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Abstract

This article reviews important concepts and methods that are useful

for hypothesis testing. First, we discuss the Neyman-Pearson frame-

work. Various approaches to optimality are presented, including

finite-sample and large-sample optimality. Then, we summarize

some of the most important methods, as well as resampling meth-

odology, which is useful to set critical values. Finally, we consider

the problem of multiple testing, which has witnessed a burgeoning

literature in recent years. Along the way, we incorporate some

examples that are current in the econometrics literature. While

many problems with well-known successful solutions are included,

we also address open problems that are not easily handled with

current technology, stemming from such issues as lack of optimality

or poor asymptotic approximations.
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1. INTRODUCTION

This review highlights many current approaches to hypothesis testing in the econometrics

literature. We consider the general problem of testing in the classical Neyman-Pearson

framework, reviewing the key concepts in Section 2. As such, optimality is defined via the

power function. Section 3 briefly addresses control of the size of a test. Because the ideal

goal of the construction of uniformly most powerful tests (defined below) cannot usually

be realized, several general approaches to optimality are reviewed in Section 4, which

attempt to bring about a simplification of the problem. First, we consider restricting tests

by the concepts of unbiasedness, conditioning, monotonicity, and invariance. We also

discuss notions of optimality that do not place any such restrictions, namely maximin tests,

tests maximizing average power, and locally most powerful tests. Large-sample approaches

to optimality are reviewed in Section 5. All these approaches, and some in combination,

have been successfully used in econometric problems.

Next, various methods used to construct hypothesis tests are discussed. The generalized

likelihood ratio test and the tests of Wald and Rao are first introduced in Section 6 in the

context of parametric models. We then describe how these tests extend to the extremum

estimation framework, which encompasses a wide variety of semiparametric and nonpara-

metric models used in econometrics. Afterwards, we discuss in Section 7 the use of

resampling methods for the construction of critical values, including randomization

methods, the bootstrap, and subsampling.

Finally, Section 8 expands the discussion from tests of a single null hypothesis to the

simultaneous testing of multiple null hypotheses. This scenario occurs whenever more than

one hypothesis of interest is tested at the same time, and therefore it is common in applied

economic research. The easiest, and most common, approach to deal with the problem of

multiple tests is simply to ignore it and test each individual hypothesis at the usual nominal

level. However, such an approach is problematic because the probability of rejecting at

least one true null hypothesis increases with the number of tests, and can even become very

close to one. The procedures presented in Section 8 are designed to account for the

multiplicity of tests so that the probability of rejecting any true null hypothesis is con-

trolled. Other measures of error control are considered as well. Special emphasis is given to

the construction of procedures based on resampling techniques.

2. THE NEYMAN-PEARSON PARADIGM

Suppose data X is generated from some unknown probability distribution P in a sample

space �. In anticipation of asymptotic results, we may write X ¼ X(n), where n typically

refers to the sample size. A model assumes that P belongs to a certain family of probability

distributions {P�, � 2 O}, although we make no rigid requirements for O; it may be a

parametric, semiparametric, or nonparametric model. A general hypothesis about the

underlying model can be specified by a subset of O.
In the classical Neyman-Pearson setup that we consider, the problem is to test the null

hypothesis H0 : � 2 O0 against the alternative hypothesis H1 : � 2 O1. Here, O0 and O1 are

disjoint subsets of O with union O. A hypothesis is called simple if it completely specifies

the distribution of X, or equivalently a particular �; otherwise, a hypothesis is called com-

posite. The goal is to decide whether to reject H0 (and thereby decide that H1 is true) or

accept H0. A nonrandomized test assigns to each possible value X 2 � one of these two
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decisions, thus dividing the sample space � into two complementary regions, S0 (the region of

acceptance of H0) and S1 (the rejection or critical region). Declaring H1 is true when H0 is

true is called a Type 1 error, while accepting H0 whenH1 is true is called a Type 2 error. The

main problem of constructing hypothesis tests lies in the construction of a decision rule, or

equivalently the construction of a critical region S1, which keeps the probabilities of these two

types of errors to a minimum. Unfortunately, both probabilities cannot be controlled simul-

taneously (except in a degenerate problem). In the Neyman-Pearson paradigm, a Type 1 error

is considered the more serious of the errors. As a consequence, one selects a number a 2 (0,1),

called the significance level, and restricts attention to critical regions S1 satisfying

PufS1g � � for all u 2 O0:

Importantly, acceptance of H0 does not necessarily demonstrate that H0 is indeed true;

there simply may be insufficient data to show inconsistency of the data with the null

hypothesis. Therefore, the decision that “accepts” H0 should be interpreted as a failure to

reject H0.

More generally, it is convenient for theoretical reasons to allow for the possibility of a

randomized test. A randomized test is specified by a test (or critical) function f(X), taking

values in [0,1]. If the observed value ofX is x, thenH0 is rejected with probability f(x). For

a nonrandomized test with critical region S1, the corresponding test function is just the

indicator of S1. In general, the power function, b�(�), of a particular test f(X) is given by

bfðuÞ ¼ Eu½fðXÞ� ¼ R
fðxÞdPuðxÞ:

Thus, b�(�) is the probability of rejectingH0 if � is true. The level constraint of a test f is

expressed as

Eu½fðXÞ� � � for all u 2 O0: ð1Þ
A test satisfying Equation 1 is said to be level �. The supremum over � 2 O0 of the left-hand

side of Equation 1 is the size of the test f.

3. CONTROL OF THE SIZE OF ATEST

Typically, a test procedure is specified by a test statistic T = T(X), with the rejection region

S1 = S1(a) taking the form T(X) > c. For a prespecified significance level a, the critical

value c is chosen (possibly in a data-dependent way and also dependent on a) to control the

size of the test, although one often resorts to asymptotic approximations, some of which

are described later.

3.1. p-Values

Suppose that, for each a 2 (0,1), nonrandomized tests are specified with nested rejection

regions S1(a), i.e.,

S1ð�Þ � S1ð�0Þ if � <�
0:

Then, the usual practice is to report the p-value, defined as

p̂¼ inff� : X 2 S1ð�Þg: ð2Þ
If the test with rejection region S1(a) is level a, then it is easy to see that

u 2 O0 ) Pufp̂ � ug � u for all 0 � u � 1: ð3Þ
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3.2. The Bahadur-Savage Result

The problem of constructing a level a test can be nontrivial, in the sense that the level

constraint may prohibit the construction of a test that has any power to detect H1. In other

words, there may exist situations in which it is impossible to construct a level a test that has

power larger thana against even one alternative. Bahadur&Savage (1956) provide a classical

instance of the nonexistence of any useful levela test. The result is stated in terms of testing the

mean of a population in a nonparametric setting. Suppose X1, . . . ,Xn are independent

and identically distributed (i.i.d.) with cumulative distribution function F on the real line,

where F belongs to some large class of distributions F. Let m(F) denote the mean of F. Here,

F (rather than �) is used to index themodel F. The family F is assumed to satisfy the following:

1. For every F 2 F, m(F) exists and is finite.

2. For every real m, there is an F 2 F with m(F) = m.

3. If Fi 2 F and g 2 (0, 1), then gF1 + (1 � g)F2 2 F.

Consider the problem of testing the null hypothesis H0 : m(F) = 0 against H1 : m(F) 6¼ 0.

Suppose f = f(X1, . . . ,Xn) is a level a test. Then, for any F with m(F) 6¼ 0, EF(f) � a; that

is, the power of the test cannot exceed a for any F 2 F.

For example, the result applies when F is the family of all distributions having infinitely

many moments. Unfortunately, the result has consequences for testing any (mean-like)

parameter that is influenced by tail behavior. The only remedy is to restrict F, for example,

by assuming the support of F lies in a fixed compact set (see Romano & Wolf 2000; for

other nonexistence results, see Dufour 1997 and Romano 2004). In summary, in some

problems, there may not exist methods controlling the Type 1 error that are any better than

the test that rejects H0 with probability a, independent of the data, and the only way to

avoid this is to reduce the size of the model.

4. OPTIMALITY CONSIDERATIONS

For a given alternative �1 2 O1, the problem of determining f to maximize b�(�1) subject to

Equation 1 is one of maximizing a real-valued function from the space of test functions

satisfying the level constraint; it can be shown that such a test exists under weak condi-

tions. Such a test is then called most powerful (MP) level a. Typically, the optimal f

will depend on the fixed alternative �1. If a test f exists that maximizes the power for

all �1 2 O1, then f is called uniformly most powerful (UMP) level a.

In the restricted situation where both hypotheses are simple and specified as Oi = {�i},

then the Neyman-Pearson Lemma provides necessary and sufficient conditions for a test

to be the MP level a test. Specifically, if pi denotes the density of X under Hi (with respect

to any dominating measure), then a sufficient condition for a size a test to be most

powerful among a level tests is that, for some constant k, f(X) = 1 if p1(X) > k � p0(X)

and f(X) = 0 if p1(X) < k � p0(X). Evidence against H0 is ordered by the value of the

likelihood ratio p1(X)/p0(X).

For parametric models indexed by a real-valued parameter �, UMP tests exist for one-

sided hypotheses H0 specified by O0 = {� : � � �0} for some fixed �0, assuming the underly-

ing family has monotone likelihood ratio. For two-sided hypotheses, UMP tests are rare. In

multiparameter models in which � 2 Rd or O is infinite dimensional, UMP tests typically do

not exist. The nonparametric sign test is an exception (see Lehmann & Romano 2005b,
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example 3.8.1). The following is an example in which a UMP test exists in a multivariate

setting. Its importance stems from the fact that, in large samples, many testing problems

can be approximated by the one in the example (see Section 5.1 for details).

Example 4.1 (Multivariate normal mean). Suppose X is multivariate normal

with unknown mean vector � 2 Rd and known covariance matrix S. Fix a

vector ða1; . . . ; adÞT 2 Rd and a number �. For testing the null hypothesis

O0 ¼ fu :
Xd
i¼1

aiui � �g

against O1 ¼ Rd \ O0, there exists a UMP level a test that rejects H0 whenP
iaiXi > �z1��, where �2 ¼ aT

P
a, and z1�� is the 1 � a quantile of the

standard normal distribution.

The lack of UMP tests in many applications has led to the search for tests under less

stringent requirements of optimality. We now review several successful approaches.

4.1. Uniformly Most Powerful Unbiased Tests

A test f is called level � unbiased if

bfðuÞ � � if u 2 O0;
bfðuÞ � � if u 2 O1;

ð4Þ

so that the probability of rejectingH0 if any alternative � 2 O1 is true is no smaller than the

probability of rejecting H0 when � 2 O0. A test f is called UMP unbiased (or UMPU) at

level a if b�(�) is maximized uniformly over � 2 O1 among all level a unbiased tests.

The restriction to unbiasedness is most successful in one- and two-sided testing about a

univariate parameter in the presence of a (possibly multivariate) nuisance parameter in a

large class of multiparameter models. In particular, many testing problems in multiparam-

eter exponential family models of full rank admit UMPU level a tests. Exponential families

are studied in Brown (1986). Some other success stories include the comparison of bino-

mial (or Poisson) parameters, testing independence in a two-by-two contingency table, and

inference for the mean and variance from a normal population. The notion of unbiasedness

also applies to some nonparametric hypotheses, leading to the class of randomization tests

described later. A well-known example in which unbiasedness does not lead to an optimal

procedure is the famous Behrens-Fisher problem, which is the testing of equality of means

of two normal populations with possibly different unknown variances. We also mention

the testing of moment inequalities (in a simplified parametric setting), which has led to a

recent burgeoning literature in econometrics (see Example 4.3).

4.2. Conditional Tests

The usual approach to determining a UMPU test is to condition on an appropriate statistic

T so that the conditional distribution of X given T = t is free of nuisance parameters. If T

has Neyman structure, and other conditions hold, as described in Lehmann & Romano

(2005b, chapter 4), UMPU tests can be derived. But even without these assumptions,

conditioning is often successful because it reduces the dimension of the problem. However,

it reduces the class of tests considered because we now demand that not only Equation 1
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holds, but also the stronger conditional level constraint that, for (almost) all outcomes t of

a conditioning statistic T,

Eu½fðXÞjT ¼ t� � � for all u 2 O0: ð5Þ
An optimal test may exist within this smaller class of tests, although the reduction to

such a class may or may not have any compelling merit to it, as better tests may exist

outside the class. The philosophical basis for conditioning is strongest when the statis-

tic T is chosen to be ancillary, i.e., when its distribution does not depend on � (see

Lehmann & Romano 2005b, section 10.3, for some optimal conditional tests in which

conditioning is done using an ancillary statistic). We now mention a recent important

example where the conditioning statistic is not ancillary, although conditioning does

reduce the problem from a curved two-parameter exponential family to a one-parameter

exponential family.

Example 4.2 (Unit root testing). The problem of testing for a unit root has

received considerable attention by econometricians, dating back to Dickey &

Fuller (1979). We discuss some issues with the following simplified version of

the problem with an autoregressive process of order one with Gaussian errors.

Specifically, let X0 = 0 and

Xt ¼ u �Xt�1 þ «t t ¼ 1; . . . ; n;

where � 2 (�1,1] and the «t are unobserved and i.i.d. Gaussian with mean 0

and known variance �2. Consider the problem of testing � = 1 against � < 1.

The likelihood function Ln (�) is given by

LnðuÞ ¼ exp nðu� 1ÞUn � n2ðu� 1Þ2
2

Vn

" #
� hðX1; . . . ;XnÞ;

where

Un ¼ 1

n�2

Xn
t¼1

Xt�1ðXt �Xt�1Þ and Vn ¼ 1

n2�2

Xn
t¼1

X2
t�1;

and the function h does not depend on �. This constitutes a curved exponential

family. For a fixed alternative �0, the MP test rejects for large values of

ðu0 � 1ÞUn � ðu0 � 1Þ2
2

Vn:

As the optimal rejection region is seen to depend on �0, no UMP test exists. An

interesting way to choose �0 is suggested by Elliot et al. (1996), although the

use of a particular �0 does not imply any optimality of the power function at

another �0. Crump (2008) constructed optimal tests conditional on Un

because, conditionally, the family of distributions becomes a one-parameter

exponential family with monotone likelihood ratio. Although he gives an

interesting case for conditioning on Un, one can instead condition on Vn. To

date, no particular test has any strong optimality property, and the problem

warrants further study.
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4.3. Uniformly Most Powerful Invariant Tests

Some testing problems exhibit symmetries, which lead to natural restrictions on the family

of tests considered. Here we describe the mathematical expression of symmetry. SupposeG

is a group of one-to-one transformations from the sample space � onto itself. Suppose that,

if g 2 G and if X is governed by the parameter �, then gX also has a distribution in the

model; that is, gX has a distribution governed by some u0 2 O. The element �0 obtained in

this manner is denoted by �gu. In general, we say a parameter set v � O remains invariant

under g if �gu 2 v whenever � 2 v, and also if, for any u0 2 v, there exists � 2 v such that

�gu ¼ u0. We then say the problem of testing O0 against O1 remains invariant under G if

both O0 and O1 remain invariant under any g 2G. This structure implies that a statistician

testing O0 against O1 based on data X is faced with the identical problem based on data

X0 = gX, for any g 2 G. Therefore, the idea of invariance is that the decision based on X

andX0 be the same. So, we say a test f is invariant underG if f(gx) = f(x) for all x 2 � and

g 2 G. A test that uniformly maximizes power among invariant level a tests is called

uniformly most powerful invariant (UMPI) at level a.

Invariance considerations apply to some interesting models, such as location and scale

models. Perhaps the greatest success is testing parameters in some Gaussian linear models,

encompassing applications such as regression and analysis of variance, in which least

squares procedures and standard F tests are shown to have optimality properties among

invariant procedures. However, UMPI tests may be inadmissible in some problems. We

refer the reader to Andrews et al. (2006) for the use of invariance restrictions in instrumen-

tal variables regression. Both conditioning and invariance considerations are utilized in

Moreira (2003).

4.4. Monotone Tests

In some problems, it may be reasonable to impose monotonicity restrictions on the testing

procedure. We illustrate the idea with two examples.

Example 4.3 (Moment inequalities). SupposeX = (X1, . . . ,Xd)
T is multivariate

normal with unknown mean vector � = (�1, . . . , �d)
T and known nonsingular

covariance matrix S. The null hypothesis specifies O0 ¼ fu : ui � 0 8ig. In fact,

the only unbiased test for this problem is the trivial test f	 a (see Lehmann&

Romano 2005b, problem 4.8). Nor do any invariance considerations generally

apply. In the special case that S exhibits compound symmetry (meaning the

diagonal elements are all the same, and the off-diagonal elements are all the

same as well), then the problem remains invariant under permutations of

the coordinates of X, leading to procedures that are invariant under permuta-

tions. Even so, such transformations do not reduce the problem sufficiently to

lead to any optimal procedure.

However, a natural monotonicity restriction on a test f is the following.

Specifically, if f rejects based on data X, so that f(X) = 1, and Y = (Y1, . . . ,Yd)
T

with Yi � Xi for all i, then a monotonicity requirement demands that f(Y) = 1.

We return to this example below. We point out now, however, that many

currently suggested tests for this problem do not obey such a monotonicity con-

straint.
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Example 4.4 (Testing for superiority or stochastic dominance). Assume the

model of Example 4.3, except now the problem is to demonstrate that �

satisfies �i > 0 for all i. The null hypothesis parameter space is specified by

O0 ¼ fu :not all ui > 0g. This is a simplified version of the problem of testing

for stochastic dominance (see Davidson &Duclos 2006). Among tests obeying

the same monotonicity restriction as in Example 4.3, there exists a UMP level

a test (see Lehmann 1952).

The restrictions to unbiased, invariant, conditional, or monotone tests impose certain

constraints on the class of available procedures. We now mention some notions of opti-

mality that do not limit the class of available procedures, at the expense of weaker notions

of optimality.

4.5. Maximin Tests

For testing O0 against O1, let v1 � O1 be a (possibly strict) subset of O1. A level a test f is

maximin with respect to v1 at level a if it is level a and it maximizes infu2v1
Eu½fðXÞ�

among level a tests.

Example 4.5 (Moment inequalities, continued). In Example 4.3, it is possible

to combine monotonicity and maximin restrictions to obtain an optimal

test. For example, if S has all diagonal elements equal, and also all off-

diagonal elements equal, then the test that rejects for large max Xi is optimal

(see Lehmann 1952 for the case d = 2). The result generalizes, and such a test

is admissible among all tests (obeying the level constraint) without any mono-

tonicity restriction (J.P. Romano, A.M. Shaikh & M. Wolf, unpublished

work).

4.6. Tests Maximizing Average or Weighted Power

Let L1 be a probability distribution (or generally a nonnegative measure) over O1. The

average or weighted power of a test f with respect to L1 is given by
R
O1
Eu½fðXÞ�dL1ðuÞ.

A level a test f maximizing this quantity among all level a tests maximizes average power

with respect to L1. The approach to determining such a test is to note that this average

power of f can be expressed as the power of f against the mixture distribution M, which

assigns to a set E the probability

MfEg ¼
Z
O1

PufEgdL1ðuÞ;

and so the problem is reduced to finding the MP level a test of O0 against the simple

alternative hypothesis X 
 M.

Example 4.6 (Moment inequalities, Example 4.3, continued). In the setup of

Example 4.3, Chiburis (2008) considers tests that (approximately) maximize

average power (see also Andrews 1998). Such an approach can provide tests

with reasonably good power properties, although the choice of the averaging

distribution L1 is unclear.
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4.7. Locally Most Powerful Tests

Let d(�) be a measure of distance of an alternative � 2 O1 to the given null hypothesis

parameter space O0. A level a test f is said to be locally most powerful (LMP) if, given any

other level a test f0, there exists D > 0 such that

Eu½fðXÞ� � Eu½f0ðXÞ� for all u with 0 < dðuÞ <D:

Example 4.7 (Unit root testing, continued). In the setup of Example 4.2, it is

easily seen that the LMP test rejects for small values of Un.

5. LARGE-SAMPLE CONSIDERATIONS

Outside a narrow class of problems, finite-sample optimality notions do not directly apply.

However, an asymptotic approach to optimality applies in a much broader class of models.

Furthermore, control of the size of a test is often only approximate, and it is important to

distinguish various notions of approximation.

As above, suppose that data X(n) comes from a model indexed by a parameter � 2 O.
Consider testing O0 against O1. Here we study sequences of tests fn = fn (X

(n)).

For a given level a, a sequence of tests {fn} is pointwise asymptotically level � if, for any

� 2 O0,

lim sup
n!1

Eu½fnðXðnÞÞ� � �: ð6Þ

Condition 6 does not guarantee the size of fn is asymptotically no larger than a because

the convergence is stated pointwise in �. For this purpose, uniform convergence is required.

The sequence {fn} is uniformly asymptotically level � if

lim sup
n!1

sup
u2O0

Eu fnðXðnÞÞ
h i

� �: ð7Þ

If, instead of Equation 7, the sequence {fn} satisfies

lim
n!1 sup

u2O0

Eu fnðXðnÞÞ
h i

¼ �; ð8Þ

then this value of a is called the limiting size of {fn}. Of course, we also study the

approximate behavior of tests under the alternative hypothesis. For example, a sequence

{fn} is pointwise consistent in power if, for any � 2 O1,

lim
n!1Eu fnðXðnÞÞ

h i
¼ 1: ð9Þ

We note that the Bahadur-Savage result is not just a finite-sample phenomenon. In the

context of their result, any test sequence whose size tends to a cannot have limiting power

against any fixed alternative (or sequence of alternatives) larger than a. Uniformity is

particularly important when the test statistic has an asymptotic distribution that is in some

sense discontinuous in �. Some recent papers in which uniformity plays a key role are

Mikusheva (2007) and Andrews & Guggenberger (2009). However, the knowledge that

fn is uniformly asymptotically level a does not alone guarantee anything about the size of

fn for a given n; one would also need to know how large an n is required for the size to be

within a given « of a.
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5.1. Asymptotic Optimality

A quite general approach to asymptotic optimality is based on Le Cam’s notion of conver-

gence of experiments. The basic idea is that a general statistical problem (not just a testing

problem) can often be approximated by a simpler problem (usually in the limit as the

sample size tends to infinity). For example, it is a beautiful and astounding finding that

the experiment consisting of observing n i.i.d. observations from an appropriately smooth

parametric model {P�, � 2 O}, where O is an open subset of Rk, can be approximated by the

experiment of observing a single multivariate normal vector X in Rk with unknown mean

and known covariance matrix.

The appropriate smoothness conditions are known as quadratic mean differentiability,

which we now define. The context is that X(n) = (X1, . . . ,Xn) consists of n i.i.d. observa-

tions according to F�, where � 2 O, an open subset of Rk. In other words, Pu ¼ Fn
u . Assume

F� is dominated by a common �-finite measure m, and let f� (x) = dF�(x)/d�. The family

{F�, � 2 O} is quadratic mean differentiable (q.m.d.) at �0 if there exists a vector of real-

valued functions h(�, �0) = (h1 (�, �0), . . . , hk(�, �0))T such that

Z
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fu0þhðxÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
fu0ðxÞ

q
� <hðx; u0Þ; h>

� �2
dmðxÞ ¼ o jhj2

� �
ð10Þ

as hj j ! 0. For such a model, the Fisher Information matrix is defined to be the matrix I(�)

with (i, j) entry

Ii;jðuÞ ¼ 4

Z
hiðx; uÞhjðx; uÞdmðxÞ:

The important consequence of q.m.d. models is Le Cam’s expansion of the log of the

likelihood function, which we now describe. Let LnðuÞ ¼
Qn

i¼1fuðXiÞ denote the likelihood
function. Fix �0. Define the normalized score vector Zn by

Zn ¼Zn;u0 ¼ n�1=2
Xn
i¼1

~hðXi; u0Þ; ð11Þ

where ~hðx; uÞ ¼ 2hðx; uÞ
f
1=2
u ðxÞ

. Then, if I (�0) is nonsingular,

log Lnðu0 þ hn�1=2Þ=Lnðu0Þ
h i

¼ ½hTZn � 1

2
hTIðu0Þh� þ oPu0

ð1Þ: ð12Þ

If X is distributed as Qh, the multivariate normal distribution with mean vector h and

covariance matrix I(�0), then the term in brackets on the right-hand side of Equation 12

with Z = I(�0)X in place of Zn is exactly log (dQh/dQ0). In this sense, the log of the

likelihood ratios approximates those from an experiment consisting of observing X from

a multivariate normal distribution with unknown mean h and covariance matrix I(�0).

Such a local asymptotically normal expansion implies, among other things, the fol-

lowing. Suppose fn = fn(X1, . . . ,Xn) is any sequence of tests. For fixed �0, let

bnðhÞ ¼ Eu0þhn�1=2ðfnÞ be the local power function. Suppose that bn (h) converges to some

function b(h) for every h. Then, b(h) = Eh (f (X)) is the power function of a test f in the

limit experiment consisting of observing X from a multivariate normal distribution with

unknown mean h and covariance matrix I(�0). Thus, the best achievable limiting power

can be obtained by determining the optimal power in the limiting normal experiment. The
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above results are developed in Lehmann & Romano (2005b, chapter 13), including

numerous applications. To provide one example, suppose � = (�1, . . . , �k)
T, and the problem

is to test H0: �1 � 0 versus H1: �1 > 0. The limit problem corresponds to testing h1 � 0

versus h1 > 0 based on X, and a UMP test exists for this problem, as described above in

Example 4.1. For a test whose limiting size is no bigger than a, the resulting optimal

limiting power against alternatives �1 = h1 n
�1/2 with �2, . . ., �k fixed is

1� F z1�� � h1 I�1ð0; u2; . . . ; ukÞ1;1
n o�1=2

� �
: ð13Þ

Tests that achieve this limiting power are described later.

Even in nonparametric problems, the above development is useful because one can

consider optimal limiting power among all appropriately smooth parametric submodels.

The submodel yielding the smallest asymptotic power is then least favorable (see van der

Vaart 1998, theorem 25.44).

On the other hand, there are many important nonstandard problems in econometrics in

which the local asymptotically normal expansion does not hold. Even so, the idea of

approximating by a limit experiment is still quite useful, as in the unit root problem.

Example 5.1 (Unit root testing, continued). In the setup of Example 4.2, the

log likelihood ratio is given by

log Lnð1þ hn�1Þ=Lnð1Þ
	 
¼ hUn � 1

2
h2V2

n : ð14Þ

As is well-known, (Un, Vn) tends to a limit law (under � = �n (h) = 1 + h/n),

which depends on the local parameter h. Even though the right-hand sides of

both Equations 12 and 14 are quadratic in h, there are some crucial differ-

ences. First, the local parameter is of order n�1 from �0 = 1, as opposed to the

more typical case where it is of order n�1/2. More important is that Vn tends to

a limit law that is nondegenerate, which prevents the existence of a UMP or

even an asymptotically UMP one-sided tests (e.g., see Crump 2008, lemma 1).

Nevertheless, the limit experiment approach offers important insight into the

behavior of power functions of various tests (see Jansson 2008, who removes

the Gaussian assumption, among other things).

6. METHODS FOR HYPOTHESIS TESTING

There is no single method for constructing tests that is desirable for, or even applicable in,

all circumstances. We therefore instead present several general principles that have been

useful in different situations. We begin by considering parametric models and describe

likelihood methods for testing certain hypotheses in such models. Then we introduce a

broad class of possibly nonparametric models in which the parameter of interest is defined

as the minimizer of a criterion function. This setup is sometimes referred to as the extre-

mum estimation framework.

6.1. Testing in Parametric Models Using Likelihood Methods

In this section, assume that O is a subset of Rk. For concreteness, we assume throughout

this section that Pu ¼ Fn
u , where each F� is absolutely continuous with respect to a common,
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�-finite dominating measure m. Denote by f� the density of F� with respect to m. In this

notation,

LnðuÞ ¼
Y

1�i�n

fuðXiÞ:

6.1.1. Generalized likelihood ratio tests. As mentioned earlier, when both the null and

alternative hypotheses are simple and specified as Oi = {�i}, MP tests are given by the

likelihood ratio test, which rejects for large values of Ln(�1)/Ln(�0). More generally, when

either O0 or O1 is not simple, the generalized likelihood ratio test rejects for large values of

supu2OLnðuÞ
supu2O0

LnðuÞ :

Example 6.1 (Multivariate normal mean). Suppose that F� is the multivariate

normal distribution with unknown mean vector � 2 Rk and known covariance

matrix S. Consider first testing the null hypothesis

O0 ¼ f0g
versus the alternative O1 ¼ Rk \ O0. The generalized likelihood ratio test rejects

for large values of

n�X
T
nS

�1 �Xn: ð15Þ
If the critical value is chosen to be the ck,1�a, the 1 � a quantile of the �2

k

distribution, then the resulting test has exact level a. Now consider testing the

null hypothesis

O0 ¼ fu : ui � 0 8ig
versus the alternative O1 ¼ Rk \ O0. In this case, the generalized likelihood

ratio test rejects for large values of

inf
u2O0

nð�Xn � uÞTS�1ð�Xn � uÞ:

If the critical value is chosen such that P0finfu2O0
nð�Xn � uÞT

S�1ð�Xn � uÞ > cg ¼ �, then the resulting test again has exact level a.

6.1.2. Wald tests. Wald tests are based on a suitable estimator of �. To describe this

approach, we specialize to the case in which

O0 ¼ fu0g;
O1 ¼ Rk \ O0, and the family fFu : u 2 Rkg is quadratic mean differentiable at �0 with

nonsingular Fisher Information matrix I(�0) and score function Zn defined in Equation 11.

Assume further that �̂n is an estimator of � satisfyingffiffiffi
n

p ð�̂n � u0Þ ¼ I�1ðu0ÞZn þ oPu0
ð1Þ: ð16Þ

In some instances, such an estimator may be given by the maximum likelihood estimator

(MLE) of �, defined as

�̂n ¼ arg max
u2Rk

LnðuÞ:
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Lehmann & Casella (1998), for example, present sufficient conditions for the existence of

an estimator �̂n satisfying Equation 16. From Equation 16, it follows thatffiffiffi
n

p ð�̂n � u0Þ��!d Nð0; I�1ðu0ÞÞ underPu0 :

An example of a Wald test is the test that rejects for large values of

nð�̂n � u0ÞT Iðu0Þð�̂n � u0Þ:
If the critical value is chosen to be ck,1�a, then the resulting test is pointwise asymptotically

level a.

6.1.3. Rao score tests. Consider again the problem of testing the null hypothesis

O0 ¼ fu0g
versus the alternative O1 ¼ Rk \ O0. Suppose, as before, that fFu : u 2 Rkg is differentiable

in quadratic mean at �0 with nonsingular Fisher Information I(�0) and score function Zn

defined in Equation 11. A disadvantage of Wald tests is that they involve the computation

of a suitable estimator satisfying Equation 16. An alternative due to Rao that avoids this

difficulty is based directly on Zn defined in Equation 11. Under these assumptions,

Zn ��!d Nð0; Iðu0ÞÞ under Pu0 :

An example of a Rao test in this case is the test that rejects for large values of

ZT
n I

�1ðu0ÞZn:

If the critical value is chosen, as before, to be ck,1�a, then the resulting test is pointwise

asymptotically level a.

Typically, the three preceding tests will behave similarly against alternatives local to the

null hypothesis. For example, when testing the null hypothesis

O0 ¼ fu : u1 � 0g
versus the alternative O1 ¼ Rk \ O0, each of these three tests has limiting power given by

Equation 13 against alternatives u1 ¼ h=
ffiffiffi
n

p
, with �2, . . ., �k fixed. On the other hand, there

may still be important differences in the behavior of the three tests at nonlocal alternatives.

A classical instance is provided by the Cauchy location model (see Lehmann & Romano

2005b, example 13.3.3).

6.2. Testing in the Extremum Estimation Framework

We now introduce a class of models in which O is not required to be a subset of Rk. The

extremum estimation framework provides a broad class of models that includes many

nonparametric models. For ease of exposition, we also assume throughout this section that

Pu ¼ Fn
u , where each F� is absolutely continuous with respect to a common, �-finite domi-

nating measure m. Denote by f� the density of F� with respect to m. In this framework, we

assume that the parameter of interest, g(F�), may be written as

gðFuÞ ¼ arg min
g2G

Qðg; FuÞ;

where
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G ¼ gðFuÞ : u 2 Of g � Rd

and Q : G� fFu : u 2 Og ! R. Denote by Q̂nðgÞ an estimate of Q(g, F�) computed from

X(n).

The following examples describe some important special cases of this framework that

encompass a wide variety of applications in econometrics.

Example 6.2 (M-estimators). In many instances, Q(g, F�) = E�[q(Xi, g)]. Here,

it is reasonable to choose

Q̂nðgÞ ¼
1

n

X
1�i�n

qðXi; gÞ:

The estimator ĝn ¼ arg ming2GQ̂nðgÞ is referred to as an M-estimator in this

case.

Example 6.3 (Generalized method of moments). Hansen (1982) considers the

choice

Qðg;PuÞ ¼ Eu hðXi; gÞ½ �TWðFuÞEu hðXi; gÞ½ �;
where W(F�) is a positive definite matrix. Note that the dimension of h may

exceed the dimension of g. Here, it is reasonable to choose

Q̂nðgÞ ¼
1

n

X
1�i�n

hðXi; gÞ
" #T

Ŵn
1

n

X
1�i�n

hðXi; gÞ
" #

;

where Ŵn is a consistent estimator of W(F�). The estimator

ĝn ¼ arg ming2GQ̂nðgÞ is referred to as the generalized method of moments

(GMM) estimator in this case. If one wishes to minimize the asymptotic

variance of the GMM estimator, then it is optimal to choose

WðFuÞ ¼ Eu h Xi; gðFuÞð Þh Xi; gðFuÞð ÞT
h in o�1

: ð17Þ

A consistent estimate of Equation 17 can be obtained in two steps, with g(F�)

consistently estimated in the first step. The large-sample efficiency of such

estimators is studied in Chamberlain (1987).

Remark 6.1. If we take G = Y and q(Xi,g) = �log fg(Xi) in Example 6.2, then

we see that the MLE is an M-estimator. In some cases, the MLE may also be

characterized by the system of equations 1
n

P
1�i�n▽g log fgðXiÞ ¼ 0. When this

is true, it can be thought of as a GMM estimator by taking G =Y and h(Xi,g) =

▽g log fg(Xi) in Example 6.3. But, importantly, the MLE may not always be

characterized in this fashion. To see this, we simply consider the example

where F� is the uniform distribution on [0, �].

Remark 6.2. In many applications, the parameter of interest may not be

uniquely determined by the distribution of the observed data. We say that the

parameter of interest in such models is partially identified (see Manski 2003

for numerous examples). For this reason, it is interesting to allow for the

possibility of multiple minimizers of Q(g,F�). Inference for such models is an
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active area of research (for some recent contributions, see Chernozhukov et al.

2007 and Romano & Shaikh 2006a, 2008).

We consider testing the null hypothesis

O0 ¼ u 2 O : gðFuÞ 2 G0f g;
where G0 is a fixed subset of G, versus the alternative

O1 ¼ u 2 O : gðFuÞ 2 GnG0f g:
The generalized likelihood ratio, Wald, and Rao tests have natural analogs in the extre-

mum estimation framework. We now briefly describe these tests. The reader is referred to

Newey & McFadden (1994) for further details.

6.2.1. Distance tests. By analogy with generalized likelihood ratio tests, distance tests are

based on comparisons of infg2G0
Q̂nðgÞ and infg2GQ̂nðgÞ. For example, one such test would

reject the null hypothesis for large values of

n inf
g2G0

Q̂nðgÞ � inf
g2G

Q̂nðgÞ
� �

: ð18Þ

Example 6.4 (Generalized method of moments, continued). Recall the setup of

Example 6.3 and suppose further that

G0 ¼ u 2 O : aðgðFuÞÞ ¼ 0f g;
where a : G ! Rr is differentiable, and ▽g a(g(F�)) has rank r for all � 2 O0.

Newey & West (1987) propose rejecting the null hypothesis for large values of

Equation 18. If the critical value is chosen to be cr,1�a, then the resulting test is

pointwise asymptotically level a under weak assumptions on O.

6.2.2. Wald tests. As mentioned above, Wald tests are based on a suitable estimator of

g(F�). To describe this approach, we specialize to the case in which

G0 ¼ fg0g:
We assume further that there is an estimator of g(F�) satisfying

ffiffiffi
n

p
ĝn � gðFuÞð Þ!d N 0;VðFuÞð Þ;

where V(F�) is nonsingular, under P� with � 2 O0. In some instances, such an estimator may

be given by

ĝn ¼ argmin
g2G

Q̂nðgÞ:

For sufficient conditions for the existence of such an estimator, we refer the reader to

Newey & McFadden (1994), for example (see also van der Vaart & Wellner 1996 for

empirical process techniques that are especially relevant for M-estimators). An example of

a Wald test in this case is the test that rejects for large values of

nðĝn � g0ÞTV̂
�1

n ðĝn � g0Þ;
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where V̂n is a consistent estimate of V(F�) under P� with � 2 O0. If the critical value is

chosen to be cd,1�a, then the resulting test is pointwise asymptotically level a.

6.2.3. Lagrange multiplier tests. Consider again the special case in which

G0 ¼ fg0g:
As discussed above, a disadvantage of Wald tests is that they require the computation of a

suitable estimator of g(F�). Suppose that Q̂nðgÞ is differentiable and that

ffiffiffi
n

p
▽gQ̂n gðFuÞð Þ!d N 0;VðFuÞð Þ;

where V(F�) is nonsingular, under P� with � 2 O0. In this case, one may overcome this

difficulty by considering instead tests based on

▽gQ̂nðg0Þ:
An example of a Lagrange multiplier test in this case is the test that rejects for large

values of

n▽gQ̂nðg0ÞTV̂
�1

n ▽gQ̂nðg0Þ;
where V̂n is a consistent estimate of V(F�) under P� with � 2 O0. If the critical value is

chosen to be cd,1�a, then the resulting test is again pointwise asymptotically level a.

7. CONSTRUCTION OF CRITICALVALUES

In the preceding section, we described several principles for constructing tests in both

parametric and nonparametric models. Critical values were typically chosen by exploiting

the fact that the test statistics under consideration were either pivots or asymptotic pivots;

that is, their distributions or limiting distributions under P� with � 2 O0 did not depend on

P�. We now introduce some approaches for constructing critical values that may be appli-

cable even when the test statistics are not so well behaved. In particular, we discuss

randomization methods, the bootstrap, and subsampling. Even when the test statistics are

pivots or asymptotic pivots, we see that there may be compelling reasons to use these

methods instead.

7.1. Randomization Methods

We now introduce a general construction of tests that have exact level a for any sample size

n whenever a certain invariance restriction holds. To describe this approach in more detail,

let G be a group of transformations of the data X. We require that gX ¼d X for any g 2 G

and X 
 P� with � 2 O0. This assumption is sometimes referred to as the randomization

hypothesis. For an appropriate choice of G, the randomization hypothesis holds in a

variety of commonly encountered testing problems.

Example 7.1 (One sample tests). Let X(n) = (X1, . . ., Xn) consist of n i.i.d.

observations from a distribution F� on the real line. Consider testing the null

hypothesis

90 Romano � Shaikh � Wolf

A
nn

u.
 R

ev
. E

co
n.

 2
01

0.
2:

75
-1

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 $

{i
nd

iv
id

ua
lU

se
r.

di
sp

la
yN

am
e}

 o
n 

09
/2

2/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



O0 ¼ fu 2 O : Fu symmetric about 0g:
The randomization hypothesis holds in this case with

G ¼ f�1; 1gn

and the action of g = («1, . . ., «n) 2 G on X defined by gX = («1X1, . . ., «nXn).

Example 7.2 (Two sample tests). LetXðnÞ ¼ ðX1; . . . ;XnÞ ¼ ðY1; . . . ;Y‘; Z1; . . . ;

ZmÞ be distributed according to P� , where Y1, . . . ,Y‘ are i.i.d. with distribution

FY
u and Z1, . . . , Zm are i.i.d. with distribution FZ

u . Consider testing the null

hypothesis

O0 ¼ fu 2 O : FY
u ¼ FZ

u g:
The randomization hypothesis holds in this case with G given by the group of

permutations of n elements and the action of g onX defined by gX = (Xg(1), . . .

Xg(n)).

We now describe the construction. Let T(X) be any real-valued test statistic such that

we reject the null hypothesis for large values of T(X). Suppose the group G hasM elements

and let

Tð1ÞðXÞ � � � � � TðMÞðXÞ
denote the ordered values of {T(gX): g 2 G}. Define k= dM �(1 � a)e, where d.e denotes the
function that returns the least integer greater than or equal to its argument. Let

aðXÞ ¼ M��MþðXÞ
M0ðXÞ ;

where

M0ðXÞ ¼ f1 � j � M : TðjÞðXÞ ¼ TðkÞðXÞg�� ��
MþðXÞ ¼ f1 � j � M : TðjÞðXÞ > TðkÞðXÞg�� ��:

The test f(X) that equals 1, a(X), or 0 according to whether T(X) > T(k)(X), T(X) =

T(k)(X), or T(X) < T(k)(X), respectively, has exact level a whenever the randomization

hypothesis holds.

Remark 7.1. Even though it has exact size a, the test constructed above may

not be interesting if it has poor power. After all, the test that simply rejects the

null hypothesis with probability a also has this feature. It is therefore worth

examining the power properties of tests constructed using randomization

methods. For example, when testing whether the mean is less than or equal to

zero versus greater than zero in a normal location model, the UMP test is, of

course, the t-test. One may instead consider using the randomization test

based on the group of transformations described in Example 7.1 and the

t-statistic for this same problem. The randomization test is not UMP but has

the benefit of not requiring the assumption of normality. On the other hand, it

is possible to show that the randomization test has the same limiting power

against contiguous alternatives, so there is no great loss of power, at least in

large samples.
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7.2. The Bootstrap

Unfortunately, randomization methods apply only to a restricted class of problems. The

bootstrap was introduced in Efron (1979) as a broadly applicable method for approximat-

ing the sampling distribution of a statistic or, more generally, a root. A root is simply a real-

valued function of the parameter of interest and the data. For ease of exposition, we

assume that Pu ¼ Fn
u . Denote by Jn(x,F�) the distribution of a root Rn(X

(n),g(F�)) under

Pu ¼ Fn
u ; that is,

Jnðx; FuÞ ¼ Pu RnðXðnÞ; gðFuÞÞ � x
n o

:

Our goal is to estimate Jn(x,F�) or its appropriate quantiles, which are typically unknown

because F� is unknown. The bootstrap estimate of Jn(x,F�) is simply the plug-in estimate

given by Jnðx; F̂nÞ, where F̂n is an estimate of F�. Because the data X(n) = (X1, . . ., Xn)

consists of n i.i.d. observations, one can use Efron’s (1979) bootstrap (i.e., nonparametric

bootstrap) or a suitable model-based bootstrap (i.e., parametric bootstrap) (e.g., see

Davison & Hinkley 1997).

Sufficient conditions required for the validity of the bootstrap can be described suc-

cinctly in terms of a metric d(�,�) on the space of distributions. In this notation, if we assume

that (a) Jn(x,Fn) converges weakly to a continuous limiting distribution J(x,F�) whenever

d(Fn,F�) ! 0 and � 2 O0 and (b) dðF̂n; FuÞ!Fu 0 whenever � 2 O0, then

Pu RnðXðnÞ; gðFuÞÞ > J�1
n ð1� �; F̂nÞ

n o
! �

for all � 2 O0. Here,

J�1
n ð1� �; F̂nÞ ¼ inf x 2 R : Jnðx; F̂nÞ � 1� �Þ

n o
:

In other words, we require that Jn(x,F�) must be sufficiently smooth in F� for the bootstrap

to succeed.

There are often benefits to using the bootstrap even in simple problems. To illustrate

this feature, suppose F� is a distribution on the real line with finite, nonzero variance for all

� 2 O. Consider testing the null hypothesis

O0 ¼ u 2 O : mðFuÞ � 0f g
versus the alternative O1 ¼ O \O0. For this problem, one possible test rejects when

ffiffiffi
n

p �Xn

�̂n
> z1��: ð19Þ

Instead of using z1�a, one could use J�1
n ð1� �; F̂nÞ, where F̂n is the empirical distribution

of X1, . . ., Xn and

Rn XðnÞ; gðFuÞ
� �

¼
ffiffiffi
n

p �Xn � mðFuÞ
� 

�̂n
:

Both these tests are pointwise asymptotically level a, but, under further technical

conditions ensuring the validity of Edgeworth expansions, it is possible to show that

for any F� with � 2 O0, the difference between the rejection probability and the

nominal level is of order O(n�1/2) for the first test and of order O(n�1) for the second
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test. Informally, the reason for this phenomenon is that the bootstrap approximation to

the distribution of left-hand side of Equation 19, unlike the standard normal approxi-

mation, does not assume that the skewness of the finite-sample distribution of the

t-statistic is zero (see Hall & Horowitz 1996 for related results in the context of

GMM and Horowitz 2001 and MacKinnon 2007 for other applications of the boot-

strap in econometrics).

In the above example, one could also use the bootstrap to approximate the distribution

of the left-hand side of Equation 19 directly. In that case, one should use an estimate of

F� that satisfies the constraints of the null hypothesis because critical values should be

determined as if the null hypothesis were true. Such an approach is most useful for

problems in which the hypotheses cannot be framed nicely in terms of parameters, such as

testing for goodness of fit or for independence.

Unfortunately, there are many instances in which the required smoothness of Jn(x, F�)

for the validity of the bootstrap does not hold. Examples include extreme order

statistics, Hodges’ superefficient estimator, and situations where the parameter lies on the

boundary (see Beran 1984; Politis et al. 1999, chapter 1; and Andrews 2000 for further

details).

7.3. Subsampling

Although the bootstrap is not universally applicable, an approach based on subsamples

is often valid, at least in the sense that the probability of rejection tends to a under

every P� with � 2 O0, under very weak assumptions. To describe this approach, we

also assume that Pu ¼ Fn
u , but the approach can be easily modified for dependent data

(see Politis et al. 1999, chapter 3). The key insight underlying this approach is that

each subset of size b from these n observations constitutes b i.i.d. observations from

F�. This suggests that the empirical distribution of the statistic of interest computed

over these
�
n
b

�
subsets of data should provide a reasonable estimate of the unknown

distribution of the statistic.

More formally, let ~Jnðx; FuÞ be the distribution of a statistic Tn under P�. Index by

i ¼ 1; . . . ;
�
n
b

�
the subsets of data of size b and denote by Tn,b,i the statistic Tn computed

using the i-th subset of data of size b. Define

Ln;bðxÞ ¼
1�
n
b

� X
1�i�ð nb Þ

I Tn;b;i � xg:�

For the validity of this approach, we require that b ! 1 so that b/n ! 0 and that ~Jnðx; FuÞ
converge weakly to a continuous limiting distribution ~Jðx; FuÞ whenever � 2 O0. Under

these assumptions,

PufTn > L�1
n;bð1� �Þg ! � ð20Þ

for all � 2 O0. Here,

L�1
n;bð1� �Þ ¼ inffx 2 R : Ln;bðxÞ � 1� �g:

Remarkably, it is possible to show that
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sup
u2O

Pufsup
x2R

jLn;bðxÞ � ~Jbðx; FuÞj > «g ! 0

for any « > 0 regardless of O. This suggests that whenever ~Jbðx; FuÞ is suitably close to
~Jnðx; FuÞ, then subsampling may yield tests controlling the probability of a false rejection

more strictly than Equation 20. For example, if

lim sup
n!1

sup
u2O

sup
x2R

f~Jbðx; FuÞ � ~Jnðx; FuÞg � �;

then one has in fact

lim sup
n!1

sup
u2O

PufTn > L�1
n;bð1� �Þg � � ð21Þ

(see Romano & Shaikh 2008 for further details). Related results have also been obtained

independently by Andrews & Guggenberger (2009), who go on to establish formulae for

the left-hand side of Equation 21. Using these formulae, they establish in a variety of

problems that the left-hand side of Equation 21 exceeds a, sometimes by a large margin.

This problem may occur when the limiting distribution of the test statistic is discontinuous

in F�. On the other hand, even when this is the case, subsampling may yield tests satisfying

Equation 21, as shown by the following example.

Example 7.3 (Moment inequalities). The recent literature on partially identi-

fied models has focused considerable attention on testing the null hypothesis

O0 ¼ fu 2 O : Eu½hðXi; g0Þ� � 0g
for some fixed g0 2 G versus the alternative O1 ¼ O \O0. Note here that the

dimension of h(�, �) is allowed to be greater than one. This problem is closely

related to the parametric problem described in Example 4.3. For this problem,

subsampling leads to tests satisfying Equation 21 under very weak assump-

tions on O (for details, see Romano & Shaikh 2008 and Andrews &

Guggenberger 2009).

8. MULTIPLE TESTING

8.1. Motivation

Much empirical research in economics involves the simultaneous testing of several hyp-

otheses. For example, (a) one fits a multiple regression model and wishes to decide

which coefficients are different from zero; (b) one compares several investment strategies

to a benchmark and wishes to decide which strategies are outperforming the bench-

mark; and (c) one studies a number of active labor market programs and wishes to

decide which programs are successful at bringing back the unemployed to the active

labor force.

If one does not take the multiplicity of tests into account, there typically results a large

probability that some of the true hypotheses will get rejected by chance alone. Take the

case of S = 100 hypotheses being tested at the same time, all of them being true, with the

size and level of each test exactly equal to a. For a = 0.05, one expects five true hypotheses

to be rejected. Furthermore, if all tests are mutually independent, then the probability that

at least one true null hypothesis will be rejected is given by 1 � 0.95100 = 0.994.
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Of course, there is no problem if one focuses on a particular hypothesis, and only one

of them, a priori. The decision can still be based on the corresponding individual p-value.

The problem only arises if one searches the list of p-values for significant results a

posteriori. Unfortunately, the latter case is much more common.

8.2. Notation and Various Error Rates

Again, we assume that data X = X(n) is generated from some probability distribution P�,

with � 2 O. The problem is to simultaneously test the S null hypothesesH0, s: � 2 O0, s, with

H0,s being tested against H1,s: � 2 O1,s. We also assume that a test of the individual

hypothesisH0,s is based on a test statistic Tn,s, with large values indicating evidence against

H0,s. An individual p-value for testing H0,s is denoted by p̂n;s.

The term false discovery refers to the rejection of a true null hypothesis.1 Also, let I (�)
denote the set of true null hypotheses if � is true; that is, s 2 IðuÞ if and only if (iff) � 2 O0, s.

Accounting for the multiplicity of individual tests can be achieved by controlling an

appropriate error rate. The traditional familywise error rate (FWE) is the probability of

one or more false discoveries:

FWEu ¼ Pufreject at least one hypothesis H0;s : s 2 IðuÞg:
Of course, this criterion is strict; not even a single true hypothesis is allowed to be rejected.

When S is very large, the corresponding multiple testing procedure (MTP) might result in

low power, where we loosely define power as the ability to reject false null hypotheses.2

Therefore, it can be beneficial to relax the criterion in return for higher power. There exist

several possibilities to this end.

The generalized familywise error rate (k-FWE) is concerned with the probability of k or

more false discoveries, where k is some positive integer:

k-FWEu ¼ Pufreject at least k hypotheses H0;s : s 2 IðuÞg:
Obviously, the special case k ¼ 1 simplifies to the traditional FWE.

A related measure of error control is the average number of false discoveries, also

known as the per-family error rate (PFER). To this end, let F denote the number of false

rejections made by an MTP. Then, PFER� ¼ E�(F), where the concern now is to ensure

PFER� � l for some l 2 [0, 1).

Instead of error rates based only on the number of false discoveries, one can consider

error rates based on the fraction of false discoveries (among all discoveries). Let R denote

the total number of rejections. Then the false discovery proportion (FDP) is defined as FDP

= (F/R) � 1{R > 0}, where 1{�} denotes the indicator function. One then is concerned with

the probability of the FDP exceeding a small, prespecified proportion: P� {FDP > g}, for

some g 2 [0, 1). The special choice of g = 0 simplifies to the traditional FWE.

Finally, the false discovery rate (FDR) is given by the expected value of the FDP. Namely,

FDR� = E� (FDP), where the concern now is to ensure FDR� � g for some g 2 [0, 1).

1Analogously, the term discovery refers to the rejection of any null hypothesis, and the term true discovery refers to

the rejection of a false null hypothesis.

2If there is more than one null hypothesis under test, there no longer exists a unique definition of power. Some

reasonable definitions include (a) the probability of rejecting at least one false null hypothesis, (b) the probability of

rejecting all false null hypotheses, and (c) the average probability of rejection over the set of false null hypotheses.
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The k-FWE, PFER, FDP, and FDR can all be coined generalized error rates in the sense

that they relax or generalize the FWE. Although they are distinct, they share a common

philosophy: By relaxing the FWE criterion and allowing for a small number (k-FWE), a

small expected number (PFER), a small proportion (FDP), or a small expected proportion

(FDR) of false discoveries, one is afforded greater power in return.

Having defined the various error rates, we next discuss what is meant by control of

these error rates and what sort of conclusions one is afforded when applying corresponding

MTPs to a set of data.

Control of the k-FWE means that, for a given significance level a,

k-FWEu � � for any u; ð22Þ
whereas control of the PFER means that, for a given integer k, PFER� � k for any �.

Moreover, control of the FDP means that, for a given significance level a and for a given

proportion g 2 [0, 1), P� {FDP > g} � a for any �. Finally, control of the FDR means that,

for a given proportion g 2 [0, 1), FDR� � g for any �.

Which conclusions can be drawn when the various error rates are controlled? Control

of the k-FWE allows one to be 1� a confident that there are at most k� 1 false discoveries

among the rejected hypotheses. In particular, for k = 0, one can be 1 � a confident that

there are no false discoveries at all.

On the other hand, control of the PFER does not really allow one to draw any mean-

ingful conclusion about the realized value of F (except for some crude bounds, based on

Markov’s inequality). The general reason is that by controlling an expected value, one can

conclude little about the realization of the underlying random variable.

Control of the FDP allows one to be 1 � a confident that the proportion of false

discoveries among all rejected hypotheses is at most g or, in other words, that the realized

FDP is at most g.

On the other hand, control of the FDR does not really allow one to draw any meaning-

ful conclusion about the realized FDP. The general reason is, again, that by controlling an

expected value, one can conclude little about the realization of the underlying random

variable. Unfortunately, this important point is not always appreciated by researchers

applying MTPs that control the FDR. Instead, by a law of large numbers, one might

conclude that the average realized FDP—when FDR control is repeatedly applied to large

number of data sets—will be at most g (plus some small «).

Remark 8.1 (Finite-sample versus asymptotic control). For this remark, we

restrict attention to the FWE. The issues are completely analogous for the other

error rates. Control of the FWE is equated with finite-sample control: Equation

22, with k = 1, is required to hold for any given sample size n. However, such a

requirement can sometimes only be achieved under strict parametric assump-

tions (such as multivariate normality with known covariance matrix when test-

ing a collection of individual means) or for special permutation setups. Instead,

one settles for (pointwise) asymptotic control of the FWE:

lim sup
n!1

FWEu � � for any u: ð23Þ

(In this section, all asymptotic considerations are restricted to pointwise

asymptotics.)

96 Romano � Shaikh � Wolf

A
nn

u.
 R

ev
. E

co
n.

 2
01

0.
2:

75
-1

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 $

{i
nd

iv
id

ua
lU

se
r.

di
sp

la
yN

am
e}

 o
n 

09
/2

2/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



Next, we discuss MTPs that (asymptotically) control the aforementioned error rates.

Such procedures can roughly be classified according to two criteria. The first criterion is

whether the method is based only on the individual p-values p̂n;s or whether it is something

more complex, trying to account for the dependence structure between the individual test

statistics Tn,s. In general, methods of the latter type are more powerful. The second

criterion is whether the method is a single-step method or a stepwise method. In general,

methods of the latter type are more powerful. We begin by discussing the second criterion.

8.3. Single-Step Versus Stepwise Methods

In single-step methods, individual test statistics are compared to their critical values simul-

taneously, and after this simultaneous joint comparison, the multiple testing method stops.

Often there is only one common critical value, but this need not be the case. More

generally, the critical value for the s-th test statistic may depend on s. An example is the

weighted Bonferroni method discussed below.

Often, single-step methods can be improved in terms of power via stepwise methods,

while nevertheless maintaining control of the desired error rate. Stepdown methods start

with a single-step method but then continue by possibly rejecting further hypotheses in

subsequent steps. This is achieved by decreasing the critical values for the remaining

hypotheses depending on the hypotheses already rejected in previous steps. As soon as no

further hypotheses are rejected, the method stops. An example is given by the Holm (1979)

method discussed below.

Such stepwise methods that improve upon single-step methods by possibly rejecting less

significant hypotheses in subsequent steps are called stepdown methods. Intuitively, this is

because such methods start with the most significant hypotheses, having the largest test

statistics, and then step down to further examine the remaining hypotheses corresponding

to smaller test statistics.

In contrast, there also exist stepup methods that start with the least significant hypoth-

eses, having the smallest test statistics, and then step up to further examine the remaining

hypotheses having larger test statistics. The crucial difference is that, at any given step, the

question is whether to reject all remaining hypotheses or not. Therefore, the hypotheses

sorted out in previous steps correspond to not-rejected hypotheses rather than rejected

hypotheses, as in stepdown methods. A prominent example is the FDR controlling method

of Benjamini & Hochberg (1995) discussed below.

8.4. Methods Based on Individual p-Values

MTPs falling in this category only work with the list of the individual p-values. They do not

attempt to incorporate any dependence structure between these p-values. There are two

advantages to such methods. First, one might have access only to the list of p-values from a

past study, but not to the underlying complete data set. Second, such methods can be quickly

implemented on the computer or even be carried out with paper and pencil. On the other

hand, as we will see later, such methods are generally suboptimal in terms of power.

To show that such methods control the desired error rate, one needs a condition on the

p-values corresponding to the true null hypotheses:

u 2 O0;s ) Pufp̂n;s � ug � u for any u 2 ð0; 1Þ: ð24Þ
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The classical method to control the FWE is the Bonferroni method. It is a single-step

method providing control of the FWE. Specifically, it rejects H0,s iff p̂n;s � �=S. More

generally, the weighted Bonferroni method is a single-step method with the s-th cutoff

value given by ws � a/S, where the constants ws reflect the importance of the individual

hypotheses, satisfying ws � 0 and
P

ws ¼ 1.

A stepdown improvement is obtained by the method of Holm (1979). The individual

p-values are ordered from smallest to largest, p̂n;ð1Þ � p̂n;ð2Þ � . . . � p̂n;ðSÞ, with their corre-

sponding null hypotheses labeled accordingly. H0,(1), H0,(2), . . ., H0,(S). Then, H0,(s) is

rejected iff p̂n;ðjÞ � �=ðS� jþ 1Þ for j = 1, . . ., s. In other words, the method starts with

testing the most significant hypothesis by comparing its p-value to a/S, just as in the

Bonferroni method. If the hypothesis is rejected, the method moves on to the second most

significant hypothesis by comparing its p-value to a / (S� 1), and so on, until the procedure

comes to a stop. Necessarily, all hypotheses rejected by the Bonferroni method will also be

rejected by the Holm method, but potentially the Holm method will reject a few more. So,

trivially, the method is more powerful. But it still controls the FWE under Equation 24.

Both the Bonferroni and Holm methods can be easily generalized to control the k-FWE;

these generalizations are due to Hommel & Hoffman (1988) and Lehmann & Romano

(2005a). For the Bonferroni method, simply change the cutoff value from a/S to k � a/S. For
the Holm method, change the cutoff values for the k most significant hypotheses to also

k � a/S and only then start subtracting one from the denominator in each subsequent step:

Therefore, for j > k, the cutoff value in the j-th step is given by k � a/(S � j + k). It becomes

quite clear that even for a small value of k > 1, potentially many more hypotheses can be

rejected as compared to FWE control.

The (generalized) Bonferroni and Holm methods are robust against the dependence

structure of the p-values. They only need Equation 24 to provide control of the FWE and

the k-FWE, respectively. Intuitively, they achieve this by ensuring control under a worst-

case dependence structure.3 In contrast, the most widely known p-value-based methods to

control the FDP and the FDR assume certain restrictions on the dependence structure.

Lehmann & Romano (2005a) develop a stepdown method to control the FDP. The

individual p-values are ordered from smallest to largest again, like for the Holm method.

Then, H0,(s) is rejected if p̂n;ðjÞ � �j for j = 1, . . ., s, with

�j ¼ bgjc þ 1ð Þ�
Sþ bgjc þ 1� j

;

where b.c denotes the integer part. This method provides control of the FDP under Equa-

tion 24 and the additional assumption that the p-values are mutually independent, or at

least positively dependent in a certain sense (see Lehmann & Romano 2005a).

Benjamini & Hochberg (1995) propose a stepup method to control the FDR based on

the ordered p-values. Define

j�¼ maxfj : p̂n;ðjÞ � gjg; where gj¼
j

S
g;

3For example, as far as the Bonferroni method is concerned, this worst-case dependence structure is close to

independence. Under independence, the cutoff value could be chosen as 1 � (1 � a)1/S, which tends to be only

slighter larger than a/S for nonextreme values of a and S; e.g., for a = 0.05 and S = 100, one obtains 0.000513

instead of 0.0005.
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and then reject H0;ð1Þ; . . . ;H0;ðj�Þ. If no such j* exists, reject no hypothesis. Unlike the

stepdown methods discussed above, this MTP starts by examining the least significant

hypothesis. If p̂n;ðSÞ � g, then all hypotheses are rejected. If not, p̂n;ðS�1Þ is compared to

(S � 1)/S � g, and so on. Benjamini & Hochberg (1995) prove control of this method under

the assumption of independence. Benjamini & Yekutieli (2001) extend the validity of the

method to a more general positive regression dependency.

Both the Lehmann & Romano (2005a) method to control the FDP and the Benjamini &

Hochberg (1995) method to control the FDR can be modified to provide control under any

dependence structure of the p-values. To this end, the cutoff values need to be suitably

enlarged. However, the modified methods then turn quite conservative, so some users

might shy away from them (for details, see Benjamini & Yekutieli 2001, as well as

Lehmann & Romano 2005a and Romano & Shaikh 2006b). Stepup methods based on

individual p-values to control the FWER, k-FWER, and FDP are discussed by Romano &

Shaikh (2006c).

Remark 8.2 (Adaptive Benjamini and Hochberg method). Under conditions

that ensure finite-sample control of the Benjamini & Hochberg (1995)

method, it can be shown that FDR� = (S0/S) � g, where S0 ¼ IðuÞj j. So the

method will generally be conservative, unless all null hypotheses are true.

Therefore, power could be improved, while maintaining control of the FDR,

by replacing the cutoff values by 	j = (j/S0) � g. Of course, S0 is unknown in

practice. But there exist several strategies to first come up with a (conserva-

tive) estimator of S0, denoted by Ŝ0, and to then apply the method with cutoff

values gj ¼ ðj=Ŝ0Þ�g. The literature in this field is quite extensive, and we refer

the reader to Storey et al. (2004), Benjamini et al. (2006), Gavrilov et al.

(2009), and the references therein.

Remark 8.3 (Finite-sample versus asymptotic control). So far, this subsection

has assumed finite-sample validity of the null p-values expressed by Equation

24. However, often p-values are derived by asymptotic approximations or

resampling methods, only guaranteeing asymptotic validity: For any (fixed) �,

u 2 O0;s ) lim sup
n!1

Pufp̂n;s � ug � u for any u 2 ð0; 1Þ: ð25Þ

Under this more realistic condition, the MTPs presented in this subsection

only provide asymptotic control of their target error rates.

8.5. Resampling Methods Accounting for Dependence

As discussed above, p-value-based methods often achieve (asymptotic) control of their

target error rates by assuming (a) a worst-case dependence structure or (b) a convenient

dependence structure (such as mutual independence). This has two potential disadvan-

tages. In case (a), the method can be quite suboptimal in terms of power if the true

dependence structure is quite far away from the worst-case scenario. In case (b), asymp-

totic control may fail if the dependence structure does not hold.

As an example of case (a), consider the Bonferroni method. If there were perfect

dependence between the p-values, the cut-off value could be changed from a/S to a. Perfect
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dependence rarely happens in practice, of course. But this example is just to make a point.

In the realistic setup of strong cross dependence, the cut-off value could be changed to

something a lot larger than a/S while still maintaining control of the FWE. As an example

of case (b), consider the adaptive method of Storey et al. (2004) to control the FDR. It

assumes (near) mutual independence of the individual p-value. If this assumption is vio-

lated, the method can turn quite anticonservative, failing to control the FDR (see Romano

et al. 2008a). Hence, both in terms of power and controlling an error rate, it is desirable to

account for the underlying dependence structure.

Of course, this dependence structure is unknown and must be (implicitly) estimated

from the available data. Consistent estimation, in general, requires that the sample size

grow to infinity. Therefore, in this subsection, we settle for asymptotic control of the

various error rates. In addition, we specialize to making simultaneous inference on the

elements of a parameter vector � = (�1, . . ., �S)
T. The individual hypotheses can be all one-

sided of the form

H0;s : us � 0 vs: H1;s : us > 0 ð26Þ

or they can be all two-sided of the form

H0;s : us ¼ 0 vs: H1;s : us 6¼ 0: ð27Þ

Here we treat the one-sided case Equation (26); the necessary modifications for the two-

sided case Equation (27) are given below.

The test statistics are of the form Tn;s ¼ �̂n;s=�̂n;s. Here, �̂n;s is an estimator of �s com-

puted from X(n). Furthermore, �̂n;s is either a standard error for �̂n;s or simply equal to

1=
ffiffiffi
n

p
in case such a standard error is not available or is quite difficult to obtain.

We start by discussing a single-step method for asymptotic control of the k-FWE. An

idealized method would reject all H0,s for which Tn,s � d1, where d1 is the 1 � a quantile

under P� of the random variable k-maxs ð�̂n;s � usÞ=�̂n;s. Here, the k-max function selects

the k-th largest element of an input vector. Naturally, the quantile d1 depends not only on

the marginal distributions of the centered statistics ð�̂n;s � usÞ=�̂n;s but, crucially, also on

their dependence structure.

As P� is unknown, the idealized critical value d1 is not available. But it can be estimated

consistently, under weak regularity conditions, as follows. Take d̂1 as the 1 � a quantile

under P̂n of k-maxs ð�̂�n;s � �̂n;sÞ=�̂�
n;s. Here, P̂n is an unrestricted estimate of P�. Further-

more, �̂
�
n;s and �̂�n;s are the estimator of �s and its standard error (or simply 1=

ffiffiffi
n

p
), respec-

tively, computed from X(n),*, where XðnÞ;� 
 P̂n. In other words, we use the bootstrap to

estimate d1. The particular choice of P̂n depends on the situation. If the data are i.i.d., one

can use Efron’s (1979) bootstrap (i.e., nonparametric bootstrap) or a suitable model-based

bootstrap (i.e., parametric bootstrap) (e.g., see Davison & Hinkley 1997). If the data are

dependent over time, one must use a suitable time-series bootstrap (e.g., see Lahiri 2003).

We have thus described a single-step MTP. However, a stepdown improvement is

possible. Unfortunately, it is rather complex for general k; the reader is referred to Romano

et al. (2008b) for the details. However, it is straightforward for the special case of k = 1. In

any given step j, one simply discards the hypotheses that have been rejected so far and

applies the single-step MTP to the remaining family of nonrejected hypotheses. The

resulting critical value d̂j necessarily satisfies d̂j � d̂j�1 so that new rejections may result;

otherwise the method stops.
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The modifications to the two-sided case Equation (27) are straightforward. First,

the individual test statistics are now given by zn;s ¼ j�̂n;sj=�̂n;s. Second, the idealized

critical constants are now given by quantiles under P� of the random variable

k-maxsj�̂n;s � usj=�̂n;s, with the obvious implication for their estimation via the boot-

strap.

Being able to control the k-FWE for any k enables us to easily control the FDP, account-

ing for the dependence structure. Set k = 1 and apply k-FWE control. If the number of

rejections is less than k/g � 1, stop. If not, let k = k + 1 and continue. In other words, one

applies successive control of the k-FWE, with increasing k, until a stopping rule dictates

termination.

Remark 8.4 (Asymptotic validity). The MTPs presented so far provide asymp-

totic control of their target error rates, namely k-FWE and FDP under remark-

ably weak regularity conditions. Mainly, it is assumed that
ffiffiffi
n

p ð�̂� uÞ
converges in distribution to a (multivariate) continuous limit distribution and

that the bootstrap consistently estimates this limit distribution. In addition, if

standard errors are employed for �̂n;s, as opposed to simply using 1=
ffiffiffi
n

p
, it is

assumed that they converge to the same finite, nonzero limiting values in

probability, both in the real world and in the bootstrap world. Under even

weaker regularity conditions, a subsampling approach could be used instead.

Furthermore, when a randomization setup applies, randomization methods

can be used as an alternative (see Romano & Wolf 2005, 2007 for details).

Remark 8.5 (Alternative methods). Related bootstrap methods are developed

in White (2000) and Hansen (2005). However, both works only treat the

special case k = 1 and are restricted to single-step methods. In addition, White

(2000) does not consider studentized test statistics.

Stepwise bootstrap methods to control the FWE have been already pro-

posed in Westfall & Young (1993). An important difference in their approach

is that they bootstrap under the joint null; that is, they use a restricted estimate

of P� in which the constraints of all null hypotheses jointly hold. This

approach requires the so-called subset pivotality condition and is generally

less valid than the approaches discussed above based on an unrestricted esti-

mate of P� (e.g., see Romano & Wolf 2005, example 4.1).

There exist alternative MTPs to control the k-FWE and the FDP: namely,

the augmentation procedures of van der Laan et al. (2004) and empirical Bayes

procedures of van der Laan et al. (2005). However, the former are suboptimal

in terms of power, whereas the latter do not always provide asymptotic control

and can be quite anticonservative (see Romano & Wolf 2007).

We finally turn to FDR control. As these methods are lengthy to describe, we restrict

ourselves to a brief listing. Yekutieli & Benjamini (1999) propose a bootstrap method

without discussing asymptotic properties. Dudoit et al. (2008) propose an empirical Bayes

method that does not always provide asymptotic control and can be quite anticonservative.

Romano et al. (2008a) propose a bootstrap method and prove asymptotic control under

suitable regularity conditions. Also, in the simulations they consider, their method is more

powerful than the Benjamini & Hochberg (1995) method and its adaptive versions which

also are robust to a general dependence structure.
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