
76 Wilmott magazine

Michael Wolf
Institute for Empirical Research in Economics, University of Zurich, CH-8006
Zurich, Switzerland

Resampling vs. Shrinkage for
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resampled efficiency. In addition, it studies whether the two techniques can be com-
bined to achieve a further improvement. All this is done in the context of an active
portfolio manager who aims to outperform a benchmark index and who is evaluated
by his realized information ratio.
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Abstract
A well-known pitfall of Markowitz (1952) portfolio optimization is that the sample co-
variance matrix, which is a critical input, is very erroneous when there are many as-
sets to choose from. If unchecked, this phenomenon skews the optimizer towards
extreme weights that tend to perform poorly in the real world. One solution that has
been proposed is to shrink the sample covariance matrix by pulling its most extreme
elements towards more moderate values. An alternative solution is the resampled ef-
ficiency suggested by Michaud (1998). This paper compares shrinkage estimation to

1 Introduction
We consider the problem of an active portfolio manager who is meas-
ured against the benchmark of an equity market index with fixed (or in-
frequently rebalanced) weights. In the real world, most managers face a
long-only constraint, that is, they are not allowed to short-sell any stock.
The common approach to pick stocks in which to invest is mean-variance
optimization dating back to Markowitz (1952). It requires two inputs: the
expected (excess) return for each stock and the covariance matrix of
stock returns. The first input represents the portfolio manager’s ability
to forecast future price movements. The second input has to be estimat-
ed from past stock return data.

The standard statistical method to estimate the covariance matrix of
stock returns is to compute the sample covariance matrix. Unfortu-
nately, the sample covariance matrix contains a lot of estimation error.
This is especially true when the number of stocks under consideration is
large compared to the return history in the sample, which is the typical
situation in practice. Feeding the sample covariance matrix to a mean-
variance optimizer will result in ‘extreme’ and under-diversified portfo-
lios. Michaud (1989) calls this phenomenon “error-maximization’’.

Ledoit and Wolf (2004) propose an improved estimator of the covari-
ance matrix based on the statistical principal of shrinkage. The idea is to
find an optimal linear combination of the sample covariance matrix and
a highly structured estimator, which assumes that the correlation 
between the returns of any two stocks is always the same. Shrinkage

pulls the most extreme coefficients towards more central values, there-
by systematically reducing estimation error where it matters most. An
empirical study demonstrates that shrinkage results in a significantly
higher realized information ratio of the active manager compared to the
sample covariance matrix.

Alternatively, one can apply a variant of the resampled efficiency of
Michaud (1998) to the problem of the active portfolio manager. This ap-
proach is philosophically different from shrinkage estimation, since it is
not based upon an improved estimator of the covariance matrix. Instead,
one creates artificial return data by resampling from the observed data.
Then an optimal active portfolio is constructed by computing the sam-
ple covariance matrix on the resampled data and feeding it to the mean-
variance optimizer. This process is repeated many times and finally the
various optimal resampled portfolios are averaged. Typically, the aver-
aged portfolio is more diversified than the one obtained from the sam-
ple covariance matrix of the observed data alone. In return, a more
diversified portfolio tends to improve out-of-sample performance.

This paper studies the effectiveness of resampling versus shrinkage
estimation. In addition, it asks whether by combining resampling with
shrinkage one can do better than either technique. We start by giving a
formal description of the problem. Next, we briefly recall the shrinkage
estimator of Ledoit and Wolf (2004). Thereafter, we describe how to apply
resampling to the problem of the active portfolio manager. Finally, we
compare the out-of-sample performance of the various methods, using
historical stock return data.



x′1 = 0

x ≥ −wB

x ≤ c1 − wB

(1)

Here g is the manager’s target gain (i.e., expected excess return) relative
to the benchmark. A typical number is 300 basis points (annualized). The
manager chooses g and the upper limit c and also knows the current vec-
tor of benchmark weights wB. She is now left to provide estimates for α,

the vector of expected stock excess returns, and for �, the covariance ma-
trix of stock returns. In a final step, all the inputs are fed into a quadratic
optimization software that will compute x, the optimal weights of the ac-
tive portfolio.

3 Shrinkage Estimator of the
Covariance Matrix
Ledoit and Wolf (2004) propose a shrinkage estimator of the covariance
matrix, and the reader is referred to their paper for the details. In a nut-
shell, the estimator is defined as

�̂Shrink = δ̂∗F + (1 − δ̂∗)S (2)

This equation has three ingredients, S, F, and δ̂∗. S is the sample covari-
ance matrix of the past stock returns. F is a highly structured estimator
of the covariance matrix. It assumes that the correlation between the re-
turns of any two stocks is constant. Therefore, F could be coined the con-
stant correlation estimator. δ̂∗ is the shrinkage intensity, as it determines
the weight of F in the convex linear combination between S and F. The
practical challenge lies in determining δ̂∗ from the data. Ledoit and Wolf
(2004) give the formula for that, based on an optimality criterion for the
shrinkage estimator.3

4 Resampling
We now describe a variant of the resampled efficiency of Michaud (1998)
applied to the problem of the active portfolio manager. In this approach,
the manager uses his forecast α̂ of future expected excess returns. He em-
ploys resampling to avoid solely relying on the sample covariance matrix
S computed from past returns. The algorithm is as follows.

Algorithm 4.1 (Resampling the active portfolio)

Step 1 Resample from the past returns to create a bootstrap sequence of
returns.4

Step 2 Compute the sample covariance matrix from the bootstrap data
and call it S∗.

Step 3 Solve the quadratic optimization problem (1) with S∗ in place of
the unknown true covariance matrix �. Call the resulting optimal
vector of weights x∗.

Step 4 Repeat Step 3 K times and average over the K weight vectors x∗ to
obtain the final vector of active portfolio weights. Call this vector x∗

.

We want to stress that this algorithm is not identical to the original
suggestion of Michaud (1998). Instead of using a ‘skilled’ forecast,

^
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2 Formal Description of the Problem
We study the most relevant case for equity portfolios. The benchmark is a
weighted index of a large number N of individual stocks, such as a value-
weighted index. The universe of stocks from which the portfolio manag-
er selects includes all these stocks.1 Excess returns are defined relative to
the chosen benchmark. Define the following notations:

wB = vector of benchmark weights for the universe of N stocks

x = vector of active weights

wP = wB + x = vector of portfolio weights

y = vector of stock returns

µ = E(y) = vector of expected stock returns

α = µ − w′
Bµ = vector of expected stock excess returns

� = covariance matrix of stock returns

We can write expected returns and variances in vector/matrix nota-
tion as:

µB = w′
Bµ = expected return on benchmark

σ 2
B = w′

B�wB = variance of benchmark return

µP = w′
Pµ = expected return on portfolio

σ 2
P = w′

P�wP = variance of portfolio return

µE = x′µ = expected excess return on portfolio

σ 2
E = x′�x = tracking error variance

The portfolio selection problem is subject to the constraint that the port-
folio be fully invested, that is, the portfolio weights wP have to add up to
unity. With 1 denoting a conforming vector of ones, this can be written
as w′

P1 = 1. Because the benchmark weights also add up to unity, the vec-
tor of portfolio deviations must up to zero, or x′1 = 0. Therefore, the port-
folio of the manager can be viewed as a position in the benchmark plus
an active portfolio. The active portfolio is a long/short portfolio and ex-
presses the views of the manager. Two immediate implications are:

µP = µB + µE

σ 2
P = σ 2

B + 2w′
B�x + σ 2

E

While positions of the active portfolio are both positive and negative,
the manager does not have complete freedom. None of the portfolio
weights wP can be negative, or wP ≥ 0, due to the long-only constraint.
The resulting constraint x ≥ −wB expresses the limited freedom of the
manager. Grinold and Kahn (2000, Chapter 15) illustrate how this limita-
tion can negatively affect the performance of the managed portfolio, es-
pecially when the benchmark is a value-weighted index and when N is
large. In addition, the manager often is faced with the constraint that
the total position in any given stock cannot exceed a certain value, like
10%. If this upper bound is denoted by c, the resulting constraint on the
weights of the active portfolio is x ≤ c1 − wB.

Having defined the various ingredients, we can now formalize the op-
timization problem of the manager as follows:2

Minimize: x′�x

such that: x′α ≥ g
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Michaud also obtains an estimate of the expected excess returns from the
bootstrap data.

There are two possibilities for the resampling in Step 1. One can re-
sample from a parametric estimate of the underlying distribution, such as
the normal distribution whose mean is the sample mean of the past re-
turns and whose covariance matrix is the sample covariance matrix of the
past returns. Alternatively, one can resample from the observed data with
replacement. The former corresponds to parametric bootstrap while the
latter corresponds to a nonparametric bootstrap; see Efron and Tibshirani
(1993). The two approaches yield very similar results in practice.

Is there a general theoretical justification to Algorithm 4.1? To shed
some light on this question, it is helpful to realize that the algorithm can
be considered a special case of the statistical technique of bagging.
Bagging is an acronym for “bootstrap aggregating’’ and was invented by
the statistician Leo Breiman (1996). The general situation is as follows.
One observes data from which a predictor (or estimator) θ is computed.5

But due to the nature of the predictor, small changes in the data set can
lead to significant changes in the predictor constructed: the predictor is
unstable. As a consequence, it is deemed unreliable for practical use.
Bagging aims to remedy this situation as follows. One resamples from the
observed data via the bootstrap and computes the predictor on the boot-
strap data, resulting in θ ∗. This process is repeated many times and the
resulting values θ ∗ are ‘aggregated’ by averaging over them. Call the
bagged estimator θ

∗
. The hope is that θ

∗
has a better out-of-sample per-

formance than the original estimator θ. But Breiman (1996) proves there
is no universal guarantee. In some applications, θ

∗
indeed performs bet-

ter. However, in other applications it is only equally good or even worse
than θ. The usefulness of bagging hence must be determined by a case-by-
case analysis.

A theoretical investigation of the original Michaud (1998) resampled
efficiency is provided by Scherer (2002). In this setting, the portfolio
manager aims for an optimal ‘absolute’ portfolio rather than for outper-
forming an index. In addition, the manager uses the past returns alone
to predict future returns as opposed to a ‘skilled’ forecast. Nevertheless,
two of the main findings of Scherer (2002) carry over to our modified
setting.

First, in the absence of lower and upper bounds on the vector of port-
folio weights, resampling is close to the sample covariance matrix.
Appendix A details a technical argument. Portfolio selection in the ab-
sence of bounds on the portfolio weights is an unstable process.
Nevertheless, resampling does not help. So the theoretical analysis re-
veals an example where the bagged predictor does not outperform the
predictor computed from the original data.

Second, in the presence of lower and upper bounds on the vector of
portfolio weights, resampling leads to more diversified (active) portfolios
compared to the sample covariance matrix. As a result, resampling im-
proves out-of-sample performance. We illustrate the second finding in
our context. Assume a specific stock appears very unfavorable according
to the sample covariance matrix. The impulse of the mean-variance opti-
mizer is to short-sell the stock. However, due to the overall long-only con-
straint its weight in the active portfolio cannot be smaller than the
negative of its weight in the benchmark index. Suppose then this is the
weight finally selected. Now data are resampled from the past returns
and the sample covariance matrix is computed and the resulting boot-

strap data. Two things can happen. The first possibility is that, according
to the bootstrap matrix, the stock will appear even less favorable then be-
fore. But the bootstrap weight cannot be smaller than the original weight
due to the overall long-only constraint. So the bootstrap weight will equal
the original weight. The second possibility is that, according to the boot-
strap matrix, the stock will appear more favorable than before. As a re-
sult, the bootstrap weight can be larger than the original weight. These
two possibilities imply that the average weight over many bootstrap re-
samples is likely to be larger (or closer to zero) compared to the original
weight. Conversely, a stock that looks very favorable according to the
sample covariance matrix is likely to receive a smaller (or closer to zero)
weight in the resampled active portfolio. The overall effect is one of a
more diversified active portfolio.

To summarize, we agree with Scherer (2002) that resampled efficien-
cy is an heuristic to improve out-of-sample performance in the presence
of a long-only constraint but that it is not clear why it should be optimal
in any way. On the other hand, shrinkage estimation of the covariance
matrix is based on a well-defined optimality criterion.6 Moreover, it im-
proves out-of-sample performance whether a long-only constraint is pres-
ent or not.7

5 Resampling Combined With
Shrinkage
A natural question to ask is whether resampling can be combined with
shrinkage estimation. The answer is yes, as the following algorithm
shows.

Algorithm 5.1 (Resampling the active portfolio combined with shrink-
age)

Step 1 Resample from the past returns to create a bootstrap sequence of
returns.8

Step 2 Compute the shrinkage estimator (2) from the bootstrap data and
call it �̂∗

Shrink .

Step 3 Solve the quadratic optimization problem (1) with �̂∗
Shrink in place

of the unknown true covariance matrix �. Call the resulting optimal
vector of weights x∗.

Step 4 Repeat Step 3 K times and average over the K weight vectors x∗ to
obtain the final vector of active portfolio weights. Call this vector x∗

.

In the presence of a long-only constraint, both resampling and shrink-
age estimation improve upon the sample covariance matrix. One might
therefore hope that a further improvement can be obtained by combin-
ing the two methods. It is not clear how to analyze this question analyti-
cally. Instead, we address it in our empirical study.

6 Empirical Study
The set-up is similar to the one of Ledoit and Wolf (2004). We study out-of-
sample performance using historical stock market data. DataStream pro-
vides monthly U.S. stock data. We use these data to construct several
value-weighted indices to serve as our benchmarks. Starting in February
1983, the methodology is as follows. At the beginning of each month, we



^
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select the N = 30 largest stocks (with a 10-year history) as measured by
their market value. The market values of the stocks define their index
weights. At the end of the month, we observe the (real) returns of the in-
dividual stocks and, given their weights, compute the return on the
index. This prescription is repeated every month until the end of
December 2002. Thus, the constituents list and the index weights are
constantly updated.

To mimic a skilled active manager, we first construct raw forecasts of
the expected excess returns by adding random noise to the realized ex-
cess returns. In a second step, these raw forecasts are transformed into re-
fined forecasts α̂ which are fed to the quadratic optimizer. This is done in
a way such that the unconstrained annualized ex ante information ratio
(IR) is approximately equal to 1.5, independently of the value of the
benchmark size N. The unconstrained IR could be attained by a manager
who did not face any lower or upper bound constraints on the weight vec-
tor x and who knew the exact nature of the covariance matrix � of stock
returns. The details of the forecast construction are described in
Appendix C of Ledoit and Wolf (2004).

Out-of-sample performance is evaluated in the following way.

Evaluation Algorithm:

• At the beginning of each month feed the following ingredients to the
quadratic optimizer: the benchmark weights wB, the forecasted ex-
pected excess returns α̂, the estimated covariance matrix �̂, the de-
sired gain g, and an upper bound of c = 0.1 on the total weight of
any stock.

• For the (annualized) gain g, we use 100, 200, 300, 400, 500, and 600
basis points.

• To compute an estimate �̂, we use the last T = 60 monthly returns of
the current constituents list of stocks. The quadratic optimizer com-
putes a weight vector x based on �̂.

• If a resampling method is used, apply Algorithm 4.1 or 5.1 based on the
last T = 60 monthly returns. The resampling method computes a
weight vector x∗

.9

• At the end of the month, the realized excess return is given by e = x′y
for quadratic optimization and by e = (x∗

)′y for resampling, where y
is the vector of stock returns for the month.

• The out-of-sample period ranges from 02/1983 until 12/2002, so a total
of 239 monthly realized excess returns are obtained.

• From the excess returns we compute the (annualized) ex post informa-
tion ratio as 

√
12e/se, where e is the sample average of the excess re-

turns and se is the sample standard deviation of the excess returns.
• Since the results depend on the monthly forecasts α̂, which are ran-

dom, we repeat this process 50 times and then report mean-summa-
ry statistics.

Mean-summary statistics for the realized excess returns are presented
in Table 1. The results can be highlighted as follows.

1. In all scenarios, the sample covariance matrix yields the lowest (aver-
age) information ratio.

2. Resampling improves upon the sample covariance matrix.
3. Shrinkage improves upon the sample covariance matrix and also upon

resampling.

4. Resampling combined with shrinkage improves upon ‘pure’ resam-
pling but does not improve upon ‘pure’ shrinkage.

Table 2 presents mean-summary statistics on the average monthly
turnover. Turnover is defined as the total turnover of Grinold and Kahn
(2000, Chapter 16) Note that this definition corresponds to updating the
entire portfolio, not just the active portfolio. A part of the turnover,
therefore, is due to the constituents list of the benchmark and their
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TABLE 1: MEAN-SUMMARY STATISTICS FOR
EXCESS RETURNS 

IR Mean SD

gain = 100 b.p.

Sample 0.89 0.88 0.99

Shrinkage 1.19 1.00 0.84

Resample 0.91 0.88 0.98

Res-Shrink 1.18 0.97 0.84

gain = 200 b.p.

Sample 0.95 1.51 1.59

Shrinkage 1.27 1.74 1.38

Resample 0.98 1.53 1.57

Res-Shrink 1.25 1.71 1.37

gain = 300 b.p.

Sample 0.97 2.18 2.26

Shrinkage 1.24 2.50 2.03

Resample 1.01 2.23 2.23

Res-Shrink 1.22 2.45 2.02

gain = 400 b.p.

Sample 1.00 3.00 3.03

Shrinkage 1.21 3.36 2.80

Resample 1.04 3.10 2.99

Res-Shrink 1.19 3.30 2.80

gain = 500 b.p.

Sample 1.04 4.06 3.93

Shrinkage 1.17 4.38 3.76

Resample 1.08 4.16 3.88

Res-Shrink 1.16 4.32 3.75

gain = 600 b.p.

Sample 1.09 5.45 5.04

Shrinkage 1.15 5.62 4.92

Resample 1.07 5.23 4.89

Res-Shrink 1.11 5.33 4.80

This table presents ex post information ratios, means, and standard deviations of

realized excess returns. The out-of-sample period is 02/1983 until 12/2002,

yielding 239 monthly excess returns. `Sample’ denotes the sample covariance

matrix; `Shrinkage’ denotes the shrinkage estimator (2); `Resample’ denotes

Algorithm 4.1; `Res-Shrink’ denotes Algorithm 5.1. The results are mean-sum-

maries over 50 repetitions.
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weights, both of which change over time. In general, the turnover is too
high to be attractive for an active manager. But no effort was made to
limit turnover, and a constraint to this effect could be easily added to the
quadratic optimization problem (1). Alternatively, one could address the
need to trade by the approach of Michaud (1998) or similar approaches.
The important message to take away from Table 2 is that the sample co-
variance matrix results in the highest turnover, followed by resampling.
Shrinkage is comparable to resampling combined with shrinkage.

7 Conclusion
Nobody should be using the sample covariance matrix for the purpose of
mean-variance optimization in the context of benchmarked active port-
folio management. It places extreme bets on noisy coefficients that con-
tain a lot of estimation error. A superior alternative is the shrinkage
estimator of Ledoit and Wolf (2004). It moves noisy coefficients to more
common values, resulting in a substantial increase in the realized infor-
mation ratio of the portfolio manager. A resampling method in the spirit
of Michaud (1998) also improves upon the sample covariance matrix. But,
according to our empirical study, it is inferior to shrinkage estimation.
Resampling can be combined with shrinkage. However, we cannot find
evidence that this combination offers any further improvement beyond
‘pure’ shrinkage.

Appendix: Resampling Without Bounds
on the Portfolio Weights
Consider the quadratic optimization problem (1) with the upper and
lower bounds on the weight vector x removed. The problem then be-
comes

Minimize: x′�x

such that: x′α ≥ g

x′1 = 0

(3)

The solution will be a linear combination of the two portfolios �−11 and
�−1α. More specifically, the optimal portfolio x is given by

x = λ�−11 + γ �−1α

where the two constants λ and γ are jointly determined by the two con-
straints x′α ≥ g and x′1 = 0. This relation can be proven analogously to
equation (4) in Ingersoll (1987, Chapter 4).

In practice, the portfolio manager does not know the vector of ex-
pected excess returns α and the covariance matrix of stock returns �. Let
α̂ be her forecast of excess returns and let �̂ be an estimate of the covari-
ance matrix � computed from past data. The optimal portfolio x is then

x = λ�̂−11 + γ �̂−1α̂ (4)

where the two constants λ and γ are jointly determined by the two con-
straints x′α̂ ≥ g and x′1 = 0.10 It is easy to see that the optimal solution x
does not change if �̂ is replaced by a scalar multiple c�̂ in equation (5),
for some constant c > 0.

Now apply the resampling Algorithm 4.1 where the quadratic opti-
mization problem (3) replaces the quadratic optimization problem (1).
Assume that the resampling is done from a normal distribution with co-
variance matrix �̂, as suggested by Michaud (1998). If the number of re-
samples is large, the resampled portfolio x∗ will be very close to the one
determined by the expected value of (S∗)−1. Therefore

x∗ ≈ λE[(S∗)−1]1 + γ E[(S∗)−1]α̂ (5)

where the two constants λ and γ are jointly determined by the two con-
straints x′α̂ ≥ g and x′1 = 0. It is well-known that E[(S∗)−1] is a scalar mul-
tiple of �−1; for example, see Johnson and Kotz (1972, Section 3). By the
above argument, therefore, x∗ ≈ x. So the resampled active portfolio will
be very close to the Markowitz portfolio.
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3. Computer code in the Matlab programming language implementing this improved esti-

mator is freely downloadable from http://www.ledoit.net/.

4. The number of data points in the bootstrap sequence should be the same as in the origi-
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the covariance matrix will result in improved portfolio selection.

7. This constitutes a crucial advantage to a manager who does not face a long-only con-
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9. To keep the computational burden feasible, we use K = 30 in Algorithms 4.1 and 5.1.
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■ Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

■ Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall,

New York.


