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Abstract
Multiple testing refers to any instance that
involves the simultaneous testing of more
than one hypothesis. If decisions about the
individual hypotheses are based on the
unadjusted marginal p-values, then there is
typically a large probability that some of the
true null hypotheses will be rejected. Unfortu-
nately, such a course of action is still common.
In this article, we describe the problem of mul-
tiple testing more formally and discuss
methods which account for the multiplicity
issue. In particular, recent developments
based on resampling result in an improved
ability to reject false hypotheses compared to
classical methods such as Bonferroni.
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Multiple testing refers to any instance that
involves the simultaneous testing of several
hypotheses. This scenario is quite common in
much empirical research in economics. Some
examples include: (i) one fits a multiple regression
model and wishes to decide which coefficients are
different from zero; (ii) one compares several
forecasting strategies to a benchmark and wishes
to decide which strategies are outperforming the
benchmark; (iii) one evaluates a program with
respect to multiple outcomes and wishes to decide
for which outcomes the program yields significant
effects.

If one does not take the multiplicity of tests into
account, then the probability that some of the true
null hypotheses are rejected by chance alone may
be unduly large. Take the case of S= 100 hypoth-
eses being tested at the same time, all of them
being true, with the size and level of each test
exactly equal to a. For a = 0.05, one expects
five true hypotheses to be rejected. Further, if all
tests are mutually independent, then the probabil-
ity that at least one true null hypothesis will be
rejected is given by 1–0.95100 = 0.994.

Of course, there is no problem if one focuses
on a particular hypothesis, and only one of them, a
priori. The decision can still be based on the
corresponding marginal p-value. The problem
only arises if one searches the list of p-values for
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significant results a posteriori. Unfortunately, the
latter case is much more common.

Notation

Suppose data X is generated from some unknown
probability distribution P. In anticipation of
asymptotic results, we may write X = X(n),
where n typically refers to the sample size.
A model assumes that P belongs to a certain
family of probability distributions, though we
make no rigid requirements for this family; it
may be a parametric, semiparametric, or nonpara-
metric model.

Consider the problem of simultaneously test-
ing a hypothesisHs against the alternative hypoth-
esis Hs

00 for s = 1, . . ., S. A multiple testing
procedure (MTP) is a rule which makes some
decision about each Hs. The term false discovery
refers to the rejection of a true null hypothesis.
Also, let I(P) denote the set of true null hypothe-
ses, that is, s � I(P) if and only if (iff) Hs is true.

We also assume that a test of the individual
hypothesis Hs is based on a test statistic Tn,s, with
large values indicating evidence against Hs.
A marginal p-value for testing Hs is denoted by
bpn,s.

Familywise Error Rate

Accounting for the multiplicity of individual tests
can be achieved by controlling an appropriate
error rate. The traditional or classical familywise
error rate (FWE) is the probability of one or more
false discoveries:

FWEP

¼ reject at least one hypothesisHs : s� I Pð Þf g:

Control of the FWE means that, for a given sig-
nificance level a,

FWEP $ A for any P: (1)

Control of the FWE allows one to be 1 % a
confident that there are no false discoveries
among the rejected hypotheses.

Note that ‘control’ of the FWE is equated with
‘finite-sample’ control: (1) is required to hold for
any given sample size n. However, such a require-
ment can often only be achieved under strict para-
metric assumptions or for special permutation
setups. Instead, we then settle for asymptotic con-
trol of the FWE:

limsup
n!1

FWEP $ A for any P: (2)

Methods Based on Marginal p-values

MTPs falling in this category are derived from the
marginal or individual p-values. They do not
attempt to incorporate any information about the
dependence structure between these p-values.
There are two advantages to such methods. First,
we might only have access to the list of p-values
from a past study, but not to the underlying com-
plete data set. Second, such methods can be very
quickly implemented. On the other hand, as
discussed later, such methods are generally
sub-optimal in terms of power.

To show that such methods control the desired
error rate, we need a condition on the p-values
corresponding to the true null hypotheses:

Hs true , s� I Pð Þ ! P bpn, s $ u
! "

$ u for any u� 0, 1ð Þ: (3)

Condition (3) merely asserts that, when testing Hs

alone, the test that rejects Hs when bpn,s $ u has
level u, that is, bpn,s is a proper p-value.

The classical method to control the FWE is the
Bonferroni method, which rejects Hs iff bpn,s $ A/S:
More generally, the weighted Bonferroni method
rejectsHs if bpn,s$ ws & A/S; where the constants ws,
satisfying ws' 0 andSsws= 1, reflect the ‘impor-
tance’ of the individual hypotheses.

An improvement is obtained by the method of
Holm (1979). The marginal pvalues are ordered
from smallest to largest: bpn,(1)$ bpn,(2)$ . . .$ bpn,(S)
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with their corresponding null hypotheses labeled
accordingly: H(1), H(2), . . ., H(s). Then, H(s) is
rejected iff bpn,(j) $ A/(S % j + 1) for j = 1, . . ., s.
In other words, the method starts with testing the
most significant hypothesis by comparing its
p-value to a/S, just as the Bonferroni method. If
the hypothesis is rejected, the method moves on to
the second most significant hypothesis by com-
paring its p-value to a/(S %1), and so on, until the
procedure comes to a stop. Necessarily, all
hypotheses rejected by Bonferroni will also be
rejected by Holm, but potentially a few more
will be too. So, trivially, the method is more
powerful. But it still controls the FWE under (3).

If it is known that the p-values are suitably
positive dependent, then further improvements
can be obtained with the use of Simes identity;
see Sarkar (1998).

So far, we have assumed ‘finite-sample valid-
ity’ of the null p-values expressed by (3). How-
ever, often p-values are derived by asymptotic
approximations or resampling methods, only
guaranteeing ‘asymptotic validity’ instead:

Hs true , s� I Pð Þ ! limsup
n!1

P bpn, s $ u
! "

$ u for any u� 0, 1ð Þ: (4)

Under this more realistic condition, the MTPs
presented in this section only provide asymptotic
control of the FWE in the sense of (2).

Single-step Versus Stepwise Methods

In single-step MTPs, individual test statistics are
compared to their critical values simultaneously,
and after this simultaneous ‘joint’ comparison, the
multiple testing method stops. Often there is only
one common critical value, but this need not be
the case. More generally, the critical value for the
sth test statistic may depend on s. An example is
the weighted Bonferroni method discussed above.

Often single-step methods can be improved in
terms of power via stepwise methods, while still
maintaining control of the desired error rate.
Stepdownmethods start with a single-step method

but then continue by possibly rejecting further
hypotheses in subsequent steps. This is achieved
by decreasing the critical values for the remaining
hypotheses depending on the hypotheses already
rejected in previous steps. As soon as no further
hypotheses are rejected, the method stops. The
Holm (1979) method discussed above is a
stepdown method.

Stepdown methods therefore improve upon
single-step methods by possibly rejecting ‘less
significant’ hypotheses in subsequent steps. In
contrast, there also exist stepup methods that
start with the least significant hypotheses, having
the smallest test statistics, and then ‘step up’ to
further examine the remaining hypotheses having
larger test statistics.

More general methods that control the FWE
can be obtained by the closure method; see
Hochberg and Tamhane (1987).

Resampling Methods Accounting
for Dependence

Methods based on p-values often achieve
(asymptotic) control of the FWE by assuming
(i) a worst-case dependence structure or (ii) a
‘convenient’ dependence structure (such as
mutual independence). This has two potential dis-
advantages. In case of (i), the method can be quite
sub-optimal in terms of power if the true depen-
dence structure is quite far away from the worst-
case scenario. In case of (ii), if the convenient
dependence structure does not hold, even asymp-
totic control may not result. As an example for
case (i), consider the Bonferroni method. If the
p-values were perfectly dependent, then the
cut-off value could be changed from a/S to a.
While perfect dependence is rare, this example
serves to make a point. In the realistic scenario
of ‘strong cross-dependence’, the cut-off value
could be changed to something a lot larger than
a/S while still maintaining control of the FW-
E. Hence, it is desirable to account for the under-
lying dependence structure.

Of course, this dependence structure is
unknown and must be (implicitly) estimated
from the available data. Consistent estimation, in
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general, requires that the sample size grow to
infinity. Therefore, in this subsection, we will
settle for asymptotic control of the FWE. In addi-
tion, we will specialize to making simultaneous
inference on the elements of a parameter vector
y = (y1, . . ., yS)T. Assume the individual hypoth-
eses are one-sided of the form:

Hs : Ys $ 0 vs: H00
s : Ys > 0: (5)

Modifications for two-sided hypotheses are
straightforward.

The test statistics are of the form

Tn, s ¼ bYn, s=bSn, s . Here, bYn, s is an estimator of
ys computed from X(n). Further, bSn, s is either a
standard error for bSn, s or simply equal to 1=

ffiffiffi
n

p
in

case such a standard error is not available or only
very difficult to obtain.

We start by discussing a single-step method.
An idealized method would reject allHs for which
Tn,s' d1 where d1 is the 1% a quantile under P of
the random variablemaxs bYn, s %Ys

$ %
=bSn, s Nat-

urally, the quantile d1 does not only depend on the
marginal distributions of the centered statistics
bYn, s %Ys

$ %
=bSn, s but, crucially, also on their

dependence structure.
Since P is unknown, the idealized critical value

d1 is not available. But it can be estimated consis-
tently under weak regularity conditions as fol-
lows. Take bd1 as the 1 % a quantile under bPn of

maxs bY
(
n, s % bYn, s

$ %
=bS

(
n, s . Here, bP n is an

unrestricted estimate of P. Further bY
(
n, s and

bS
(
n, s are the estimator of ys and its standard

error (or simply 1=
ffiffiffi
n

p
), respectively, computed

from X(n),* where X (n),* ) bPn. In other words, we
use the bootstrap to estimate d1. The particular
choice of bPn depends on the situation. In particu-
lar, if the data are collected over time a suitable
time series bootstrap needs to be employed; see
Davison and Hinkley (1997) and Lahiri (2003).

We have thus described a single-step MT-
P. However, a stepdown improvement is possible.
In any given step j, we simply discard the hypoth-
eses that have been rejected so far and apply the
single-step MTP to the remaining universe of
non-rejected hypotheses. The resulting critical

value bd j necessarily satisfies bd j $ bd j%1 so that
new rejections may result; otherwise the method
stops.

This bootstrap stepdown MTP provides
asymptotic control of the FWE under remarkably
weak regularity conditions. Mainly, it is assumed
that

ffiffiffi
n

p bY%Y
$ %

converges in distribution to a
(multivariate) continuous limit distribution and
that the bootstrap consistently estimates this
limit distribution. In addition, if standard errors
are employed for bSn, s, as opposed to simply using
1=

ffiffiffi
n

p
, it is assumed that they converge to the same

non-zero limiting values in probability, both in the
‘real world’ and in the ‘bootstrap world’. Under
even weaker regularity conditions, a subsampling
approach could be used instead; see Romano and
Wolf (2005). Furthermore, when a randomization
setup applies, randomization methods can be used
as an alternative; see Romano and Wolf (2005)
again.

Related methods are developed in White
(2000) and Hansen (2005). However, both works
are restricted to single-step methods. In addition,
White (2000) does not consider studentized test
statistics. Stepwise bootstrap methods to control
the FWE are already proposed in Westfall and
Young (1993). An important difference in their
approach is that they bootstrap under the joint
null, that is, they use a restricted estimate of
P where the contraints of all null hypotheses
jointly hold. This approach requires the so-called
subset pivotality condition and is generally less
valid than the approaches discussed so far based
on an unrestricted estimate of P; for instance, see
Example 4.1 of Romano and Wolf (2005).

Generalized Error Rates

So far, attention has been restricted to the
FWE. Of course, this criterion is very strict; not
even a single true hypothesis is allowed to be
rejected. When S is very large, the corresponding
multiple testing procedure (MTP) might result in
low power, where we loosely define ‘power’ as
the ability to reject false null hypotheses.
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Let F denote the number of false rejections and
let R denote the total number of rejections. The
false discovery proportion (FDP) is defined as
FDP = (F/R) & 1{R > 0}, where 1{&} denotes the
indicator function. Instead of the FWE, we may
consider the probability of the FDP exceeding a
small, pre-specified proportion: P{FDP > g}, for
some g � [0,1). The special choice of
g = 0 simplifies to the traditional FWE. Another
alternative to the FWE is the false discovery rate
(FDR), defined to be the expected value of the
FDP: FDRP = EP (FDP).

By allowing for a small (expected) fraction of
false discoveries, one can generally gain a lot of
power compared with FWE control, especially
when S is large. For the discussion of MTPs to
provide (asymptotic) control of the FDP and the
FDR, the reader is referred to Romano
et al. (2008a, b) and the references therein.
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