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1 Introduction

The use of contests to procure innovations has a long history, and it is becoming ever more popular.

Recently, private buyers have awarded the Netflix Prize, the Ansari X Prize, and the InnoCentive

prizes. Public agencies have organized, for instance, the DARPA Grand Challenges, the Lunar

Lander Challenge and the EU Vaccine Prize.2 Reflecting the increasing importance of these prizes,

a literature on contest design has developed. This literature focuses almost exclusively on how in-

centives for costly innovation e↵ort can best be provided. However, e↵ort is not the only important

requirement for a successful innovation. A case in point is the 2012 EU Vaccine Prize to improve

what is known as the cold-chain vaccine technology. The ultimate goal of the prize was to pre-

vent vaccines from spoiling at higher temperatures, which is particularly challenging in developing

countries. The rules of the competition contain the following statement:

“It is important to note that approaches to be taken by the participants in the

competition are not prescribed and may include alternate formulations, novel packaging

and/or transportation techniques, or significant improvements over existing technologies,

amongst others.”3

This statement explicitly recognizes the fundamental uncertainty of the innovation process: Even

when the buyer communicates a well-specified objective (such as finding a way to prevent vaccine

spoilage), neither she nor the suppliers will necessarily know the best approach to achieving this goal.

This uncertainty about the quality of innovation resulting from a particular approach will only be

resolved by the act of innovation itself. The innovator will therefore have to choose between several

conceivable approaches without being sure whether they lead to the goal. If innovators pursue

di↵erent approaches, chances are higher that the best of these approaches yields a particularly

valuable (high-quality) innovation. Thus, variety of research approaches has an option value. We

therefore ask whether innovation contests can be used to incentivize suppliers to diversify their

research approaches so as to generate a high expected value of the innovation.

2See “Innovation: And the winner is. . . ”, The Economist. Aug 5, 2010.

3European Commission (2012), “Prize Competition Rules.” August 28, 2012. http://ec.europa.eu/research/

health/pdf/prize-competition-rules_en.pdf (accessed on April 3, 2015).
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In addition to the expected value of the innovation, contest design may also a↵ect distribution.

A contest that induces diversity may yield a high expected value of the innovation and thereby

foster e�ciency, but at the same time leave high rents to the suppliers. Thus, the main question of

our paper will be: Which contests are optimal for the buyers, when the expected value (reflecting

the induced variety of approaches) as well as the expected payments to the suppliers are taken

into account? In addition, we address the relation between the buyer’s choice and e�ciency, asking

under which circumstances the optimal contest implements the socially optimal amount of diversity.

The diversity of potential approaches, which is highlighted in the guidelines of the Vaccine

Prize cited above, played an important role in many other examples of innovation procurement.

First, the often cited Longitude Prize of 1714 for a method to determine a ship’s longitude at sea

featured two competing approaches.4 The lunar method was an attempt to use the position of the

moon to calculate the position of the ship. The alternative, ultimately successful, approach relied

on a clock which accurately kept Greenwich time at sea, thus allowing estimation of longitude by

comparison with the local time (measured by the position of the sun). Second, when the Yom

Kippur War in 1973 revealed the vulnerability of US aircraft to Soviet-made radar-guided missiles,

General Dynamics sought to resolve the issue through electronic countermeasures, while McDonnell

Douglas, Northrop, and eventually Lockheed, attempted to build planes with small radar cross-

section.5 Third, the announcement of the 2015 Horizon Prize for better use of antibiotics contains

a similar statement as the announcement of the vaccine prize.6

Architectural contests are similar to innovation contests. A buyer who thinks about procuring a

new building usually does not know what the ideal building would look like, but once she examines

the submitted plans, she can choose the one she prefers. Guidelines for architectural competitions

explicitly recognize the need for diversity. For example, the Royal Institute of British Architects

states: “Competitions enable a wide variety of approaches to be explored simultaneously with a

4See, e.g., Che and Gale (2003) for a discussion of the Longitude Prize.

5See Crickmore (2003).

6“The rules of the contest specify the targets that need to be met but do not prescribe the methodology or any

technical details of the test, thereby giving applicants total freedom to come up with the most promising and e↵ective

solution, be it from an established scientist in the field or from an innovative newcomer.” European Commission

(2015), “Better use of antibiotics.” March 24, 2015. http://ec.europa.eu/research/horizonprize/index.cfm?

prize=better-use-antibiotics (accessed on April 3, 2015).
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number of designers.”7

Motivated by these examples, we thus focus on the design of innovation contests, with a view

towards the induced variety of research approaches. We consider a setting where both the buyer

(the contest designer) and the suppliers (contestants) are aware that there are multiple conceivable

approaches to innovation. Furthermore, none of the participants knows the best approach before-

hand. However, after the suppliers have followed a particular approach, it is often possible to assess

the quality of innovations, for instance, by looking at prototypes or detailed descriptions of research

projects. In such settings, can buyers design contests in such a way that suppliers have incentives

to provide variety? And will they benefit from doing so?

The existing literature on innovation contests mainly focuses on incentives for costly innovation

e↵ort. To our knowledge, we are the first to analyze the optimal design of innovation contests

with multiple conceivable research approaches. Our baseline model is chosen to isolate this design

problem in a stark way. We assume that there are two homogeneous suppliers who decide whether

to exert costly research e↵ort and which research approach to choose. In the baseline, the buyer

has strong instruments to induce e↵ort: We assume that, once a supplier joins the contest, he

cannot shirk. This enables the buyer to use subsidies to ensure that the suppliers exert e↵ort. This

assumption allows us to focus on the e↵ects of contest design on the choice of approaches rather

than on e↵ort choice.

We model the research approach as a point on the unit interval. The quality of an innovation

depends inversely on the distance between the chosen research approach and an ideal approach that

is unknown to all parties. The suppliers and the buyer agree about the distribution of this ideal

approach, which has a strictly positive, symmetric and single-peaked density. If di↵erent suppliers

try di↵erent approaches, this creates an option value for the buyer who can choose the preferred

innovation once uncertainty is resolved. We assume all approaches are equally costly.

In line with the literature on innovation contests, we assume that neither research inputs (ap-

proaches) nor research outputs (qualities) are verifiable, because they are both di�cult to evaluate

and the relation between them is stochastic. The lack of verifiability of research activity precludes

any kind of contract that conditions on research inputs or outputs, and it motivates the focus on

7See Royal Institute of British Architects (2013), “Design competitions guidance for clients.” http://

competitions.architecture.com/requestform.aspx (accessed on Apr 3, 2015).
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contests.8 The notion of contest design that we use was suggested by Che and Gale (2003). The

buyer prescribes a possible set of prices and commits herself to paying the price chosen by the

supplier from which the innovation is procured. The class of such contests includes fixed-prize tour-

naments (when the price set is a singleton) as well as scoring auctions (when the price set consists

of all non-negative real numbers). Contest design in this setting is the choice of the allowable price

set and the subsidies.

The sequence of moves in our model is as follows: After the buyer has communicated the rules of

the game (and, in particular, the price set), the suppliers choose whether to enter and, if so, which

approach to pursue. Then qualities become common knowledge. After having observed qualities,

suppliers choose bids from the price set. Finally, the buyer selects the preferred supplier.

Our main result is that the optimal contest for the buyer is what we call a bonus tournament. In

a bonus tournament, the price set is non-convex, consisting of only two elements — a low price and a

high (“bonus”) price. After qualities have been realized, the suppliers thus can only choose whether

to ask for the high price or the low price. The selected supplier will be paid his bid. Anticipating

this, the suppliers diversify in the hope that their quality advantage over the competitor will be

su�ciently high that they can bid the bonus price and win even so. It will turn out that the

amount of diversity implemented in a bonus tournament is determined by the di↵erence between

the bonus price and the low price. We show that, with a bonus tournament, the buyer can implement

essentially any level of diversity. In particular, a bonus tournament with suitably chosen prices (and

possibly a subsidy) implements the socially optimal diversity. However, full rent extraction is not

always possible, and the buyer must trade o↵ e�ciency against rent extraction. Bonus tournaments

are nevertheless optimal for the buyer: They induce any desired level of diversity while minimizing

rent extraction. The non-convexity of the price set turns out to be crucial for minimizing rent

extraction while maintaining incentives for diversity.

Next, we examine the relation between the optimal contest for the buyer and the socially optimal

level of diversity. The bonus tournament just described does not necessarily implement the social

optimum, as the buyer may resolve the trade-o↵ between e�ciency and rent extraction in favor

of the latter. However, the optimal bonus tournament leads to the socially optimal diversity when

8For an extensive discussion see Che and Gale (2003) and Taylor (1995).
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research costs are relatively high.9 In this case, the buyer uses the tournament to maximize total

expected surplus, and gives a subsidy that is just large enough that the suppliers expect to break

even.

We also investigate some other contests that have received attention in the literature, in partic-

ular, scoring auctions and fixed-prize tournaments. The social optimum can be implemented with

a scoring auction, but in this case the suppliers generally receive higher rents than in a bonus tour-

nament. Fixed-prize tournaments induce no diversity at all. Nevertheless, for low research costs,

the buyer prefers the ine�cient fixed-prize tournaments to the socially e�cient scoring auctions.

We then briefly discuss the robustness of the results to alternative environments. First, we take

the possibility into account that agents can shirk by exerting zero e↵ort and producing zero quality.

Second, we allow for heterogeneous costs of di↵erent research approaches. Third, we consider more

general distributions of the ideal approach and more general relationships between quality and

the distance to the ideal approach. We also study contests with more than two suppliers and

with multiple prizes. We provide conditions under which bonus tournaments still have favorable

properties. Moreover, we show that the buyer may benefit from inviting a large number of suppliers,

which is a straightforward implication of the option value provided by additional suppliers. We also

discuss the option of contracting with a single supplier and the case when suppliers only observe

own quality realizations.

Section 2 introduces the model. In Section 3, we derive the optimal mechanism. Section 4

discusses some commonly used mechanisms and compares them with the optimum. Section 5 briefly

summarizes some extensions, which are treated in more detail in the online appendix. Section 6

treats related literature. Finally, Section 7 concludes.

2 The Model

Our baseline model derives the optimal contest for a risk-neutral buyer B who needs an innova-

tion that two risk-neutral suppliers (i 2 {1, 2}) can provide. The buyer first designs an innovation

contest, the details of which will be discussed below. Facing the contest rules, the suppliers simulta-

neously decide whether to join the contest. If both suppliers decide to participate, they choose their

9Theorem 1 describes the conditions formally.
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approaches vi 2 [0, 1] simultaneously in the next stage. We apply the convention that v1  v2 if the

ordering of approaches matters. The cost of approach vi is C (vi) ⌘ C � 0. Thus all approaches are

equally costly, so that, once a supplier has decided to participate in the contest, he cannot influence

the research cost anymore. This assumption allows us to study the e↵ects of contest design on the

choice of research approaches in isolation and to develop a clear intuition for the results. If neither

supplier joins the contest, all players receive their outside option, which is normalized to zero. If

only one supplier decides to participate, this results in payo↵s of zero for the supplier who does not

participate and in non-negative (and otherwise unspecified) payo↵s for the buyer and the remaining

supplier.10

The quality qi of the resulting innovation depends stochastically on the research approach.

Specifically, we assume there is a state � 2 [0, 1], which is distributed according to F (�) with density

f (�), and corresponds to an (ex-post) ideal approach. We maintain the following assumption on

how qi depends on vi and �.

Assumption (A1) qi = q (vi,�) ⌘  � b |vi � �| with b 2 (0, � 2C].

Thus, the quality di↵erence between the ideal approach �̂ and vi is proportional to their distance

on the unit interval. Note that (A1) implies that C < ( � b)/2. This is su�cient to guarantee that

any contest generates a non-negative surplus.

We restrict the distribution of the ideal state as follows.

Assumption (A2) The density function f (�) is (i) symmetric: f (1/2� ") = f (1/2 + ") 8" 2

[0, 1/2], (ii) single-peaked: f(�)  f(�0) 8� < �
0
< 1/2, (iii) has full support: f (�) > 0 8� 2 [0, 1]

and (iv) satisfies f
0(x) < 2f(0) for all x 2 [0, 1/2].

For each distribution satisfying (A2), the median approach has the highest expected quality ex

ante. Furthermore, single-peakedness makes it di�cult to induce diversity: As there is less mass

on approaches that are further away from the median, contestants who face incentives to produce

high expected quality will therefore not want to diversify away from the median without additional

10At the end of Online Appendix B.4, we specify the payo↵s from single-supplier contracts in more detail and we

analyze the related question whether the buyer wants to interact with one supplier rather than organizing a contest.
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incentives. Part (iv) excludes the possibility that some states are much less probable than others; in

this sense, it requires that the amount of uncertainty about the ideal approach is su�ciently high.

(A1) and (A2) provide an intuitive and simple way of capturing both the correlation of qualities

(two approaches which are closer on the unit interval result in more similar qualities) and their

expected quality (the closer an approach is to the median, the higher its expected quality). These

assumptions reflect the idea that contestants a↵ect not only the distribution of their own qualities (as

in contests with e↵ort choice), but also the level of correlation with the quality of their competitor.

In this setting, the buyer chooses an innovation contest determining the procedure for selecting

and remunerating suppliers. These contests are closely related to those analyzed by Che and

Gale (2003), where suppliers choose e↵orts rather than approaches. In line with these authors,

we assume that neither vi nor qi is contractible. Contest design consists of choosing a set P of

allowable prices (bids) and subsidies t � 0. In order to guarantee equilibrium existence in the

bidding subgame, we restrict P to the set of arbitrary finite unions of closed subintervals of R+.

Formally, P 2 I(R+) where I(R+) ⌘ {S ✓ R+ : S = [k̄
k=1[ak, bk] or S = [k̄

k=1[ak, bk] [
⇥
ak+1,1

�

for ak  bk 2 R+
, k̄ 2 N}. We refer to {P, t} as a contest. After the buyer has chosen {P, t}, the

following procedure is applied:

Period 1: Suppliers simultaneously choose whether to join the contest.

Period 2: They simultaneously select approaches vi 2 [0, 1].

Period 3: The state is realized. All players observe qualities q1 and q2.

Period 4: Suppliers simultaneously choose prices pi 2 P.

Period 5: The buyer observes prices; then she selects a supplier i 2 {1, 2}. She pays

pi + t to the selected supplier and t to the other supplier.

Suppose that a supplier i participates in some contest {P, t} and chooses some approach vi

while his competitor chooses an approach vj . Denote the total expected payo↵ of supplier i as

⇧P
i (vi, vj) + t and the quality that the buyer receives as Q(v1, v2,�), assuming equilibrium play in
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subgames induced by each possible (v1, v2,�).11 Then, the buyer’s problem is:

max
P2I(R+), t�0,

v1,v22[0,1]

E� [Q(v1, v2,�)]�⇧P
1 (v1, v2)�⇧P

2 (v2, v1)� 2t

subject to ⇧P
i (vi, vj) � ⇧P

i

�
v
0
i, vj

�
, 8v0i 2 [0, 1](IC)

⇧P
i (vi, vj) + t � C.(PC)

Of course, the buyer does not directly choose v1 and v2. Rather, these are the approaches that

the suppliers choose in equilibrium of a contest designed by the buyer. The set of contests {P, t}

over which the buyer optimizes not only includes familiar contests like fixed-prize tournaments and

scoring auctions, but also contests with non-convex prize sets, which will turn out to be optimal in

this setting.12 For instance, we have:

1. P = R+: an auction without a price ceiling.

2. P = [0, Z]: an auction with a price ceiling Z > 0.

3. P = {A}, where A � 0: a fixed-prize tournament (FPT).

4. P = {A, a}, where A > a � 0: a bonus tournament.

In the first two examples, the buyer allows the suppliers to select bids as in a standard auction

after the realization of qualities, without (with) a price ceiling in Example 1 (2). However, the

(commonly used) auction terminology is slightly misleading. The rules do not commit the buyer

to selecting the supplier as a function of the observed qualities and bids. Instead, the buyer has

the discretion to choose the supplier for whom the di↵erence between the monetary value of quality

and the bid is maximized. She thus behaves as if she had committed to a scoring rule which weighs

prices and qualities in the same way (and the suppliers anticipate this behavior).

In the FPT (Example 3), the buyer does not allow the suppliers to choose a price. The suppliers

choose approaches and thereby influence qualities. Once qualities have been realized, the buyer

simply selects the higher quality supplier, as she has to pay the prize A no matter which supplier

she chooses.

11For precise notation, see Appendix A.1.1.

12Further reasons for using this set of mechanisms are given in Che and Gale (2003, p. 648 and 650).
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The bonus tournament (Example 4) di↵ers from an FPT in that the buyer proposes two prices,

a low price a and a high “bonus” price A at the outset of the game. After the choices of approaches

and the realization of quality levels, both suppliers decide whether to ask for a high or a low price.

As in Examples 1 and 2, the buyer then chooses the supplier for whom the di↵erence between the

quality and the bid is maximized. This implies that, when confronted with a combination of a high

bid and a low bid, she will only be prepared to pay the high bid if the quality di↵erence is at least

as large as A� a.

Note that the suppliers potentially receive two types of payments, namely the revenue from the

contest (that is paid only to the successful supplier) and the subsidies paid to both suppliers. For

ease of exposition, we sharpen the requirement that qualities are observable by assuming that all

players observe vi and �, as this allows us to apply subgame perfect equilibrium. It will be obvious

that, as long as qualities are observable, the observability of vi and � plays no role; as these variables

are payo↵-relevant only inasmuch as they a↵ect qualities.13

We apply the following tie-breaking rules.

(T1) (Preference for quality) If suppliers o↵er the same surplus (q1 � p1 = q2 � p2), the buyer

chooses the higher quality one. If both o↵er the same surplus (q1 � p1 = q2 � p2) and quality

(q1 = q2), the buyer chooses each supplier with probability 1/2.

(T2) (Preference for winning) If two strategies of the supplier, (vi, pi(·)) and (v0i, p
0
i(·)), yield the

same expected payo↵, the supplier prefers the strategy that maximizes the probability of

winning the contest.

(T1) and (T2) can be interpreted as second-order lexicographic preference for winning and for

higher quality.14 Finally, we confine our analysis to the case of pure-strategy equilibria.

13It is straightforward to extend the analysis to a Bayesian setting where supplier i does not observe vj (j 6= i) and

�, but only qj . The subgame perfect equilibria can then be replaced with weakly perfect Bayesian equilibria where

the suppliers have degenerate (and correct) beliefs about rival strategies.

14(T1) ensures the existence of equilibria in contests which are similar to Bertrand games with heterogeneous costs

(Che and Gale 2003 also impose a tie-breaking rule for similar reasons). (T2) is only necessary in cases where winning

results in a prize of 0. Hence, we could dispense with (T2) if we instead assumed that the minimum price the buyer

pays out is positive, or alternatively, if winning the contest results in a positive reputational benefit for the winner.
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3 The Optimal Contest for the Buyer

In this section, we characterize the optimal two-supplier contest for the buyer.15 We start with

some auxiliary results. These results characterize the social optimum, and they deal with the

pricing subgames.

3.1 Auxiliary Results

We introduce the following terminology which applies when both suppliers participate. For (v1, v2) 2

[0, 1]2, the (expected) total surplus is ST (v1, v2) ⌘ E� [max {q (v1,�) , q (v2,�)}] � 2C. The social

optimum is (v⇤1, v
⇤
2) ⌘ argmax(v1,v2)2[0,1]2 ST (v1, v2).

For (v1, v2), implemented as an equilibrium of a contest (P, t), the (expected) surplus of supplier

i in an equilibrium, S(P,t)
i (v1, v2), is the sum of the expected revenue and the subsidies, net of

research costs. The (expected) buyer surplus, S(P,t)
B (v1, v2), is expected quality minus the expected

revenues and subsidies of the suppliers. We drop the superscript (P, t) when there is no danger of

confusion.16

As the costs of each approach are the same, the social optimum (v⇤1, v
⇤
2) maximizes the expected

maximal quality E� [max {q (v1,�) , q (v2,�)}]. It is always socially optimal to have at least some

diversification. Intuitively, starting from a situation with two identical approaches, changing one of

them reduces the minimal distance for some states �, without increasing it for any other state.

The following result provides a sharper characterization of the social optimum:17

Lemma 1 The unique social optimum with v
⇤
1  v

⇤
2 satisfies F (v⇤1) = 1/4 and F (v⇤2) = 3/4 and

thus v
⇤
2 = 1� v

⇤
1.

15An attentive reader might conjecture that the buyer could implement arbitrary outcomes with a mechanism where

he just pays unconditional transfers t = C and sets a singleton prize set P = {0}. The suppliers are then indi↵erent

between entering and not entering, and, in monetary terms, between all approaches. However, our “preference for

winning” assumption (T2) would ensure that such a mechanism would have a unique equilibrium with v1 = v2 = 1/2.

Even if we dispensed with assumption (T2), the equilibrium structure of such a mechanism would not be robust

to small changes in the cost of di↵erent approaches or to assuming that duplicating an approach is less costly than

developing an original one.

16For precise definitions of S(P,t)
B (v1, v2) and S(P,t)

i (v1, v2), we refer the reader to Appendix A.1.1.

17The result is similar to the familiar finding that, in a Hotelling model with uniformly distributed consumers and

without price competition, firms should optimally spread equally.
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Hence v⇤1 and v
⇤
2 are symmetric around 1/2. The socially optimal approaches are fully determined

by the distribution F , whereas the level of research costs has no influence on the optimal diversity.

We now characterize the equilibria of the pricing subgames, using the following notation.

Notation 1 p (qi, qj) ⌘ max {p 2 P s.t. p  |qi � qj |+ P}, where P is the minimum of P.

Thus, for any realization of qualities qi and qj , if qi > qj then qi � p (qi, qj) � qj � P . Since

qj � P is the highest surplus that supplier j can o↵er to the buyer, p (qi, qj) is the maximal price

from the set P which guarantees that the supplier with higher quality wins the contest for any price

chosen by the supplier with the lower quality. As the next lemma shows, the winning supplier will

always set the price at p (qi, qj). This result relies on the familiar “asymmetric Bertrand” logic that

ine�cient firms choose minimal prices, whereas an e�cient firm’s quality advantage translates into

a price di↵erential.18

Lemma 2 The subgame of an innovation contest corresponding to (qi, qj) has an equilibrium such

that pi (qi, qj) = p (qi, qj) if qi � qj and pi (qi, qj) = P if qi < qj. In any equilibrium of any contest,

pi (qi, qj) = p (qi, qj) if qi � qj.

Lemma 2 sharpens the Bertrand logic to account for bounded and/or non-convex price sets:

The price di↵erential will only be identical with the quality di↵erential when the corresponding bid

of the high-quality supplier is in P. While Lemma 2 uniquely determines the bid of the winning

supplier, the equilibrium bid of the losing supplier is not always unique. This is due to the possibly

bounded and/or non-convex price sets. Nevertheless, in any subgame equilibrium the losing price

will be low enough that the winner cannot profitably deviate upwards. Furthermore, in many cases

the loser will uniquely bid P .19 We need further notation:

18The adequacy of pure-strategy equilibria in asymmetric Bertrand games has received some attention, in particular,

but not only, because they tend to involve weakly dominated strategies (see Blume 2003 and Kartik 2011). In our

setting, these issues are resolved by the appeal to the “preference for quality” (T1) and “preference for winning” (T2).

In some of our contests (in particular, in auctions with and without price ceilings), the pure-strategy winning prices

can also be obtained using constructions as in Blume (2003) and Kartik (2011), where the low-quality firm mixes over

a small interval of prices.

19If P is convex and supP > p (qi(vi,�), qj(vj ,�)) for all �, then pi (qi, qj) = P for qi < qj in every equilibrium.

To see this, note that, according to Lemma 2, pj = p (qj , qi) = P + qj � qi in any equilibrium for the high-quality

supplier j. If pi > P , then j can choose a slightly higher prize, and he still wins. Hence, this is a profitable deviation.
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Notation 2 �q(vi, vj) ⌘ max�2[0,1] |q(vi,�)� q (vj ,�)| = q(vi, vi)� q (vj , vi) is the maximum qual-

ity di↵erence over � 2 [0, 1] given (vi, vj).

To understand why �q(vi, vj) = q(vi, vi)� q (vj , vi), note that, for � 2 [0, v1][ [v2, 1] the quality

di↵erence between the two approaches is equal to q(vi, vi) � q (vj , vi), and for � 2 (v1, v2) it is

smaller.20 By Lemma 2, in any subgame the successful supplier chooses the highest available price

not exceeding the sum of the quality di↵erential and the minimum bid. We now sharpen this result

for subgames following equilibrium choices (v1, v2).

Lemma 3 Let v1  v2. (i) Any contest (P, t) which implements (v1, v2) satisfies �q (v1, v2) + P 2

P. (ii) If � 2 [0, v1] [ [v2, 1], the successful supplier bids pi (qi, qj) = �q (vi, vj) + P .

Lemma 3 implies that the amount of diversity (optimal or non-optimal) that any contest can

implement is limited by the highest price that the contest allows. (i) reflects the intuition that,

if �q (v1, v2) + P /2 P, suppliers could increase their chances of winning by small moves towards

the approach of the other party, without reducing the price in those cases where they win. (ii)

shows that in all states outside the interval (v1, v2) the buyer pays a constant price, reflecting the

(maximal) quality di↵erence between the two suppliers. Therefore, to implement any (v1, v2), a

buyer has to pay at least �q (v1, v2) (F (v1) + 1� F (v2)) in expectation to the suppliers.

3.2 Characterizing the Optimum

We now turn to our main results. Before identifying the optimal contest for the buyer, we first show

that bonus tournaments can implement a wide range of allocations.

Proposition 1 Any (v1, v2) such that 0 < v1  1/2  v2 < 1 can be implemented by a bonus

tournament with P = {A, 0}, where A = �q(v1, v2) and t � max{C�AF (v1), C�A(1�F (v2)), 0}.

In particular, the social optimum can be implemented.

Thus, the buyer can implement any desired diversity in a bonus tournament. Whereas in a

standard contest, e↵ort incentives are provided by the spread between winner and loser prizes,

incentives for diversity in our model come from the spread between the high winner prize and the

low winner prize.

20The constancy of the quality di↵erential reflects the linearity of quality in distance (A1).

12



The equilibrium pricing strategies turn out to be p1(), p2() such that pi (qi, qj) = A if qi�qj � A

and 0 otherwise. Implementation is not unique, as a bonus tournament will generally admit many

equilibria. In particular, if v⇤i < v
⇤
j are equilibrium choices in a bonus tournament, then so are any

vi, vj such that |vi � vj | = |v⇤i � v
⇤
j | and vi  1/2  vj .

The supplier only asks for the bonus A when his quality advantage is maximal (� 2 [0, v1]

for supplier 1 and � 2 [v2, 1] for supplier 2); otherwise he accepts the low price. Therefore, the

buyer pays the lowest price compatible with Lemma 3 for � 2 [0, v1] [ [v2, 1]. Clearly, the price

0 is also minimal on (v1, v2). Thus, non-convexity of the price set P is a crucial characteristic of

optimal contests. If the price set P included any additional price between 0 and A, this would only

increase the payments to the suppliers, without increasing diversity. The bonus tournament is thus

a flexible instrument with which the buyer can fine-tune diversity with low supplier revenues. This

suggests that the optimal contest is in this class. However, this intuition is incomplete, as it does

not account for subsidies. We now show that it is nevertheless always optimal for the buyer to use

bonus tournaments. However, she will not always implement the social optimum.

Theorem 1 (i) The buyer optimum can be implemented with a suitable bonus tournament ({A, 0}, t)

in which the suppliers obtain an expected surplus of zero.

(ii) If C � F (v⇤1)�q(v⇤i , v
⇤
j ), the optimal contest for the buyer is a bonus tournament that imple-

ments the social optimum, with A = �q(v⇤i , v
⇤
j ) and t = C � F (v⇤1)�q(v⇤i , v

⇤
j ).

(iii) If C < F (v⇤1)�q(v⇤i , v
⇤
j ), the optimal contest for the buyer is a bonus tournament that imple-

ments suboptimal approaches (v1, v2) 6= (v⇤1, v
⇤
2), with A = �q(v1, v2) and t = 0.

Whereas (i) states the optimality of bonus tournaments, (ii) and (iii) specify the details for

the two di↵erent parameter regions. The participation constraints imply that the total revenue

of each supplier has to be at least C, regardless of the approaches implemented. Thus, if the

expected revenues needed to implement the socially optimal approaches are below C, then the buyer

implements the social optimum and uses subsidies to satisfy the participation constraint. But when

these payments are above C, the buyer can reduce payments to the suppliers by implementing

ine�cient approaches, and it is optimal for her to do so.

It may seem redundant to allow for both a > 0 and subsidies t in a bonus tournament. Indeed

they can be used as substitutes under certain conditions. Any equilibrium of a bonus tournament
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({A, 0}, t) with t > 0, which is symmetric around 1/2 (that is, v1+v2 = 1), is also an equilibrium of

the bonus tournament ({A+a, a}, t�a/2) if a is below a certain threshold.21 If a increases, so does

the incentive for suppliers to deviate towards the center and so increase the probability of winning

the contest, which now results in (at least) the prize a. When a is too large, this incentive is too

strong and such a bonus tournament does not implement any diversity. Thus, a cannot always be

used as a substitute for t.22

4 Auctions and Fixed Prize Tournaments

In Section 3.2, we characterized the optimal contest. We now study two other types of contests that

are discussed in the literature, namely scoring auctions and fixed-prize tournaments.

Proposition 2 (i) For any subsidy t � max
n
0, C �

R 1/2
0 (q (v⇤1,�)� q (v⇤2,�)) dF (�)

o
, the auction

mechanism (P = R+
) implements the social optimum. (ii) For any A � 2C, the unique equilibrium

of an FPT (P = {A}) implements (v1, v2) = (1/2, 1/2). (iii) Whenever C < F (v⇤1)�q(v⇤i , v
⇤
j ), the

buyer prefers the ine�cient FPT to the e�cient auction.

It is intuitive that auctions implement some diversity: With identical approaches, no supplier

would earn a positive revenue. The absence of diversity in an FPT corresponds to the principle of

minimum di↵erentiation in the standard model of locational competition with fixed prices (Hotelling

1929) and to the median voter theorem (Downs 1957).23 As the size of the prize is independent of

quality di↵erences in an FPT, the suppliers only maximize the expected winning probability. This

implies moving to the center.24

21Using similar arguments as in the proof of Proposition 3 in the online appendix, it can be shown that this threshold

is min{2t, F (v1)/(F (v2)� 1/2)}.
22In Online Appendix B.1, we show how a > 0 can be useful when shirking is possible.

23However, the voting literature has also discussed why parties might di↵erentiate by choosing “polarized platforms”

(as in Wittman 1977, 1983). On a broadly related note, the relative weight on accuracy and publicity of forecasts

determines whether or not experts want to cluster on the most likely outcome (Laster, Bennett and Geoum 1999).

24The result that there is no diversity in an FPT relies on the symmetry of suppliers, in particular, that they share

the same belief about the likelihood of success of di↵erent approaches. In reality, di↵erent suppliers are likely to

disagree about which approach is promising and which is not. If this was the case, even an FPT would result in some

diversity in equilibrium.
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As to 2(iii), even though an auction implements the social optimum, it can leave rents to the

suppliers. When such rents are high, the buyer prefers to use a suitable FPT. A bonus tournament

combines the advantages of FPTs and auctions: It can increase e�ciency without the necessity of

paying high rents to the suppliers.

Consistent with the logic of Theorem 1(iii), the following result shows that the buyer never

resolves the trade-o↵ in favor of e�ciency when costs are low.

Corollary 1 Let C = 0. Among all contests where P is convex, the buyer’s surplus is maximal in

an FPT with A = 0.

Corollary 1 relies on the fact that higher quality suppliers bid the sum of the quality di↵erential

and the minimum P when available (Lemma 2). Thus the buyer surplus, the di↵erence between

the expected maximal quality and the expected payment, is the di↵erence between the expectation

of the minimum quality and the minimum bid. The optimum is an FPT with A = 0, because this

maximizes the minimum quality and minimizes the minimum bid.

5 Discussion

We now argue that, to some extent, our results are robust to alternative technological assumptions,

and we also consider alternative constraints on the allowable mechanisms. All details are in the

online appendix.

Inducing E↵ort. The model implicitly assumes that, once a supplier joins a contest, he

cannot shirk by reducing e↵ort.25 It is therefore possible to focus on implementing diversity in

contests, while shutting down the e↵ects of contest design on e↵ort incentives. This was used above

for the result that, when C � F (v⇤1)�q(v⇤i , v
⇤
j ) (but, by (A1), still low enough that the contest

generates a positive surplus), the bonus tournament implementing the social optimum has a = 0

and positive subsidies to ensure participation. When suppliers have the option to shirk, the analysis

is more subtle, because the buyer can no longer rely on subsidies. We show that as long as C 

F (v⇤2)�q(v⇤i , v
⇤
j ), bonus tournaments are still optimal. If C 2 (F (v⇤1)�q(v⇤i , v

⇤
j ), F (v⇤2)�q(v⇤i , v

⇤
j )]

the optimum is implemented with a > 0. Hence, a positive low price can act as a substitute for

25This follows because all research costs are identical.
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subsidies in this case. Finally, we show that for any F , there exists some finite C̄, such that if

C > C̄, no contest implements any diversity.

Heterogeneous Costs. We relax the assumption that the cost of developing all approaches

is the same. Specifically, we suppose both suppliers have the same symmetric, convex cost function

with the minimum at 1/2.26 Given such a cost function, inducing diversity becomes more costly.

Though we cannot prove that the bonus tournament remains optimal, the following results still

hold as long as the cost heterogeneity is not above a threshold (specified in the appendix): (1)

It is socially optimal to induce variety; (2) FPTs induce no variety; (3) Both bonus tournaments

and auctions can induce socially optimal variety; (4) Bonus tournaments do so with lower cost to

the buyer. Since choosing the least costly approach is similar to shirking, it is impossible to induce

variety when cost heterogeneity is too large (for the same reason as when subsidies are not possible).

Generalized Distributions and Quality Functions. Further, we replace (A1) and (A2)

with weaker assumptions. Instead of (A1), we require that quality is a decreasing (but not necessarily

linear) function of the distance between the ideal state and the density function. We replace (A2) by

requiring that f (�) is symmetric and has full support, but not that it is single peaked and relatively

flat, so that (A2)(ii) and (A2)(iv) might be violated. We show that under these assumptions the

bonus tournament and the auction mechanism continue to implement the social optimum, whereas

there still is no diversity with an FPT. Moreover, we show that a suitable bonus tournament still

implements the buyer optimum if costs are above a threshold (specified in the appendix). For

lower cost, the buyer strictly prefers a suitable bonus tournament to the FPT, and she prefers to

implement the social optimum with a bonus tournament rather than with an auction.

The Number of Suppliers. As will be discussed in Section 6, several papers show that,

when contests incentivize e↵ort choice, the optimal number of participants is typically two. In our

setting, it may be socially optimal and optimal for the buyer to invite a large number of suppliers.

In particular, in a bonus tournament an increase in n not only leads to an increase in the expected

quality (reflecting higher option value), but also to a reduction in supplier rents (reflecting an

26We did not treat the case that the low-cost approaches di↵er across suppliers. We conjecture that, in such a

setting, diversity would even arise in an FPT with two suppliers.
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increase in competition). Specifically, with n > 3 suppliers and uniform state distributions the

social optimum can still be achieved with a suitable bonus tournament or auction.27 For costs that

are su�ciently large (but still low enough that a bonus tournament can generate positive expected

surplus), the optimal n-supplier contest for the buyer is a bonus tournament. While we cannot

establish optimality of bonus tournaments for lower costs, we find that: (i) The buyer who wants to

implement the social optimum strictly prefers to do so with a bonus tournament rather than with

an auction; and (ii) the buyer prefers to implement the social optimum with a bonus tournament

over any outcome of an FPT. This holds even though the FPT, in contrast to the stark result for the

two-player case, induces some diversity, but less than socially optimal. In addition, we characterize

the socially optimal number of suppliers.

For uniform state distributions, we also consider the option of dealing with only one supplier.

In any single-supplier contract, the buyer’s expected payo↵ cannot be greater than the maximum

social surplus given a single supplier. Suppose that the buyer obtains this maximum social surplus.

We show that if C  F (v⇤1)�q(v⇤1, v
⇤
2) = b/8, there exists n � 2 for which the buyer is weakly

better o↵ in an n-supplier bonus tournament than when using the optimal single-supplier contract.

The preference is strict for C < b/12. It turns out that for uniform state distributions, if C > b/8,

research is so costly that the socially optimal number of suppliers is 1.28 Thus, whenever it is

socially optimal to have two or more suppliers, the buyer is better o↵ holding a bonus tournament

than using any single-supplier contract.

Furthermore, there are several reasons why extracting the maximum social surplus might be

di�cult with a single-supplier contract. In the absence of verifiable information, the buyer cannot

write contracts enforcing a particular approach. Thus, even an arbitrarily small amount of cost

heterogeneity could induce the supplier to choose a suboptimal approach. Moreover, single-supplier

contracts cannot induce costly e↵ort (see Che and Gale, 2003). Thus, bonus tournaments have

advantages over single-supplier contracts even when C > b/8.

27Though most results also apply to the case n = 3, an FPT does not have a pure strategy equilibrium in this case.

28Under assumption (A1), C < ( � b)/2, so that not inducing research at all is never optimal.
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Multiple Prizes. A full analysis of multiple prizes is beyond the scope of this paper. However,

we can show that, at least in an FPT, the buyer has nothing to gain from using multiple prizes.29

For n > 3, for any equilibrium in an FPT with two prizes A1 > A2 > 0, there exists an equilibrium

in an FPT with a single prize which makes the buyer strictly better o↵. The proof of this result

shows that any equilibrium of an FPT with two prizes involves more duplication than the chosen

equilibrium of an FPT with a single prize, which leads to a lower buyer surplus.30

Participation Fees. A buyer who could charge participation fees e > 0 would do this only

if C < F (v⇤1)�q(v⇤i , v
⇤
j ), in which case the optimal fee e

⇤ satisfies C + e
⇤ = F (v⇤1)�q(v⇤i , v

⇤
j ), so

that she achieves the first-best. If the buyer is limited to setting fees below e
⇤, she will charge the

maximum allowable fee. With or without participation fees, the buyer thus designs the contest so

that the suppliers obtain zero expected surplus. Moreover, the bonus tournament is still optimal

with participation fees. However, contrary to the case without participation fees, the buyer no

longer has to trade o↵ e�ciency and rents, so that she induces the optimal diversity.

Knowledge of realized qualities. The assumption that a supplier learns not only his own

quality, but also his competitor’s, is important for our analysis. The suppliers can learn each other’s

quality, for example, during testing in the so-called “fly-o↵” competitions commonly used by the

U.S. Air Force when developing new aircraft.31 Similarly, in architectural competitions submitted

designs are commonly made public before the winner is chosen.

29Of course, there may be reasons outside of the model which would make multiple prizes a desirable choice for a

contest designer. For example, if suppliers are risk averse, providing multiple prizes may be a way of increasing their

expected utility.

30To interpret the model, one should bear in mind that typical arguments for multiple prizes in contests rely on

convexity of e↵ort costs and/or supplier heterogeneity (see Moldovanu and Sela 2001 and more recently Olszewski

and Siegel 2018; the latter also consider the e↵ect of risk aversion in addition to convexity of e↵ort costs). Our model

does not have these features.

31In 1974, the U.S. Air Force held a fly-o↵ contest between two prototypes: General Dynamics’ YF-16 and Northrop’s

YF-17. While the fly-o↵ was ongoing, details from the tests and aircraft characteristics were often made public. For

example, an aviation magazine published a detailed description of the two aircraft and their performance in August

1974, five months before the YF-16 won the fly-o↵ (eventually becoming the F-16); see “YF-16 and YF-17: fighters

for the future” (D. Godfrey, Flight International, August 1, 1974).
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Except in the FPT, where the current analysis carries over directly, knowledge of the opponent’s

quality is important for the pricing behavior of the suppliers. If only own quality was known to each

supplier, then the suppliers would have to make inferences about the quality of the opponent from

observing their own quality. Because the correlation between qualities is endogeneously determined

by the choice of research approaches, this is a non-trivial problem which is beyond the scope of the

current paper.

6 Relation to the Literature

This paper contributes to the literature on optimal contest design, especially the design of innovation

contests. The existing design literature focuses exclusively on e↵ort incentives. In models of fixed-

prize tournaments, Taylor (1995) shows that free entry is undesirable, and Fullerton and McAfee

(1999) show that the optimal number of participants is two. Fullerton and McAfee (1999) and Giebe

(2014) consider the use of entry auctions in order to select the most e�cient contestants. Fullerton,

Linster, McKee and Slate (2002) find that buyers are better o↵ with auctions than with fixed-

prize tournaments. Che and Gale (2003) show that an auction with two suppliers is the optimal

contest. Contrary to the previous literature, our paper focuses on the suppliers’ choice of research

approaches rather than on e↵ort levels. We characterize the optimal two-supplier contests in such

settings, highlighting in particular the useful role of bonus tournaments.

Letina (2016) also studies the diversity of approaches to innovation, but the objects of analysis

and the employed models are di↵erent. He focuses on a market context with anonymous buyers,

and he deals with comparative statics rather than optimal design. In particular, the paper finds

that a merger decreases the diversity of approaches to innovation.

While we are not aware of any other paper that considers optimal contest design when diversity

plays a role, some authors compare contests in related, but di↵erent settings. In Ganuza and Hauk

(2006), suppliers choose both an approach to innovation and a costly e↵ort.32 However, these

authors focus exclusively on fixed-prize tournaments, while we study the optimal contest design.

Erat and Krishnan (2012) analyze a fixed-prize tournament where suppliers can choose from a

32In Ganuza and Pechlivanos (2000), Ganuza (2007) and Kaplan (2012), the buyer has to choose the design or

alternatively can reveal information about the preferred design.
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discrete set of approaches.33 The authors find that suppliers cluster on approaches delivering the

highest quality. This result is related to our result that there is duplication of approaches in the

equilibria of fixed-prize tournaments.34 Schöttner (2008) considers two contestants who influence

quality stochastically by exerting e↵ort. She finds that, for large random shocks, the buyer prefers

to hold a fixed-prize tournament rather than an auction to avoid the market power of a lucky seller

in an auction. This resembles the trade-o↵ underlying our Proposition 2. However, her analysis

does not speak to optimal design and the role of bonus tournaments.35

Gretschko and Wambach (2016) analyze the design of mechanisms for public procurement when

exogenously di↵erentiated suppliers o↵er di↵erent specifications, and the buyer does not know her

preferences. The modelling of buyer utility is similar to ours. However, the paper does not deal

with the question of inducing variety. Instead the authors ask whether intransparent negotiations

or transparent auctions yield higher social surplus.

Our paper is also related to the literature on innovation contests with exponential-bandit exper-

imentation (see Halac, Kartik and Liu 2017 and references therein). In these models, it is uncertain

whether the innovation is feasible. Suppliers participating in the contest expend costly e↵ort to

learn the state, and they also learn from their opponents’ experimentation. The goal of the contest

is to induce experimentation. However, each supplier experiments in the same way. In our model,

suppliers are induced to develop di↵erent projects.

Like in rank-order tournaments and Tullock contests, but contrary to all-pay auctions, our

33See also Terwiesch and Xu (2008) for the e↵ect of number of suppliers when exogeneous random shocks are large.

For empirical evidence see Boudreau, Lacetera and Lakhani (2011).

34In addition to allowing for alternative contests, our model also considers correlated rather than independent

qualities; it is thus meaningful to speak of similar approaches. See also Konrad (2014) for a variant of Erat and

Krishnan’s model where the first best is restored if the tie-breaking is decided via costly competition (for example

lobbying) as opposed to randomly.

35More broadly related is Bajari and Tadelis (2001) who study contracting for construction projects. The supplier

obtains new information during the contract execution, which allows him to adapt the original approach at some

cost. Since the relationship is between a buyer and only one supplier, the question of variety of approaches does not

arise. This is also true for the related work by Arve and Martimort (2016) who study risk-sharing considerations in

the design of contracts with ex-post adaptation. Additionally, Ding and Wolfstetter (2011) consider a case where a

supplier can choose to bypass the contest and negotiate with the buyer directly in an environment where innovation

quality is obtained by expending costly e↵ort.
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technology is stochastic, and there are pure-strategy equilibria.36 However, while the random shocks

are i.i.d. in all the papers cited above, in our model they are not only correlated, but the contestants

also determine the level of correlation by choosing research projects. The buyer wants to induce

diversity of research approaches exactly to reduce correlation in outcomes, which in turn results in

the option value discussed before.

Our paper is also related to the literature on policy experimentation. For instance, Callander and

Harstad (2015) show that decentralized policy experimentation yields too much diversity. Contrary

to our model, they assume that the success probabilities of di↵erent experiments are independent,

no matter how similar the policies are. This assumption removes the option value of having di↵erent

experiments, which is central to our model. If there existed an ideal policy (in terms of quality) as

in our model, then the option value would have to be traded o↵ against the benefits of convergence

emphasized by Callander and Harstad (2015).37

7 Conclusions

Our paper investigates how uncertainty about the ideal approach to innovations a↵ects contest

design. In our model, it is socially optimal for suppliers to take diverse research approaches, and

the social optimum can be obtained with bonus tournaments and auction mechanisms. Inducing

diversity of approaches to innovation can give rents to suppliers. To reduce these rents, the buyer

may therefore want to induce suboptimal diversification. Our main result is that bonus tournaments

are optimal for the buyer. The di↵erence between the bonus and the low price provides incentives

for suppliers to diversify, which allows the buyer to fine-tune the amount of diversity induced. At

the same time, bonus tournaments minimize the suppliers’ power to exploit their quality advantage.

The non-convexity of the price set is decisive for this feature. Moreover, we find that for a suitable

parameter range the optimal bonus tournament implements the social optimum.

Our stylized model has potential implications for the design of innovation contests. In addition

to the baseline prize, it might be useful to pay a bonus prize whenever the winner outperforms the

36See Baye, Kovenock and de Vries (1996) and Che and Gale (2003) for all-pay auctions, Lazear and Rosen (1981),

Fullerton and McAfee (1999), Schöttner (2008) and Giebe (2014) for tournaments; see also the general discussion in

Konrad (2009).

37See also Bonatti and Rantakari (2016).
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second-best contestant by a su�cient margin.38 Even though we are not aware of such contests being

used in practice, bonus prizes would seem easy to implement and would not make the innovation

tournaments significantly more complicated than they are today. Bonus prizes would give incentives

to contestants to not only win the contest, but to win with a large margin. In the simple setting

analyzed in this paper, this incentive would lead to an increase in the diversity of approaches to

innovation.

A Appendix

A.1 Basics

In the following, we introduce some notation that we use throughout the appendix. We also formu-

late the restrictions implied by subgame perfection.

A.1.1 Notation

We consistently use subscripts B for buyers, i = 1, 2 for suppliers and T for “total” (buyers plus

suppliers). Superscripts such as fpt for fixed-price tournament, bt for bonus tournament or a for

auction refer to the contest P under consideration. We will drop these superscripts whenever there

is no danger of confusion.

1. pi (qi, qj) 2 P [ �b, ]2 is a price strategy function.39

2. ⇡i (pi, pj | qi, qj) is the realized revenue that supplier i earns with prices p1 and p2, conditional

on qualities q1 and q2, assuming that the buyer chooses the i sequentially rationally.

3. b⇧i (vi, vj , pi () , pj ()) is the expectation over ⇡i (pi, pj | qi, qj) when suppliers choose v1,v2, p1 ()

and p2 (), where the expectation is taken over all pairs of quality realizations for given (v1, v2).

4. ⇧P
i (vi, vj) = b⇧i (vi, vj , pi () , pj ()), where pi () and pj () are the subgame equilibria for the

contest P as in Lemma 2, is the (expected) revenue of supplier i.

38This does not require that performance di↵erentials are verifiable; observability of quality su�ces: It is in the

buyer’s own interest to select the high-quality supplier even though he demands the bonus prize.

39For sets X and Y , Y X is the set of all mappings from X to Y .

22



5. S
P
i (vi, vj) = ⇧P

i (vi, vj) + t� C is the (expected) surplus of supplier i.

6. Q(v1, v2,�) is the quality that the buyer obtains, given a realization of �. Given price func-

tions as in Lemma 2 and sequential rationality of the buyer, in every subgame Q(v1, v2,�) =

max {q (v1,�) , q (v2,�)}.

7. S
P
B (vi, vj) = E� [max {q (v1,�) , q (v2,�)}] � ⇧P

1 (vi, vj) � ⇧P
2 (vi, vj) � 2t is the (expected)

surplus of the buyer.

A.1.2 Subgame-Perfect Equilibrium

A subgame-perfect equilibrium of the innovation contest given by P consists of supplier strategies

si = (vi, pi) 2 [0, 1]⇥ P [ �b, ]2 and buyer strategies ⌫ 2 {1, 2}(P⇥[ �b, ])2 such that:

(DC1) ⌫ is sequentially rational. That is, if ⌫ = i then qi � pi � qj � pj .

(DC2) ⇡i (pi (qi, qj) , pj (qj , qi)| qi, qj) � ⇡i (p0i, pj (qj , qi) |qi, qj) for all p
0
i 2 P ,(qi, qj) 2 [ � b, ]2

(sequential rationality of supplier i)

(DC3) b⇧i (vi, vj , pi () , pj ()) � b⇧i (v0i, vj , epi () , pj ()) for all v0i 2 [0, 1] and all epi () 2 P [ �b, ]⇥[ �b, ]

(best-response condition for supplier i).

(PC) b⇧i (vi, vj , pi () , pj (qj , qi)) + t � C (participation constraint for supplier i).

A.1.3 Tie-breaking rules

(T1) (Preference for quality) If qi � pi = qj � pj and qi > qj then ⌫ = i. If qi � pi = qj � pj and

qi = qj then ⌫ = i with probability 1/2 and ⌫ = j with probability 1/2.

(T2) (Preference for winning) For any two strategies (vi, pi(·)) and (v0i, p
0
i(·)) of the supplier i, if

b⇧i (vi, vj , pi () , pj ()) = b⇧i (v0i, vj , p
0
i () , pj ()) and Pr(⌫ = i|vi, pi(·)) > Pr(⌫ = i|v0i, p0i(·)), then

supplier i prefers (vi, pi(·)).
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A.2 Proofs of Auxiliary Results (Section 3.1)

A.2.1 Proof of Lemma 1

Suppose, without loss of generality, that v1  v2. The total surplus is

ST (v1, v2) =

Z 1

0
max{q(v1,�), q(v2,�)}dF (�)� 2C =

 � b

0

BBBBBBBB@

v1Z

0

(v1 � �) dF (�) +

(v1+v2)/2Z

v1

(� � v1) dF (�)+

v2Z

(v1+v2)/2

(v2 � �) dF (�) +

1Z

v2

(� � v2) dF (�)

1

CCCCCCCCA

� 2C.

This is a continuous function with a compact domain, hence it attains the maximum. Note that

@ST (v1, v2)

@v1
= b (�2F (v1) + F ((v1 + v2) /2))(1)

@ST (v1, v2)

@v2
= b (1� 2F (v2) + F ((v1 + v2) /2)) .(2)

(1) and (2) imply that there are no boundary optima. To see this, first note that @ST (0, v2) /@v1 >

08v2 > 0 and @ST (v1, 1) /@v2 < 08v1 < 1. Moreover (v1, v2) = (0, 0) and (1, 1) are both dominated

by (1/2, 1/2). Thus, the optimum must satisfy

�2F (v1) + F ((v1 + v2) /2) = 0(3)

1� 2F (v2) + F ((v1 + v2) /2) = 0.(4)

Together these conditions imply F (v⇤2) = 1/2 + F (v⇤1).

For v1 2 [0, 1/2], let g (v1) = F
�1

�
F (v1) +

1
2

�
. F�1 is well-defined because of (A2)(iii). Inserting

v2 = g (v1) in (3) and (4), the first-order conditions hold for (v1, v2) = (v1, g (v1)) if

(5) v1 = F
�1

✓
F ((v1 + g (v1)) /2)

2

◆
.

(5) has at least one solution v
⇤
1 2 (0, 1/2). This holds because both sides of (5) are strictly increasing,

and the r.h.s. is positive for v1 = 0 and strictly less than 1/2 for v1 = 1/2. Now consider

(v⇤1, v
⇤
2) = (v⇤1, g (v

⇤
1)) such that F (v⇤1) = 1/4 and F (v⇤2) = 3/4. Thus F (v⇤2) = F (v⇤1) + 1/2.

Moreover, symmetry implies v
⇤
1 + v

⇤
2 = 1 and thus the r.h.s. of (5) is F

�1 (1/4), so that the first-

order condition holds for (v⇤1, v
⇤
2).

Before proceeding, we prove one intermediate step.
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Lemma 4 If (A2) is satisfied, then f(x) < 2f(y) for all x, y 2 [0, 1].

Proof. First note that f(1/2) =
R 1/2
0 f

0 (x) dx + f (0). Since by (A2)(iv) f
0 (x) < 2f (0) for all

x 2 [0, 1/2], it follows that f(1/2) <
R 1/2
0 2f (0) dx+ f (0) = 2f(0). By (A2)(ii) f (x)  f(1/2) and

f (0)  f (y) for all x, y 2 [0, 1], the statement in the Lemma follows.⇤

Finally, consider the Hessian matrix

H = b ·

2

4 �2f (v1) +
1
2f ((v1 + v2) /2)

1
2f ((v1 + v2) /2)

1
2f ((v1 + v2) /2) �2f (v2) +

1
2f ((v1 + v2) /2)

3

5 .

First, H is negative definite at (v⇤1, v
⇤
2) if and only if f (1/2) < 2f (v⇤1). To see this, note that

f (v⇤1) = f (v⇤2) and f ((v⇤1 + v
⇤
2) /2) = f (1/2). Hence,

�2f (v⇤1) +
1

2
f ((v⇤1 + v

⇤
2) /2) = �2f (v⇤1) +

1

2
f (1/2) < 0 , f (1/2) < 4f (v⇤1) .

In addition,

|H| = b [4f (v⇤1) f (v⇤2)� (f (v⇤1) + f (v⇤2)) f ((v⇤1 + v
⇤
2) /2)] = b

⇣
4f (v⇤1)

2 � 2f (v⇤1) f (1/2)
⌘
.

This condition holds if and only if f (1/2) < 2f (v⇤1), which holds by Lemma 4.

Second, H is negative definite 8 (v1, v2) if f (1/2) < 2f (0). To see this, note that f (v) is

minimized at v = 0 and maximized at v = 1/2. Hence, f (1/2) < 2f (0) < 4f (0) implies

�2f (vi) +
1

2
f

✓
v1 + v2

2

◆
 �2f (0) +

1

2
f

✓
1

2

◆
< 0 8i 2 {1, 2} .

and

|H| = b


f (v1)

✓
2f (v2)� f

✓
v1 + v2

2

◆◆
+ f (v2)

✓
2f (v1)� f

✓
v1 + v2

2

◆◆�
> 0.

Therefore, f (1/2) < 2f (0), which holds by Lemma 4, is a su�cient condition for (v⇤1, v
⇤
2) to be the

unique global optimum.

A.2.2 Proof of Lemma 2

Consider the equilibrium for the subgame defined by (v1, v2,�) and the resulting quality vector

(q1, q2).

Step 1: Pricing subgame for q1 = q2.

If q1 = q2, the standard Bertrand logic implies that (p (q1, q2) , p (q1, q2)) = (P , P ) is the unique

25



equilibrium.

Step 2: Pricing subgame for qi > qj.

Clearly, if qi > qj the suggested strategy profile is a subgame equilibrium. To see that i must bid

p (qi, qj) in equilibrium, first suppose pi > p (qi, qj). If pi > pj + q (vi,�)� q (vj ,�), supplier j wins.

By setting pi = p (qi, qj)  pj + q (vi,�) � q (vj ,�), supplier i can ensure that he wins, which is a

profitable deviation by (T2). If pi > p (qi, qj) and pi  pj + q (vi,�)� q (vj ,�), supplier i wins. By

setting pj = P , supplier j can profitably deviate. If pi < p (qi, qj), supplier i can deviate upwards

to p (qi, qj). He then still wins by (T1), and revenues are higher.

A.2.3 Proof of Lemma 3

(i) The result is trivial for v1 = v2. For v1 < v2, we show that supplier 1 can profitably deviate to

some v
0
1 > v1 if �q (v1, v2) + P /2 P.

Step 1: If v1 < v2, then after any deviation to v
0
1 2 (v1, v2) the probability that supplier 1 wins

strictly increases.

Before the deviation, supplier 1 has higher quality (and therefore wins) whenever � < (v1 + v2)/2.

Thus, before the deviation, the probability that supplier 1 wins is F ((v1 + v2)/2). Using the same

argument, the probability that supplier 1 wins after the deviation is F ((v01+v2)/2) > F ((v1+v2)/2),

since v
0
1 > v1. Step 1 thus follows.

Step 2: There exists a deviation v
0
1 2 (v1, v2) such that after this deviation, supplier 1 wins and

receives a weakly higher price than before deviation for all � < (v1 + v2)/2.

First, note that for any � 2 [0, v1] the quality di↵erence between the two suppliers, that is q(v1,�)�

q(v2,�), is constant. Then, by Lemma 2, supplier 1 receives the same price in all those states of the

world, which is given by p̄(q(v1, v1), q(v2, v1)). In all states � 2 (v1, (v1+v2)/2], supplier 1 wins with

a price that is weakly lower than p̄(q(v1, v1), q(v2, v1)), because the quality di↵erence is smaller than

the maximal quality di↵erence. Since �q (v1, v2) + P /2 P , it must be that p̄(q(v1, v1), q(v2, v1)) <

�q (v1, v2) + P . By continuity, there exists some v
0
1 2 (v1, v2) such that p̄(q(v1, v1), q(v2, v1)) 

�q (v01, v2) + P . Consider a deviation to such v
0
1. For any � 2 [0, v01], supplier 1 receives the price

p̄(q(v1, v1), q(v2, v1)). For any � 2 (v01, (v1 + v2)/2], we have q(v01,�) > q(v1,�). Since q(v2,�) is

unchanged, the quality di↵erence in those states of the world increases, and by Lemma 2 the price

that supplier 1 receives is at least as high as before the deviation.
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Combining Steps 1 and 2, v01 is a profitable deviation by (T2), which proves the claim.

(ii) follows directly from Lemmas 2 and 3(i).

A.3 Proofs of Main Optimality Results (Section 3.2)

A.3.1 Proof of Proposition 1

Let A = �q(v1, v2) for some (v1, v2). We will show that, in the bonus tournament with P = {A, 0}

and subsidies t, the strategy profiles (v1, v2, p1 () , p2 ()) such that pi (qi, qj) = A if qi � qj � A and

0 otherwise, form an equilibrium.

Sequential rationality of pi () follows from Lemma 2. We now show that (v1, p1 ())is a best

response of supplier 1 to (v2, p2 ()); the argument for supplier 2 is analogous. For A = 0, only

(v1, v2) = (1/2, 1/2) satisfies the above conditions. The proof of Lemma 5 below shows that, in

this case, (v1, v2) can be implemented with a fixed-prize tournament with A = 0. If v1 < v2,

�q (v1, v2) > 0, and the probability that supplier 1 wins with a positive prize is F (v1). We will

consider three possible types of deviations: (i) deviating to v
0
1 < v1, (ii) deviating to v

00
1 2 (v1, ev)

where ev = min{2v2 � v1, 1}, and (iii) deviations to v
000
1 � ev. Note that if ev = 2v2 � v1 < 1, then the

distance between v1 and v2 is exactly the same as the distance between v2 and ev. Thus, deviations

of type (i) and (iii) increase the distance between the chosen projects, while deviations of type (ii)

decrease the distance between the chosen projects. Next we show that none of the deviations are

profitable.

Deviating to v
0
1 < v1 is not profitable, because the winning probability falls to F (bv1), with

bv1 < v1 implicitly defined by q (v01, bv1)�q (v2, bv1) = �q (v1, v2) , and the prize does not rise. It is not

profitable to deviate to v
00
1 2 (v1, ev), since for such deviations, �q (v001 , v2) < �q (ev, v2)  �q (v1, v2),

so that the probability of winning a positive prize is 0. Finally, if ev < 1, deviating to v
000
1 2 [ev, 1] is

not profitable. To see this, note that ev = 2v2 � v1 which implies 1 � ev = 1 � 2v2 + v1  v1 since

v2 � 1/2. This implies, by symmetry of the state distribution, that F (v1) � 1�F (ev) � 1�F (v0001 ).

Thus, v0001 is not a profitable deviation. By analogous arguments, there are no profitable deviations

for supplier 2.

Finally, the expected surplus of the suppliers are S1 = AF (v1)+ t�C and S2 = A(1�F (v2))+

t� C. Since t � max{C �AF (v1), C �A(1� F (v2)), 0}, it is immediate that S1 � 0 and S2 � 0.

By Lemma 1, the social optimal satisfies F (v⇤1) = 1/4 and F (v⇤2) = 3/4. Clearly, it must be
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that 0 < v
⇤
1  1/2  v

⇤
2 < 1, and the social optimum can be implemented.

A.3.2 Proof of Theorem 1

The buyer optimally chooses (v1, v2, p1, p2,P, t) 2 [0, 1]2⇥
⇣
P [ �b, ]2

⌘2
⇥ I (R+)⇥ [0,+1) so as to

maximize

ST (v1, v2)� b⇧1 (v1, v2, p1(), p2())� b⇧2 (v1, v2, p1(), p2())� 2t

such that, for all i 2 {1, 2} and j 6= i, (DC1)-(DC3) hold and PC holds for i = 1, 2.

(i) The statement follows from three main lemmas. Lemma 6 shows that allocations maximiz-

ing buyer surplus satisfy the conditions of Proposition 1 and can thus be implemented by a bonus

tournament. Lemma 7 shows that implementation requires lower expected transfers than any alter-

native; hence buyer surplus is maximal. Finally, Lemma 8 shows that the suppliers optimally break

even on expectation. Before proving these three lemmas, we prove a preliminary result about the

unique equilibrium in an FPT, which is then used in the proof of Lemma 6.

Lemma 5 In any FPT (P = {A} for A � 2C), the unique equilibrium is such that v1 = v2 and

F (vi) = 1/2 for i = 1, 2.

Proof. First, we show that the suggested (v1, v2) emerges as an equilibrium. Let vj be such that

F (vj) = 1/2. Since f is everywhere positive, such a vj is unique. Now if supplier i 2 {1, 2} plays vi =

vj , his revenue is ⇧i (vi, vj) = A/2. For any vi < vj the revenue is ⇧i (vi, vj) = AF ((vi + vj) /2) <

A/2. Similarly, for any vi > vj the revenue is ⇧i (vi, vj) = A (1� F ((vi + vj) /2)) < A/2. Thus,

vi = vj is an equilibrium. Second, v0i = v
0
j is an equilibrium only if F (v0j) = 1/2. Suppose not.

Then, a supplier i can profitably deviate to vi such that F (vi) = 1/2, since his revenue will be

⇧i (vi, vj) > A/2. Third, vi 6= vj is never an equilibrium. Suppose it was. Let v1 < v2. Then, the

revenue of supplier 1 is ⇧1 (v1, v2) = AF ((v1 + v2) /2), while deviating to (v1 + v2) /2 leads to a

revenue of AF ((v1 + 3v2) /4) > AF ((v1 + v2) /2).

Lemma 6 If
�
v
B
1 , v

B
2 , p

B
1 , p

B
2

�
is an equilibrium of a contest that maximizes buyer surplus, then

0 < v
B
1  1

2  v
B
2 < 1.

We prove this lemma in two steps.

Step 1: If
�
v
B
1 , v

B
2 , p

B
1 , p

B
2

�
is an equilibrium where w.l.o.g. v

B
1  v

B
2 , then v

B
1  1/2  v

B
2 .

28



Proof. We will show that v1  1/2  v2 must hold in any contest equilibrium. Suppose, to

the contrary, that v1  v2 < 1/2. The case that 1/2 < v1  v2 follows analogously. Let p1, p2

be the associated pricing strategies. Then, the expected revenue of supplier 1 is ⇧1 (v1, v2) =
R v1+v2

2
0 p1 (q1 (�) , q2 (�)) dF (�). Consider the deviation v

0
1 = 2v2 � v1 < 1 with the same pricing

function. Supplier 1 now wins whenever � > (v2 + v
0
1) /2. We can write the expected revenue as

⇧1 (v01, v2) =
R 2v2

v01+v2
2

p1 (q1 (�) , q2 (�)) dF (�) +
R 1
2v2

p1 (q1 (�) , q2 (�)) dF (�). Clearly, (v1 + v2) /2 =

2v2 � (v01 + v2)/2. Moreover, there exists a bijective mapping [0, (v1 + v2) /2] ! [(v01 + v2) /2, 2v2];

�
0 7! �

00 where �
00 = 2v2 � �

0. Observe that q (v1,�0) =  � b|v1 � �
0| =  � b|v1 � 2v2 +

�
00| =  � b|�00 � v

0
1| = q (v01,�

00) and similarly q (v2,�0) = q (v2,�00). Thus, a property of this

mapping is that q (v1,�0) � q (v2,�0) = q (v01,�
00) � q (v2,�00) and (by single-peakedness) f (�0) 

f (�00). In a state where quality di↵erence is the same, the winning price is also the same, so

that
R v1+v2

2
0 p1 (q1 (�) , q2 (�)) dF (�) 

R 2v2
v01+v2

2

p1 (q1 (�) , q2 (�)) dF (�). As a result, ⇧1 (v1, v2) 

⇧1 (v01, v2) and v
0
1 leads to strictly higher probability of winning, hence v01 is a profitable deviation.40

Thus, v1  1/2  v2 must hold in any equilibrium; in particular, therefore v
B
1  1/2  v

B
2 .

Step 2: If
�
v
B
1 , v

B
2 , p

B
1 , p

B
2

�
is an equilibrium maximizing buyer surplus, then 0 < v

B
i < 1 for

i 2 {1, 2}.

Proof. By Step 1, we know that v1  1/2  v2. Suppose v
B
1 = 0 and v

B
2 = 1. We will distinguish

two cases, C = 0 and C > 0. First suppose C = 0. By single-peakedness (A2), v1 = v2 = 1/2

results in weakly higher total surplus than
�
v
B
1 , v

B
2

�
. As the allocation (v1, v2) = (1/2, 1/2) can be

implemented with an FPT and A = 2C by Lemma 5, the buyer would be strictly better o↵ than

in any contest implementing v
B
1 = 0 and v

B
2 = 1 where the suppliers earn positive surplus. Finally,

observe that v
B
1 = 0 and v

B
2 = 1 cannot be implemented so that the suppliers earn zero surplus,

as the suppliers could increase their probability of winning by deviating to the interior, which by

(T2) would be a profitable deviation. Next suppose C > 0. There exists some small " such that

ST
�
v
B
1 = 0, vB2 = 1

�
< ST (", 1� ") and F (")�q (", 1� ") < C. But then a bonus tournament with

subsidy t
0 = C�F (")�q (", 1� "), and P ={�q (", 1� ") , 0} implements (", 1� "), achieves higher

total surplus, and the supplier surplus not higher than in any contest implementing v
B
1 = 0 and

v
B
2 = 1. Hence, the buyer surplus is higher, which is a contradiction.

Next suppose v1 = 0 and v2 < 1 (the case that v1 > 0 and v2 = 1 follows analogously). By

40Given the tie-breaking rule T2, this is even true for p = 0.
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Lemma 2, the revenue is ⇧1 (0, v2) =
R v2

2
0 p̄ (q1 (0,�) , q2 (v2,�)) dF (�) for supplier 1 and ⇧2 (v2, 0) =

R v2
v2
2
p̄ (q2 (v2,�) , q1 (0,�)) dF (�)+

R 1
v2
p̄ (q2 (v2,�) , q1 (0,�)) dF (�) for supplier 2. Moreover, it must

be ⇧1(0, v2) > 0, because otherwise supplier 1 could increase his probability of winning by deviating

to the interior, which by (T2) would be a profitable deviation. Single-peakedness (A2) implies

Z v2
2

0
p̄ (q1 (v1,�) , q2 (v2,�)) dF (�) 

Z v2

v2
2

p̄ (q2 (v2,�) , q1 (0,�)) dF (�) .

Suppose that this equilibrium is implemented with transfers t such that t + ⇧1 (0, v2) � C. This

implies t + ⇧2 (v2, 0) > C. Further, using (1), dST
�
v
B
1 , v

B
2

�
/dv

B
1

��
vB1 =0

= bF (v2/2) > 0, so that

there exists some "̄ > 0 such that ST
�
", v

B
2

�
> ST

�
0, vB2

�
for every " 2 (0, "̄). Fix " such that

F (")�q (", v2)  ⇧1 (0, v2) and F (") < 1 � F (v2). Let t
0 = t + ⇧1 (0, v2) � F (")�q (", v2). Now

consider a bonus tournament with subsidy t
0 and P ={�q (", v2) , 0}. By Proposition 1, this bonus

tournament will implement (", v2) if the participation constraint is met. This condition holds for

both suppliers, because t0+(1�F (v2))�q (", v2) > t
0+F (")�q (", v2) � C. Compared to the original

situation with v1 = 0 and v2 < 1, the rent of supplier 1 is unchanged, but the rent of supplier

2 decreases since
R v2

v2
2
p̄ (q2 (v2,�) , q1 (0,�)) dF (�) + t > t

0 and
R 1
v2
p̄ (q2 (v2,�) , q1 (0,�)) dF (�) >

(1 � F (v2))�q (", v2). Since the total surplus increases and the suppliers’ surplus decreases, the

buyer’s surplus must increase. Therefore, the bonus tournament that implements (", v2) increases

the buyer surplus, which is a contradiction.⇤

Lemma 7 If
�
v
B
1 , v

B
2 , p

B
1 , p

B
2

�
is an equilibrium of a contest maximizing buyer surplus, then it can

be implemented by a contest with P = {A, 0}.

Proof. From Proposition 1 and Lemma 6, we know that the bonus tournament withA = �q
�
v
B
1 , v

B
2

�

implements
�
v
B
1 , v

B
2

�
. It remains to be shown that the buyer cannot implement

�
v
B
1 , v

B
2

�
with lower

expected total transfers with any other contest. First, suppose that vB1 +v
B
2 = 1. By Lemmas 2 and

3, in any contest that implements
�
v
B
1 , v

B
2

�
the price paid by the buyer is exactly �q(vB1 , v

B
2 ) + P

if � 2 [0, vB1 ] [ [vB2 , 1] and it is at least 0 if � 2
�
v
B
1 , v

B
2

�
. Thus, if �q(vB1 , v

B
2 )F (vB1 ) > C,

a bonus tournament implements
�
v
B
1 , v

B
2

�
with the lowest possible expected total transfers. If

�q(vB1 , v
B
2 )F (vB1 )  C, a bonus tournament with an appropriate t implements

�
v
B
1 , v

B
2

�
with

zero expected supplier surplus. Next, consider an arbitrary contest implementing
�
v
B
1 , v

B
2

�
with

v
B
1 + v

B
2 < 1 with subsidy t (the case v

B
1 + v

B
2 > 1 is analogous). The surplus of supplier 1
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is then S1 = �q(vB1 , v
B
2 )F (vB1 )+

R vB1 +vB2
2

vB1
p̄ (q1 (�) , q2 (�)) dF (�) + t � C, and for supplier 2 it is

S2 = �q(vB1 , v
B
2 )(1 � F (vB2 ))+

R v2
vB1 +vB2

2

p̄ (q1 (�) , q2 (�)) dF (�) + t � C. By similar arguments as

in Lemma 6, �q(vB1 , v
B
2 )F (vB1 ) < �q(vB1 , v

B
2 )(1 � F (vB2 )) and

R vB1 +vB2
2

vB1
p̄ (q1 (�) , q2 (�)) dF (�) 

R v2
vB1 +vB2

2

p̄ (q1 (�) , q2 (�)) dF (�). Now consider a bonus tournament with P ={�q
�
v
B
1 , v

B
2

�
, 0} and

t
0 =

R vB1 +vB2
2

vB1
p̄ (q1 (�) , q2 (�)) dF (�) + t. The surplus of supplier 1 now becomes S

0
1 = S1 by con-

struction. On the other hand, S
0
2  S2, but S

0
2 > S

0
1. Thus, the proposed bonus tournament

implements
�
v
B
1 , v

B
2

�
with lowest possible net supplier surplus, which implies that the buyer sur-

plus is maximized.⇤

Lemma 8 In the buyer optimum, the suppliers obtain zero expected surplus.

Proof. The proof follows from the three steps below.

Step 1: In an optimal contest v
B
1 + v

B
2 = 1.

Consider any (v1, v2) such that v1+v2 < 1. We show that (v1, v2) 6=
�
v
B
1 , v

B
2

�
; the case v1+v2 > 1

follows analogously. By Lemma 7, the optimal outcome can be implemented by some P = {A, 0}

and t � 0. The equilibrium values of pi in this contest are zero if and only if � 2 (v1, v2). Hence,

the participation constraint for supplier 1 implies that F (v1)A + t � C; thus v1 + v2 < 1 implies

(1� F (v2))A+ t > C. Now suppose the buyer implements (v1 + ", v2 + ") , where " is su�ciently

small. We know that (v1 + ", v2 + ") can also be implemented with P = {A, 0}. Thus, we can write

the buyer surplus as

SB (") = ST (v1 + ", v2 + ")� F (v1 + ")A� (1� F (v2 + "))A� 2t+ 2C

for " � 0. Thus dSB (") /d" = dST (v1 + ", v2 + ") /d"�Af(v1 + ") +Af(v2 + ").

Since v1 + v2 < 1, single-peakedness and symmetry (A2) imply f(v1 + ") < f(v2 + "). Thus

dSB (") /d" > dST (v1 + ", v2 + ") /d". We will show that dST (v1 + ", v2 + ") /d" > 0; because

F (v1 + ")A + t > C and (for su�ciently small ") (1� F (v2))A + t � C, the buyer will thus be

better o↵ implementing (v1 + ", v2 + ") than (v1, v2). Maximizing total surplus is equivalent to
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minimizing the expected distance

D (v1 + ", v2 + ") =

Z v1+"

0
(v1 + "� �) f(�)d� +

Z v1+v2
2 +"

v1+"
(� � v1 � ") f(�)d�

+

Z v2+"

v1+v2
2 +"

(v2 + "� �) f(�)d� +

Z 1

v2+"
(� � v2 � ") f(�)d�.

From this we obtain

dD (v1 + ", v2 + ")

d"
=

Z v1+"

0
f(�)d� �

Z v1+v2
2 +"

v1+"
f(�)d� +

Z v2+"

v1+v2
2 +"

f(�)d� �
Z 1

v2+"
f(�)d�

= 2F (v1 + ") + 2 (F (v2 + "))� 2F

✓
v1 + v2

2
+ "

◆
� 1.

We will show that this expression is negative for v1 + v2 < 1 and su�ciently small ". To see this,

fix any v2 such that 1/2  v2 < 1. Note that h (v1, v2) ⌘ dD (v1 + ", v2 + ") /d"|"=0 = 0 for

v1 = 1� v2. Furthermore @h/@v1 = 2f(v1)� f ((v1 + v2)/2) > 0, where the last inequality follows

by Lemma 4. Thus, v1 + v2 < 1 implies 2F (v1) + 2 (F (v2)) � 2F ((v1 + v2) /2) � 1 < 0 and thus

dD (v1 + ", v2 + ") /d" < 0 for small enough ". This in turn implies that ST (v1 + ", v2 + ") increases

in " so that buyer surplus also increases in ".

Step 2: The buyer surplus when implementing any (v1, 1� v1) with a bonus tournament and fixed

t is strictly convex in v1.

The buyer surplus when implementing (v1, 1� v1) with fixed t can be expressed as

SB (v1, 1� v1) = 2

Z v1

0
( � b(v1 � �)) dF (�) + 2

Z 1/2

v1

( � b(� � v1)) dF (�)

� 2F (v1)�q(v1, 1� v1)� 2t

= 2

"Z v1

0
( � b(1� v1 � �)) dF (�) +

Z 1/2

v1

( � b(� � v1)) dF (�)

#
� 2t.

Straightforward calculations show that @2
SB (v1, 1� v1) /@v21 = 2b(2f (v1) + 2v1f 0 (v1)� f

0 (v1)) �

2b(2f (v1)� f
0 (v1)) > 0, where the last inequality follows from (A2)(iv).

Step 3: In the buyer optimum, suppliers earn zero expected surplus.

From Proposition 1 and Step 1 we know that the buyer optimum can be implemented by a

suitable bonus contest P = {�q
�
v
B
1 , 1� v

B
1

�
, 0} and some transfer t. This implies that the suppli-

ers have symmetric payo↵s. Suppose, in contradiction to the statement above, that the suppliers

have a positive expected surplus. If t > 0, the buyer can increase her surplus by marginally re-

ducing t. Hence, it must be that t = 0. Then, the supplier payo↵ is F
�
v
B
1

�
�q

�
v
B
1 , 1� v

B
1

�
�
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C > 0 and thus �q
�
v
B
1 , 1� v

B
1

�
> 0. Thus v

B
1 < 1/2 < 1 � v

B
1 . By Step 2 in the proof of

Lemma 6 we know that v
B
1 > 0. Hence, v

B
1 2 (0, 1/2). Since F

�
v
B
1

�
�q

�
v
B
1 , 1� v

B
1

�
� C is

a continuous function, then there exists " > 0, such that F
�
v
B
1 + "

�
�q

�
v
B
1 + ", 1� v

B
1 � "

�
�

C � 0 and F
�
v
B
1 � "

�
�q

�
v
B
1 � ", 1� v

B
1 + "

�
� C � 0. But since SB (v1, 1� v1) is strictly

convex by Step 2, than either SB
�
v
B
1 , 1� v

B
1

�
< SB

�
v
B
1 + ", 1� v

B
1 � "

�
or SB

�
v
B
1 , 1� v

B
1

�
<

SB
�
v
B
1 � ", 1� v

B
1 + "

�
, a contradiction. Hence, suppliers earn zero expected surplus.⇤

(ii) Suppose C � F (v⇤1)�q (v⇤1, v
⇤
2). From Proposition 1 we know that for the proposed

P = {A, 0}, (v⇤1, v
⇤
2) emerges in equilibrium; and the proof of this result also gives the pricing

strategies p1 and p2. For t = C � F (v⇤1)�q (v⇤1, v
⇤
2), the buyer surplus in the proposed equilibrium

is ST (v⇤1, v
⇤
2). This is the highest surplus that the buyer can achieve without violating the suppliers’

participation constraints.

(iii) Suppose C < F (v⇤1)�q (v⇤1, v
⇤
2). By Lemma 3, the minimum supplier revenue in any contest

implementing (v⇤1, v
⇤
2) is F (v⇤1)�q (v⇤1, v

⇤
2). Thus, in any such contest the suppliers would earn a

positive expected surplus. By Part (i) this is suboptimal.

A.4 Proofs on Auctions and Tournaments (Section 4)

A.4.1 Proof of Proposition 2

(i) By Lemma 2, the unique equilibrium of the pricing subgame induced by q1 and q2 is pi =

max {qi � qj , 0} for i, j 2 {1, 2}; j 6= i. Suppose that an auction does not implement the social

optimum (v⇤1, v
⇤
2). Then, for some i, there exists v̄i 6= v

⇤
i such that ⇧i(v̄i, v⇤j ) > ⇧i(v⇤i , v

⇤
j ). Let

⇥i (vi, vj) = {� 2 [0, 1]| q (vi,�) � q (vj ,�)} and ⇥�i (vi, vj) = [0, 1] \ ⇥i (vi, vj). Thus ⇧i(v̄i, v⇤j ) >

⇧i(v⇤i , v
⇤
j ) if and only if

Z

⇥i(v̄i,v⇤j )

�
q (v̄i,�)� q

�
v
⇤
j ,�

��
dF (�) >

Z

⇥i(v⇤i ,v⇤j )

�
q (v⇤i ,�)� q

�
v
⇤
j ,�

��
dF (�) ,

or equivalently

Z

⇥i(v̄i,v⇤j )

�
q (v̄i,�)� q

�
v
⇤
j ,�

��
dF (�) +

Z 1

0
q
�
v
⇤
j ,�

�
dF (�) >

Z

⇥i(v⇤i ,v⇤j )

�
q (v⇤i ,�)� q

�
v
⇤
j ,�

��
dF (�) +

Z 1

0
q
�
v
⇤
j ,�

�
dF (�)
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Splitting [0, 1] into ⇥i

⇣
v̄i, v

⇤
j

⌘
and ⇥�i

⇣
v̄i, v

⇤
j

⌘
on the left-hand side and into ⇥i

⇣
v
⇤
i , v

⇤
j

⌘
and

⇥�i

⇣
v
⇤
i , v

⇤
j

⌘
on the right-hand side and simplifying, this is equivalent with

Z

⇥i(v̄i,v⇤j )
q (v̄i,�) dF (�) +

Z

⇥�i(v̄i,v⇤j )
q
�
v
⇤
j ,�

�
dF (�) >

Z

⇥i(v⇤i ,v⇤j )
q (v⇤i ,�) dF (�) +

Z

⇥�i(v⇤i ,v⇤j )
q
�
v
⇤
j ,�

�
dF (�) .

and thus
R 1
0 max{q(v̄i,�), q(v⇤j ,�)}dF (�) >

R 1
0 max{q(v⇤i ,�), q(v⇤j ,�)}dF (�), contradicting opti-

mality of (v⇤1, v
⇤
2).

(ii) This follows from Lemma 5.

(iii) Using Proposition 2(ii), any FPT such that the supplier breaks even has a unique equilibrium

with (v1, v2) = (1/2, 1/2). For A = 2C and t = 0, the participation constraint of the suppliers binds.

Hence, this contest gives the highest buyer surplus within the class of FPTs, namely

S
fpt
B =

Z 1/2

0

✓
 � b

✓
1

2
� �

◆◆
f (�) d� +

Z 1

1/2

✓
 � b

✓
� � 1

2

◆◆
f (�) d� � 2C

=  +

Z 1/2

0
b�f (�) d� �

Z 1

1/2
b�f (�) d� � 2C.

By Lemma 2, in an auction the winning supplier bids exactly the quality di↵erence. Hence, the

revenue of supplier 1 (supplier 2 follows by symmetry) is

⇧a
1 = F (v⇤1)�q (v⇤1, v

⇤
2) +

Z 1/2

v⇤1

(q (v⇤1,�)� q (v⇤2,�)) f (�) d�

=
b (v⇤2 � v

⇤
1)

4
+

Z 1/2

v⇤1

(q (v⇤1,�)� q (v⇤2,�)) f (�) d�.

Thus whenever C < b (v⇤2 � v
⇤
1) /4, the participation constraint of the suppliers is satisfied even with

t = 0. Further, in any state of the world, the buyer’s payo↵ is equal to the quality of the losing

supplier. Then, the buyer surplus in an auction with t = 0 is

S
a
B =

Z 1/2

0
( � b (v⇤2 � �)) f (�) d� +

Z 1

1/2
( � b (� � v

⇤
1)) f (�) d�

=  +

Z 1/2

0
b�f (�) d� �

Z 1

1/2
b�f (�) d� � bv

⇤
2

2
+

bv
⇤
1

2

Thus Sfpt
B � S

a
B > 0 holds if bv⇤2/2� bv

⇤
1/2� 2C > 0 or equivalently b (v⇤2 � v

⇤
1) /4 > C.

When b (v⇤2 � v
⇤
1) /4 < C < ⇧a

1, the participation constraint is still satisfied with t = 0, but the

buyer prefers the FPT to the auction. When ⇧a
1 < C, the participation constraint in the auction
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is satisfied only with su�ciently large positive subsidies. In this case, the buyer implements the

social optimum by using an auction with t = C � ⇧a
1 with zero supplier surplus. Obviously this

outperforms the ine�cient FPT.

A.4.2 Proof of Corollary 1

Denote the minimum allowable price with P . If v1 6= v2 in equilibrium, by Proposition 2(ii), the

contest is not an FPT. Suppose that v1 < v2. Since P is convex, by Lemmas 2 and 3, the buyer

pays qi � qj + P to the supplier with qi � qj in equilibrium. Thus, for any �, the buyer surplus

is min{q1, q2} � P . Hence, the surplus of a buyer who induces v1 < v2 with P is SB (v1, v2) =
R (v1+v2)/2
0 q2 (v2,�) dF (�) +

R 1
(v1+v2)/2

q1 (v1,�) dF (�)� P . Thus

dSB

dv1
=

Z 1

v1+v2
2

@q1

@v1
dF (�) > 0;

dSB

dv2
=

Z v1+v2
2

0

@q2

@v2
dF (�) < 0.

Thus, the buyer surplus is maximal for v1 = v2 and P = 0. Given v1 = v2, the buyer surplus is

maximal for v1 = v2 = 1/2, the unique equilibrium of an FPT with A arbitrarily close to 0. Given

(T2), it is an equilibrium for A = 0.
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