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Abstract

Confidence intervals in econometric time series regressions suffer from notorious cover-
age problems. This is especially true when the dependence in the data is noticeable and
sample sizes are small to moderate, as is often the case in empirical studies. This paper
suggests using the studentized block bootstrap and discusses practical issues, such as the
choice of the block size. A particular data-dependent method is proposed to automate the
method. As a side note, it is pointed out that symmetric confidence intervals are preferred
over equal-tailed ones, since they exhibit improved coverage accuracy. The improvements
in small sample performance are supported by a simulation study.
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1 Introduction

Regressions in macroeconomics and finance typically involve explanatory variables and/or error
variables that exhibit serial dependence. It is well-known that standard regression theory does
not apply to such settings. Appropriate asymptotic theory for time series regression has been
developed and is routinely applied in practice; for example, see Hannan (1970) or White (2001).
Over the last decade, however, the literature has shown that the finite sample properties of
standard (or normal theory) methods are often lacking in practice; a common phenomenon
is that confidence intervals undercover and that hypothesis tests overreject. We focus on the
construction of confidence intervals in the remainder of the paper; but the ideas also apply to
hypothesis tests.

A number of recent proposals have been made to construct confidence intervals that exhibit
improved coverage accuracy. The two most common proposals, arguably, are prewhitening
(Andrews and Mohanan, 1992; Newey and West, 1994) and block bootstrapping. To achieve
asymptotic refinements based on the block bootstrap, it is important to use a studentization. In
the general context of smooth functionals of sample means, this importance was pointed out by
Davison and Hall (1993) and Götze and Künsch (1996). Lahiri (1996) established asymptotic
refinements of an appropriate studentized bootstrap M -estimator, though he considered the
case of fixed covariates. Hall and Horowitz (1996) and Andrews (2001) established asymptotic
refinements of the block bootstrap for studentized statistics in the more general framework of
GMM estimators, though they used somewhat restrictive dependence conditions.

Nevertheless, it seems that the (studentized) block bootstrap has not found wide approval of
practitioners yet. As Horowitz (2001) puts it: “There are also unresolved problems in applying
the bootstrap to a stationary, weakly dependent data generating process (DGP) when . . . a
model that reduces the DGP to random sampling from a distribution is unavailable. The block
bootstrap is the best-known method for implementing the bootstrap in such situations, but the
performance of the block bootstrap in Monte Carlo experiments has been disappointing.” We
believe that a major contribution to this negative point of view has been the almost complete
neglect in the relevant literature of the choice of the block size in practice. Since this choice
can have a dramatic effect on the finite-sample properties, few practitioners should be willing
to use the block bootstrap without any guidance as how to select the block size.

We discuss how to implement the studentized block bootstrap in the context of time series
regressions. By detailing the approach and offering a concrete suggestion for the choice of
the block size, we provide a useful method that is safe to apply in practice. In addition, it is
mentioned that when two-sided confidence intervals are to be constructed, one should employ
symmetric intervals as opposed to equal-tailed intervals, since the former tend to enjoy better
coverage properties.

The remainder of the paper is organized as follows. Section 2 presents the model and
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the inference problem. Section 3 reviews the normal theory. Section 4 discusses the block
bootstrap and details how to studentize in the context of time series regressions. Section 5
presents some asymptotic theory. Section 6 addresses the choice of the block size, which is
an important model parameter. Section 7 considers finite-sample performance by means of a
simulation study. Finally, Section 8 summarizes the findings. All tables appear in Section 9
at the end of the paper.

2 The Model

We consider the standard regression model

yt = X ′
tβ + εt, t = 1, . . . , T

where β ∈ RI p is the unknown regression parameter and (X ′
t, εt)′ is a weakly dependent, sta-

tionary sequence. The ordinary least squares (OLS) estimator for β is given by

β̂T =

(
T∑

t=1

XtX
′
t

)−1 T∑
t=1

Xtyt

A critical assumption to ensure its consistency is E(Xtεt) = 0, t = 1, . . . , T, that is, the regres-
sors are uncorrelated with the error term. This assumption is typically implied by economic
considerations, such as a rational expectation model. Under certain regularity conditions,
the OLS estimator β̂T will have an asymptotic normal distribution. We do not consider any
nonstandard asymptotics, such as unit root regressions.

Interest focuses on constructing confidence intervals for a real-valued parameter θ = a′β,
where a is a fixed and known p× 1 vector. Quite often θ will simply be a particular regression
coefficient βi of interest. The restriction to real-valued parameters is made mainly to give
a natural setting for the construction of confidence intervals. But other scenarios could be
considered as well. For example, one might be interested in testing a general linear constraint
of the form Rβ, where R is a fixed and known j × p matrix. The method proposed can be
easily adapted to testing problems; see Remark 4.1.

3 Normal Theory

Under nonrestrictive regularity conditions,
√

T (β̂T − β) L=⇒ N(0,Σ), where Σ is a positive-
definite p × p matrix and L=⇒ denotes convergence in distribution (or convergence in law).
This implies

√
T (a′β̂T − θ) L=⇒ N(0, a′Σa), which would allow one to construct an asymptotic

normal theory confidence interval for θ if Σ were known. Unfortunately, Σ depends on the
unknown underlying probability mechanism. The standard way of making inference is therefore
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to consistently estimate the limiting covariance matrix Σ by an estimator Σ̂T and to pretend
the distribution of

√
T (a′β̂T − θ) is given by N(0, a′Σ̂T a), that is, to use the plug-in principle.

As is well-known,

Σ = lim
T→∞

(
1
T

T∑
t=1

XtX
′
t

)−1
1
T

T∑
s=1

T∑
t=1

EεsXs(εtXt)′
(

1
T

T∑
t=1

XtX
′
t

)−1

Since the series {Xt} is observed, consistent estimation of Σ only requires a consistent
estimator of

JT ≡
1
T

T∑
s=1

T∑
t=1

E
[
εsXs(εtXt)′

]
The most popular approach to estimate JT is by means of a kernel technique. In practice
this involves choosing a real-valued kernel function k(·) and bandwidth ST . The kernel k(·)
typically satisfies the three conditions k(0) = 1, k(·) is continuous at 0, and limx→±∞ k(x) = 0.
For more details on kernel estimation and a number of popular kernels, see Priestley (1981,
Chapter 6) or Andrews (1991), among others. For related approaches and earlier references,
see Robinson and Velasco (1997) and Den Haan and Levin (1997).

An important feature of a kernel is its characteristic exponent 1 ≤ q ≤ ∞, determined by
the smoothness of the kernel at the origin. Note that the bigger q, the smaller is the asymptotic
bias of a kernel variance estimator; on the other hand, only kernels with q ≤ 2 yield estimates
that are guaranteed to be positive semi-definite in finite samples. Most of the commonly used
kernels have q = 2, such as the Parzen, Tukey-Hanning, and Quadratic-Spectral (QS) kernels,
but exceptions do exist. For example, the Bartlett kernel has q = 1 and the Truncated kernel
has q = ∞. For a broader discussion on this issue, see Priestley (1981, Chapter 6) for example.

Once a particular kernel k(·) has been chosen for application, one must pick the band-
width ST . Several automatic methods, based on various asymptotic optimality criteria, are
available to this end; for example, see Andrews (1991) and Newey and West (1994). Note that
the ‘optimal’ bandwidth generally depends on the underlying stochastic mechanism generating
the data, the choice of the kernel k(·), and the sample size T .

Denote the kernel estimator of JT by ĴT . The kernel estimator of Σ is then defined as

Σ̂T =

(
1
T

T∑
t=1

XtX
′
t

)−1

ĴT

(
1
T

T∑
t=1

XtX
′
t

)−1

Finally, the kernel estimator of the limiting variance a′Σa of θ̂T is given by

σ̂2
T ≡ a′Σ̂T a (1)

and one can construct normal theory confidence intervals based on this estimator.

Unfortunately, normal theory intervals often work unsatisfactorily in small samples, espe-
cially when the dependence structure of the underlying data is strong; again, see Andrews
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(1991) and Newey and West (1994). The method of prewhitening, dating back to Press and
Tukey (1956), has been suggested. For details the reader is referred to Priestley (1981, Chap-
ter 7) and Andrews and Monahan (1992), among others. According to empirical studies
in Andrews and Monahan (1992) and Newey and West (1994), confidence intervals based on
prewhitened kernel estimators indeed exhibit improved finite sample performance, though they
are still not perfectly satisfactory.

4 The Block Bootstrap and How to Studentize

Given the success of the bootstrap in regression settings with independent observations (Wu,
1986), it is natural to apply an appropriate bootstrap method to time series regressions. Such a
method has to take into account the time series structure of both the regressors and the error
variables. In the absence of semi-parametric structural models for these variables, such as
ARMA or VAR models with i.i.d. innovations, the common approach is to resample blocks of
data. For ease of notation, let Zt = (X ′

t, yt)′, so the observed data is {Z1, . . . , ZT }. Also denote
the true probability mechanism by P . The most popular time series bootstrap is the block
bootstrap due to Künsch (1989) and Liu and Singh (1992). It considers overlapping blocks of
size b, namely Yt = {Zt, . . . , Zt+b−1}, t = 1, . . . , T − b + 1. Assuming for the moment T = lb,
the method selects l blocks Y ∗

t at random and with replacement from the T − b + 1 available
blocks and concatenates them to arrive at the pseudo sequence {Y ∗

1 , . . . , Y ∗
l } = {Z∗

1 , . . . , Z∗
T };

in case T is not a multiple of b, one would do the same with the smallest l such that T < lb and
then truncate the pseudo sequence at T observations. Denote by P ∗

T the bootstrap distribution
(conditional on the observed data) of the pseudo sequence {Z∗

1 , . . . , Z∗
T }. Let β̂∗T be the OLS

estimator of β computed from the pseudo sequence and let θ̂∗T be the corresponding linear
combination a′β̂∗T . A straightforward bootstrap approximation of the sampling distribution of
the OLS estimator β̂T is then

LP {θ̂T − θ} ≈ LP ∗
T
{θ̂∗T − θ̂T } (2)

Here, the general notation LQ{W} denotes the law of a random variable W under a probability
mechanism Q.

The relation (2) can now be used to construct an approximate confidence interval for θ. This
particular bootstrap approximation is usually referred to as the hybrid bootstrap (Hall, 1992)
or the basic bootstrap (Davison and Hinkley, 1997); we shall use the latter notation henceforth.
A problem with the block bootstrap is that, due to ‘edge effects’, θ̂T is not equal to θ(P ∗

T ),
the parameter θ corresponding to the bootstrap distribution P ∗

T . Lahiri (1992), in the context
of the sample mean, showed that this failure of the block bootstrap has negative second-order
effects that can be remedied by employing the parameter of the bootstrap distribution, θ(P ∗

T ),
in the centering. In our application this would correspond to the approximation

LP {θ̂T − θ} ≈ LP ∗
T
{θ̂∗T − θ(P ∗

T )}
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It might be useful to further clarify what this parameter is exactly. (We thank a referee
for this suggestion and corresponding details.) Focusing on β first, we have

β = arg min E

[
1
T

T∑
t=1

(yt −X ′
tβ)2

]

and therefore

β =

[
E

(
1
T

T∑
t=1

(XtX
′
t)

)]−1

E

(
1
T

T∑
t=1

Xtyt

)
Because β(P ∗

T ) is the bootstrap analog of β it follows that

β(P ∗
T ) =

[
E∗
(

1
T

T∑
t=1

(X∗
t X∗′

t )

)]−1

E∗
(

1
T

T∑
t=1

X∗
t y∗t

)

where E∗ denotes the expectation with respect to the bootstrap distribution. Defining weights
αT (t) = (T − b + 1)−1 min(t/b, 1, (T − b + 1)/b), the ‘edge effects’ of the block bootstrap now
imply that

β(P ∗
T ) =

[
T∑

t=1

αT (t)XtX
′
t

]−1 T∑
t=1

αT (t)Xtyt

which is not equal to β̂T . Finally, θ(P ∗
T ) = a′β(P ∗

T ), which is not equal to θ̂T = a′β̂T .

Andrews (2002) has suggested an alternative approach to recentering the bootstrap distri-
bution; see also Hall and Horowitz (1996) and Lahiri (1996). It consists of changing the way
one computes the bootstrap estimator of β, but then centering it by subtracting β̂T again. The
alternative bootstrap estimator is defined as

β̄∗T = arg min
1
T

T∑
t=1

[(
y∗t −X∗′

t β
)2 − E∗

(
g∗t

(
β̂T

))′
β

]

where g∗t

(
β̂T

)
is the score for observation t with bootstrap data and evaluated at β̂T ; in

particular, here g∗t

(
β̂T

)
= −X∗

t

(
y∗t −X∗′

t β̂T

)
. For the block bootstrap

E∗
(

1
T

T∑
t=1

g∗t

(
β̂t

))
=

T∑
t=1

αT (t)gt

(
β̂T

)

which in general is not zero and therefore β̄∗T is in general not equal to β̂∗T . In this approach,
one should use the approximation

LP {θ̂T − θ} ≈ LP ∗
T
{θ̄∗T − θ̂T }

where θ̄∗T = a′β̄∗T . This second approach seems to have been favored by the time series literature
that considers more complicated settings than just smooth functions of means, such as the OLS
estimator.
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But the simplest solution avoids any extra computations at all. Politis and Romano (1992)
introduced the circular block bootstrap where the original data are ‘wrapped’ in a circle prior
to resampling blocks; edge effects are thus eliminated. This third approach ensures that
θ̂T = θ(P ∗

T ) for linear statistics θ̂T , such as OLS estimators and linear combinations of them.
(It would not work in more complicated settings, though.)

Fitzenberger (1997) applied the basic block bootstrap to time series regressions. However,
its finite sample performance is not superior to normal theory intervals. The reason for this
‘disappointment’ has its roots in the much-studied, simpler setting of the sample mean for i.i.d.
observations. It is well-known (e.g., Hall, 1992) that in this setting the basic bootstrap does
not provide an asymptotic refinement over the CLT normal interval in the sense that both
are only first order correct. To achieve second order correctness, a more sophisticated method
such as the studentized bootstrap or the BCa bootstrap has to be employed. This result
carries over to the dependent case. Davison and Hall (1993) and Götze and Künsch (1996),
abbreviated by GK in the remainder of this paper, considered inference for smooth functions
of means in the context of stationary, dependent observations. They showed that the basic
bootstrap is only first order correct while the studentized bootstrap provides an asymptotic
refinement, at least under regularity conditions that ensure an Edgeworth expansion. It turns
out to be important that the studentization be done in a certain way; see the discussion
below. Moreover, the block bootstrap distribution needs to be centered around the mean of
the bootstrap distribution rather than the sample mean, a problem that could be avoided by
the use of the circular bootstrap again. Since the OLS estimator can be expressed as a smooth
function of appropriate sample means, the corresponding theory actually follows from the work
of GK; see Section 5.

The studentized bootstrap, together with the proper centering, leads to the approximation

LP {(θ̂T − θ)/σ̂T } ≈ LP ∗
T
{(θ̂∗T − θ(P ∗

T ))/σ̂∗T } (3)

which again can be used to construct a confidence interval for θ. Here, σ̂T is an estimator of
the limiting standard deviation of θ̂T and σ̂∗T is an estimator of the limiting standard deviation
of θ̂∗T .

Following GK, these two estimators do not have the same functional form. Since the
bootstrap sequence is generated by concatenating i.i.d. blocks of data, one can exploit this
particular dependence structure to arrive at the following ‘natural’ estimator σ̂∗T in the context
of time series regressions: Assuming for simplicity that T = lb, where b is the block size used
to construct the block bootstrap sequence, define

V̂ ∗
t = X∗

t (y∗t −X∗
t β̂∗T ), t = 1, . . . , T

ζj =
1√
b

b∑
t=1

V̂ ∗
(j−1)b+t, j = 1, . . . , l
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and

Σ̂∗
T =

(
1
T

T∑
t=1

X∗
t (X∗

t )′
)−1

1
l

l∑
j=1

ζjζ
′
j

(
1
T

T∑
t=1

X∗
t (X∗

t )′
)−1

Then, the ‘natural’ estimator of the limiting standard deviation of θ̂∗T is given by

σ̂∗T =
√

a′Σ̂∗
T a

On the other hand, the original sequence is a stationary time series without any ‘special’ depen-
dence structure. It is therefore natural to use a kernel estimator for σ̂T based on equation (1).

Remark 4.1 We have discussed how to use the studentized bootstrap in order to construct
confidence intervals for a real-valued parameter θ = a′β, where a is a fixed known p×1 vector.
At times, interest might instead focus on a multivariate parameter θ = Rβ, where R is a fixed
and known j × p matrix. In this setting, it is more natural to consider hypothesis tests of the
sort H0 : Rβ = r0. The test can be performed by approximating the sampling distribution of
the Wald test statistic under the null hypothesis, using the bootstrap in the following way.

LP {(Rβ̂T − r0)′(RΣ̂T R′)−1(Rβ̂T − r0)} ≈H0

LP ∗
T,0
{(Rβ̂∗T − r0)′(RΣ̂∗

T R′)−1(Rβ̂∗T − r0)}

When the bootstrap is used for the purposes of hypothesis testing, it is crucial that the
bootstrap law P ∗

T,0 satisfy the constraints of the null hypothesis (e.g., Politis et al., 1999,
Section 1.8). For our application it has to be ensured that Rβ(P ∗

T,0) = r0. This cannot be
achieved by simply resampling blocks of the observed data. One way of enforcing the null
hypothesis in P ∗

T,0, based on the circular block bootstrap, is the following. Denote by β̃T the
constrained least squares estimators based on the observed data and satisfying Rβ̃T = r0.
Also, let ε̂t = yt−X ′

tβ̂T and yt,0 = X ′
tβ̃T + ε̂t. Then, P ∗

T,0 resamples blocks from the ‘null data’
(X ′

1, y1,0)′, . . . , (X ′
T , yT,0)′. If the ‘regular’ block bootstrap is used instead, one needs to adjust

for the edge effects in addition; see the discussion above.

5 Relevant Theory

5.1 Summary of the Theory Concerning Studentization

The OLS estimator θ̂T can be written as a smooth function of sample means. Hence, the first
and second-order theory developed by GK applies directly; see their paper for a sufficient set
of regularity conditions, such as moment and mixing conditions. GK showed that in order
to obtain asymptotic refinements over normal theory, it is crucial to use a low bias variance
estimator in the studentization of the OLS estimator θ̂T . In the computation of σ̂T they
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consequently propose the Truncated kernel which, having characteristic exponent q = ∞,
enjoys minimum asymptotic bias among all kernels.

With this choice, the bootstrap approximation (3) has error OP (n−3/4+ε), where ε is a small
number (GK); in contrast, the approximation (2) has error larger than OP (n−1/2), as does
normal theory. It needs to be pointed out, though, that the Truncated kernel may result in a
negative variance estimate in finite sample. Should this occur, we propose to switch to a kernel
estimator based on the QS kernel, which is guaranteed yield a nonnegative variance estimate
as its characteristic exponent is q = 2. With this choice, the bootstrap approximation (3) has
error OP (n−2/3+ε), where ε is a small number (GK).

5.2 Some Theory Concerning Symmetrization

The improvement in the approximation of the sampling distribution of the (studentized) OLS
estimator due to the bootstrap results in enhanced coverage accuracy of one-sided confidence
intervals compared to normal theory (GK). One the other hand, two-sided equal-tailed boot-
strap confidence intervals are not more accurate (in the sense of the rate of convergence to
the nominal confidence level) than two-sided normal theory confidence intervals. The same
results hold true in the simpler setting of the sample mean with i.i.d. data (Hall, 1992). Still,
in this setting, equal-tailed bootstrap confidence intervals provide an improvement in terms of
the constant (Hall, 1992).

When two-sided confidence intervals are desired, an alternative to equal-tailed intervals
are symmetric intervals, based on the bootstrap approximation of the two-sided sampling
distribution function

LP {|θ̂T − θ|/σ̂(θ̂T )} ≈ LP ∗
T
{|θ̂∗T − θ(P ∗

T )|/σ̂∗(θ̂∗T )}

In many contexts, such intervals are more accurate than two-sided normal theory intervals.
Examples include the sample mean with i.i.d. data and OLS estimators for regression pa-
rameters with independent data (Hall, 1992). More generally, Hall and Horowitz (1996) and
Andrews (2001) have obtained such results in the context of GMM estimators with stationary,
dependent data, covering the case of OLS estimators. However, for this they have to assume a
stricter dependence condition: the asymptotic variances of the estimators of interest can only
depend on a finite (and known) number of correlations, so that kernel variance estimators are
dispensed with.

It should be mentioned that Lahiri (1996) studied asymptotic refinements of the studen-
tized block bootstrap for general M -estimators in multiple regressions, which include the OLS
estimator as a special case. But he considered a setting where the covariates Xt are fixed and
known while the error terms εt are a stationary, dependent sequence. This setting would be
inappropriate for most economic applications.
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Therefore, the results in the literature so far about asymptotic refinements of symmetric
block bootstrap confidence intervals do not cover the setting of this paper. We now present
some arguments to fill this gap.

Let JT (x, P ) = P{(θ̂T − θ)/σ̂T ≤ x}. We assume the existence of an Edgeworth expansion
of the form

JT (x, P ) = Φ(x) + n−γR1(x, P )ϕ(x) + n−δR2(x, P )ϕ(x) + o(n−δ) (4)

Here δ > γ, R1(x, P ) is an even, differentiable function of x, R2(x, P ) is an odd function of x (or
at least not even, for our purposes), Φ denotes the standard normal c.d.f. with density ϕ. For
the existence of such expansions, see Hall (1992) and Lahiri (2003). Sufficient conditions are
often stated in terms of smoothness and moment assumptions, and the expansion usually holds
uniformly in x. In particular, in both the independent and dependent cases, γ is typically equal
to 0.5; see Subsection 6.4.4. of Lahiri (2003). The value of δ is usually 1 in i.i.d. problems, but is
typically < 1 in dependent cases, and its exact value depends heavily on the estimator σ̂T . Our
heuristic considerations below do not require knowing the exact value, but we will henceforth
assume δ ≤ 2γ ≤ 1. We would like to argue that the coverage error of equal-tailed intervals
is larger than that of symmetric intervals. The following heuristics generalize those in Hall
(1992).

The expansion (4) implies a Cornish-Fisher type expansion for quantiles as follows. Let
qT (1− α, P ) denote a 1− α quantile of JT . Then, it easily follows that, for some function R3

(depending on R1 and R2),

qT (1− α, P ) = z1−α − n−γR1(z1−α, P ) + n−δR3(z1−α, P ) + o(n−δ)

If these quantile are known, a theoretical equal-tailed confidence interval of nominal level 1−α

is given by
{θ̃ : qT (α/2, P ) ≤ (θ̂T − θ̃)/σ̂T ≤ qT (1− α/2, P )}

The bootstrap in essence replaces qT (·, P ) by q̂T (·) satisfying an expansion of the form

q̂T (1− α) = z1−α − n−γR̂1 − n−δR̂3 + oP (n−δ)

= z1−α − n−γR1(z1−α, P ) + OP (n−γ |R̂1 −R1(z1−α, P )|) + OP (n−δ)

By plugging both q̂T (1−α/2) into (4) and subtracting the expression when plugging in q̂T (α/2),
the evenness of the function R1 implies that the expansion for the resulting coverage error does
not have a term of order n−γ , but the order of error is at best of order n−δ. However, the
coverage error is at best O(n−δ) (and possibly larger, depending on OP (|R̂1 −R1|)).

We will now argue that coverage of symmetric bootstrap confidence intervals is o(n−δ) (and
is usually much smaller depending on higher order Edgeworth approximations). To appreciate
why, (4) implies an expansion for

J|·|,T (x, P ) = P{|θ̂T − θ|/σ̂T ≤ x}
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(by evaluating (4) at both x and subtracting it at −x). Using the evenness of R1 and ϕ, we
find

J|·|,T (x, P ) = Φ(x)− Φ(−x) + n−δR4(x, P )ϕ(x) + o(n−δ) (5)

where R4(x, P ) = R2(x, P )−R2(−x, P ). If sT (1−α, P ) denotes a 1−α quantile of J|·|,T (·, P ),
then (5) implies

sT (1− α, P ) = z1−α/2 − n−δ0.5R4(z1−α/2, P ) + o(n−δ)

A theoretical symmetric confidence interval of nominal level 1− α is given by

{θ̃ : |θ̂T − θ̃|/σ̂T ≤ sT (1− α, P )}

The bootstrap replaces sT (·, P ) by an estimate ŝT (·) which should satisfy

ŝT (1− α) = z1−α/2 − n−δ0.5R̂4 + oP (n−δ) (6)

which equals
z1−α/2 − n−δ0.5R4(z1−α/2, P ) + oP (n−δ) (7)

if |R̂4−Rn| = oP (1). To evaluate the coverage error, plug (6) into (7) and use the delta method
to deduce the coverage error of the symmetric bootstrap confidence interval is of order o(n−δ).

6 Choice of the Block Size

The application of the block bootstrap requires a choice of the block size b. Asymptotic
theory typically only requires that b → ∞ and that b/T → 0 as T → ∞; for example, see
Künsch (1989) and Politis and Romano (1992). But these requirements are of little practical
help. The choice of the block size is a difficult but important problem, comparable to the choice
of the bandwidth for kernel variance estimators. In the relevant literature this problem is quite
often either ignored or delayed to future research, which is a regrettable state of affairs. Our
aim is to propose an inference method for time series regressions that is not only of academic
interest but will also find the approval of practitioners. Therefore, we feel the need to provide
at least a reasonable ad hoc method that can be used in practice, though we are unable to
completely solve this difficult problem (and it appears unlikely that a ‘perfect’ solution will
ever be found).

A notable exception in the literature, dealing explicitly with the problem of choosing the
block size, is Hall et al. (1996). They showed that the optimal block size (minimizing the
asymptotic mean squared error or MSE) depends significantly on context and is given by
C(P )n1/k, where C(P ) is a constant and k = 3, 4, or 5 for the contexts of variance estima-
tion, estimation of a one-sided distribution function, or estimation of a two-sided distribution
function, respectively. The constant C(P ) depends on the underlying joint distribution P and
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the context but a way is suggested to estimate it in practice. The problem with trying to
adopt their approach for our purposes is two-fold. First, all the asymptotic MSE calculations
are done for the basic block bootstrap and thus would no longer be valid for the studentized
block bootstrap. Second, for the estimation of a distribution function, C(P ) depends on the
argument of that function, that is, on y in F (y) = ProbP {Y ≤ y} for a general random vari-
able Y . Since for the construction of a confidence interval one needs to estimate a quantile of a
distribution, it seems that the corresponding y would first have to be found in some recursive
fashion.

Instead, we will propose a method which can be applied to an arbitrary bootstrap method,
whether studentized or not, and which immediately tackles the task of estimating a specific
quantile as opposed to estimating the distribution function at a given point. To this end,
we suggest to use a calibration method, a concept dating back to Loh (1987, 1988, 1991).
One can think of the actual coverage level 1 − λ of a block bootstrap confidence interval as
a function of the block size b, conditional on the underlying probability mechanism P , the
nominal confidence level 1− α, and the sample size T . The idea is now to adjust the ‘input’ b

in order to obtain the actual coverage level close to the desired one. Hence, one can consider
the block size calibration function g : b → 1 − λ. If g(·) were known, one could construct an
‘optimal’ confidence interval by finding b̃ that minimizes |g(b)− (1−α)| and use b̃ as the block
size of the time series bootstrap; note that |g(b)− (1−α)| = 0 may not always have a solution.

Of course, the function g(·) depends on the underlying probability mechanism P and is
therefore unknown. We now propose a bootstrap method to estimate it. The idea is that in
principle we could simulate g(·) if P were known by generating data of size T according to
P and by computing confidence intervals for θ for a number of different block sizes b. This
process is then repeated many times and for a given b one estimates g(b) as the fraction of the
corresponding intervals that contain the true parameter. The method we propose is identical
except that P is replaced by an estimate P̂T .

Algorithm 6.1 (Choice of the Block Size)

1. Fit a model P̂T to the observed data (X ′
1, y1)′, . . . , (X ′

T , yT )′.

2. Fix a selection of reasonable block sizes b.

3. Generate K pseudo sequences ((X∗
1 )′, y∗1)

′
k . . . , ((X∗

T )′, y∗T )′k, k = 1, . . . ,K, according
to P̂T . For each sequence, k = 1, . . . ,K, and for each b, compute a confidence inter-
val CIk,b.

4. Compute ĝ(b) = #{θ(P̂T ) ∈ CIk,b}/K.

5. Find the value of b̃ that minimizes |ĝ(b)− (1− α)|.
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The role of the semi-parametric model in Algorithm 6.1 can be compared to the role of the
semi-parametric model in the prewhitening process for kernel variance estimation. Even if the
model is misspecified, it should contain some information on the dependence structure of the
true mechanism P that can be exploited to estimate g(·). In practice we suggest to employ
a VAR model, whose order could be estimated by one of the well-known information criteria,
say, in conjunction with bootstrapping the estimated residuals.

Remark 6.1 Note that Algorithm 6.1 is essentially a double bootstrap and therefore compu-
tationally more expensive, by an order of magnitude, than the application of the bootstrap
method once the block size has been determined.

Remark 6.2 If a bootstrap method is used for hypothesis testing rather than confidence
interval construction, an analogous algorithm can be used by focusing on the significance level
of the test rather than on the confidence level of the interval. Note that in this case the semi-
parametric model P̂T should be replaced by a semi-parametric model P̂T,0 which satisfies the
constraints of the the null hypothesis; the remaining details are straightforward.

7 Simulation Study

The purpose of this section is to compare the small sample performance of various methods to
construct two-sided confidence intervals in time series regressions. Performance is measured
in terms of estimated coverage probability of nominal 95% intervals, based on M = 2, 000
repetitions. The methods included in the study are normal theory intervals as well as basic
and studentized bootstrap intervals. A few words regarding the various methods are in order.

The normal theory intervals use the QS kernel, both for the standard interval and for the
prewhitened interval. The prewhitening is done using a VAR(1) model. The automatic choice
of bandwidth is the one of Andrews (1991). We also tried the one of Newey and West (1994)
but the differences were not meaningful and so the corresponding results are not reported.

As was discussed in Section 5, one can hope to improve upon the equal-tailed basic boot-
strap confidence intervals by both studentizing and symmetrizing. To judge the magnitude of
the corresponding improvements, we include equal-tailed basic, equal-tailed symmetric, equal-
tailed studentized, and symmetric studentized intervals in the study. The study uses the
circular block bootstrap in order to avoid a recentering of the bootstrap distributions; see
Section 4. The studentized bootstrap intervals use the Truncated kernel for the studentization
of the statistic based on the original sample, where the bandwidth is equal to the block size
of the block bootstrap (GK). In case the resulting estimator σ̂T is negative, we switch to the
QS kernel. (Depending on the data generating process, sample size, and block size used, for
the choices detailed below, a negative estimate σ̂T due to the Truncated kernel occurs with a
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frequency of up to 15%.) The following abbreviations are used to label the various confidence
interval types.

• NT: normal theory interval

• NT-PW: prewhitened normal theory interval

• BA-ET: equal-tailed basic bootstrap interval

• BA-SYM: symmetric basic boostrap interval

• STUD-ET: equal-tailed studentized bootstrap interval

• STUD-SYM: symmetric studentized bootstrap interval

To generate the data, we consider the classic design of Andrews (1991), which has also been
considered by Andrews and Monahan (1992), Fitzenberger (1997), and Politis et al. (1997),
among others. However, to speed up the computations, we include only one non-constant
regressor. The reason is that our data-dependent choice of the block size is computationally
quite expensive. This not really a problem for an application to a (single) real data set. But
it constitutes a problem in a simulation study when thousands of confidence intervals have to
be computed.

The basic design therefore looks as follows

yt = β1 + β2xt + εt

Throughout, we are concerned with constructing confidence intervals for the regression param-
eter β2. Without loss of generality, we set β1 = β2 = 0 when generating the data.

In the first model, AR(1)-HOMO, errors and regressors are independent AR(1) processes.

AR(1)-HOMO: xt = ρxt−1 + νt,j and εt = ρεt−1 + νε
t

Here, and for the following models, {νt} and {νε
t} are mutually independent white noise pro-

cesses.

The second model, AR(1)-HET, is a variation of the first one in the sense that multiplicative
heteroskedasticity is overlaid on the errors.

AR(1)-HET: xt = ρxt−1 + νt,j , ε̃t = ρε̃t−1 + νε
t and εt = |xt| ε̃t

In the third model, MA(1)-HOMO, both the errors and the regressors are independent
MA(1) processes.

MA(1)-HOMO: xt = νt,j + ξνt−1 and εt = νε
t + θνε

t−1
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For all three models, {νt} and {νε
t} are independent i.i.d. innovation sequences, having

a standard normal distribution. The values considered for the parameters ρ and ξ are 0.2,
0.5, and 0.8, respectively. The sample size is T = 64. All bootstrap methods use the data-
dependent choice of block size of Algorithm 6.1. The input block sizes for the algorithm are
b = 5, 12, 20. The semi-parametric model in Algorithm 6.1 is a VAR(1) with bootstrapping
the fitted residuals. For the latter, the circular block bootstrap with a small block size (b = 5)
is used to capture some left-over dependence in the residuals when the VAR(1) is misspecified,
as is the case for the MA(1)-HOMO model. Tables 1–3 present the results. They can be
summarized as follows.

• In accordance with Davison and Hall (1993) and Götze and Künsch (1996), the basic
bootstrap does not improve upon normal theory.

• In accordance with Andrews and Monahan (1992) and Newey and West (1994), prewhiten-
ing is useful in normal theory intervals.

• In accordance with Davison and Hall (1993) and Götze and Künsch (1996), the studen-
tized bootstrap improves upon the basic bootstrap and normal theory.

• In accordance with Subsection 5.2, symmetric bootstrap confidence intervals generally
improve upon equal-tailed ones, although this effect is noticeably stronger for the basic
bootstrap compared to the studentized bootstrap.

We are also interested in a formal test whether the method we suggest, STUD-SYM, is
superior to the other methods. To this end, for each scenario and each other competitor, we
compute a p-value based on a permutation test. The details are as follows. Let 1 − α be the
nominal coverage level and let 1 − λ1 and 1 − λ2 be the two actual coverage levels, where we
use the subscript 1 for the competing method and the subscript 2 for STUD-SYM. Further,
define the two absolute coverage error as η1 = |(1 − λ1) − (1 − α)| = |α − λ1| η2 = |α − λ2|,
respectively. We want to test

H0 : η1 − η2 = 0 vs. H1 : η1 − η2 > 0 (8)

The simulations yield the estimated coverage probabilities for the two methods, denoted by
1− λ̂1 and 1− λ̂2. The observed test statistic is then given as

TSobs = η̂1 − η̂2 = |α− λ̂1| − |α− λ̂2|

The corresponding p-value is obtained via a suitable permutation test. To this end we con-
sider the indicator pairs (I1,m, I2,m) for m = 1, . . . , 2, 000. Here I2,m equals 1 if the STUD-SYM
confidence interval computed from the mth simulated data set contains the true parameter
β2 = 0, and it equals zero otherwise. I1,m is defined analogously for the competing method.
The idea now is to randomly permute the ordering within each indicator pair. In this way,
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we derive the distribution of the test statistic under the null hypothesis H0 : η1 − η2 = 0. The
exact null distribution is computed from all 22,000 possible permutations and is therefore not
feasible. So we resort to a stochastic approximation based on K = 9, 999 permutations chosen
at random; see Romano (1989). From each permuted set of indicator pairs, we compute the
test statistic, resulting in TS0,k for k = 1, . . . ,K. Following (4.11) in Davison and Hinkley
(1997), the p-value for the testing problem (8) is now obtained as

p̂ =
#{TS0,k ≥ TSobs}+ 1

K + 1
(9)

The results are contained in the last column of Tables 1–3, respectively. In most scenarios,
the outperformance of STUD-SYM over the competitors is significant with the exception of
STUD-ET. The latter method performs six times worse than STUD-SYM (out of which two
times significantly) and tree times better than STUD-SYM (out of which never significantly).

Since we consider nine different scenarios (three models with three different parameter
values each), there are nine p-values corresponding to the comparison of any given confidence
interval with STUD-SYM. It is then also of interest to combine these individual p-values into
a test of ‘overall’ outperformance. To this end we employ the Z-transform test dating back to
Stouffer et al. (1949, page 49); also see Mosteller and Bush (1954). The test works as follows.
Let p̂1, . . . , p̂9 denote the nine individual p-values, let Φ(·) denote the cumulative distribution
function of the standard normal distribution, and let Φ−1(·) denote its inverse. Then define
the combined test statistic as

ZS =
∑9

i=1 Φ−1(p̂i)√
9

=
∑9

i=1 Zi

3

and the resulting p-value as
p̂S = Φ(Zs)

The intuition is that if all nine individual null hypotheses are true, then the Zi behave like
independent standard normal random variates and, as a result, so does ZS . The results are
contained in Table 4. It is shown that, in an overall sense, STUD-SYM outperforms all its
competitors significantly, including STUD-ET.

Alternatively, we carry out a ‘direct’ combined permutation test. To this end let η2,i be
the absolute coverage error of STUD-SYM in the ith scenario, i = 1, . . . , 9. Then the overall
absolute coverage error of STUD-SYM is defined as

η̃2 =
9∑

i=1

η2,i

The overall absolute coverage error of the competing method, η̃1 is defined analogously. We
want to test

H0 : η̃1 − η̃2 = 0 vs. H1 : η̃1 − η̃2 > 0 (10)
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The p-value is obtained via a permutation method similarly to (9), also based on a random
set of R = 9, 999 permutations. The results are contained in Table 5. Again, it is shown
that, in an overall sense, STUD-SYM outperforms all its competitors significantly, including
STUD-ET.

8 Conclusions

In this paper, the use of the studentized block bootstrap for time series regressions was pro-
posed. The relevant second-order theory follows from previous work. On the other hand, the
important problem of the choice of the block size had been rather neglected so far. We have
offered a practical suggestion to deal with this problem. Its main disadvantage, the compu-
tational cost, will diminish over time. The finite-sample performance of various confidence
interval types, measured by the empirical coverage probability, was examined via a simula-
tion study. Based on the results of this study, the studentized block bootstrap does indeed
yield improved performance compared to normal theory intervals and also the basic bootstrap.
Furthermore, two-sided symmetric bootstrap confidence intervals are superior to two-sided
equal-tailed bootstrap intervals.
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9 Tables

Table 1: Estimated coverage probabilities of various confidence intervals with nominal level 95%
and corresponding p-values. The first column describes the confidence interval; the second
column contains the estimated coverage probabilities, based on M = 2, 000 repetitions; and
the third column contains the p-value for the null hypothesis that the listed confidence interval
is equally good as STUD-SYM. Details are in Section 7.

AR(1)-HOMO model, ρ = 0.2

Interval Est. coverage p-value
NT 93.4 9.1
NT-PW 93.2 4.8
BA-ET 91.8 0.0
BA-SYM 92.8 0.9
STUD-ET 93.1 0.9
STUD-SYM 94.3

AR(1)-HOMO model, ρ = 0.5

Interval Est. coverage p-value
NT 89.2 0.0
NT-PW 91.3 0.0
BA-ET 87.9 0.0
BA-SYM 89.7 0.0
STUD-ET 94.2 46.1
STUD-SYM 94.3

AR(1)-HOMO model, ρ = 0.8

Interval Est. coverage p-value
NT 82.2 0.0
NT-PW 89.8 0.0
BA-ET 81.5 0.0
BA-SYM 86.2 0.0
STUD-ET 94.2 8.4
STUD-SYM 95.2
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Table 2: Estimated coverage probabilities of various confidence intervals with nominal level 95%
and corresponding p-values. The first column describes the confidence interval; the second
column contains the estimated coverage probabilities, based on M = 2, 000 repetitions; and
the third column contains the p-value for the null hypothesis that the listed confidence interval
is equally good as STUD-SYM. Details are in Section 7.

AR(1)-HET model, ρ = 0.2

Interval Est. coverage p-value
NT 90.8 0.0
NT-PW 90.5 0.0
BA-ET 87.5 0.0
BA-SYM 88.9 0.0
STUD-ET 93.8 26.5
STUD-SYM 94.2

AR(1)-HET model, ρ = 0.5

Interval Est. coverage p-value
NT 87.4 0.0
NT-PW 89.2 0.0
BA-ET 84.0 0.0
BA-SYM 86.3 0.0
STUD-ET 94.2 30.3
STUD-SYM 94.5

AR(1)-HET model, ρ = 0.8

Interval Est. coverage p-value
NT 77.9 0.0
NT-PW 85.6 0.0
BA-ET 73.9 0.0
BA-SYM 80.8 0.0
STUD-ET 93.3 0.6
STUD-SYM 94.6
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Table 3: Estimated coverage probabilities of various confidence intervals with nominal level 95%
and corresponding p-values. The first column describes the confidence interval; the second
column contains the estimated coverage probabilities, based on M = 2, 000 repetitions; and
the third column contains the p-value for the null hypothesis that the listed confidence interval
is equally good as STUD-SYM. Details are in Section 7.

MA(1)-HOMO model, ξ = 0.2

Interval Est. coverage p-value
NT 93.4 37.2
NT-PW 93.1 21.1
BA-ET 91.7 0.2
BA-SYM 92.9 12.3
STUD-ET 93.9 76.2
STUD-SYM 93.6

MA(1)-HOMO model, ξ = 0.5

Interval Est. coverage p-value
NT 90.3 0.0
NT-PW 92.0 1.3
BA-ET 89.1 0.0
BA-SYM 89.8 0.0
STUD-ET 93.7 72.2
STUD-SYM 93.5

MA(1)-HOMO model, ξ = 0.8

Interval Est. coverage p-value
NT 92.0 0.0
NT-PW 93.9 16.0
BA-ET 91.2 0.0
BA-SYM 92.0 0.0
STUD-ET 94.7 70.5
STUD-SYM 94.5
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Table 4: Combined p-values for the null hypothesis that the listed confidence interval is as good
or better than STUD-SYM. For each method, the combined p-value is obtained by applying the
Z-transform test to the individual p-values from the nine different scenarios used in Tables 1–3.
Details are in Section 7.

Interval Combined p-value
NT 0.0
NT-PW 0.0
BA-ET 0.0
BA-SYM 0.0
STUD-ET 2.9
STUD-SYM

Table 5: The p-values for the overall null hypothesis (10) that the listed confidence interval is
as good or better than STUD-SYM. For each method, the p-value is obtained by applying a
permutation test to the overall absolute coverage errors. Details are in Section 7.

Interval Combined p-value
NT 0.0
NT-PW 0.0
BA-ET 0.0
BA-SYM 0.0
STUD-ET 1.3
STUD-SYM
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