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Consonance and the Closure Method in
Multiple Testing
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Abstract

Consider the problem of testing s null hypotheses simultaneously. In order to deal with the
multiplicity problem, the classical approach is to restrict attention to multiple testing procedures
that control the familywise error rate (FWE). The closure method of Marcus et al. (1976) reduces
the problem of constructing such procedures to one of constructing single tests that control the
usual probability of a Type 1 error. It was shown by Sonnemann (1982, 2008) that any coherent
multiple testing procedure can be constructed using the closure method. Moreover, it was shown
by Sonnemann and Finner (1988) that any incoherent multiple testing procedure can be replaced
by a coherent multiple testing procedure which is at least as good. In this paper, we first show an
analogous result for dissonant and consonant multiple testing procedures. We show further that, in
many cases, the improvement of the consonant multiple testing procedure over the dissonant
multiple testing procedure may in fact be strict in the sense that it has strictly greater probability of
detecting a false null hypothesis while still maintaining control of the FWE. Finally, we show how
consonance can be used in the construction of some optimal maximin multiple testing procedures.
This last result is especially of interest because there are very few results on optimality in the
multiple testing literature.
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1 Introduction

Consider the general problem of simultaneously testing s null hypotheses of
interest H1, . . . , Hs. Data X with distribution P ∈ Ω are available, where the
parameter space Ω may be a parametric, semiparametric or nonparametric
model for P . In this setting, a general hypothesis H can be viewed as a subset
ω of Ω. The problem is to test null hypotheses Hi : P ∈ ωi versus alternative
hypotheses H

�
i : P /∈ ωi simultaneously for i = 1, . . . , s. Let I(P ) denote

the indices of the set of true null hypotheses when P is the true probability
distribution, that is, i ∈ I(P ) if and only if (iff) P ∈ ωi.

If tests for each of the s null hypotheses of interest are available, then
one may simply disregard the multiplicity and test each hypothesis in the usual
way at level α. However, with such a procedure, the probability of one or more
false rejections generally increases with s and may be much greater than α.
A classical approach to dealing with this problem is to restrict attention to
multiple testing procedures that control the probability of one or more false
rejections. This probability is called the familywise error rate (FWE). Here,
the term “family” refers to the collection of hypotheses H1, . . . , Hs which is
being considered for simultaneous testing. Control of the FWE at level α

requires that
FWEP ≤ α for all P ∈ Ω ,

where
FWEP ≡ P

�
reject any Hi with i ∈ I(P )

�
.

Note that we require FWEP ≤ α for all P ∈ Ω. Control of the familywise error
rate in this sense is called strong control of the FWE to distinguish it from weak

control, where FWEP ≤ α is only required to hold when all null hypotheses
are true, that is, when P ∈

�
1≤i≤s ωi. Since weak control is only of limited use

in multiple testing, control will always mean strong control for the remainder
of this paper. A quite broad treatment of multiple testing procedures which
control the FWE is presented in Hochberg and Tamhane (1987).

The most well-known multiple testing procedure is the Bonferroni pro-
cedure. If p̂i denotes a p-value for hypothesis Hi, then the Bonferroni procedure
rejects Hi iff p̂i ≤ α/s. Other multiple testing procedures that only require
the s p-values p̂1, . . . , p̂s as input are those of Holm (1979) and Simes (1986).
Such procedures are very easy to apply, but they may be quite conservative,
such as the procedures of Bonferroni and Holm (1979), or require strong re-
strictions on the dependence structure of the tests, such as the procedure of
Simes (1986), which requires the p-values to be mutually independent.
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A broad class of multiple testing procedures that control the FWE is
provided by the closure method of Marcus et al. (1976), which reduces the
problem of constructing such a multiple testing procedure to the problem of
constructing tests of individual (or single) hypotheses that control the usual
probability of a Type 1 error. Specifically, for a subset K ⊆ {1, . . . , s}, define
the intersection hypothesis

HK : P ∈ ωK , (1)

where
ωK ≡

�

i∈K

ωi .

Of course, Hi = H{i}. Suppose φK is a (possibly randomized) level α test of
HK , that is,

sup
P∈ωK

EP [φK ] ≤ α . (2)

The closure method, as a multiple testing procedure, rejects Hi iff HK is
rejected (based on φK) at level α for all subsets K for which i ∈ K. A thorough
review of the topic of multiple testing, emphasizing, in particular, multiple
testing procedures obtained using the closure method in a clinical trial setting,
can be found in Bauer (1991). Unlike the procedures of Bonferroni, Holm
(1979) and Simes (1986), as many as 2s tests may in principle need to be carried
out to apply the closure method. On the other hand, the resulting multiple
testing procedure controls FWE without any restrictions on the dependence
structure of the tests. To see why, we adapt the argument in Theorem 4.1 of
Hochberg and Tamhane (1987). Let A be the event that at least one Hi with
i ∈ I(P ) is rejected by the closure method, and let B be the event that the
individual hypothesis HI(P ) is rejected (based on φI(P )) at level α. Since A

implies B,
FWEP = P{A} ≤ P{B} ≤ α .

Moreover, as will be shown below, if the tests φK are designed properly, then
the resulting multiple testing procedure may have desirable power properties.

By reducing the problem of controlling the FWE to that of constructing
individual tests which control the usual probability of a Type 1 error, the
closure method provides a very general means of constructing multiple testing
procedures which control the FWE. Sonnemann (1982, 2008) in fact shows that
any coherent multiple testing procedure can be constructed using the closure
method. A multiple testing procedure is said to be coherent when the following
condition holds: if a hypothesis P ∈ ω is not rejected, then any hypothesis
P ∈ ω

� with ω ⊂ ω
� must also not be rejected. (The symbol ⊂ denotes a

strict subset in contrast to the symbol ⊆.) Sonnemann and Finner (1988)
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show further that any incoherent multiple testing procedure can be replaced
by a coherent multiple testing procedure that rejects the same hypotheses
and possibly more while still controlling the FWE. Hence, there is no loss
in restricting attention to multiple testing procedures constructed using the
closure method. These results are reviewed briefly in Section 2.

In this paper, we consider the problem of how “best” to choose tests of
HK when constructing a multiple testing procedure using the closure method.
Even in the case s = 2, little formal theory exists in the design of tests of HK .
In fact, even if the individual tests are constructed in some optimal manner,
multiple testing procedures obtained by the closure method may in fact be
inadmissible. This finding was previously obtained in Bittman et al. (2009) in
a specific context. In our analysis, the notion of consonance becomes pertinent.
A multiple testing procedure obtained using the closure method is said to be
consonant when the rejection of an intersection hypothesis implies the rejection
of at least one of its component hypotheses. Here, we mean that Hj is a
component of Hi if ωi ⊂ ωj. For example, a hypothesis specifying θ1 = θ2 = 0
has component hypotheses θ1 = 0 and θ2 = 0, and a consonant procedure
which rejects θ1 = θ2 = 0 must reject at least one of the two component
hypotheses. A procedure which is not consonant is called dissonant. Both the
notions of coherence and consonance were first introduced by Gabriel (1969).

We show that there is no need to consider dissonant multiple testing
procedures when testing elementary hypotheses, defined formally in Section 3.
Indeed, in such a setting, any dissonant multiple testing procedure can be
replaced by a consonant multiple testing procedure that rejects the same hy-
potheses and possibly more. We show further that in many cases the improve-
ment of the consonant multiple testing procedure over the dissonant multiple
testing procedure may in fact be strict in the sense that it has strictly greater
probability of detecting a false null hypothesis while still maintaining control
of the FWE. Finally, in Section 4, we show how consonance can be used in the
construction of some optimal maximin multiple testing procedures. This last
result is especially of interest because there are very few results on optimality
in the multiple testing literature so far. Proofs of all results can be found in
the appendix.

We introduce at this point a classic, running example which will be
revisited throughout the remainder of the paper.

Example 1.1 (Two-sided Normal Means) For 1 ≤ i ≤ 2, let Xi be inde-
pendent with Xi ∼ N(θi, 1). The parameter space Ω for θ = (θ1, θ2) is the
entire real plane. Let s = 2, so there are only two hypotheses, and null hy-
pothesis Hi specifies θi = 0. To apply the closure method, suppose the test of
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Hi is the uniformly most powerful unbiased (UMPU) level α test which rejects
Hi iff |Xi| > z1−α

2
, where zλ denotes the λ quantile of the N(0, 1) distribution.

All that remains is to choose a test of the intersection hypothesis H{1,2}. There
are two well-known choices.

(i) The uniformly most powerful (rotationally) invariant test. Reject H{1,2}
iff (X1, X2) falls in the rejection region R1,2(α) given by

R1,2(α) ≡
�
(x1, x2) : x

2
1 + x

2
2 > c2(1− α)

�
,

where cd(1− α) denotes the 1− α quantile of the χ
2
d distribution. This

test is also maximin and most stringent; see Section 8.6 of Lehmann and
Romano (2005).

(ii) Stepdown test based on maximum. Reject H{1,2} iff

max
�
|X1|, |X2|

�
> m2(1− α) , (3)

where ms(1− α) is the 1− α quantile of the distribution of

max
�
|X1|, . . . , |Xs|

�

when the Xi are i.i.d. ∼ N(0, 1).

In both cases, the multiple testing procedure begins by testing H{1,2}.
If H{1,2} is retained, then there are no rejections by the multiple testing proce-
dure. If, on the other hand, it is rejected, then Hi is rejected by the multiple
testing procedure iff |Xi| > z1−α

2
. It is easy to see that

z1−α
2

< m2(1− α) < c
1/2
2 (1− α) . (4)

The rejection region for test (i) is the outside of a disc centered at the origin

of radius c
1/2
2 (1− α), while the rejection region for test (ii) is the outside of a

square centered at the origin and having side length 2 ·m2(1−α); see Figure 1.
We refer to the multiple testing procedure which uses test (i) above for the test
of H{1,2} as procedure (i), and analogously to the multiple testing procedure
which uses test (ii) above for the test of H{1,2} as procedure (ii).

These procedures generalize easily when there are in general s hypothe-
ses. Let X1, . . . , Xs be independent with Xi ∼ N(θi, 1), and Hi specifies θi = 0.
For an arbitrary subset K ⊆ {1, . . . , s}, consider the intersection hypothesis
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HK that specifies θi = 0 for all i ∈ K. In order to generalize the first con-
struction, let φK be the test which rejects HK iff

�

i∈K

X
2
i > c|K|(1− α) ,

where |K| is the number of elements in K, so that c|K|(1 − α) is the 1 − α

quantile of χ
2
|K|, and then apply the closure method to this family of tests. In

order to generalize the second construction, let φK be the test which rejects
HK iff

max
i∈K

(|Xi|) > m|K|(1− α) ,

and then apply the closure method to this family of tests. It is natural to ask
which family should be used in the construction of the closure method. An
optimality result is presented in Section 4.1 for a new procedure that is nearly
the same as the procedure based on the maximum statistic.

2 Coherence

We first provide a lemma, which is a converse of sorts to the closure method.
Indeed, the closure method starts with tests of HK at level α, for any K ⊆
{1, . . . , s}, to produce a multiple testing procedure concerning the hypotheses
of H1, . . . , Hs of interest. Conversely, given any multiple testing procedure
(not necessarily obtained by the closure method) concerning the hypotheses
H1, . . . , HK , one can use it to obtain tests of HK at level α for any K ⊆
{1, . . . , s}.

Lemma 2.1 Let X ∼ P ∈ Ω. Suppose a given multiple testing procedure

controls the FWE at level α for testing null hypotheses Hi : P ∈ ωi versus

alternative hypotheses H
�
i : P /∈ ωi simultaneously for i = 1, . . . , s. Define a

test φK of the intersection hypothesis HK in (1) as follows: If K = {i} for

some i, then test HK by the test of that Hi; otherwise, reject HK if the given

multiple testing procedure rejects any Hi with i ∈ K. Then, φK controls the

usual probability of a Type 1 error at level α for testing HK, that is, it satisfies

(2).

Define a family of hypotheses H1, . . . , Hs to be closed if each intersection
hypothesis HK is a member of the family. The closure of a given family is the
family of all intersection hypotheses induced by the given family. In some
cases, there really is nothing to lose by assuming the given family is closed
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(that is, by considering the closure of the given family in case the family is not
closed to begin with). On the one hand, when applying the closure method,
one gets a multiple testing procedure that controls the FWE, not just for the
original family, but for the closure of the family. On the other hand, if one
is concerned only with the original family of hypotheses, then we shall see
that the notion of consonance may play a role in determining the tests of the
additional intersection hypotheses.

By definition, the closure method always guarantees that the resulting
multiple testing procedure is coherent, that is, if HI implies HK in the sense
that ωI ⊂ ωK , and HI is not rejected, then HK is not rejected. So, if HK

is rejected and ωI ⊂ ωK , then the requirement of coherence means HI must
be rejected. The requirement of coherence is reasonable because if HK is es-
tablished as being false, then HI is then necessarily false as well if ωI ⊂ ωK .
As stated in Hochberg and Tamhane (1987), coherence “avoids the inconsis-
tency of rejecting a hypothesis without also rejecting all hypotheses implying
it.” Note that even the simple Bonferroni procedure may not be consonant or
coherent; see Remark 3.3.

Sonnemann (1982, 2008) shows that any coherent multiple testing pro-
cedure can be constructed using the closure method. Sonnemann and Finner
(1988) show further that any incoherent multiple testing procedure can be
replaced by a coherent multiple testing procedure that rejects the same hy-
potheses and possibly more, while still controlling the FWE. Hence, there is no
loss in restricting attention to multiple testing procedures constructed using
the closure method. We restate these results below in Theorems 2.1 and 2.2
for completeness. A nice review can also be found in Finner and Strassburger
(2002). Note, however, that we do not assume the family of hypotheses to be
closed, and this feature will become important later when we discuss consonant
multiple testing procedures.

Theorem 2.1 Let X ∼ P ∈ Ω. Suppose a given multiple testing procedure

controls the FWE at level α for testing null hypotheses Hi : P ∈ ωi versus

alternative hypotheses H
�
i : P /∈ ωi simultaneously for i = 1, . . . , s. If the

given multiple testing procedure is coherent, then it can be obtained by applying

the closure method based on tests φK satisfying (2) for each K ⊆ {1, . . . , s}.
Thus, all coherent multiple testing procedures can be generated using the closure

method.

Remark 2.1 Note that the requirement of coherence does not restrict the
multiple testing procedure unless any of the hypotheses imply any of the others,
in the sense that there exist i and j with ωi ⊂ ωj. As a simple example,
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suppose X = (X1, . . . , Xs) is multivariate normal with unknown mean vector
(θ1, . . . , θs) and known covariance matrix Σ. If Hi specifies θi = 0, then no
ωi is contained in any other ωj. Hence, in this case, the preceding theorem
implies that all multiple testing procedures which control the FWE can be
generated using the closure method.

The next theorem and remark show how an incoherent multiple test-
ing procedure can be (weakly) improved upon by a coherent one in terms of
the ability to reject false hypotheses in the sense that the new procedure is
coherent, rejects the same hypotheses as the original one, and possibly rejects
some additional hypotheses. In order to keep the statement of the theorem
compact, we introduce the notion of coherentization of a general, incoherent
multiple testing procedure. Specifically, assume without loss of generality (by
including an auxiliary random variable in X, if necessary) that the incoherent
multiple testing procedure rejects Hi when X ∈ R̃i. Define the corresponding
coherentized procedure as the one which rejects Hi when X ∈ R̃

�
i given by

R̃
�
i ≡

�

j:ωj⊇ωi

R̃j . (5)

Theorem 2.2 Let X ∼ P ∈ Ω. Suppose a given multiple testing procedure

controls the FWE at level α for testing null hypotheses Hi : P ∈ ωi versus alter-

native hypotheses H
�
i : P /∈ ωi simultaneously for i = 1, . . . , s. If the multiple

testing procedure is incoherent, then it can be replaced by a coherent multiple

testing procedure that rejects all the hypotheses rejected by the incoherent mul-

tiple testing procedure and possibly some further hypotheses while maintaining

FWE control at level α. Specifically, the corresponding coherentized procedure

based on (5) is coherent, rejects Hi whenever the incoherent multiple testing

procedure rejects Hi, and maintains control of the FWE at level α.

Remark 2.2 In Theorem 2.2, if we assume further that there exists i and
some P ∈ ω

c
i such that

P

� �

j:ωj⊃ωi

R̃j \ R̃i

�
> 0 ,

then the coherent multiple testing procedure is strictly better in the sense
that for some P ∈ ω

c
i , the probability of rejecting Hi is strictly greater under

the coherentized procedure than under the given incoherent multiple testing
procedure. Put differently, we must require that there exist i and j such that
ωi ⊂ ωj and P{R̃j \ R̃i} > 0 for some P ∈ ω

c
i .
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3 Consonance

It follows from Theorems 2.1 and 2.2 that we can restrict attention to multiple
testing procedures obtained by the closure method. However, not all multiple
testing procedures generated by applying the closure method are also conso-
nant. Recall that a multiple testing procedure is consonant if at least one
Hi with i ∈ K is rejected by the multiple testing procedure whenever HK is
rejected at level α (based on φK). Hochberg and Tamhane (1987) write on
page 46:

Nonconsonance does not imply logical contradictions as noncoher-
ence does. This is because the failure to reject a hypothesis is
not usually interpreted as its acceptance. [. . . ] Thus, whereas co-
herence is an essential requirement, consonance is only a desirable
property.

A dissonant multiple testing procedure can, however, leave the statisti-
cian in a difficult situation when explaining the results of a study. Consider, for
example, a randomized experiment for testing the efficiency of a drug versus
a placebo with two primary endpoints: testing for reduction in headaches and
testing for reduction in muscle pain. Suppose H1 postulates that the drug is no
more effective than the placebo for reduction of headaches and H2 postulates
that the drug is no more effective than the placebo for reduction of muscle
pain. If the intersection hypothesis H{1,2} is rejected, but the statistician can-
not reject either of the individual hypotheses, then compelling evidence has
not been established to promote a particular drug indication. The net result
is that neither hypothesis can be rejected, even though one might conclude
that the drug has some beneficial effect. In this way, lack of consonance makes
interpretation awkward.

More importantly, we will argue, not merely from an interpretive view-
point, but from a mathematical statistics viewpoint, that dissonance is unde-
sirable in that it results in decreased ability to reject false null hypotheses.
(On the other hand, there may be applications where dissonance is informa-
tive. For example, it may be that a set of endpoints exhibit an overall effect
in a common direction though not strongly enough where any individual end-
point is rejected. Such a diffuse overall effect may be of interest to warrant
future experimentation.) For concreteness, let us revisit the running example.

Example 3.1 (Two-sided Normal Means, continued) It is easy to see
that procedure (ii) is consonant, whereas procedure (i) is dissonant. In partic-
ular, it is possible in procedure (i) to reject the intersection hypothesis H{1,2},
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but to reject neither H1 nor H2 by the multiple testing procedure. For ex-
ample, when α = 0.05, then c

1/2
2 (0.95) = 2.448; if X1 = X2 = 1.83, then

X
2
1 + X

2
2 = 6.698 = 2.5882, so H{1,2} is rejected, but neither Xi satisfies

|Xi| > 1.96. For an illustration, see Figure 1.
Of course, it does not follow that procedure (ii) is preferred merely

because it is consonant. More importantly, procedure (i) can be improved
if the goal is to make correct decisions about H1 and H2. Moreover, this
is true even though each of the tests of H1, H2 and H{1,2} possesses a strong
optimality property. In particular, we see that the optimality of the individual
tests of H1, H2 and H{1,2} does not translate into any optimality property for
the overall multiple testing procedure.

In order to appreciate why, note that we may remove from procedure
(i) points in the rejection region for testing the intersection hypothesis H{1,2}
that do not allow for rejection of either H1 or H2. By doing so, we can instead
include other points in the rejection region that satisfy the constraint that the
overall multiple testing procedure be consonant, while still maintaining FWE
control. In this example, this requires our test of H{1,2} to have a rejection
region which lies entirely in

�
(x1, x2) : max(|x1|, |x2|) > z1−α

2

�
.

Any test of H{1,2} satisfying this constraint will result in a consonant multiple
testing procedure when applying the closure method.

For a concrete way to improve upon procedure (i), consider a rejection
region R

�
1,2(α) for the test of H{1,2} of the form

R
�
1,2(α) ≡

�
(x1, x2) : x

2
1 + x

2
2 > c

�
2(1− α) , max

�
|x1|, |x2|

�
> z1−α

2

�
, (6)

where the critical value c
�
2(1− α) is chosen such that

P0,0

�
R
�
1,2(α)

�
= α .

Clearly, c
�
2(1− α) < c2(1− α), and the resulting multiple testing procedure is

consonant. For an illustration, see Figure 2. Moreover, for 1 ≤ i ≤ 2,

Pθ1,θ2

�
reject Hi using R1,2(α)

�
< Pθ1,θ2

�
reject Hi using R

�
1,2(α)

�
.

In particular, the new consonant multiple testing procedure has uniformly
greater power at detecting a false null hypothesis Hi. In this way, imposing
consonance not only makes interpretation easier, but also improves our ability
to detect false hypotheses as well.
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3 2 1 0 1 2 3

3
2

1
0

1
2

3

Figure 1: The rejection regions for the two intersection tests of Example 1.1 with

nominal level α = 0.05. Test (i) rejects for points that fall outside the solid circle

with radius 2.448. Test (ii) rejects for points that fall outside the dashed square with

length 2 × 2.234. For example, the point (1.83, 1.83) leads to rejection by test (i)

but not by test (ii). On the other hand, the point (2.33, 0.15) leads to the rejection

of H1 by procedure (ii) but not by procedure (i).
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3 2 1 0 1 2 3

3
2

1
0

1
2

3

Figure 2: The rejection region R
�
1,2(α) of the improved procedure (i) of Example

1.1 with nominal level α = 0.05; see equation (6). This larger region is obtained

as the intersection of the region outside of a circle with radius 2.421 and and the

region outside a square with length 2× 1.96.
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In the previous example of testing independent normal means, note
that if the original family of hypotheses had been H1, H2 and H{1,2}, then we
could not improve upon the original test in the same way. Such improvements
are only possible when we use tests of intersection hypotheses as a device
to apply the closure method without the intersection hypotheses themselves
being of primary interest. For this reason, we consider the case where the
family of hypotheses of interest H1, . . . , Hs is the set of elementary hypotheses
among the closure of the family of hypotheses of interest. Following Finner
and Strassburger (2002), a hypothesis Hi is said to be elementary (or maximal)
among a family of hypotheses if there exists no Hj in the family with ωi ⊂ ωj.
So, in Example 1.1, H1 and H2 are the elementary hypotheses among the
closure of the family of hypotheses of interest. In this setting, the following
theorem shows that there is no need to consider dissonant multiple testing
procedures when applying the closure method because any dissonant multiple
testing procedure can be replaced by a consonant multiple testing procedure
which reaches the same decisions about the hypotheses of interest. The main
idea is that when applying the closure method, one should construct the tests
of the intersection hypotheses in a consonant manner. In other words, the
rejection region of the test of an intersection hypotheses should be chosen
such that points in the rejection region lead to the rejection of at least one
component hypothesis.

In order to keep the statement of the theorem compact, we introduce the
notion of consonantization of a general, dissonant multiple testing procedure.
Specifically, assume without loss of generality (by including an auxiliary ran-
dom variable in X, if necessary) that the dissonant multiple testing procedure
is obtained using the closure method based on tests of individual intersection
hypotheses HK with rejection region X ∈ RK for each K ⊆ {1, . . . , s}. Define
the corresponding consonantized procedure as the one based on the closure
method with RK replaced by R

�
K given by

R
�
K ≡

�

i∈K

�

J⊆S,i∈J

RJ . (7)

Theorem 3.1 Let X ∼ P ∈ Ω and consider testing null hypotheses Hi : P ∈
ωi versus alternative hypotheses H

�
i : P /∈ ωi simultaneously for i = 1, . . . , s.

Suppose a given multiple testing procedure is obtained using the closure method

and controls the FWE at level α. Suppose further that each Hi is elementary.

If the given multiple testing procedure is dissonant, then it can be replaced by

a consonant multiple testing procedure that reaches the same decisions for the
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hypotheses of interest as the original procedure. Specifically, the corresponding

consonantized procedure based on (7) is consonant, reaches the same decisions

about the hypotheses of interest Hi as the original dissonant multiple testing

procedure, and therefore controls the FWE.

Remark 3.1 The preceding theorem only asserts that any dissonant multiple
testing procedure can be replaced by a consonant multiple testing procedure
that leads to the same decisions as the dissonant multiple testing procedure. In
most cases, however, one can strictly improve upon a dissonant multiple testing
procedure, as was done in Example 3.1, by removing points of dissonance from
the rejection regions of the tests of the intersection hypotheses and adding
to these rejection regions points that satisfy the constraint that the overall
multiple testing procedure is consonant.

Remark 3.2 It is possible to generalize Theorem 3.1 to situations where the
family of hypotheses of interest is a strict subset of their closure. For example,
let Hi : θi = 0 for 1 ≤ i ≤ 3 and consider testing all null hypotheses in the
closure of H1, H2 and H3 except for H{1,2,3}. Theorem 3.1 does not apply
in this case since not all hypotheses are elementary. Even so, the idea of
consonance can be applied as in the proof of the theorem when applying the
closure method and choosing how to construct the rejection region for the test
of H{1,2,3}. As before, one should simply choose the rejection region for the
test of H{1,2,3} such that points in the rejection region lead to the rejection of
at least one of the other hypotheses. Any multiple testing procedure obtained
using the closure method and based on a rejection region for H{1,2,3} that does
not have this feature can be replaced by one that is at least as good in the
sense that it rejects the same hypotheses and possibly more.

Remark 3.3 In the introduction, we mentioned several multiple testing pro-
cedures which only require the s p-values p̂1, . . . , p̂s as input. In general, these
procedures are neither coherent nor consonant. We illustrate these two points
for the Bonferroni procedure.

In order to illustrate that the Bonferroni procedure need not be coher-
ent, consider setting of Example 1.1. Suppose that all three hypotheses are in
fact of interest, that is, s = 3 and H3 ≡ H{1,2}. Let U1, U2, U3 be three mutu-
ally independent uniform random random variables on [0,1]. For 1 ≤ i ≤ 3,
let φi ≡ 1{Ui≤α/3}, where 1{·} denotes the indicator function. The Bonferroni
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procedure rejects Hi iff Ui ≤ α/3. This multiple testing procedure controls the
FWE at level α, but we may have that H1 is rejected while H3 is not rejected.
(To make the construction a little more relevant, one might imagine dividing
the data into three disjoint subsets so that the tests of H1, H2 and H3 are
mutually independent. Of course, this would be inefficient.) Hence, in this
case, the Bonferroni procedure is not coherent.

In order to illustrate that the Bonferroni procedure need not be con-
sonant, consider again the setting of Example 1.1. For 1 ≤ i ≤ 3, let φi be
defined as in procedure (i) of Example 1.1. The Bonferroni procedure rejects
Hi iff Hi is rejected based on φi at level α/3. Again, this multiple testing
procedure controls the FWE at level α, but we may have that H3 is rejected
while neither H1 nor H2 is rejected. To see this, suppose α = 0.15 so that
α/3 = 0.05. If X1 = X2 = 1.83, then X

2
1+X

2
2 = 6.698 = 2.5882, so H3 ≡ H{1,2}

is rejected at level 0.05, but neither Xi satisfies |Xi| > 1.96. Hence, in this
case, the Bonferroni procedure is not consonant.

4 Optimality

4.1 Optimality Using Consonance

We now examine the role of consonance in optimal multiple testing procedures.
We begin with the following general result. The main point of this result is that
we can use an optimality property of a test of a single intersection hypothesis
in order to derive an optimality property of a multiple testing procedure, as
long as the assumption of consonance holds when the optimal test of the
intersection hypothesis is used in an application of the closure method. Note
that here we do not require the hypotheses of interest to be elementary.

Theorem 4.1 Let X ∼ P ∈ Ω and consider testing null hypotheses Hi : P ∈
ωi versus alternative hypotheses H

�
i : P /∈ ωi simultaneously for i = 1, . . . , s.

Let S ≡ {1, . . . , s}. Suppose, for testing the intersection hypothesis HS at

level α, the test with rejection region RS maximizes the minimum power over

γS ⊆ ω
c
S among level α tests. Suppose further that when applying the closure

method and using RS to test HS that the overall multiple testing procedure is

consonant. Then, the multiple testing procedure maximizes

inf
P∈γS

P{reject at least one Hi} (8)

among all multiple testing procedures that control the FWE at level α.
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Thus, the overall multiple testing procedure inherits a maximin prop-
erty from a maximin property of the test of the intersection hypothesis HS as
long as the overall multiple testing procedure is consonant. We illustrate this
result with an example.

Example 4.1 (Two-sided Normal Means, continued) For � > 0, define

γ1,2 ≡ γ1,2(�) ≡
�
(θ1, θ2) : at least one θi satisfies |θi| ≥ �

�
. (9)

For testing H{1,2} at level α, it is then straightforward to derive the maximin
test against γ1,2(�). To see how, apply Theorem 8.1.1 of Lehmann and Romano
(2005) with the least favorable distribution uniform over the four points (�, 0),
(0, �), (−�, 0) and (0,−�). The resulting likelihood ratio test rejects for large
values of

T ≡ T�(X1, X2) ≡ cosh
�
�|X1|

�
+ cosh

�
�|X2|

�
, (10)

where the hyperbolic cosine function cosh(·) is given by cosh(t) ≡ 0.5·
�
exp(t)+

exp(−t)
�
. The test has rejection region

R1,2(�, α) ≡
�
(x1, x2) : T�(x1, x2) > c(1− α, �)

�
,

where c(1− α, �) is the 1− α quantile of the distribution of T�(X1, X2) under
(θ1, θ2) = (0, 0). It follows from Lemma A.2 in the appendix that the test with
rejection region R1,2(�, α) maximizes

inf
θ∈γ1,2(�)

Pθ1,θ2{reject H{1,2}}

among level α tests of H{1,2}.
Now construct a multiple testing procedure using the closure method as

follows. Take the test with the rejection region R1,2(�, α) as the test of H{1,2}
and the usual UMPU test as the test of Hi, so that Ri ≡

�
(x1, x2) : |xi| >

z1−α
2

�
. If we can show this multiple testing procedure is consonant, then it

will maximize
inf

θ∈γ1,2(�)
Pθ1,θ2{reject at least one Hi} (11)

among all multiple testing procedures controlling the FWE at level α. In
fact, a consonant multiple testing procedure results for some values of �. For
large values of �, the test statistic T�(X1, X2) is approximately equivalent to
max(|X1|, |X2|), which does lead to a consonant multiple testing procedure.
Indeed, see Figure 3 for an example with � = 3 and α = 0.05. Thus, (11)
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Figure 3: The test of Example 4.1 for � = 3 and nominal level α = 0.05. The

test rejects for points outside the solid curve. Points outside the inner square with

length 2× 1.96 lead to rejection of at least one Hi when the individual hypotheses

are tested with the usual UMPU test. The outer square with length 2× 2.234 is the

rejection region of test (ii) of Example 1.1.

is maximized for this consonant multiple testing procedure when the tests of
the hypotheses Hi are based on the rejection regions Ri. On the other hand,
for small values of �, rejecting for large values of the statistic T�(X1, X2) is
approximately equivalent to rejecting for large values of X

2
1 + X

2
2 , which we

already showed in Example 3.1 does not lead to a consonant multiple testing
procedure when the tests of the hypotheses Hi are based on the rejection
regions Ri. So, we do not expect the theorem to apply for such values of �.
See Figure 4 for an example with � = 0.25 and α = 0.05.
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Figure 4: The test of Example 4.1 for � = 0.25 and nominal level α = 0.05. The

test rejects for points outside the solid curve. Points outside the inner square with

length 2× 1.96 lead to rejection of at least one Hi when the individual hypotheses

are tested with the usual UMPU test. The outer square with length 2× 2.234 is the

rejection region of test (ii) of Example 1.1.

Next, consider

γ̄1,2 ≡ γ1,2(�) ∩ {(θ1, θ2) : both θi �= 0} .

So, γ̄1,2 is the subset of the parameter space where both null hypotheses are
false and at least one of the parameters is at least � in absolute value. Then,
since all power functions are continuous, (11) still holds if γ1,2(�) is replaced
by γ̄1,2(�). Moreover, because both H1 and H2 are false if (θ1, θ2) ∈ γ̄1,2, we
can further claim that the multiple testing procedure maximizes

inf
θ∈γ̄1,2(�)

Pθ1,θ2{reject at least one false Hi} (12)

among all multiple testing procedures controlling the FWE at level α.
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.Finally, this example generalizes easily to higher dimensions where
X1, . . . , Xs are independent with Xi ∼ N(θi, 1) and Hi specifies θi = 0. For
testing the intersection hypothesis HK that specifies θi = 0 for all i ∈ K, the
maximin test statistic becomes

T ≡ T�(X1, . . . , Xs) ≡
�

i∈K

cosh(�|Xi|) .

Again, for large enough �, the closed testing method is consonant and an
optimal maximin property can be claimed. For large �, the test of HK is
approximately the test which rejects for large max(|Xi| : i ∈ K).

4.2 Weaker Optimality when Consonance Fails

When the multiple testing procedure obtained using the closure method and
the maximin test of H{1,2} is not consonant, as above with � = 0.25, one can
still derive an improved consonant multiple testing procedure, but we must
then settle for a slightly more limited notion of optimality. In this case, not
only must our multiple testing procedure satisfy the FWE level constraint,
but we additionally restrict attention to multiple testing procedures based on
the closure method where the individual tests of Hi have rejection region Ri ≡�
(x1, x2) : |xi| > z1−α

2

�
. This constraint of forcing the individual rejection

regions to be the UMPU tests does not appear unreasonable, though it is an
additional assumption. Of course, because of Theorem 2.1, the restriction to
multiple testing procedures obtained using the closure method is no restriction
at all. (Indeed, the coherence condition is vacuous because the hypotheses are
elementary.)

Therefore, rather than finding an overall maximin level α test of H{1,2},
we must find the maximin level α test of H{1,2} subject to the additional
constraint required by consonance that its rejection region R1,2 satisfies

R1,2 ⊆ R1 ∪R2 .

Theorem A.1 in the appendix, a generalization of the usual approach, makes
it possible. We illustrate its use with an example.

Example 4.2 (Two-sided Normal Means, continued) Let γ1,2(�) be de-
fined as in (9) and consider the problem of constructing the maximin test for
H{1,2} over the region γ1,2(�) subject to the constraint that the rejection region
is contained in the region where

max
�
|x1|, |x2|

�
> z1−α

2
.
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We can apply Theorem A.1 to determine such a test. As before, the least
favorable distribution is uniform over the four points (�, 0), (0, �), (−�, 0), and
(0,−�) and large values of the likelihood ratio are equivalent to large values
of the statistic T�(X1, X2) given in (10). The optimal rejection region for the
intersection hypothesis H{1,2} is then

R
�
1,2(�, α) ≡

�
T�(x1, x2) > t(1− α, �), max

�
|x1|, |x2|

�
> z1−α

2

�
,

where the constant t(1− α, �) is determined such that P0,0{R�
1,2(�, α)} = α.

A Appendix

Proof of Lemma 2.1: If HK is a member of the original family, the result
is trivial. Otherwise, suppose HK is true, that is, all Hi with i ∈ K are true.
Then, by construction, the probability that HK is rejected is the probability
any Hi with i ∈ K is rejected using the given multiple testing procedure. Since
the given multiple testing procedure is assumed to control the FWE at level
α, the last probability is no bigger than α.

Proof of Theorem 2.1: Define tests of an arbitrary intersection hypothe-
sis HK as in the statement of Lemma 2.1. Applying the closure method with
these tests for the tests of the intersection hypotheses, in fact, results in the
same decisions for the original hypotheses. To see this, first note that any
hypothesis that is not rejected by the original multiple testing procedure cer-
tainly cannot be rejected by the one obtained using the closure method in this
way. Moreover, any hypothesis that is rejected by the original multiple testing
procedure is also rejected by the one obtained using the closure method in
this way. Indeed, if Hi is rejected by the original multiple testing procedure,
then HK must be rejected when i ∈ K. This occurs by construction if HK is
not a member of the original family and by coherence of the original multiple
testing procedure otherwise.

Proof of Theorem 2.2: The new multiple testing procedure is coherent in
the sense that if Hj is rejected, then so is any Hi for which ωi ⊂ ωj. To see
this, simply note that (5) implies that R̃

�
j ⊆ R̃

�
i whenever ωi ⊂ ωj.

Since R̃i ⊆ R̃
�
i, the new multiple testing procedure clearly rejects Hi

whenever the incoherent multiple testing procedure rejects Hi.
Finally, the new multiple testing procedure also controls the FWE at

level α. To see why, suppose a false rejection is made by the new multiple
testing procedure, that is, x ∈ R̃

�
i for some i with P ∈ ωi. Then, it must be
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the case that x ∈ R̃j for some j such that ωj ⊇ ωi. Since P ∈ ωi, it follows that
x ∈ R̃j for some j such that P ∈ ωj. In other words, the incoherent multiple
testing procedure also made a false rejection. Control of the FWE therefore
follows from the assumption that the incoherent multiple testing procedure
controls the FWE at level α.

Proof of Theorem 3.1: We claim that

R
�
K =

�

i∈K

�

J⊆S,i∈J

R
�
J . (13)

To prove (13), we first show that

R
�
K ⊇

�

i∈K

�

J⊆S,i∈J

R
�
J . (14)

To see this, note that by intersecting over just the set K instead of many sets
J in the inner intersection operation in the definition (7), one obtains

R
�
K ⊆ RK . (15)

Replacing RJ with R
�
J in the definition (7) by (15) establishes (14).

Next, we show that

R
�
K ⊆

�

i∈K

�

J⊆S,i∈J

R
�
J . (16)

Suppose x ∈ R
�
K . Then, there must exist i

∗ ∈ K such that

x ∈
�

J⊆S,i∗∈J

RJ . (17)

It suffices to show that x ∈ R
�
L for any L ⊆ S such that i

∗ ∈ L. But, for any
such L, by only taking the union in the definition of R

�
L in (7) over just i

∗ and
not all i ∈ L, we have that

R
�
L ⊇

�

J⊆S,i∗∈J

RJ . (18)

But, (17) and (18) immediately imply x ∈ R
�
L, as required.
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The relationship (13) shows the new multiple testing procedure ob-
tained is consonant. Indeed, (13) states that R

�
K consists exactly of those x

for which the multiple testing procedure obtained using the closure method
with the rejection regions R

�
J leads to rejection of some Hi with i ∈ K. Specif-

ically, if x ∈ R
�
K , then, for some i

∗ ∈ K,

x ∈
�

J⊆S,i∗∈J

R
�
J ,

so that Hi∗ is rejected by the new multiple testing procedure.
Finally, we argue that both multiple testing procedures lead to the

same decisions. By (15), the new multiple testing procedure certainly cannot
reject any more hypotheses than the original multiple testing procedure. So,
it suffices to show that if a hypothesis, say Hi∗ , is rejected by the original
multiple testing procedure when x is observed, that it is also rejected by the
new multiple testing procedure. But, in order for the original multiple testing
procedure to reject Hi∗ when x is observed, it must be the case that

x ∈
�

J⊆S,i∗∈J

RJ ,

which coupled with (18) shows that x ∈ R
�
L for any L ⊆ S such that i

∗ ∈ L.
The new multiple testing procedure then rejects Hi∗ as well.

Proof of Theorem 4.1: If there were another multiple testing procedure
with a larger value of (8), then we can assume without loss of generality (by
including an auxiliary random variable in X, if necessary) that it is based on a
multiple testing procedure obtained using the closure method with rejections
regions R

�
K . But for any such procedure

P{reject at least one Hi based on the rejection regions R
�
K} ≤ P{R�

S} ,

since HS must be rejected in order for there to be any rejections at all. There-
fore,

inf
P∈γS

P{reject at least one Hi based on the rejection regions R
�
K}

≤ inf
P∈γS

P{R�
S}

≤ inf
P∈γS

P{RS}

= inf
P∈γS

P{reject at least one Hi based on the rejection regions RK} ,
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where the final equality follows because consonance implies that the rejection
of HS is equivalent to the rejection of at least one Hi by the multiple testing
procedure.

We next state and prove two lemmas. Lemma A.2 is used in Exam-
ple 4.1. In turn, Lemma A.1 is used in the proof of Lemma A.2.

Lemma A.1 Suppose Y1, . . . , Ys are mutually independent. Further suppose

the family of densities on the real line pi(·, ηi) of Yi have monotone likelihood

ratio in Yi. Let ψ ≡ ψ(Y1, . . . , Ys) be a nondecreasing function of each of its

arguments. Then, Eη1,...,ηs

�
ψ(Y1, . . . , Ys)

�
is nondecreasing in each ηi.

Proof: The function ψ(Y1, Y2, . . . , Ys) is nondecreasing in Y1 with Y2, . . . , Ys

fixed. Therefore, by Lemma 3.4.2 of Lehmann and Romano (2005),

Eη1

�
ψ(Y1, . . . , Ys)|Y2, . . . , Ys

�

is nondecreasing in η1. So, if η1 < η
�
1, then

Eη1

�
ψ(Y1, . . . , Ys)|Y2, . . . , Ys

�
≤ Eη�

1

�
ψ(Y1, . . . , Ys)|Y2, . . . , Ys

�
.

Taking expectations of both sides shows the desired result for η1. To show
the result when ηi ≤ η

�
i for i = 1, . . . , s, one can apply the above reasoning

successively to each component.

Lemma A.2 In the setup of Example 4.1, the test with rejection region R1,2(�, α)
maximizes

inf
θ∈γ1,2(�)

Pθ1,θ2{reject H{1,2}}

among level α tests of H{1,2}.

Proof: As is well known, the family of distributions of Xi has monotone
likelihood ratio in |Xi|, and distribution depending only on |θi|. Since T is
increasing in each of |Xi|, it follows by Lemma A.1, with Yi ≡ |Xi| and ηi ≡
|θi|, that the power function of this test is an increasing function of |θi|, and
therefore the power function is minimized over γ1,2(�) at the four points (�, 0),
(0, �), (−�, 0) and (0,−�). By Theorem 8.1.1 of Lehmann and Romano (2005)
the uniform distribution over these four points is least favorable and the test
is maximin.

We finally consider the problem of constructing a maximin test where
the test must satisfy the level constraint as well as the added constraint that the
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rejection region must lie in some fixed set R. Denote by ω the null hypothesis
parameter space and by ω

� the alternative hypothesis parameter space over
which it is desired to maximize the minimum power. So, the goal now is to
determine the test that maximizes

inf
θ∈ω�

Eθ

�
φ(X)

�

subject to
sup
θ∈ω

Eθ

�
φ(X)

�
≤ α

and to the constraint that the rejection region must lie entirely in a fixed
subset R. Let {Pθ : θ ∈ ω ∪ ω

�} be a family of probability distributions over
a sample space (X ,A) with densities pθ = dPθ/dµ with respect to a σ-finite
measure µ, and suppose that the densities pθ(x) considered as functions of the
two variables (x, θ) are measurable (A×B) and (A×B�), where B and B� are
given σ-fields over ω and ω

�. We have the following result.

Theorem A.1 Let Λ, Λ�
be probability distributions over B and B�, respec-

tively. Define

h(x) =

�

ω

pθ(x) dΛ(θ)

h
�(x) =

�

ω�
pθ(x) dΛ�(θ) .

Let C and γ be constants such that

ϕΛ,Λ�(x) =






1 if h
�(x) > Ch(x), x ∈ R

γ if h
�(x) = Ch(x), x ∈ R

0 if h
�(x) < Ch(x), or x ∈ R

c

is a size-α test for testing the null hypothesis that the density of X is h(x)
versus the alternative that it is h

�(x) and such that

Λ(ω0) = Λ�(ω�0) = 1,

where

ω0 ≡
�
θ : θ ∈ ω and EθϕΛ,Λ�(X) = sup

θ�∈ω
Eθ�ϕΛ,Λ�(X)

�

ω
�
0 ≡

�
θ : θ ∈ ω

�
and EθϕΛ,Λ�(X) = inf

θ�∈ω�
Eθ�ϕΛ,Λ�(X)

�
.

Then, ϕΛ,Λ� maximizes infθ∈ω� Eθϕ(X) among all level-α tests φ(·) of the hy-

pothesis H : θ ∈ ω which also satisfy φ(x) = 0 if x ∈ R
c
, and it is the unique

test with this property if it is the unique most powerful level-α test among tests

that accept on R
c
for testing h against h

�
.
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Proof: It follows from Lemma 1 in Bittman et al. (2009) that ϕΛ,Λ� is the
most powerful test for testing h against h

�, among level α tests φ that also
satisfy φ(x) = 0 if x ∈ R

c. Let βΛ,Λ� be its power against the alternative h
�.

The assumptions imply that

sup
θ∈ω

EθϕΛ,Λ�(X) =

�

ω

EθϕΛ,Λ�(X) dΛ(θ) = α ,

and

inf
θ∈ω�

EθϕΛ,Λ�(X) =

�

ω�
EθϕΛ,Λ�(X) dΛ�(θ) = βΛ,Λ� .

Thus, the conditions of Theorem 1 in Bittman et al. (2009) hold, and the result
follows.
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Multiple Hypothesenprüfung, pages 121–135. Springer, Berlin.

25

Romano et al.: Consonance and the Closure Method in Multiple Testing

Published by Berkeley Electronic Press, 2011


	The International Journal of Biostatistics
	Consonance and the Closure Method in Multiple Testing
	Consonance and the Closure Method in Multiple Testing
	Abstract


