy Auan sem abejs 1Byl Ul [aaa) Indul SJaylo aulley;

“ainyny sy ul padxa ued nod Jeym o) Buiyou

ybiy Aan aq v abejs mau ay) vl ndino sJauylo syl jey) padxe ued nofley;
ybiy fuaa ag m sabeys ainpny ul indino Jnof ey} padxs ued nokjey)

‘mo| Jan aq |m sabels ainpny Ul indino 1nodk jey) padxs ued nof ey

0 PUE GZ U=amaq sall il jeul
02 PUE G| U=amaq sall )il eyl

ou
sal

.

.

.

.

.

.

.

.

0G PuUE Gf Usamiaq ssl| il leyl i
.

.

.

.

'} abels ul sjaas| Indino Aw o] padsal yum padxa | 1eym Jo) Duiyiou sandwi syl 3
‘SUoiEN)S ylog ul ybiy fjienba s1 | abels ul (aae) indino fw jeyypadxe |

‘g uonenys urisybiy si | abels ul [aas) indino Aw jeypadea | b

W uonenys uliaybiy si | abels ul |aas) indno Aw jeyy padxs | 3

ou i

sak i

ou _j
sak i

ou _j
sak i

ou _j
sak i

ou _j
sak i

£ 10} Aed o) aney nok (s s1S00 Ydym ‘z abels ul g¢ Jo [eaa) indul ue asooyd nok J (Z1L

£ 10} Aed o) aney nok [ 51500 Ydiym ‘L abels ul g¢ Jo [eaa) indul ue asooyd nok y (L1

= saldul S1y1 £1931102 S JUSWaJels YU/ “abe)s awos ul [2as] Indino ybiy Apenogied e pey Jaiyjo 2y asoddns (0L

s anduw
1Y) £1991102 S1JUSWSBIEIS YU "L 20815 w [aaa) Indul 1nok uey) Jaews yanw sem | abejs w jeas) indino 1nok asoddns (g

£05 PUE Gi Usamlaq Sa1 ) 1l 10 ‘0 PUB GZ Usamlaq Sail I Jey) ‘0Z pue
G| uaamyaq sal| | a0e1s wi [aas] Indino 1nok Jey) Ay a1ow s11eypn L 20e1s i gz Jo [eaa) indul ue asooyd nok asoddns (g

£oabes 1ey) w eaa) Indul 1nok uey) Jamo| aq [pm abeys e uil |aas) Indino 1nok yey) ajqissod 1 s) (2

£suonenys yloq ui | abe1s w sjaaa) indino 1nok 0} 1oadsal yum 1oadxa nok op ey L 26e1s W
0t 10 [2Aa] Indul ue asooyd nok ‘g uonenys ul ajym ‘| abels ul gz Jo [eaa] Indul ue asooyd nok 'y uonenys ul jey) asoddns (g

Zpare(nwnaoe aq [pam pouad Laas woly syofed syl quswied jeuy 1nok Jo uogena|ed ay) 1o) Jey) andl § | (g

£pouad jeiy) u

ayew Jaylo ay] pue nok sauo ay) ueyl suoisidap Jaylo fue uo puadap pouad Jenaped e w syofed s Jayjo ay) pue 1nok o (#

Rnuapl 1nof mouy Jana (s Juediiped Jayjo ou Jeyl anay 1 s (¢

£UNm pajoelalul nok oym Jo Knuapl ai) mouy Jans nok [ (z

Zluawuadxa ay) noybnoay) Juediniped awes ay) yum 1oeiaiu sAemie (s nok jey) and u s (L

*puey 1nok asiel aseald ‘uonsanb e aney nok J| "JI9MSUE JOES JUILLISISP 0} MOY Jo Suoneue|dxa pajiE}ap ulEjuod SUoiIN)SUl ay) ‘diay paau nok §j "mojaq suonsanb au) JaMsUE aseald

juawiLiadx3g ayj Jo Me)s ay} alojaq suonRsany zinp

29






13 Computer interface










References

Anderson, L. R. & Freeborn, B. A. (2010). Varying the intensity of competition in a
multiple prize rent seeking experiment. Public Choice, 143(1-2), 237-254.

Azmat, G. & Iriberri, N. (2016). The provision of relative performance feedback: An
analysis of performance and satisfaction. Journal of Economics € Management Strategy,
25(1), 77-110.

Balafoutas, L., Kerschbamer, R., & Sutter, M. (2012). Distributional preferences and
competitive behavior. Journal of Economic Behavior & Organization, 83(1), 125-135.

Baye, M. R., Kovenock, D., & de Vries, C. G. (1996). The all-pay auction with complete
information. Economic Theory, 8(2), 291-305.

Berger, J. & Pope, D. (2011). Can losing lead to winning? Management Science, 57(5),
817-827.

Brookins, P. & Ryvkin, D. (2014). An experimental study of bidding in contests of

incomplete information. Ezperimental Economics, 17(2), 245-261.

Buser, T. (2016). The impact of losing in a competition on the willingness to seek further
challenges. Management Science, 64, 3439-3449.

Cameron, A. C., Gelbach, J. B., & Miller, D. L. (2008). Bootstrap-based improvements
for inference with clustered errors. The Review of Economics and Statistics, 90(3),
414-427.

Casas-Arce, P. & Martinez-Jerez, F. A. (2009). Relative performance compensation,

contests, and dynamic incentives. Management Science, 55(8), 1306-1320.

Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-
subject and within-subject design. Journal of Economic Behavior & Organization,
81(1), 1-8.

Chen, H., Ham, S. H., & Lim, N. (2011). Designing multiperson tournaments with

asymmetric contestants: An experimental study. Management Science, 57(5), 864-883.

Chlosta, K., Pull, K., & Futagami, S. (2014). Tournament structures in Japan and the
U.S.: Why are they different and will they change? Management and Organizational
Studies, 1(1), 63-71.

Clark, D. J. & Nilssen, T. (2013). Learning by doing in contests. Public Choice, 156(1-2),
329-343.

64



Clark, D. J., Nilssen, T., & Sand, J. Y. (2012). Motivating over time: Dynamic win effects
in sequential contests. University of Oslo, Department of Economics Working Paper

No. 28/2012

Cubitt, R. P., Starmer, C., & Sugden, R. (1998). On the validity of the random lottery

incentive system. Ezperimental Economics, 1(2), 115-131.

Datta, S. & Satten, G. A. (2008). A signed-rank test for clustered data. Biometrics,
64(2), 501-507.

Dechenaux, E.; Kovenock, D., & Sheremeta, R. M. (2015). A survey of experimental
research on contests, all-pay auctions and tournaments. Ezperimental Economics, 18(4),
609-669.

Delfgaauw, J., Dur, R., Non, A., & Verbeke, W. (2015). The effects of prize spread
and noise in elimination tournaments: A natural field experiment. Journal of Labor

Economics, 33(3), 521-569.

Denter, P. & Sisak, D. (2015). Do polls create momentum in political competition?
Journal of Public Economics, 130, 1-14.

Denter, P. & Sisak, D. (2016). Head starts in dynamic tournaments? Economics Letters,
149, 94-97.

Dohmen, T., Falk, A., Huffman, D., Sunde, U., Schupp, J., & Wagner, G. G. (2011).
Individual risk attitudes: Measurement, determinants, and behavioral consequences.
Journal of the European Economic Association, 9(3), 522-550.

Dufwenberg, M. & Kirchsteiger, G. (2004). A theory of sequential reciprocity. Games and
Economic Behavior, 47(2), 268-298.

Ederer, F. & Fehr, E. (2017). Deception and incentives: How dishonesty undermines
effort provision. Working paper, October 25, 2017.

Eriksson, T., Poulsen, A., & Villeval, M. C. (2009). Feedback and incentives: Experimen-
tal evidence. Labour Economics, 16, 679—-688.

Falk, A. & Fischbacher, U. (2006). A theory of reciprocity. Games and Economic Behavior,
54(2), 293-315.

Fehr, E. & Schmidt, K. M. (1999). A theory of fairness, competition, and cooperation.
The Quarterly Journal of Economics, 114(3), 817-868.

65



Fehr, E. & Williams, T. (2013). Endogenous emergence of institutions to sustain cooper-

ation. Unpublished working paper.

Feld, J. & Zolitz, U. (2017). Understanding peer effects: on the nature, estimation, and
channels of peer effects. Journal of Labor Economics, 35(2), 387-428.

Fischbacher, U. (2007). z-tree: Zurich toolbox for ready-made economic experiments.
Ezperimental Economics, 10(2), 171-178.

Gachter, S., Johnson, E. J., & Herrmann, A. (2010). Individual-level loss aversion in
riskless and risky choices. CeDEx Discussion Paper No. 2010-20.

Gill, D. & Prowse, V. (2014). Gender differences and dynamics in competition: The role
of luck. Quantitative Economics, 5, 351-376.

Goldman, M. & Rao, J. M. (2017). Loss aversion around a fixed reference point in highly
experienced agents. Awvailable at SSRN 2782110.

Harbaugh, R. & Ridlon, R. W. (2011). Handicapping under uncertainty in an all-pay
auction. Working paper, February 2011.

Harbring, C. & Irlenbusch, B. (2003). An experimental study on tournament design.
Labour Economics, 10(4), 443-464.

Harris, C. & Vickers, J. (1985). Perfect equilibrium in a model of a race. The Review of
Economic Studies, 52(2), 193-209.

Harris, P. B. & Houston, J. M. (2010). A reliability analysis of the revised competitiveness
index. Psychological Reports, 106(3), 870-874.

Hernandez-Lagos, P., Minor, D., & Sisak, D. (2017). Do people who care about oth-
ers cooperate more? experimental evidence from relative incentive pay. FEzxperimental

Economics, (pp. 1-27).

Houston, J., Harris, P., McIntire, S., & Francis, D. (2002). Revising the competitiveness
index using factor analysis. Psychological Reports, 90(1), 31-34.

Klein, A. H. & Schmutzler, A. (2017). Optimal effort incentives in dynamic tournaments.
Games and Economic Behavior, 103, 199-224.

Kong, X. (2008). Loss aversion and rent-seeking: An experimental study. CeDEx Discus-
sion Paper No. 2008-13.

66



Konrad, K. A. (2012). Dynamic contests and the discouragement effect. Revue d’économie
politique, 122, 233-256.

Konrad, K. A. & Kovenock, D. (2009). Multi-battle contests. Games and Economic
Behavior, 66(1), 256-274.

Készegi, B. & Rabin, M. (2006). A model of reference-dependent preferences. The Quar-
terly Journal of Economics, 121(4), 1133-1165.

Készegi, B. & Rabin, M. (2007). Reference-dependent risk attitudes. American Economic
Review, 97(4), 1047-1073.

Kubitz, G. (2020). Sharing cost information in dynamic oligopoly. Unpublished working
paper.

Lim, N. (2010). Social loss aversion and optimal contest design. Journal of Marketing
Research, 47(4), 777-787.

Llorente-Saguer, A., Sheremeta, R. M., & Szech, N. (2016). Designing contests between
heterogenous contestants: An experimental study of tie-breaks and bid-caps in all-pay

auctions. Working paper, May 8, 2016.

Mago, S. D., Sheremeta, R. M., & Yates, A. (2013). Best-of-three contest experiments:
Strategic versus psychological momentum. International Journal of Industrial Organi-
zation, 31(3), 287-296.

March, C. & Sahm, M. (2017). Asymmetric discouragement in asymmetric contests.
Economics Letters, 151, 23-27.

McGregor, J. (2013). For whom the bell curve tolls. The Washington Post — On Leader-
ship [weblog]. Retrieved 2017/10/18, from http://www.washingtonpost.com/blogs/on-
leadership/wp/2013/11/20/for-whom-the-bell-curve-tolls/.

Mermer, A. G. (2017). Effort provision and optimal prize structure in contests with

loss-averse players. Working paper, April 5, 2017.

Meyer, M. A. (1992). Biased contests and moral hazard: Implications for career profiles.
Annales d’Economie et de Statistique, 25/26, 165-187.

Millner, E. L. & Pratt, M. D. (1991). Risk aversion and rent-seeking: An extension and

some experimental evidence. Public Choice, 69(1), 81-92.

Moéller, M. (2012). Incentives versus competitive balance. FEconomics Letters, 117(2),

505-508.

67



Miiller, W. & Schotter, A. (2010). Workaholics and dropouts in organizations. Journal
of the European Economic Association, 8(4), 717-743.

Murphy, R. O., Ackermann, K. A., & Handgraaf, M. J. J. (2011). Measuring social value
orientation. Judgment and Decision Making, 6(8), 771-781.

Orrison, A., Schotter, A., & Weigelt, K. (2004). Multiperson tournaments: An experi-

mental examination. Management Science, 50(2), 268-279.

Price, C. R. & Sheremeta, R. M. (2011). Endowment effects in contests. FEconomics
Letters, 111(3), 217-219.

Price, C. R. & Sheremeta, R. M. (2015). Endowment origin, demographic effects, and
individual preferences in contests. Journal of Economics & Management Strategy, 24(3),
597-619.

Ridlon, R. & Shin, J. (2013). Favoring the winner or loser in repeated contests. Marketing
Science, 32(5), 768-785.

Schmitt, P., Shupp, R., Swope, K., & Cadigan, J. (2004). Multi-period rent-seeking
contests with carryover: Theory and experimental evidence. FEconomics of Governance,

5(3), 187-211.

Sheremeta, R. M. (2010). Experimental comparison of multi-stage and one-stage contests.
Games and Economic Behavior, 68(2), 731-747.

Sheremeta, R. M. (2011). Contest design: An experimental investigation. FEconomic

Inquiry, 49(2), 573-590.

Sheremeta, R. M., Masters, W. A., & Cason, T. N. (2017). Winner-take-all and
proportional-prize contests: Theory and experimental results. Working paper, August
15, 2017.

Sheremeta, R. M. & Zhang, J. (2010). Can groups solve the problem of over-bidding in
contests? Social Choice and Welfare, 35(2), 175-197.

Shupp, R., Sheremeta, R. M., Schmidt, D., & Walker, J. (2013). Resource allocation
contests: Experimental evidence. Journal of Economic Psychology, 39, 257-267.

Stracke, R., Hochtl, W., Kerschbamer, R., & Sunde, U. (2014). Optimal prizes in dynamic
elimination contests: Theory and experimental evidence. Journal of Economic Behavior
& Organization, 102, 43-58.

68



Tong, K. & Leung, K. (2002). Tournament as a motivational strategy: Extension to

dynamic situations with uncertain duration. Journal of Economic Psychology, 23, 399—

420.

Tversky, A. & Kahneman, D. (1992). Advances in prospect theory: Cumulative represen-
tation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323.

Welch, J. (2005). The vitality curve. Leadership Ezcellence, 22(9), 4-5.

Zizzo, D. J. (2002). Racing with uncertainty: a patent race experiment. International
Journal of Industrial Organization, 20(6), 877-902.

69



	Introduction
	The Benchmark Model
	Assumptions
	Equilibrium Predictions
	Optimal Contest

	Experimental Design
	Treatments and Hypotheses
	Laboratory Experiment
	Pre-experimental Questionnaire

	Experimental Results
	Main Treatment Effects
	Second-Period Efforts: Leaders vs. Laggards 
	Performance Differences and Effort Heterogeneity
	Other Determinants of Behavior 
	Second-Period Efforts
	First-Period Efforts


	Towards an Explanation of the Observations
	A Simple Framework
	Explaining Second-Period Observations
	Remarks on First-Period Behavior
	Discussion

	Relation to the Literature
	Conclusion
	Appendix
	Figures and Tables
	Interpreting the Observations in Treatment INT
	Interpreting the Differences in Treatments ONE and TWO
	Treatment TWO
	Treatment ONE


	Details on pre-experimental questionnaire
	Details on measure for social value orientation
	Details on measure for risk aversion
	Details on measure for loss aversion
	Details on measure for competitiveness

	The pairs-cluster bootstrap-t procedure
	Instructions
	Control questions
	Computer interface

