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Constructing joint confidence bands for structural impulse response functions based on a VAR model is a difficult task because
of the non-linear nature of such functions. We propose new joint confidence bands that cover the entire true structural impulse
response function up to a chosen maximum horizon with a pre-specified probability (1−!), at least asymptotically. Such bands
are based on a certain bootstrap procedure from the multiple testing literature. We compare the finite-sample properties of our
method with those of existing methods via extensive Monte Carlo simulations. We also investigate the effect of endogenizing
the lag order in our bootstrap procedure on the finite-sample properties. Furthermore, an empirical application to a real dataset
is provided.
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1. INTRODUCTION

Impulse response analysis based on low-dimensional structural vector autoregressions (VARs) is still a popular
tool in applied work; for example, see Barsky and Sims (2011), Kurmann and Otrok (2013), and Bian and Gete
(2015). In practice, the impulse response functions have to be estimated from the data, and it is standard in the
literature to report the corresponding estimation uncertainty in the form of confidence bands.

It is by now a well-known fact that simply connecting individual marginal confidence intervals with nominal
confidence level (1 − !) does not result in confidence bands that cover the entire true impulse response function
with the pre-specified confidence level (1 − !). Instead, such a procedure results in joint confidence bands that
are too narrow and hence cover the true impulse responses with probability less than the desired level.1 Conse-
quently, the literature has proposed a number of methods to construct ‘proper’ joint confidence bands that are
designed to actually cover the entire true impulse response function with a pre-specified probability; for example,
see Staszewska (2007), Jordà (2009), and Lütkepohl et al. (2015a,b).

The finite-sample properties of the existing methods are compared in Lütkepohl et al. (2015a,b) via extensive
Monte Carlo experiments. They find that the traditional Bonferroni bands and the Wald bands of Lütkepohl et
al. (2015b) mostly exhibit empirical coverage rates close to or above the nominal level but that the bands can
be excessively wide. In contrast, the bands of the other competing methods, namely the bands of Staszewska
(2007) and Jordà (2009) as well as the size-adjusted Bonferroni and Wald bands of Lütkepohl et al. (2015a,b), are
narrower but suffer from finite-sample coverage rates below the nominal level in certain scenarios. Consequently,
there is no method so far that produces joint confidence bands for impulse response functions that enjoy both (i)
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1 This property is obvious from a theoretical point of view; in addition, for example, see Lütkepohl et al. (2015a) for Monte Carlo evidence.
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642 S. BRUDER AND M. WOLF

robust empirical coverage rates close to the nominal confidence level and (ii) moderate volumes compared to the
Bonferroni and Wald bands.

We propose new joint confidence bands for impulse response functions that are based on the methodology of
Romano and Wolf (2010), who provide a bootstrap-based method to construct rectangular joint confidence bands
for a generic parameter " ∈ ℝd. Furthermore, they prove that, under weak regularity conditions, their proposed
joint confidence bands have asymptotically the correct coverage probability and are also asymptotically balanced.
The resulting joint confidence bands are subsequently labeled as balanced bootstrap (BB) bands.

In addition, we conduct a Monte Carlo experiment to compare the finite-sample properties of the proposed
BB bands with those of a set of competing methods. We find that the BB bands are smaller than the Bonferroni
and the Wald bands. Furthermore, the BB confidence bands seem to work reliably in scenarios where the ratio of
the sample size to the number of coefficients is not small (that is, in scenarios with medium to high degrees of
freedom), even when the maximum propagation horizon is large.

The remainder of the paper is organized as follows. Section 2 reviews impulse response functions of structural
vector autoregressions. Section 3 presents the new confidence bands. Section 4 briefly describes the competing
methods to construct confidence bands. Section 5 describes the Monte Carlo experiment and presents the empirical
findings. Section 6 presents an empirical application. Section 7 concludes. The Appendix contains additional
details about the estimation of impulse response functions, an algorithm to construct the BB bands, and boxplots
describing the finite-sample properties of the various methods. The Supporting information contains detailed tables
with the simulation results and figures corresponding to the Monte Carlo simulations and the empirical application.

2. STRUCTURAL IMPULSE RESPONSE FUNCTIONS

Consider an m-dimensional reduced-form VAR(p) process of the form

yt = # + A1yt−1 + · · · + Apyt−p + ut , (1)

where yt is an m-dimensional random vector, the Ai are m×m coefficient matrices, # is an m-dimensional intercept
vector, and {ut} is an m-dimensional independent and identically distributed (i.i.d.) process with "[ut] = 0 and
positive-definite covariance matrix Σu

..= "[utu
′
t]. The process in (1) is stable and stationary if and only if

det
(
Im − A1z1 − · · · − Apzp

) ≠ 0 for all z ∈ ℂ with |z| ≤ 1 .

A stationary VAR(p) process admits a Wold vector moving average (VMA) representation of the form

yt = $ +
+∞∑
i=0

%iut−i (2)

where $ ..= "[yt] =
(
Im − A1 − · · · − Ap

)−1
, # and, the %i are fixed m × m VMA-coefficient matrices that satisfy

%0 = Im, and %s =
∑s

j=1 %s−jAj, for s ∈ ℕ+.
The structural representation of (1) is given by

B−1
0 yt = B−1

0 # + B−1
0 A1yt−1 + · · · + B−1

0 Apyt−p + B−1
0 ut , (3)

where B−1
0 ∈ ℝm×m is a non-singular linear mapping that transforms the reduced-form errors ut into the structural

shocks &t, that is, &t
..= B−1

0 ut. The key restriction on B−1
0 (or equivalently on B0) emerges from imposing that the

structural shocks be instantaneously uncorrelated and have unit variance.2 Thus, B0 needs to satisfy the following
equation:

Σu = B0B′
0 . (4)

2 This implies that the covariance matrix of the &t is equal to the m-dimensional identity matrix, that is, "[&t&′t ] = Im.
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Simple accounting reveals that there are m(m − 1)∕2 degrees of freedom in specifying B0, and hence further
restrictions are needed to achieve identification.3 The literature offers a wide variety of different identification
strategies; for example, see Lütkepohl (2005) for a brief overview.

However, we will be agnostic about the particular identification procedure, as our goal is to provide new joint
confidence bands with good finite-sample properties rather than to propose a new identification procedure. Thus,
at this point, we only assume that the structural VAR is exactly identified via an arbitrary identification procedure.

The identification of the impact matrix B0 allows one to exactly express the reduced-form VAR(p) process
{

yt

}
as a structural vector moving average (VMA) process:

yt = $ +
+∞∑
i=0

Θi&t−i , (5)

where Θh
..= %hB0. The (i, j)th structural impulse response function with a maximum propagation horizon H ∈ ℕ,

denoted by!ij,H , measures the partial effect of a one-standard-deviation shock4 in the jth variable on the ith variable
over H+1 periods and is given by the vector that collects the (i, j)-th element of the corresponding structural VMA
coefficient matrices, that is,

!ij,H
..=

⎛
⎜
⎜
⎜⎝

'yt,i

'&t,j
⋮

'yt+H,i

'&t,j

⎞
⎟
⎟
⎟⎠
=
(Θij,0

⋮
Θij,H

)
for i, j = 1,… ,m . (6)

The structural VMA coefficient matrices at propagation horizon h ∈ {0,… ,H} can be obtained as Θh =
(JAhJ′)B0, where J ..=

[
Im ∶ 0 ∶ … ∶ 0

]
∈ ℝm×mp is a selector matrix, and A denotes the reduced-form coefficient

matrix of the mp-dimensional companion form of a VAR(p) process. Thus, the structural impulse response function
!ij,H is a non-linear function of the reduced-form model coefficients (A1,… ,Ap) and the impact matrix B0, that is,

!ij,H = !ij,H
(
A1,… ,Ap,B0

)
. (7)

The reduced-form coefficient matrices (A1,… ,Ap) are usually estimated by a standard procedure such as least
squares (LS). The impact matrix B0 is in general a function of the reduced-form coefficient matrices (A1,… ,Ap,Σu)
and a set of identifying restrictions. An estimator for B0, denoted by B̂0, is found by replacing the true coefficient
matrices by the corresponding estimators (and by imposing the identifying restrictions). Thus, a plug-in estimator
of the impulse response function is obtained as

!̂ij,H
..= !ij,H

(
Â1,… , Âp, B̂0

)
. (8)

The estimator in (8) is consistent if the estimators (Â1,… , Âp, B̂0) are consistent because !ij,H (⋅) is a continuous
function.

3. NEW JOINT CONFIDENCE BANDS

3.1. Motivation and Notation

Romano and Wolf (2010) propose a method to construct joint confidence bands for a generic parameter " ∈ ℝd.
For them, this method is just a means to an end, where the end is a step-wise multiple testing procedure that controls
the family-wise error rate. But we can adapt this method to our ‘direct’ end of constructing joint confidence bands

3 Rubio-Ramirez et al. (2010) provide a necessary and sufficient condition for global (exact) identification of structural VARs; in particular,
the necessary condition of Rubio-Ramirez et al. (2010) is equivalent to the widely used (necessary) rank condition of Rothenberg (1971).
4 Given the normalization "[&t&′t ] = Im, a one-standard-deviation shock is equivalent to a unit shock.
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644 S. BRUDER AND M. WOLF

for impulse response functions. The method of Romano and Wolf (2010) is based on the availability of a consistent
estimator of the parameter of interest and a bootstrap procedure that estimates the sampling distribution of the
aforementioned estimator. Therefore, it can be used in a one-to-one manner to construct joint confidence bands
for impulse response functions of structural vector autoregressions because both a consistent estimator for !ij,H
and such a bootstrap procedure are available; for example, see Kilian (1998b).

The asymptotic properties of the generic bands hinge on a set of regularity conditions about the asymptotic
distribution of the estimator (of the parameter of interest) and the bootstrap; see Romano and Wolf (2010). A dis-
cussion of the validity of the regularity conditions in the present context, that is, the construction of joint confidence
bands for impulse response functions of structural vector autoregressions, can be found in Section 3.3.

The bands of Romano and Wolf (2010) are rectangular by construction, in contrast to methods that produce joint
confidence sets of a non-rectangular shape in first place, from which then rectangular joint confidence bands are
obtained by projection on the axes; an example of the latter approach is the Wald bands of Lütkepohl et al. (2015b).
Such projection methods usually result in conservative joint confidence bands, even asymptotically, which are
excessive in volume and thus lead to a loss of information.

Furthermore, the method of Romano and Wolf (2010) is attractive from a computational point of view, since
it involves only the computation of the estimator of the impulse response function !ij,H and an estimator (via the

bootstrap) of the sampling distribution of the statistic max
√

T|!̂ij,H −!ij,H|, where T denotes the sample size, and
both the maximum and the absolute value of a vector are understood to be element-wise operators. Both quantities
are straightforward to compute and do not contain any sort of potential numerical difficulties such as, for example,
the inversion of a large-dimensional matrix.

In contrast, the construction of the size-adjusted Wald joint confidence bands of Lütkepohl et al. (2015b) requires
on the one hand the computation and the inversion of the (potentially large-dimensional) asymptotic covariance
matrix of the vectorized estimators of (A1,… ,Ap,Σu), and on the other hand an iterative procedure to decrease the
volume of the confidence bands; see Section 4.3.

Next, the following notation is introduced:

• Let
{√

T |||Θ̂
∗
ij,h,b − Θ̂ij,h

|||
}B

b=1
denote the marginal bootstrap distribution at propagation horizon h ∈ {0,… ,H}

based on B bootstrap replications.
• Let Ĥ

∗
h(t), h ∈ {0,… ,H}, denote the following empirical distribution function:

∀t ∈ ℝ, Ĥ
∗
h(t) ..= 1

B

B∑
b=1

%{√
T|||Θ̂

∗
ij,h,b−Θ̂ij,h

||| ≤ t
} ,

and the corresponding empirical quantile function is then given by

Ĥ
∗,−1

h (q) ..= inf
{

t ∶ Ĥ∗
h (t) ≥ q

}
.

• Let L̂
∗
(t) denote the following empirical distribution function:

∀t ∈ ℝ, L̂
∗
(t) ..= 1

B

B∑
b=1

%{
max
h∈S̃ij

{
Ĥ∗

h

(√
T|||Θ̂

∗
ij,h,b−Θ̂ij,h

|||
)} ≤ t

} ,

where S̃ij ⊆ {0,… ,H} denotes the propagation horizons when
√

T |||Θ̂ij,h − Θij,h
||| exhibits a non-degenerate

distribution; see Remark 1. The corresponding empirical quantile function is then given by

L̂
∗,−1

(q) ..= inf
{

t ∶ L̂∗(t) ≥ q
}

.
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Remark 1. Identifying restrictions may pre-determine the response at one or multiple propagation horizons h̃,
that is, for some known constant ch̃ ∈ ℝ, Θ̂ij,h̃ = ch̃ and also Θ̂∗

ij,h̃,b
= ch̃ for all b. Consequently, Ĥ

∗
h̃(t) = %[0,∞)(t)

with probability one, and hence the empirical distribution of max
h∈{0,…,H}

{
Ĥ∗

h

(√
T |||Θ̂

∗
ij,h,b − Θ̂ij,h

|||
)}

is degenerate at

one (with probability one). Defining L̂
∗
(t) as the empirical distribution function of the aforementioned distribution

would result in joint confidence bands that are excessively wide because L̂
∗,−1

(1 − !) = 1 for all ! ∈ [0, 1); see

formula (9). Hence, L̂
∗
(t) is defined as the empirical distribution function of max

h∈S̃ij

{
Ĥ∗

h

(√
T |||Θ̂

∗
ij,h,b − Θ̂ij,h

|||
)}

.

3.2. Balanced Bootstrap Joint Confidence Bands

Based on equation (3.7) in Romano and Wolf (2010), we define the BB joint confidence bands for !ij,H with
nominal coverage probability (1 − !) as the Cartesian product of the following (H + 1) marginal intervals:[

Θ̂ij,h −
1√
T

Ĥ
∗,−1

h

(
L̂
∗,−1

(1 − !)
)
, Θ̂ij,h +

1√
T

Ĥ
∗,−1

h

(
L̂
∗,−1

(1 − !)
)]

for h = 0,… ,H . (9)

A detailed algorithm for the construction of the BB bands is given in Appendix C. In the following, the BB
bands for !ij,H with a nominal coverage of (1 − !) are denoted by CB(1−!)

BB,ij . It is worth providing some further
discussion about the BB joint confidence bands.

As is evident from (9), the BB bands are based on the estimated sampling distributions of the non-studentized
roots

√
T|Θ̂ij,h − Θij,h|. Often, confidence intervals based on studentized roots are preferred from a higher-order

asymptotic point of view; for example, see Hinkley and Wei (1984). However, under the assumption of stationarity
of

{
yt

}
, the standard deviations of the scaled estimator

√
TΘ̂ij,h, denoted by ,h, are decreasing in the propagation

horizon (for fixed T), that is, ,h → 0, and the same is true for the standard errors ,̂h; for example, see Lütkepohl
(1990). As a consequence, using the estimated sampling distributions of the studentized roots

√
T|Θ̂ij,h −Θij,h|∕,̂h

results in joint confidence bands that can have excessively large volume, as pointed out by Lütkepohl et al. (2015a).
The construction of the BB bands involves the pre-pivoting transformation of Beran (1987); that is, the roots

that underlie the joint confidence bands are monotonically transformed by their estimated empirical distribution
function Ĥ∗

h . Beran (1987) argues that the pre-pivoting transformation reduces the coverage bias of marginal con-
fidence intervals and also results in improved higher-order properties, similar to studentized roots. Consequently,
using the pre-pivoting transformation results in BB joint confidence bands with good coverage properties but
without excessive volume; see the Monte Carlo simulations in Section 5.

The BB bands are symmetric around the estimated impulse response function. The methodology of Romano
and Wolf (2010) also allows the construction of asymmetric, ‘equal-tailed’ joint confidence bands based on the the
estimated distribution of the one-sided roots

√
T(Θ̂ij,h − Θij,h). But simulation results (not reported here) suggest

that the symmetric bands are superior to the asymmetric bands in terms of finite-sample coverage properties.

Remark 2. In the absence of any ‘favouritism’ of certain propagation horizons, the property of balance is a
desirable one, as has previously been argued by Beran (1987,1988) and Romano and Wolf (2010) in more general
contexts: Balanced confidence bands spread out the probability of missing at least one element of the impulse
response function evenly over the individual propagation horizons (up to the maximum propagation horizon H
considered).

Another way to look at this issue is the following: If the property of balance were considered completely irrele-
vant, it would be easy to construct joint confidence bands with coverage (1− !): Construct a marginal confidence
interval for the impulse response function at propagation horizon zero with coverage (1 − !) and take the Carte-
sian product of it with the Cartesian product of H times the real line. The resulting Cartesian product then trivially
results in valid joint confidence bands with maximum propagation horizon H, for any H. Such joint confidence
bands are extremely unbalanced and are of no use in practice.

J. Time Ser. Anal. 39: 641–664 (2018) Copyright © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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646 S. BRUDER AND M. WOLF

Of course, this example is perverse, since all intervals but the first are unbounded. However, it can be considered
as a limiting case for a non-perverse example where all but the first interval have individual coverage probabilities
that are close to 1 (but less than 1) and where the first interval has individual coverage probability close to (1− !)
(but greater than 1 − !), in a way such that the coverage probability of the confidence bands is equal to (1 − !).
Clearly, such imbalanced bands are also not desirable from a practical point of view.

Last but not least, it can be expected that imposing the property of balance, at least asymptotically, will result
in joint confidence bands with small volume; though it may well be possible to find joint confidence bands with
even smaller volume if the property of balance is abandoned, a topic which is left to future research.

If certain propagation horizons are ‘favoured’ over others, then it is desirable to construct imbalanced joint
confidence bands such that the marginal coverage probabilities at the favoured propagation horizons are suitably
higher than the other propagation horizons. An explicit construction of this sort is beyond the scope of this paper.
However, the solution in such a case can certainly not employ joint confidence bands whose balance properties
are unknown and which do not adapt to any ‘favoured’ propagation horizons, either, such as the Wald-type bands
of Lütkepohl et al. (2015b). ■

Remark 3. Cao and Sun (2011) derive the asymptotic distribution of structural impulse response functions of
short panel vector autoregressions. Furthermore, Cao and Sun (2011) compare the finite-sample coverage prop-
erties of marginal confidence for individual responses based on the asymptotic distribution with the properties of
various bootstrap intervals, but joint confidence bands for the entire impulse response function are not consid-
ered in their study. We expect that our proposed method can also be applied to construct joint confidence bands
for impulse response functions of short panel vector autoregressions. However, a detailed analysis of this topic is
beyond the scope of this paper. ■

3.3. Asymptotic Properties

The regularity conditions underlying Theorem 3.1 of Romano and Wolf (2010), which states the asymptotic prop-
erties of the generic bootstrap joint confidence bands, involve the asymptotic distribution of the estimator of the
impulse response function and the asymptotic validity of the bootstrap. Thus, for the sake of completeness, both
assumptions are subsequently reviewed.

Under standard assumptions and when LS is used for the estimation of
(
A1,… ,Ap,Σu

)
, the asymptotic distri-

bution of
√

T(!̂ij,H −!ij,H) is generally derived via an application of the delta method; for example, see Lütkepohl
(1990). Thus, the asymptotic distribution of the (standardized) estimator of the impulse response function is typ-
ically normal because the (vectorized) LS estimator of

(
A1,… ,Ap,Σu

)
is asymptotically normal under weak

high-level assumptions: for example, see Lütkepohl (2005). However, Lütkepohl (1989) and Benkwitz et al. (2000)
note that the asymptotic covariance matrix, denoted byΣΘ̂, is singular in certain scenarios; hence, in such scenarios,

the limiting distribution of
√

T(!̂ij,H −!ij,H) is not normal, but degenerate normal instead.
This characteristic of the asymptotic distribution of the estimated impulse response function (that is, normal

versus degenerate normal) has an impact on the consistency of the bootstrap for the joint sampling distribution of√
T(!̂ij,H − !ij,H). More specifically, in case the asymptotic distribution is non-degenerate normal, the bootstrap

is consistent because the usual smoothness conditions underlying the bootstrap are satisfied; for example, see
Horowitz (2001). However, the bootstrap may not be consistent when the asymptotic distribution is degenerate
normal; for example, see Benkwitz et al. (2000).

It is evident that assumptions B1–B4 of Romano and Wolf (2010) are satisfied if the asymptotic distribution
of !̂ij,H is non-degenerate normal, which is the case if ΣΘ̂ is positive definite. Thus, the asymptotic properties of
CB(1−!)

BB,ij can then be deduced from Theorem 3.1 of Romano and Wolf (2010). More specifically, it holds that

lim
T→∞

ℙ
(
!ij,H ∈ CB(1−!)

BB,ij

)
= (1 − !) , (10)

wileyonlinelibrary.com/journal/jtsa Copyright © 2018 John Wiley & Sons Ltd J. Time Ser. Anal. 39: 641–664 (2018)
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BALANCED BOOTSTRAP JOINT CONFIDENCE BANDS 647

if ΣΘ̂ is positive definite. Furthermore, let CB(1−!)
BB,ij,h denote the hth marginal confidence interval for Θij,h; then it

holds that

lim
T→∞

ℙ
(
Θij,h ∈ CB(1−!)

BB,ij,h

)
= - ∈ (0, 1) ∀h ∈ {0,… ,H} , (11)

if ΣΘ̂ is positive definite. Summarizing, under the condition of a positive definite covariance matrix ΣΘ̂, the BB
joint confidence bands have asymptotically the correct coverage rate and are asymptotically balanced in the sense
that the coverage rates of the marginal intervals CB(1−!)

BB,ij,h are asymptotically independent of h ∈ {0,… ,H}.
Data generating processes that give rise to a singular asymptotic covariance matrix ΣΘ̂ are included in the Monte

Carlo experiment in Section 5 to gain some simulation-based insights about the properties of the BB bands in
scenarios with an asymptotic degenerate normal distribution.

Remark 4. The traditional Bonferroni bands and the size-adjusted Bonferroni bands of Lütkepohl et al. (2015a)
have a similar handicap: These joint confidence bands are also proven to work only if the bootstrap is consistent
for all marginal distributions

√
T(Θ̂ij,h −Θij,h), which is the case if

√
T(Θ̂ij,h −Θij,h) converges to a non-degenerate

normal distribution for all h ∈ {0,… ,H}; for more details, see Lütkepohl et al. (2015b). ■

The simultaneous test of H0,h ∶ Θij,h = 0, h ∈ {0,… ,H}, is of great interest in applied work. Such a test can
be carried out by ‘inverting’ the joint confidence bands for !ij,H . In particular, any H0,h is rejected for which zero
is not contained in the marginal confidence interval CB(1−!)

BB,ij,h. It follows from Corollary 3.1 of Romano and Wolf
(2010) that such a testing procedure asymptotically controls the probability of falsely rejecting at least one true
hypothesis H0,h, that is,

lim sup
T→∞

ℙ(reject at least one true hypothesis H0,h) ≤ ! , (12)

at least as long as ΣΘ̂ is positive definite. In other words, for all h ∈ {0,… ,H} for which zero is not contained in
the corresponding marginal confidence interval, one can be jointly confident that the true impulse response Θij,h is
non-zero; that is, the confidence holds jointly for all such h and not just individually (for a given such h).

4. COMPETING METHODS

In order to assess the finite-sample performance of our proposed method, we compare its finite-sample properties
with those of relevant competing methods in the literature. More specifically, the list of the competing bands
consists of the Naïve bands, the traditional Bonferroni bands, and the recently proposed Wald and Adjusted-Wald
bands of Lütkepohl et al. (2015b). In the following, each of the four competing methods is briefly outlined; more
details are found in the corresponding references.

4.1. Naïve Confidence Bands

The Naïve confidence bands for !ij,H , as defined in Lütkepohl et al. (2015a), are given by the collection of the
(H + 1) marginal confidence intervals with individual confidence level (1 − !), that is

CB(1−!)
Naïve,ij

..=
[
q∗,ij

0, !
2

, q∗,ij
0,(1− !

2
)

]
× · · · ×

[
q∗,ij

H, !
2

, q∗,ij
H,(1− !

2
)

]
, (13)

where q∗,ij
h, !

2

and q∗,ij
h,(1− !

2
) denote the !

2
and 1 − !

2
quantiles of the bootstrap distribution of the estimated impulse

response coefficient at horizon h ∈ {0,… ,H}.
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648 S. BRUDER AND M. WOLF

4.2. Bonferroni Joint Confidence Bands

The Bonferroni joint confidence bands for !ij,H consist of the Cartesian product of (H + 1) marginal confidence
intervals for the individual responses Θij,h, h ∈ {0,… ,H}, where the nominal confidence level of the marginal
intervals is adjusted via Bonferroni’s inequality in order to ensure that the joint coverage probability is, asymptot-
ically, at least (1 − !). (Of course, this can be guaranteed only if the underlying bootstrap method is consistent.)
More specifically, the adjusted marginal nominal confidence level is equal to (1− .), where . ..= !∕(H + 1).5 The
rectangular Bonferroni joint confidence bands for !ij,H , as defined in Lütkepohl et al. (2015a), are given by

CB(1−!)
B,ij

..=
[

q∗,ij
0, .

2

, q∗,ij
0,(1− .

2
)

]
× · · · ×

[
q∗,ij

H, .
2

, q∗,ij
H,(1− .

2
)

]
, (14)

where q∗,ij
h, .

2

and q∗,ij
h,(1− .

2
)

denote the .
2

and 1 − .
2

quantiles of the bootstrap distribution of the estimated impulse

response coefficient at horizon h ∈ {0,… ,H}.

4.3. Wald and Adjusted-Wald Joint Confidence Bands

The Wald joint confidence bands for !ij,H of Lütkepohl et al. (2015b) are constructed in two steps. First, the
bootstrap Wald test for the relevant reduced-form parameters of the underlying VAR is inverted to obtain a joint
confidence ellipse. Second, the ellipse is projected onto the axes of the impulse response space, resulting in
rectangular joint confidence bands for !ij,H .

More specifically, the Wald joint confidence ellipse for the relevant reduced-form coefficients, denoted by ",
with a nominal confidence level of (1 − !) is given by

"
(1−!) =

{
" ∶ T

(
"̂ − "

)′ (Σ̂"

)−1(
"̂ − "

) ≤ w∗
(1−!)

}
,

where "̂ denotes a consistent estimator for ", Σ̂" denotes a consistent estimator of the asymptotic variance of
"̂, and w∗

(1−!) denotes the (1 − !) quantile of the bootstrap distribution of the Wald statistic.6 The bootstrap
impulse responses are ordered according to the set of increasing bootstrap Wald statistics

{
w∗

1 ≤ · · · ≤ w∗
B

}
in

the sense that !̂
∗
ij,H,n corresponds to w∗

n. Finally, the rectangular Wald joint confidence bands for !ij,H with nomi-
nal confidence level (1 − !) are given as the envelope of the ordered set of bootstrap impulse response functions{
!̂

∗
ij,H,1,… , !̂

∗
ij,H,(1−!)×B

}
, that is,

CB(1−!)
Wald,ij

..=
[
l∗ij,0, u

∗
ij,0

]
× · · · ×

[
l∗ij,H , u

∗
ij,H

]
, (15)

where l∗ij,s
..= min

{
Θ̂∗

ij,b,n ∶ n = 1,… , (1 − !) × B
}

, and u∗
ij,s is defined as the corresponding upper bound; we

assume here tacitly that (1 − !) × B is an integer; otherwise, we take the smallest integer larger than (1 − !) × B.
Lütkepohl et al. (2015b) point out that the Wald bands are conservative by construction, and hence usually cover

more than (1 − !) × B of the bootstrap impulse response functions. Thus, a volume adjustment of the Wald bands
can be considered, and Lütkepohl et al. (2015b) propose the following iterative adjustment:7 Remove iteratively

5 In case the initial response is zero by construction, . is equal to !∕H.
6 This is the empirical distribution of w∗

b
..= T

(
"̂∗b − "̂

)′ (Σ̂∗
"

)−1(
"̂∗b − "̂

)
, b = 1,… ,B, where "̂∗b and Σ̂∗

" are estimators based on bootstrap

data
{

y∗1 ,… , y∗T
}

.
7 Lütkepohl et al. (2015b) also propose another adjustment procedure and the resulting joint confidence bands are called Bonferroni-adjusted
Wald bands, see Lütkepohl et al. (2015b).
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the last element in the set of ordered bootstrap impulse responses until the bootstrap coverage of the envelope of the
remaining functions is greater than or equal to (1 − !). The resulting rectangular Adjusted-Wald joint confidence
bands for !ij,H with a nominal confidence level (1−!) are given as the envelope of the remaining bootstrap impulse
responses, that is,

CB(1−!)
Adj-W,ij

..=
[
l̃∗ij,0, ũ

∗
ij,0

]
× · · · ×

[
l̃∗ij,H , ũ

∗
ij,H

]
, (16)

where l̃∗ij,h
..= min

{
Θ̂∗

ij,b,h ∶ b = 1,… , B̃
}

, and B̃ denotes index of the first bootstrap impulse response that is not
removed, and ũ∗

ij,H is defined as the corresponding upper bound.

5. MONTE CARLO SIMULATION

5.1. Lag Selection and Estimation of Impulse Responses

The lag order is selected using the Akaike information criterion (AIC), as Kilian (2001) provides simulation evi-
dence that confidence intervals (for individual responses) based on the AIC exhibit superior finite-sample coverage
properties compared to confidence intervals based on the Schwarz information criterion and the Hannan–Quinn
criterion. The maximum lag order pmax is determined endogenously using the rule of thumb proposed in Schwert
(1989). According to this rule, the maximum lag order is given by

pmax
..=

⌊
12(T∕100)0.25

⌋
, (17)

where ⌊⋅⌋ denotes the integer part of a real number, and T denotes the sample size. Thus, the maximum lag order
is given by 12, 14, and 16 for sample sizes of 100, 200, and 400, respectively. In the following, p̂ denotes the lag
order selected by the AIC, that is, p̂ ..= p̂AIC.

We estimate the reduced-form coefficients (#,A1,… ,Ap̂) of the VAR model by least squares; see Lütkepohl
(2005) for more details. It is well known that the LS estimator is biased in finite samples because of the presence
of lagged endogenous variables. Thus, we correct for the finite-sample bias using the closed-form bias estimator
of Pope (1990); see Appendix A for details. The corresponding bias-corrected estimators of the slope coefficients
are given by

ÂBC
i

..= ÂLS,i − B̂ias(ÂLS,i) , for i = 1,… , p̂ ,

where ÂLS,i denotes the LS estimator of Ai, and B̂ias(ÂLS,i) denotes Pope’s corresponding bias estimator. Fur-
thermore, in scenarios where the bias correction causes nonstationarity, that is, where the process corresponding
to (#, ÂLS,1,… , ÂLS,p̂) is stationary but the process corresponding to (#BC, ÂBC

1 ,… , ÂBC
p̂ ) is non-stationary, the

stationarity correction of Kilian (1998b) is applied instead; see Appendix B for details.
We assume a recursive structure of the structural VAR model, that is, the impact matrix B0 is

given by the lower triangular Cholesky decomposition of Σu. The corresponding estimator is naturally
given by

B̂0
..= chol

(
Σ̂BC

u

)
,

where Σ̂BC
u denotes the estimated residual covariance matrix based on the bias-corrected VAR coefficient

estimators. Summarizing, the estimated structural impulse response functions !̂ij,H are obtained as

!̂ij,H
..= !ij,H

(
ÂBC

1 ,… , ÂBC
p̂ , chol

(
Σ̂BC

u

))
. (18)

J. Time Ser. Anal. 39: 641–664 (2018) Copyright © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12289



650 S. BRUDER AND M. WOLF

5.2. Bootstrap Details

The bootstrap distribution of the estimator of the structural impulse response functions is generated by the
following nonparametric bootstrap procedure of Kilian (1998b):

(a) Given
{

yt

}T

t=1
, p̂,

(
#̂BC, ÂBC

1 ,… , ÂBC
p̂

)
, and the corresponding series of residuals

{
ût

}T

t=p̂+1
, generate a bootstrap

sample
{

y∗1,… , y∗T
}

via the following recursion:

y∗t
..=

{
yt , t = 1,… , p̂,
#̂BC + ÂBC

1 y∗t−1 + · · · + ÂBC
p̂ y∗t−p̂ + e∗t , t = p̂ + 1,… ,T ,

(19)

where e∗t is a random draw with replacement from the empirical distribution of the residuals that are rescaled
and centered to have mean zero.8

(b) Obtain
(

Â∗,BC
1 ,… , Â∗,BC

p̂

)
and Σ̂∗,BC

u by fitting a VAR(p̂) model to
{

y∗t
}T

t=1
.

(c) Obtain !̂
∗
ij,H = !ij,H

(
Â∗,BC

1 ,… , Â∗,BC
p̂ , chol

(
Σ̂∗,BC

u

))
.

(d) Repeat steps (a)–(c) B times resulting in the bootstrap sample
{
!̂

∗
ij,H,b

}B

b..=1
.

The previously outlined bootstrap algorithm is subsequently referred to as the exogenous bootstrap because the
lag order is not re-estimated based on the bootstrap sample

{
y∗1,… , y∗T

}
.

The Wald-type joint confidence bands of Lütkepohl et al. (2015b) can be constructed only by using the exoge-
nous bootstrap because the computation of the bootstrap Wald statistic requires that the vector of the estimator of
the slope coefficients (Â1,… , Âp̂) and the bootstrap analogues (Â∗

1,… , Â∗
p̂∗ ) have the same dimension and hence

the same lag order, that is, p̂ ..= p̂∗. Therefore, a fair comparison of the finite-sample performance of the BB bands
with the competing methods should be based on the exogenous bootstrap.

Remark 5. The exogenous bootstrap algorithm differs from the original algorithm in Kilian (1998b) in one
minor aspect. The LS parameter estimates of the reduced-form coefficients are corrected for their finite-sample
bias using the closed-form bias formula of Pope (1990) instead of a bootstrap-based bias correction as in Kilian
(1998b). This modification can be justified, on one hand, since both procedures remove only the first-order bias
and, on the other hand, since both procedure exhibit a similar finite-sample performance, as is shown in the Monte
Carlo study by Engsted and Pedersen (2014). ■

Kilian (1998a) provides simulation-based evidence that endogenizing the lag order selection in the bootstrap
procedure results in an improved coverage accuracy of marginal bootstrap intervals for impulse responses of struc-
tural vector autoregressions. In order to investigate whether a similar effect can be observed for joint confidence
bands, the BB bands, the Naïve bands, and the Bonferroni bands will be additionally constructed based on the
endogenous bootstrap procedure of Kilian (1998a).

Remark 6. Our suggested bootstrap procedure is an extension of previous proposals for univariate finite-order
ARMA models to multivariate finite-order VAR models, where the order is determined in a data-dependent fashion
as opposed to being assumed known; in particular, we follow Kilian (2001) in using the AIC to select the order.
As stated before, the maximum order considered is allowed to tend to infinity together with the sample size T;
see (17). Therefore, our bootstrap procedure can also be considered a sieve bootstrap, whose validity in more
general models, that is, in models more general than a finite-order VAR model, is studied in Meyer and Kreiss
(2015).

8 The centering and rescaling is carried out as suggested in Stine (1987).
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There are recent bootstrap procedures, such as the hybrid bootstrap of Jentsch and Kreiss (2010) and the linear
process bootstrap of Jentsch and Politis (2015), which can be applied in the present context to generate the bootstrap
data

{
y∗1,… , y∗T

}
. However, an in-depth analysis of the effect of employing different bootstrap procedures on the

finite-sample performances of confidence bands for structural impulse response functions is beyond the scope of
this paper. ■

5.3. Data Generating Processes

5.3.1. Bivariate VAR(1) Models
We first consider the bivariate data generating processes from Kilian (1998b), which were previously considered
in Lütkepohl et al. (2015a,b) in the context of joint confidence bands for structural impulse response functions,
that is

DGP-1 yt =
( - 0.0

0.5 0.5
)

yt−1 + ut , (20)

with - ∈ {0.95, 0.9, 0.5, 0,− 0.5,− 0.9,− 0.95}. The specific variants of DGP-1 will be denoted by DGP-1i, i ∈
{a,… , g}, depending on the specific value of -. The characteristic roots of the processes are presented in Table I.

Table I. Characteristic roots of the
various variants of DGP-1

DGP Roots

1a (2.000, 1.053)
1b (2.000, 1.111)
1c (2.000, 2.000)
1d (2.000)
1e (2.000,−2.000)
1f (2.000,−1.111)
1g (2.000,−1.053)

Some properties of DGP-1 are worth mentioning: First, all processes are stationary but some are persistent
(DGP-1a, DGP-1g). Second, independent of -, the true response of the first variable to a shock in the second
variable is zero at all propagation horizons, that is, !12,H = 0 ∈ ℝH+1, and hence the asymptotic distribution of the
estimator is degenerate normal as noted in Benkwitz et al. (2000). Third, for - = 0 (DGP-1d), the true response
of the first variable to a shock in the first variable is also zero at all propagation horizons, that is, !11,H = 0, and
hence the estimator is also asymptotically degenerate normal.

Furthermore, we use ut
i.i.d.∼  (0,Σ1

u), where the population covariance matrix is given by

Σ1
u =

(1.00 0.30
0.30 1.00

)
.

In the Monte Carlo simulation, data samples of length T ∈ {100, 400} are generated for each variant of DGP-1
and the maximum propagation horizon is H ∈ {10, 20}; Lütkepohl et al. (2015a,b) use the same choices of T
and H.

5.3.2. Trivariate VAR(4) Model
DGP-2 is a trivariate VAR(4) model previously considered in Staszewska-Bystrova (2011). More specifically, the
population parameters of DGP-2 are the estimates of a model of the inflation rate, the unemployment rate, and the
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federal fund rate using U.S. quarterly data from 1960-Q1 through 2004-Q1; for more details about the dataset, see
Stock and Watson (2001) or Staszewska-Bystrova (2011). The DGP is given by

DGP-2 yt = # + A1yt−1 + A2yt−2 + A3yt−3 + A4yt−4 + ut , (21)

where

A1
..=

(
0.549 −0.965 0.164
0.029 1.480 0.003
0.084 −1.567 0.962

)
, A2

..=
(

0.118 1.506 −0.128
−0.013 −0.494 0.043

0.197 1.763 −0.364

)
,

A3
..=

(
0.060 −0.954 0.054
0.002 −0.029 −0.024

−0.070 −0.848 0.333

)
, A4

..=
(

0.261 0.250 −0.098
−0.012 −0.014 0.008
−0.046 0.563 −0.010

)
,

and # ..= (1.076, 0.125, 0.347)′. Furthermore, we use ut
i.i.d.∼  (0,Σ2

u), where the population covariance matrix of
DGP-2 is the covariance estimate based on the same data as the intercept and the slope coefficients and is given by

Σ2
u

..=
(

0.962 −0.018 0.116
−0.018 0.049 −0.087

0.116 −0.087 0.693

)
.

In the Monte Carlo study, data samples of length T ∈ {100, 400} are generated, and the maximum propagation
horizon is H ∈ {4, 8, 12, 16, 20, 24, 28}. The choices of H reflect the fact that DGP-2 is an empirical DGP based
on quarterly data and, hence, the considered values of the maximum propagation horizon H correspond to impulse
responses over one up to seven years.

5.4. Simulation Parameters and Performance Evaluation

The nominal confidence level of the various joint confidence bands is 90%. The number of bootstrap replications
is B = 2000 throughout, and the number of Monte Carlo replications is also 2000. The finite-sample performance
of the various bands is evaluated via the empirical volume and the empirical coverage rate. More specifically, the
empirical coverage rate is calculated in the usual way, that is,

EC ..= 1
2000

2000∑
m=1

%{!ij,H∈CBm,ij} ,

where CBm,ij denotes particular joint confidence bands for !ij,H , and %{A} denotes the indicator function of an event
A. The empirical volume of particular joint confidence bands for !ij,H is computed as the average of the sum of
the lengths of the corresponding marginal intervals, that is,

V ..= 1
2000

2000∑
m=1

H∑
h=0

(
um,h − lm,h

)
,

where um,h denotes the upper bound of the hth marginal interval of the bands in the mth Monte Carlo repetition,
and lm,h denotes the corresponding lower bound.
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5.5. Results

5.5.1. DGP-1: Bivariate VAR(1) Models
The tables with the simulation results are relegated to the Supporting information for the sake of clarity. Box-
plots summarizing the performance of the various methods across different scenarios are given in Appendices D
and E. The focus is on the finite-sample performance of the BB bands because the performance of the competing
methods have already been investigated individually for this specific DGP in Lütkepohl et al. (2015a,b). The main
conclusions are as follows:

• For T = 100 and H = 10, the BB bands exhibit coverages rates close to or slightly below the nominal level of
90% except in scenarios where the asymptotic distribution of the estimator of the impulse response function
is degenerate normal (that is, joint confidence bands for Θ1,1 of DGP-1d and Θ1,2 of all processes) and the
scenario where joint confidence bands are constructed for Θ1,1 of DGP-1g. The bands of the former scenarios
exhibit coverage rates above the nominal level, whereas the bands for the latter scenario exhibit substantial
undercoverage. Furthermore, the BB bands are robust with respect to the propagation horizon. Overall, the
coverage bias of the BB bands is substantially reduced for the large sample size of T = 400; see Figures D1
and D2.

• In general, the coverage bias of the BB bands is comparable to that of the Adjusted-Wald bands but smaller
than the coverage bias of the Naïve bands, the Bonferroni bands, and the Wald bands.

• In all scenarios, the BB bands are smaller than the Bonferroni bands, where the excess volume (vis-à-vis the
volume of the BB bands) of the Bonferroni bands ranges from 0.7% to 55%. Overall, the excess volume tends to
increase with the sample size T and the maximum propagation horizon H. However, there does not seem to be
a clear pattern between the stationary characteristics of the processes and the excess volume of the Bonferroni
bands.

• In 108 out of the 112 scenarios, the BB bands exhibit a smaller volume than the conservative Wald bands.
In these scenarios, the volume of the Wald bands is substantially larger, and the excess volume (vis-à-vis the
volume of the BB bands) ranges from 24.5% to 82.9%. Furthermore, the excess volume decreases with the
maximum propagation horizon H and the sample size T in almost all scenarios.

• In 98 out of the 112 scenarios, the volume of the Adjusted-Wald bands is smaller than the volume of the BB
bands. However, the difference is usually small. As expected, the BB bands are larger than the Naïve bands,
which completely ignore the inherent simultaneity in the construction of the bands.

5.5.2. DGP-2: Trivariate VAR(4) Model
The complexity of DGP-2 is substantially larger than that of the bivariate VAR(1) models of DGP-1. The true
impulse response functions of DGP-2 depend on 42 population reduced-from coefficients (compared to 7 popula-
tion coefficients in DGP-1). Thus, the results for T = 100 give some indication about the performance of the joint
confidence bands in scenarios where the ratio of the sample size to the number of coefficients is small (that is, low
degrees of freedom).9 The tables with the simulation results are relegated to the Supporting information. Boxplots
summarizing the performance of the various methods across different scenarios are given in Appendices F and G.
The main conclusions are as follows:

• For T = 100, there are systematic differences in the coverage rates of the BB bands, that is, the bands for
Θ1,1,Θ1,3,Θ3,3 perform worse than the bands for the other impulse responses; see Figure N.1 in the Support-
ing information. More specifically, the bands for Θ1,1,Θ1,3,Θ3,3 exhibit substantial undercoverage, whereas
the bands for the remaining impulse responses exhibit only mild under- and overcoverage, even for large H.
Overall, the coverage distortion as well as the variation in coverage rates is substantially reduced for a sample
size of T = 200, except the coverage rates of the bands for Θ1,1, which are still much below 90%. For T = 400,

9 For T = 100, there are 300 individual data points to estimate the 42 coefficients.
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the coverage rates of the BB bands are consistently close to the nominal coverage of 90%, even for large H;
see Figure N.2 in the Supporting information.

• In principle, the BB bands are smaller than the two conservative bands (Bonferroni and Wald) and larger than
the Naïve bands. Interestingly, the BB bands are even smaller than the Adjusted-Wald bands in 172 out of
189 scenarios. In general, the volume of the BB bands is strictly decreasing in the sample size, but strictly
increasing in the propagation horizon.

• For T = 100, there are systematic differences in the coverage rates of the Bonferroni bands. The Bonferroni
bands for Θ1,1,Θ1,3,Θ3,3 exhibit massive to substantial undercoverage in some scenarios, whereas the bands for
the other impulse responses exhibit only mild under- and overcoverage. For a larger sample size of T = 200,
the coverage rates are close to or above the nominal level of 90% except the coverage rates of the bands for
Θ1,1, which are still much below 90%. For T = 400, all coverage rates are above the nominal level.

• The coverage rates of the Wald bands are markedly above the nominal level of 90% in 173 out of 189 scenarios.
Overall, the positive coverage bias is enhanced with the sample size; see Figures N.1 and N.2 in the Supporting
information. In all scenarios, the Wald bands exhibit the largest volume and are substantially larger than the
Bonferroni bands.

• For T = 100, the Adjusted-Wald bands exhibit coverage rates that are substantially distorted and systematically
differ among the different impulse response functions; see Figure N.1 in the Supporting information. Never-
theless, the coverage distortions and the systematic variation in coverage rates are mitigated as the sample size
increases; see Figure N.2 in the Supporting information.

• The Naïve bands massively under-represent the joint estimation uncertainty in all scenarios. The empirical
coverage rate falls below 40% in some scenarios with T = 100. Thus, these results provide additional evidence
that the Naïve bands should not be used in practice, at least not when joint confidence bands are desired.

5.5.3. Empirical Balance
From a theoretical point of view, the BB bands, the Naïve bands, and the Bonferroni bands are asymptotically
balanced, that is, the marginal coverage probability is (asymptotically) independent of the propagation horizon
h ∈ {0,… ,H}. The Wald-type bands of Lütkepohl et al. (2015b) have not been theoretically investigated in terms
of asymptotic balance.

Table II presents the mean absolute deviations (MAD) from the mean of the marginal empirical coverage rates
for DGP-2, H = 20, and T ∈ {100, 400}. For the small sample size (T = 100), the (unadjusted) Wald bands exhibit
the smallest deviations from balance, followed closely by the Bonferroni bands. The third place is shared by the
BB bands and the Adjusted-Wald bands, and the last place goes to the Naïve bands. Increasing the sample size
to T = 400 reduces the MAD of all methods in all scenarios. The first two places are again awarded to the Wald
and the Bonferroni bands respectively. However, the BB bands exhibit smaller MAD in six out of nine scenarios
when compared to the Adjusted-Wald bands and in seven out of nine scenarios when compared to the Naïve bands
respectively, resulting in the third place. The last place is shared by the Adjusted-Wald and the Naïve bands.

5.5.4. Exogenous vs. Endogenous Bootstrap
The tables with the simulation results for the Naïve bands, the Bonferroni bands, and the BB bands based on the
endogenous bootstrap are given in the Supporting information. The main conclusions are as follows:

• The simulation results for the bivariate VAR(1) models show that endogenizing the lag uncertainty in general
results in an upward shift of the coverage rates of the BB bands for both T = 100 and T = 400; see Figure N.3 in
the Supporting information. The effect on the coverage rates of endogenizing the lag uncertainty is ambiguous,
as there are scenarios where the coverage bias is reduced (for example, bands for Θ1,1 of DGP-1g), but also
scenarios where the opposite is true (for example, bands for Θ1,1 of DGP-1e). However, the BB bands based
on the endogenous bootstrap are larger than those based on the exogenous bootstrap.

• The results for the trivariate VAR(4) model show that the coverage rates of the BB bands based on the endoge-
nous bootstrap are surprisingly inferior to those of the BB bands based on exogenous bootstrap for T = 100;
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Table II. MAD of the empirical marginal coverage rates (from their mean) of nominal 90% confidence bands with H = 20,
normal errors, and AIC lag selection

DGP2 Method Θ1,1 Θ1,2 Θ1,3 Θ2,1 Θ2,2 Θ2,3 Θ3,1 Θ3,2 Θ3,3

T = 100 Naïve 7.97 1.63 5.61 2.46 1.44 0.51 3.41 3.44 2.91
BB 1.95 0.95 4.35 0.73 1.02 0.47 1.39 2.20 0.64
Bonferroni 2.26 0.44 3.73 0.47 0.57 0.31 0.47 1.32 0.75
Wald 1.32 0.35 2.58 0.28 0.43 0.30 0.35 0.72 0.53
Adj-Wald 3.15 0.70 5.35 1.64 0.61 0.74 1.77 1.27 1.35

T = 400 Naïve 0.37 0.38 0.54 0.70 0.58 0.65 0.95 0.69 0.72
BB 0.51 0.43 0.32 0.13 0.27 0.22 0.66 0.52 0.27
Bonferroni 0.20 0.20 0.13 0.19 0.29 0.15 0.41 0.14 0.30
Wald 0.11 0.08 0.07 0.16 0.15 0.08 0.22 0.13 0.12
Adj-Wald 0.82 0.36 1.04 0.21 0.25 0.42 1.28 0.32 0.80

see Figure N.4 in the Supporting information. For T = 200, 400, there are scenarios where the BB bands
based on the endogenous bootstrap are superior, but in the majority of the scenarios, the bands based on the
exogenous bootstrap are superior. For T = 100, endogenizing the lag uncertainty results in bands that are
smaller than those based on the exogenous bootstrap. The same is true for the majority of the scenarios with
T = 200, 400, although the differences are decreasing in the sample size.

• The results for the the bivariate VAR(1) models show that the coverage rates of the Bonferroni bands based on
the endogenous bootstrap are larger than those of the Bonferroni bands based on the exogenous bootstrap in the
majority of the scenarios, although the differences tend to decrease with the sample size. Hence, endogenizing
the lag uncertainty increases the coverage bias of the Bonferroni bands, as the Bonferroni bands based on the
exogenous bands exhibit coverage rates above the nominal level.

• The simulation results for the trivariate VAR(4) model show that the effect of endogenizing the lag uncertainty
on the Bonferroni bands is ambiguous (for all sample sizes); there are scenarios where the bands based on
the endogenous bootstrap are superior, but there are also scenarios where the opposite is true. The Bonferroni
bands based on the endogenous bootstrap are smaller than the Bonferroni bands based on the exogenous
bootstrap in almost all scenarios.

5.6. Summary of Simulation Evidence

We have conducted a Monte Carlo simulation to compare the finite-sample properties of the BB bands with a
number of competing methods. We have included several bivariate VAR(1) models and an empirical trivariate
VAR(4) model in the set of data generating processes.

The simulation results of the bivariate VAR(1) models show that the BB bands and the Adjusted-Wald bands
exhibit both a smaller coverage bias and a smaller volume than the Bonferroni and the Wald bands. Both methods
are robust with respect to the maximum propagation horizon and also produce reasonable joint confidence bands
when the true impulse response is zero and hence the asymptotic distribution of the estimator is degenerate.

The simulation results of the trivariate VAR(4) model show that the coverage rates of the BB bands, the Bon-
ferroni bands, and the Adjusted-Wald bands are potentially downward biased in scenarios with low degrees of
freedom. In such scenarios, the Wald bands may be preferred to avoid the use of bands that underestimate the
estimation uncertainty, but the price to pay is the large volume of the Wald bands, especially for large maximum
propagation horizons. For T = 400, the BB bands exhibit the smallest coverage bias and at the same time the
smallest volume among all joint confidence bands (except for the Naïve bands).

Overall, both the Adjusted-Wald bands and the BB bands work reliably in small models. However, the simulation
results of the trivariate VAR(4) model show that the BB bands generally outperform the Adjusted-Wald bands in
more complex models.
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Endogenizing the lag uncertainty reduces the coverage bias of the BB bands only in particular scenarios. How-
ever, in the majority of the scenarios, the BB bands based on the exogenous bootstrap are superior in that regard.
The effect on the volume is ambiguous and depends on the data generating process; the same holds for the
Bonferroni bands. Based on these findings, we do not promote the endogenous bootstrap.

Furthermore, the results of the trivariate VAR(4) model confirm two of the main empirical findings in Lütkepohl
et al. (2015b). First, the Wald bands tend to exhibit a larger volume than the Bonferroni bands. Second, the volume
adjustment of the Wald bands can result in coverage rates markedly below the nominal level in scenarios with low
degrees of freedom.

6. EMPIRICAL APPLICATION

We illustrate the BB joint confidence bands and the competing methods using the structural VAR model of Kilian
(2009). The three-dimensional VAR model of Kilian includes the following three variables:

• Δprodt: the percentage change in global crude oil production
• realt: a business cycle index of global real activity (expressed in logs)
• rpot: the real price of oil (expressed in logs)

The monthly dataset from 1973–01 through 2007–12 was downloaded from the homepage of the American Eco-
nomic Review.10 We estimate the parameters of the reduced-form VAR(3) model (as suggested by the AIC) by
the same methodology as in the Monte Carlo simulation. Following Kilian (2009), we use a recursive identifica-
tion Scheme, where B0 is the lower triangular Cholesky decomposition of the reduced-form residual covariance
matrix, and the maximum propagation horizon is H = 18. The 90% joint confidence bands are constructed based
on the bootstrap procedure of Kilian (1998b) with B = 2000 replications.

Table III. Volume of joint confidence bands for H = 18

BB Bon Wald A-Wald Naïve

Θ11 31.77 35.69 42.63 34.50 20.25
Θ21 23.06 27.77 33.72 24.09 16.24
Θ31 21.25 25.27 32.03 21.82 14.48
Θ12 41.73 54.35 62.56 44.54 31.99
Θ22 59.99 73.66 94.45 64.41 44.67
Θ32 45.72 62.34 75.75 44.79 34.25
Θ13 65.61 88.09 107.61 65.31 51.12
Θ23 89.19 114.63 128.32 95.58 67.83
Θ33 85.05 115.42 133.36 87.68 64.98

Table III presents the volumes of the 90% joint confidence bands of all impulse responses with a maximum
propagation horizon of H = 18. The Wald and the Bonferroni bands exhibit the largest volumes in all scenarios.
The BB bands have the smallest volume (of the proper joint confidence bands) in seven out of nine scenarios.
These findings are completely in line with the simulation-based findings about the volumes of the various joint
confidence bands.

Figure 1 displays the estimated structural response of Δprodt to a one-standard-deviation shock in &t,2 over a
maximum propagation horizon of H = 18 (that is, !̂12,18) and the corresponding nominal 90% joint confidence
bands.11 The figure illustrates the different shapes and volumes of the joint confidence bands. Inference based on
the BB bands results in rejecting the null hypothesis of a zero response for propagation horizons h = 4–18 (as the
marginal intervals do not cover zero). Inverting the other confidence bands results in different conclusions about
the simultaneous test of the H + 1 hypotheses. More specifically, inference based on the Bonferroni bands results

10 https://www.aeaweb.org/articles?id=10.1257/aer.99.3.1053
11 The figures of the remaining eight impulse responses are relegated to the Supporting information for the sake of clarity.
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in rejecting the null hypothesis of a zero response for only two propagation horizons (h = 3, 4), inference based the
Wald bands results in accepting the null hypothesis of a zero response at all propagation horizons h ∈ {0,… , 18},
and inference based on the Adjusted-Wald bands results in rejecting the null hypothesis of a zero response for
propagation horizons h = 3–18.

7. CONCLUSION

Impulse response analysis based on low-dimensional structural vector autoregressions is still a popular tool in
applied work. It is standard in applications to equip the estimated impulse response function with confidence bands
that indicate the underlying estimation uncertainty. The literature has proposed several methods to construct joint
confidence bands designed to cover the entire true impulse response function with a pre-specified probability.
The existing methods suffer from deficiencies: they can exhibit empirical coverage rates substantially below the
desired nominal level in certain scenarios, or they can be excessively large in terms of the aggregate volume.

We have proposed new joint confidence bands for impulse response functions of structural vector autoregres-
sions based on multiple testing methodology of Romano and Wolf (2010). Under weak regularity conditions, these
BB bands have asymptotically the desired coverage probability and are also asymptotically balanced.

We have compared the finite-sample properties of the BB bands with those of existing bands by means of a
Monte Carlo simulation. The BB bands (i) have smaller volume than the two conservative bands—the traditional
Bonferroni bands and the Wald bands of Lütkepohl et al. (2015b)—and (ii) have similar volume compared to the
Adjusted-Wald bands of Lütkepohl et al. (2015b). In terms of coverage probability, the performance of the BB
bands is overall the best.

Nevertheless, the BB bands—just like the Adjusted-Wald bands —can suffer from undercoverage for small sam-
ple sizes. It stands to reason that this problem can be fixed, or at least mitigated, by a double-bootstrap approach.
However, studying the finite-sample properties of such an approach via Monte Carlo simulations does not seem
feasible given the currently available computing power.
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APPENDIX A. BIAS CORRECTION

Let A denote the matrix of the true slope coefficients of the VAR(1) representation of a general VAR(p) process.
Under some regularity conditions, Pope (1990) derives the following approximation for the finite-sample bias of
the least squares (LS) estimator of A:

Bias(Â) = − b
T
+ (T− 3

2 ) ,

where

b ..= ΣU

[
(
Ikp − A′)−1 + A′

(
Ikp −

(
A′)2

)−1
+

k∑
i=1

0i

(
Ikp − 0iA

′)−1

]
Σ−1

Y .

Here, Ikp denotes the kp×kp identity matrix, 0i denotes the ith eigenvalue of A, ΣY denotes the covariance matrix of

Yt
..=

(
y′t , y

′
t−1,… , y′t−p+1

)′
, and ΣU denotes the covariance matrix of Ut

..=
(
ut, 0,… , 0

)′
. Neglecting higher-order

terms and replacing true parameters by their LS estimators yields the following estimator for the finite-sample
bias of Â:

B̂ias(Â) ..= − 1
T
Σ̂U

[
(
Ikp − Â′)−1 + Â′

(
Ikp −

(
Â′)2

)−1
+

k∑
i=1

0̂i

(
Ikp − 0̂iÂ

′)−1

]
Σ̂−1

Y .

Thus, the bias-corrected LS estimator is given by

ÂBC ..= Â − B̂ias(Â) .

APPENDIX B. STATIONARITY CORRECTION

In order to prevent that stationary parameter estimates may be pushed outside the stationary region by the bias
correction, Kilian (1998b) proposes the following adjustment procedure:

(a) Calculate the modulus of the largest root of the (uncorrected) LS estimate Â and denote this quantity by r(Â).
If r(Â) ≥ 1, set ̂̂A ..= Â. If r(Â) < 1, construct the bias-corrected estimator ÂBC ..= Â − B̂ias(Â).

(b) If r(ÂBC) ≥ 1, obtain Ãi
..= Â − 1iB̂ias(Â) with 11 = 1 and 1i = 1i−1 − 0.01.

(c) Repeat step (b) until r(Ãi) < 1.

(d) Set ̂̂A ..= Ãi.

APPENDIX C. CONSTRUCTION OF BB BANDS

The following algorithm provides a step-by-step instruction for the construction of the BB bands with nominal
confidence level (1 − !) for an arbitrary identification procedure.

(i) Fit a VAR(p̂) model to the the observed time series
{

y1,… , yT

}
, where p̂ denotes the estimated lag order.

(ii) Compute the impact matrix B̂0 according to the chosen approach of identification.
(iii) Estimate the structural impulse response function of interest with maximum propagation horizon H, that is,

!̂ij,H
..= !ij,H

(
Â1,… , Âp̂, B̂0

)
,

where the Â1,… , Âp̂ are the estimated reduced-form coefficients.

(iv) Generate a bootstrap sample
{√

T |||!̂
∗
ij,H,b − !̂ij,H

|||
}B

b=1
. The number B of bootstrap replications should be at

least 2000, if feasible.
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(v) Compute the following (H + 1) empirical distribution functions:

Ĥ∗
h (t) ..= 1

B

B∑
b=1

%{√
T|||Θ̂

∗
ij,h,b−Θ̂ij,h

||| ≤ t
} for h = 0,… ,H .

Statistical software packages usually provide a built-in function for computing the empirical distribution
function; for example, the function ecdf in the software package R.

(vi) Compute the following bootstrap sample
{

max
h∈S̃

{
Ĥ∗

h

(√
T |||Θ̂

∗
ij,h,b − Θ̂ij,h

|||
)}}B

b=1

and the corresponding (1−

!) quantile. Statistical software packages usually provide a built-in function for computing empirical quantiles;
for example, the function quantile in the software package R.

(vii) Construct the BB confidence bands for !ij,H with nominal confidence level (1 − !) by computing (H + 1)
marginal intervals [

Θ̂ij,h ±
1√
T

Ĥ∗,−1
h

(
L̂∗,−1(1 − !)

)]
for h = 0,… ,H ,

where Ĥ∗,−1
h (q) ..= inf

{
t ∶ Ĥ∗

h (t) ≥ q
}

, and L̂∗,−1(1 − !) denotes the (1 − !) quantile from step 6.

Remark 7. The methodology of Romano and Wolf (2010) allows one to construct joint confidence bands that
do not cover all but ‘only’ at least H − k + 2, k ≥ 2, of the elements of !ij,H with nominal confidence level 1 − !.
Step 6 in the previous algorithm has to be modified to construct such bands. More specifically, one has to compute
the empirical (1 − !) quantile of

{
k- max

h∈S̃

{
Ĥh

(√
T |||Θ̂

∗
ij,h,b − Θ̂ij,h

|||
)}}B

b=1

,

where k-max is the function that returns the kth largest element of a vector.

APPENDIX D. DGP-1: EMPIRICAL COVERAGES

Figure D1. DGP-1: Boxplots of the empirical cover-
ages across all variants of DGP-1, all impulse responses
and all maximum propagation horizons (56 parameter
constellations in total) of nominal 90% joint confidence
bands for T = 100 [Color figure can be viewed at

wileyonlinelibrary.com]
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Figure D2. DGP-1: Boxplots of the empiri-
cal coverages across all variants of DGP-1, all
impulse responses and all maximum propaga-
tion horizons (56 parameter constellations in
total) of nominal 90% joint confidence bands
for T = 400 [Color figure can be viewed at

wileyonlinelibrary.com]

APPENDIX E. DGP-1: VOLUMES
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Figure E1. DGP-1: Boxplots of the volumes
across all variants of DGP-1, all impulse
responses and all maximum propagation hori-
zons (56 parameter constellations in total)
of nominal 90% joint confidence bands for
T = 100 [Color figure can be viewed at

wileyonlinelibrary.com]

J. Time Ser. Anal. 39: 641–664 (2018) Copyright © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12289



662 S. BRUDER AND M. WOLF

Figure E2. DGP-1: Boxplots of the volumes
across all variants of DGP-1, all impulse
responses and all maximum propagation hori-
zons (56 parameter constellations in total)
of nominal 90% joint confidence bands for
T = 400 [Color figure can be viewed at

wileyonlinelibrary.com]
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APPENDIX F. DGP-2: EMPIRICAL COVERAGES

Figure F1. DGP-2: Boxplots of the empir-
ical coverages across all impulse responses
and all maximum propagation horizons
(63 parameter constellations in total) of
nominal 90% joint confidence bands for
T = 100 [Color figure can be viewed at

wileyonlinelibrary.com]
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Figure F2. DGP-2: Boxplots of the empir-
ical coverages across all impulse responses
and all maximum propagation horizons
(63 parameter constellations in total) of
nominal 90% joint confidence bands for
T = 400 [Color figure can be viewed at

wileyonlinelibrary.com]

APPENDIX G. DGP-2: VOLUMES

●

●

● ●

●

●

●

●

Naive BB Bonferroni Wald Adjusted−Wald

0
10

20
30

40
50

60

Vo
lu

m
e

Figure G1. DGP-2: Boxplots of the volumes
across all impulse responses and all max-
imum propagation horizons (63 parameter
constellations in total) of nominal 90% joint
confidence bands for T = 100 [Color figure

can be viewed at wileyonlinelibrary.com]
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Figure G2. DGP-2: Boxplots of the volumes across all
impulse responses and all maximum propagation hori-
zons (63 parameter constellations in total) of nominal
90% joint confidence bands for T = 400 [Color figure

can be viewed at wileyonlinelibrary.com] Naive BB Bonferroni Wald Adjusted−Wald
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