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Abstract 

In this article, a general theory for the construction of confidence intervals or regions in 
the context of heteroskedastic-dependent data is presented. The basic idea is to approximate 
the sampling distribution of a statistic based on the values of the statistic computed over 
smaller subsets of the data. This method was first proposed by Politis and Roman0 (1994b) 
for stationary observations. We extend their results to heteroskedastic observations, and 
prove a general asymptotic validity result under minimal conditions. In contrast, the usual 
bootstrap and mo?ing blocks bootstrap are typically valid only for asymptotically linear 
statistics and their justification requires a case-by-case zi+sis. Our general asymptotic 
results are applied to a regression setting with dependent heteroskedastic enors. 0 1997 
Elsevier Science S.A. 
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1. Introduction 

It has been almost two decades since Efron (1979) introduced the boo&trap 
procedure for estimating sampling distributions of statistics based on indepen- 
dent and identically distributed (i.i.d.) observations. It is well known that, in the 
i.i.d. setup, the bootstrap often gives more accurate approximations than classi- 
cal large sample approximations (e.g. Singh, 1981; Babu, 1986). However, when 
the observations are not necessarily independent the classical bootstrap no longer 
succeeds, as showed hy Singh (1981). Most extensions in the literature so far 
only apply to the stationary case. They can roughly be divided into resampling 
and subsampling methods. 
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There are, broadly speaking, two approaches to using resampling methods 
for strictly stationary dependent data. One is to apply Efron’s bootstrap to an 
approximate i.i.d. setting by focusing on the residuals of some general regres- 
sion model. Such examples include linear regression (Freedman, 198 1; Freedman, 
1984; Wu, 1986; Liu, 1988), autoregressive time series (Efron and Tibshirani, 
1983; Bose, 1988), nonparametric regression and nonparametric kernel spectral 
estimation (HHrdle and Bowman, 1988; Franke and Hlrdle, 1992). In all of 
the above situations the residuals are resampled, not the original observations. 
In addition to being restricted to relatively simple contexts where structural mod- 
els are both plausible and tractable, little is known how this approach would 
perform for heteroskedastic observations. The fitted residuals will, in general, no 
longer behave like i.i.d. observations but exhibit some form of heteroskedasticity. 
However, it is known that Efron’s bootstrap works reasonably well even when the 
data are independent but not identically distributed (Freedman, 1981; Liu, 1988; 
Liu and Singh, 1992), so one might hope for some robustness to heteroskedas- 
ticity as well. As a second approach, resampling methods for less restrictive 
contexts have been suggested more recently. They are based on “blocking” ar- 
guments, in which the data are divided into blocks and these blocks, rather than 
individual data values or estimated residuals, are resampled. Carlstein (1986) pro- 
posed non-overlapping blocks, whereas Kiinsch ( 1989) and Liu and Singh ( 1992) 
independently introduced the ‘moving blocks’ method which employs overlap- 
ping blocks. Subsequent research seems to have favored this scheme. Politis and 
Roman0 (1992) consider a blocks of blocks scheme to obtain valid inference 
of parameters of the infinite-dimensional joint distribution of the process, such 
as the spectrum. It turns out that Kiinsch’s bootstrap enjoys some robustness 
property to heteroskedasticity, as was pointed out by Lahiri (1992) in the case 
of the sample mean. In both Carlstein’s and Kiinsch’s bootstrap blocks of fixed 
length are resampled, so that the newly generated pseudo-time series is no longer 
stationary. Tr 5x this shortcoming, Politis and Roman0 (1994a) suggested the 
stationary bootstrap. 

As an alternative to resampling methods, Politis and Roman0 (1994b) proposed 
the subsampling approach. Rather than resampling blocks from the original time 
series as ingredients to generating a new pseudo-time series, each individual sub- 
block or subseries of observations is looked upon as a valid ‘sub-time series’ in 
its own right. The motivation is as follows. Each block, as a part of the origi- 
nal series, was generated by the true underlying probability mechanism. It then 
seems reasonable to hope that one can gain information about the sampling dis- 
tribution of a statistic by evaluating it on all subseries, or ‘subsamples’. On the 
other hand, building new pseudo-time series by joining randomly sampled, inde- 
pendent blocks together induces a different probability mechanism. Dependency 
will be reduced, and, for Carlstein’s and KGnsch’s bootstrap, stationarity will be 
lost. However, in typical applications the underlying dependence is sufficiently 
weak. Therefore, the main contributions come from short lags which are well 
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approximated by the ‘blocking’ methods, ensuring that these metb 
work. 

Another attractive feature of the subsampling method is that it has 
to be valid under very weak assumptions. Apart from regu!arity anG 
conditions, the only requirement, in the stationary setup, is that tY?e sstl 
distribution of the properly normalized statistic of interest has a 
limiting distribution. The moving blocks method has essentially be 
valid for functions of linear statistics and smooth functionals on1 
1989; Biihlmann, 1994). 

In this paper we present conditions which ensure that the subsampling meth~ 
is still asymptotically valid for heteroskedastic observations. The paper is orga- 
nized as follows. In Section 2 the method is described, and the main theorems are 
presented. Ir. Section 3 some applications and examples are discussed. In addition, 
a result for the validity of the moving blocks method for heteroskedastic data is 
stated. We talk about the problem of choosing of the blocksize in Section 4. 
Section 5 presents two simulation studies to address finite sample properties of 
the method. As a real-life example, we apply the subsampling method to vari- 
ance ratio tests in Section 0. Section 7 gives a conclusion of the paper and some 
outlook on future research. Three appendices contain a central limit theorem for 
heteroskedastic-dependeilt random variables, the proofs of technical results, and 
tables for the outcomes of the simulation studies and the variance ratio tests. 

2. The general theorem 

Suppose { . . . . X_,,X0,Xl,... } is a sequence of random variables taking val- 
ues in an arbitrary sample space S, and defined on a common probability space. 
Denote the joint probabili;y law governing the inE&c sequence by P. The goal is 
to construct a confidence region for some real or vector-valued parameter o(P), 
on the basis of observing {Xl,. . . ,X,}. The time series {Xi} will be assumed 
to satisfy a certain weak-dependence condition. Specifically, given a random se- 
quence {K}, let 9,“’ be the o-algebra generated by { I$, n<i<m), and define 
the corresponding mixing sequence by 

where A and B vary over the o-fields P/m and PnTk, respectively. The sequence 
{Y;:} is called a-mixing or strong mixing if ore + 0 as k ---f 00. 

Let d,l = &(X1 , . . . ,X,) be an estimator of f?(P) E l/P. I.et fib,, = &(Xa,. . . , 
&+b_ I), the estimator of 8 based on the subsample X,, . . . ,&+b_ 1. Define &#) 
to be the sampling distribution of rb(f&a - 6(P)), where rb is an appropriate nor- 
malizing constant. For any Bore1 set A E 

,. 
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Essentially, the only assumption that we will need to construct asymptotically 
valid confidence regions for O(P) is the following. 

Assumption A. There exists a limiting law J(P) such that 
(i) J,,, 1 (P) converges weakly to J(P) as n + 00, and 

(ii) for eve?j Bore1 set A whose boundary has mass zero under J(P), 

n _ ; + 1 “;$;’ J/d4 P) --) JtA, 0 

for any sequences )I, b with II, b --f 00 and b/u 4 G. 

Condition (i) states that the estimator, properly normalized, has a limiting dis- 
tribution. It is hard to conceive of any asymptotic theory free of such a require- 
ment. Typically, much stronger assumptions are in force to ensure asymptotic 
normality. Condition (ii) states that the distribution functions of the normalized 
estimator based on the subsamples will be on average close to the distribution 
IGnction of the normalized estimator based on the entire sample, for large n. 
A somewhat stronger condition is the following. 

Assumption B. There exists a limiting law J(P) such that 
(i) J,,.,(P) converges weakly to J(P) as n -+ co, and 

(ii) for any index sequence (ah), JI,.,,,(A,P)-+ J(A), for every Bore1 set A 
whose boundary has mass zero under J(P), as b --) cm. 

Here, condition (ii) requires that the distribution function of the normalized 
statistic evaluated over a subsample converges to the same limiting law as the 
distribution function of the normalized estimator based on the entire sample, 
zmifbrr~rl~, in the starting point of the subsample. Assuming (i), the condition is 
satisfied for stationary processes, but also for processes that exhibit asymptotic 
stationarity. For example, one can consider a Markov chain with an equilibrium 
distribution. Assumption A follows from Assumption B. 

In order to describe our method, let &, be the block of size b of the consec- 
utive data (X,, . . . , &+h_i}. Only a very weak assumption on b will be required. L 
Typically, b/n -+ 0 and b 400 as n--f 00. Now, let &, be equal to the statis- 
tic &, evaltizted at the data set &.,. The approximation to J,,,l(A,P) we study is 
defined by 

(2) 

The motivation behind the method is the following. For any CI, I$,.(, is a ‘true’ 
subsample of size b. Hence, the e.x~ct distribution of r~(&,h.c, - U(P)) is Jb,“. If 
condition (ii) of Assumption A is satisfied, then the empirical distribution of the 
IZ - b + 1 values of Q(&~ - O(P)) should serve as good approximation to J,,(P). 
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Replacing O(P) by 8 ,,, 1 is permissible because Q,(~,,,I - 0) is of order q,/rfl in 
probability and we will assume that T:,/T,, - 0. 

Theorem 2.1. Assume Assumption A or Assumption B, and that Q/T,, +O, 
b/n --f 0 und b + 00 us n ---f 00. Also, ussume thut xx(m) + 0 as m -+ 00. Then 
(9 

(ii) 

(iii) 

(iv) 

L,,(A) + J(A, P) in probubility, for wch Bore1 set A whose botmdury has 
muss zero utder J(P). 
pk(L,,,J(P)) -+O in probubility for every metric pk thut metrizes ItYeak 
converggence on R”. 
Let {K,} urld Y be rundom vectors with .S( X2) = L,, and .3’(Y) = J(P). 
Then, for uny almost everywhere J(P) continuous reul firnction f and uny 
metric pi which metrizes weuk convergence on R, pi (-4p( f (&)), Dsp( f (Y))) 
-+ 0 in pmbnbility. In purticulur, for u norm 11.11 on R” pl(dR( I( &I/), 
.2’( II Y II )) ---f 0 in probubility. This ul~orvs us to find confidence regions for 
O(P). 
Let Y be u rundom vector with .9(Y) = J(P). For u norm [(-I! on Rk define 
tmivuriute distributions L,,. II.II urtd Jll _II (P) in the following wuy: 

JII.II(X, P) = Prob(II Y 11 ,<x}. 
For I( E (0, 1 ), let 

c,~,L(~ - cx) = inf{x:L,,II.II(x)al -(x}, 

c,,,u(l -Y.)=SUp{X:L,t,~~.~~(x)~l -x}. 

Correspondingly, define 

c~(l -x,P)= inf{x:JII.II(x,P)aI -z}, 

~(1 -x,P)=sup{x:Jll.,,(x,P)~l -!K}. 

Let {c,,( 1 - LX)} be N sequence such that 

w(1 - a)%,(1 - ~)%,.U(l - 2). 

v JII.II(., P) is conthrow ut CL( 1 - a), then 

Probp{IlqI(&,I - O(P))11 ~c,~(l-)) ---t I - CY us n+oo. 

Thus, the ttsymptotic coveruge probability under P of the region 
(0: IIT,~(O - O,,,I)[~ <c,,( 1 - ct)) is the nominal level 1 - ct. 

Consider the special case of univariate parameters, that is, O(P) E 13. The stan- 
dard choice for a norm on the real line is the absolute value function I - I. 
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In this context, applying the subsampling method as outlined above boils down 
to estimating 

J,,I,I.I(x,P)=Probp{z,, I &,I - W)l<x). (3) 

The resulting confidence regions are two-sided symmetric intervals 
[f&, l-t, 0,. 1 -!?I, where E is chosen so that Probp{ IO,, 1 - 0) > 2) - CL However, 
in some scenarios we might be particularly interested in one-sided confidence 
intervals, upper or lower ones depending on context. In this case, we would have 
to estimate the ‘standard’ distribution function 

Jl,,I(X,P)=Probp{rh(B,,,, - (U’))G x). (4) 

It is obvious that the subsampling method can be used here - take the Bore1 
sets A of form (-oo,x]. For a corresponding theorem see Politis et al. (1995). 
Following this route, we could construct two-sided fqual-tailed intervals as the 
intersection of two one-sided intervals: [ON,1 - c^r, &,I + ~51, where c^t and ~55 
are chosen so that Probp{ 8 -C &, 1 - i?, } :k c(/2 and Probp(O > &, 1 + 222) A or/2. 
Hall (1988) showed that symmetric confidence intervals often enjoy enhanced 
coverage and, even in asymmetric circumstances, can be shorter than equal-tailed 
confidence intervals. We will compare the finite sample performance of symmetric 
and equal-tailed intervals in simulation studies in Section 5. 

3. Applications 

In this section we demonstrate the wahdity of the subsampling method in some 
specific situations: the univariate mean, smooth functions of the mean and multi- 
variate linear regression. We also state a result concerning the moving blocks 
method for the mean case. 

Example 3. I (The uniuariate mean). Suppose (Xi} is a sequence of random 
variables with common mean 0. Denote the joint probability law governing the 
sequence by P. The goal is to construct a confidence inter?:=! for 0, on the basis 
of observing {XI,. . . ,X,,>. Let &,a = &(X,, . . . , Xo+b- I ) = b-’ ~~~~-’ Xi s&, 
be our estimator of 0 based on the block {X,, . . . , Xrr+b_t )_ Define &,(P) to be 
the sampling distribution of b!(X h,a - 0). Also define the corresponding cumula- 
tive distribution function: 

&,(x, P) = Probp(b’i2(y h,a - t%x]. 

The approximation to J,,, 1(x, P) we study is defined by 

(5) 

(6) 
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The following theorem gives sufficient moment and mixing conditions for which 
ling technique will allow us to draw first order correct inference 

about 8. 

Theorem 3.1. Let (Xi) be a sequence of random variables defined on a common 
probability space. Denote the corresponding (generalized) mixing coeficients by 
xx(-). Define 

Tk,,Gk-“2a+5-‘&, 
i=a 

ai,, s Var( Tka). 

Assume the following conditions. For some 6 > 0: 

o IKll2+2S d A for all i, 

0 o:,~ -+ a2 > 0 uniformly in a, 

0 C(4)= E (k + 1)2&‘4+“)(k)<K. 
k=l 

(7) 

(8) 

(9) 

Furthermore, assume that b/n +O and b-+oo as n--,oo, and lei J(P)=N 
(0, a2 ). 
Then the con&sions of Theorem 2.1 will be true. 

Example 3.2 (A4owing blocks for the mean case). Consider again the situation 
of Example 3.1. We will show that the moving blocks method, which was in- 
troduced by Kiinsch ( 1989) and Liu and Singh (1992) for the case of stationary 
time series, will still work in this heteroskedastic setting. 

To describe the method (for the case of the mean), let &,,,a be the block of size 
b of the consecutive data {Xa, . . . &+b__l ) and M 13 in E lb/nj. Conditional on 
the sample {X; , . . . ,X,}, denote the empirical distribution of &,, I,. . . , I$,,, (where 
qzq” zn - b + 1) by p,*. i.e., 4; puts mass !/q ora each of the I$,,. Define 
a pseudo-time series {Xc,. . . , X4) in the following way: Let F,,. . ., u,l, i.i.d. ‘-w 
4: and join them together to one big block: {X;“, . . . , Xi} = { yb,, ,, . . . , yb4;I,b, q2,, , 
. . . , ydl;,b, * - * , $#;*,,,..., T,b}. Here, of course, qj,i denotes the ith element of the 
block $Tj. 

The corresponding cumulative distribution function is given by 

L,*(x) = Probe; {(b#“(F;,, 1 - z,j. I )<x}. (10) 

The following theorem states that the moving blocks method is also asymptot- 
ically valid, provided we strengthen the moment and mixing conditions on the 
sequence (Xi}. 
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Theorem 3.2. Let (Xi) be u ~eq~et~e OJ’IYI~OIW variables de$ned O~I u cultlnlo14 
probability space. De/tote the cowesponcliizg (generdizeci) raising coeficients by 
xx (. ). Dejne 

Assum the fSowing conditions. For some S > 0: 

o lKll4+36 <A jiw cdl i, 

e c&, + 0’ > 0 mifbrnily in a, 

o C(6)= E (k + l)4@6+“‘(k)<K. 
!i=l 

(11) 

(12) 

(13) 

Furthemore, awme that b/n + 0 NNC/ b + cc us n --) 00, umi let J(P) =N 
(0, n* ). 
Therz the conclusions of’ Theorem 2.1 will be true tf we rephe L,,(a) by L,T(. ). 

Rermrk 3.1. Relative to the result for the subsampling method we need stronger 
moment and mixing conditions on the sequence {-Yi} here in order to show that 
the variance of the moving blocks distribution converges in probability to the 
proper limit. For details the reader is referred to the proof of the theorem in the 
appendix. 

Remark 3.2. There have been previous results extending the moving blocks 
method for the sample mean to the heteroskedastic case. A result similar to Theo- 
rem 4.2 was obtained by Fitzenberger ( 1995) in his Theorem 3.1. Note, however, 
that he needs a stronger condition on the block size b, namely b = o(n’/*). Fur- 
thermore, his proof is somewhat invalidated by some mistakes. Under stronger 
assumptions, Lahiri (1992) not only showed a result similar to Theorem 3.2, 
but also obtained second-order properties. However, he uses an even ore strin- 
gent requirement on the block size, namely b = o(&‘~). As will be discussed in 
Section 4, this rate is too small in many situations. 

Exurnple 3.3 (Smootk jirnctions of’ the nndtivaricrte nlem). Suppose {Xi} is a 
sequence of multivariate random variables with common mean 0 E Iw”, and k > 1. 
Denote the joint probability law governing the sequence by P. Assume that 
on the basis of observing {XI , . . . ,X,,} we are interested in finding a confi- 
dence region for cr.f(U), where J”(D) is a smooth function from I&’ to W. 
Let &)cc = &(X,, . . . , X(,+h_ I ) G f(b-’ Cafe-’ Xi) = f(.?-haa) be our estimator of 
c based on the block {Xl,, . . . , Xa+h_l}. Define J,,,(P) to be the sampling distri- 
bution of b”2(f(&,) - 5). For any Bore1 set A E :W’ let 

Jh,,(A,P)=Probp{b”*(f(~b,,) - OEA}. (14) 
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The approximation to J,,, I(& P) we study is defined by 

T/wow~~~ 3.3. Let (Xi) be CI sequence of rmdom oectors with COKWZOIZ n~c~n 
0 E R”. Denote the corresponding r?rising coeficients by a(.). Define & G 
k-f c;;f-’ Xi cd &, E Cov( GII). Assumze the jbllowing conditions hold For 
some 6 > 0: 

(16) 

(17) 

(18) 

0 f:Rk --) RP is continuously cl$3erenticrbl (19) 

Furthermore usswne that b/n -+ 0 cmi b + ca CIS n -+ 30, und let J(P) = 
N(O, JCJT), where J is the Jucobim off at 0. Then, the conclusions of Tlleo- 
rem 2.1 will be true. 

Exurnple 3.4 ( Least-sqwres linear regression ). Consider the linear modei 
v = X/3 + c, where y and E are (11 x 1) vectors, /J is a (p x 1) vector and 
i a (n x p) matrix. Here X may be stochastic. The goal is to draw inference 
on /L In order to be able to apply the subsampling method we need to define 
subvectors and submatrices: 

and 

Xh,C, = (SYl_,), whereX= (:). 

Our estimator of /i based on Xh.c, and yl,., then is defined as 

A‘, f (X,T,X*,,)-‘X,T,.vh.,. GO) 

In the classical regression model the Ci’s are assumed to be i.i.d. Here, we require 
only a weak dependence condition. Define Jh.,(P) to bc the sampling dist~b~tion 
of b’/2(&a - /I)_ Also, for any Bore1 set ri E RF, define 

J&A, P)= Probp{b”‘(&,, - /l) E A}. (21) 
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The approximation to J,),,(A,P) we study is defined by 

Theorem 3.4. Let {(x;,~)} be u sequence of rundom vectors clejneci on a com- 
mon probability spuce. Denote the mixing coeficients for the {(xi, Ei)} sequence 
by c((.). Define 

, crtk-I 
Tx;,,c, G k-’ C xiEir 

i=a 

6.0 E Cov( G,a 1, 

Mk.cr = E tx;c., xk.&). 

Assume the following conditions hold. For some 6 > 0: 

o E(Xi,js) = 0 jbr ~11 i unrl dl 1 <j < p, (23) 

o Elxi,jEil 2’2s < Al jbr all i cud ull 1 <j < p, (24) 

o El,i,,i14+2’ d A2 jbr UN i cd ull I <j f p, (25) 

0 ?$,, -+ V >O unij&mly in a, (26) 

e h!k,a 3 M >0 uniformly in a, (27) 

o C(4) s E (k + 1)2~6’(4+6)(k) <K. (28) 
k=l 

Furthermore assume that b/n --+ 0 cud b --) 00 CIS n --f 00, und let J(P) = 
N(O,M-’ VW’). 
Then the conclusions of Theorem 2.1 will be true. 

Remurk 3.3. Alternatively, the moving blocks method could be used for mak- 
ing inference on the regression parameter fi. The procedure is analogous to the 
mean case, except the resampled blocks consist of regressors and the correspond- 
ing dependent variables. A related result concerning the validity of the moving 
blocks method for multivariate least-squares linear regression in the context of 
heteroskedastic data was presented in Fitzenberger (1995). In a small simulation 
study in Section 5 we compare finite sample performance of the subsampling and 
the moving blocks method in a linear regression set-up. 

An apparent drawback of all blocking methods is that for applications a block- 
size has to be chosen. For small to moderate sample sizes, performance can 
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depend rather critically on that choice, for example, as shown in our simulation 
studies in the next section. So far, contributions in the literature on bow to pick 
the blocksize in practice have been restricted to the case of stationary data, and 
we shall give a brief overview here. 

It is well known that for quite general statistics both the subsampling and 
the moving blocks variance estimators are asymptotically equivalent to a kernel 
smoothed (with Bartlett’s kernel) &iiZator of the spectral density at the origin 
(cf. Kfinsch, 1989; Politis and Romano, 1994b), where the bandwidth of the 
kernel corresponds to the inverse of the blocksize. The relevant spectral density 
is the one of the process given by the influence function of the statistic of interest. 
Hence for variance estimation, choosing the blocksize is asymptotically equivalent 
to choosing the bandwidth for the Bartlett kernel. Biihl ann and Kiinsch (1994) 
exploit this equivalence. 

A more important and ambitious goal than estimating a variance is the ccg- 
struction of confidence intervals. In Ilall et al. (1995) it is shown that the optimal 
asymptotic rate of the block size for the moving blocks method depends signif- 
icantly on context, being equal to n’/3, n”4 and # in the cases of variance 
or bias estimation, estimation of a one-sided distribution function and estimation 
of a two-sided distribution function, respectively. The latter two quantities are 
needed for construction of equal-tailed and s_ymmetric confidence intervals, re- 
spectively. Therefore, it seems that the strategy of Biihl nn and Kiinsch (1994) 
is suboptimal for constructing confidence intervals. Ha al. (1995) present a 
practical rule for selecting the block size empirically. I d on the fact the 
asymptotic formula is E -- Cn’lk, where k = 3, 4 or 5 is own, and C is a con- 
stant that depends on the underlying process. The rule provides a way 
for estimating the optimal block size for a time series ,of smaller iength than the 
original, say I)I cn. Once this has been determined, at !I, say, the optimal blocks 
$ze 6, for the original series of length n may be estimated from the formula 
b,, = (n/m)‘lk&. 

It is not difficult to modi@ this empirical rule for the subsampling method. Un- 
fortunately, it did not work very well when we tested it via simulation studies. in 
particular, as will become clear from later simulation studies and from Table 1 
in the appendix that the optimal blocksize for making inference on the univari- 
ate mean depends very much on the actual degree of dependence, at the very 
least for AR( 1) processes. Loosely speaking, longer blocks are needed to capture 
greater dependence. Hall’s method, however, turned out to be quite insensitive 
to changing the AR( 1) parameter in our simulations. 

We propose a new method that in a certain sense ‘ds having to find the 
“best” blocksize. One can think of the accuracy of an 
confidence procedure in terms of its calibration (Lob, 1987). Suppose we use 
the procedure to construct a confida.:e region with nominal confidence &cl 
I - A. We can denote the actual confidence level by 1 - a. R is known to us, a 
typically is not. If we knew the calibration fimction h : 1 - i, -+ I - CY, we coul 
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Table 1 
Mean, AR(I) model, n=256 

Gaussian innovations 

Parameter Interval h=l b=4 h=8 h=l6 h=32 CAL Nominal level 

f’ = 0.2 Moving blocks 0.90 0.95 0.95 0.93 0.90 95% 
p = 0.2 Subsampling 0.96 0.95 0.93 0.91 0.95 95% 

p = 0.5 Moving blocks 0.76 0.89 0.92 0.92 0.90 95% 
p = 0.5 Subsampling 0.93 0.93 0.91 0.90 0.94 95% 

/> = 0.8 Moving blocks 0.47 0.72 0.83 0.87 0.86 95% 
0 = 0.8 Subsampling 0.74 0.82 0.85 0.85 0.92 95% 

p = -0.5 Moving blocks I .oo 0.98 0.96 0.94 0.90 95% 
I’= -0.5 Subsampling 0.98 0.96 0.94 0.90 0.95 95% 

Exponential innovations 

Parameter Interval h=l b = 4 h=8 h=l6 h=32 Cal. Nominal level 

[’ = 0.2 
p = 0.2 

/’ = 0.5 
[’ = 0.5 

[I = 0.8 
I> = 0.8 

f’ = -0.5 
p = -0.5 

Moving blocks 0.90 0.94 0.95 0.93 0.90 
Subsampling 0.96 0.95 0.92 0.90 

Moving blocks 0.71 0.86 0.89 0.89 0.87 
Subsampling 0.89 0.87 0.87 0.86 

Moving blocks 0.46 0.73 0.81 0.86 0.85 
Subsampling 0.72 0.80 0.83 0.83 

Moving blocks I .oo 0.95 0.93 0.92 0.88 
Subsampling 0.95 0.92 0.90 0.88 

95% 
0.94 95% 

95% 
0.94 95% 

95% 
0.92 95% 

95% 
0.94 95% 

construct a confidence region with exactly the desired coverage, by selecting the 
value of 1. that satisfies h( 1 - n) = 1 - Q. Fortunately, the calibration function 
h(a) can be estimated by bootstrap methods. The basic bootstrap principle applies 
here as well. One generates pseudo-sequences from a known model ef, then 
constructs confidence regions from each generated pseudo-sequence, and observes 
how frequently the parameter 8,, is contained in those regions. In the context of 
dependent data, one needs to employ a more suitable bootstrap method, such 
as the moving blocks bootstrap or the stationary bootstrap, in order to generate 
appropriate bootstrap samples. 

In the case we want to apply the calibration scheme to a blocking method, 
we can do it conditional on a wusonuhle blocksize. This means that we fix a 
sensible blocksize and calibrate the confidence procedure using that particular 
blocksize. The problem of finding the “best” blocksize is therefore reduced to 
the problem of finding a reasonable blocksize, which is a lot easier. In many 
scenarios we will have a pretty good idea what a reasonable blocksize will be, 
either from prior experience or related simulation studies. In case, we are in 
the dark with respect to how to pick a reasonable blocksize, see Remark 4.1 
below. 
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To describe the general method more formally we can use the following 
algorithm. 

4.1. Description of the calibrcrtion method 

1. Generate K pseudo-sequences q*k , . . . , Xi’, according to a suitable tstrap 
distribution 4:. 
For each sequence, k = l,.. .,K, 
la. Compute an 1 - i, level confidence region CI:_,, for a grid of values 

of i.. 
2. For each i. compute h( 1 - 2) = #{bn E CI:_;}/K. 
3. Interpolate h(a) between the grid values. 
4. Find the value of 3, satisfying it< 1 - i.) = 1 - Q. 
5. Construct a confidence interval with nominal level 1 - i.. 

Renmk 4.Z. 1. A “suitable bootstrap method” in step 1 of the above requires 
a block size bMB in the case of the moving blocks method and the equiv- 
alent counterpart p in the case of the stationary bootstrap. The choice of 
this block size will have a second-order effect and is, therefore, less im- 
portant. To be on the safer side, a nested bootstrap could be employed 1.0 
determine an appropriate block size. This means that we would use the 
same bootstrap method in steps 1 and la of tbe above algorithm with 
the suw block size bMB (or the same p), limiting the grid of i, values 
to i. = r. Repeating this algorithm for a number of bMB (p) values, we 
then wouid select the value bMB (p) that yields estimated coverage closest 
to 1 -Q. 

2. If we use the calibration scheme to calibrate a blocking method, we need 
to start out with a reasonable block size. In situations, where we do not 
know what a reasonable block size is, we can use the following @ick. In 
the same way as the actual confidence level can be regarded as furction of 
the nominal confidence level (conditions1 on a fixed block size), it can be 
considered as a function of the block size (conditional on a fixed nominal 
level). Fixing the nominal level at the desired level, that is, choosing i, = Q, 
we can therefore estimate the block calibration function B : b -+ 1 - 6, using 
an analogous calibration algorithm: 

1 * Generate K pseudo-sequences XT’ , . . .,X,$, according to a suitable boot- 
strap distribution e:. 
For each sequence, k = 1,. . . , K, 
la*. Compute an 1 - M level confidence region CI:, for a selection of 
block sizes b. 

2* For each b compute g(b) = #i{ d,, E CIi}/K. 
A reasonable block size will then satisfy i(b)= 1 - 3~. 
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3. Two-sided equal-tailed intervals should always be computed as the inter- 
section of two separately calibrated one-sided intervals. Particularly if the 
sampling distribution of 6, is asymmetric, the amount of calibration needed 
in the lower tail can be very different from the one needed in the upper 
tail. 

It is obvious that calibrating an asymptotically correct procedure will again 
result in an asymptotically correct procedure. The hope is that the calibrated 
procedure will have better finite sample properties. In the context of i.i.d. obser- 
vations, it has been shown that calibrating a procedure increases its asymptotic 
correctness. Two comprehensive references are Efron and Tibshirani (1993) and 
Hall (1992). Proving sr*,h a result in the context of dependent data is beyond 
the scope of this paper. We will shed some light on the performance of the cali- 
brated subsampling method by means of simulation studies. Further research will 
be necessary to further explore theoretical and practical properties. 

5. Simulation studies 

In this section we will shed some light on the finite sample properties of 
the subsampling method and also the moving blocks method. We present two 
simulation studies, one for the case of the univariate sample mean and one for 
multivariate least-squares linear regression. Tables for both simulation studies are 
provided in Appendix C. One should note that simulation studies on blocking 
methods are computationaliy fairly expensive. This is even more true in the case 
of calibrated blocking methods. Since the subsampling method is a lot faster than 
the moving blocks bootstrap we restricted the calibration method to subsampling 
intervals for the sake of these simulation studies. Also, to keep the computations 
manageable we had to limit the number K of pseudo-sequences to estimate the 
calibration function h(e) to K = 200. For any real application, one should use 
K = 1000. 

5.1. The trnivariate mean 

In this simulation study we compare the finite sample performance of sub- 
sampling and moving blocks confidence intervals for the univariate mean. Per- 
formance is measured in terms of coverage probability of two-sided 95% level 
intervals. In order to generate the data we use heteroskedastic autoregressive 
AR( 1) processes with different parameters. The innovations are independent but 
heteroskedastic. To be more specific, let i;i be i.i.d. random variables. We then 
define weakly dependent, heteroskedastic time series by 

AR( 1): xi = p~i-t + Vi and Vi = ai 3i. 
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Here {ai) denotes a sequence of real numbers that might regarded as lanai 
effects. Throughout, we chose (ai) to be the infinite re 
{ 1, 1, 1, 2, 3, 1, 1, 1, 1, 2 ,4, 6). Without loss of generality, we 
mean at zero. This can be achieved by choosing a dis~bution with 
for the unscaled innovations, i$. For our simulations we use two dis~buti~s, 
standard normal and centered exponential with scale parameter 1. As p 
for the AR( 1) model p = 0.2, 0.5, 0.8 and -0.5 are considered. 

We can quickly check that the assumptions of Theorem 3.1 are satisfied. 
moment condition (7) and asymptotic covariance stationarity, condition (8), 
by our choice of distributions for the innovations and of the sequence of con 
for the ‘seasonal effects’. By Theorem 5 in Section 2.4 of Doukhan (1994), the 
strong mixing coefficients of the AR( 1) and AR(2) processes {Xi} are geometri- 
cally decreasing which implies (9). 

Since we are drawing inference from dependent and heteroskedastic data, we 
cannot hope to do very well for small data sets. In the simulations we chose 
n = 256 as the sample size. 1000 random samples were generated for each scc- 
nario. The moving blocks intervals are based on 1000 resamples for each sa 
The blocksizes range from b = 1 to b = 32 for the moving blocks method 
from b = 4 to b = 32 for the subsampling method. 

In Remark 2.2 we discussed equal-tailed and symmetric intervals. In all our 
simulations we found almost equal coverage probabilities. The difference between 
the two approaches was almost always less than 1% with no consistent winner. 
Since coverage was often off by several percent from the nominal level, we de- 
cided that this difference was not worth mentioning in comparison, and therefore 
only report the results for equal-tailed intervals. 

Table 1 provides the results. We first discuss the findings for fixed block- 
sizes. As a first observation, it is striking how close the two methods are in 
terms of coverage probability. The difference is less than or equal to 1% in 
most cases, with no method dominating the other. Secondly, finite sample 
formance is far from perfect, and gets worse as the degree of dependent 
the data increases. Thirdly, the distribution of the innovations certainly makes 
a difference, with somewhat worse results for exponential than for norma 
innovations. 

In the AR( 1) case we get satisfactory results only for p = 0.2. For blocksizes 
b =4 and b = 8 coverage probabilities seem accurate, but for bigger blocksizes 
the confidence intervals definitely undercover. When increasing p we find that 
the optimal blocksize increases while overall performance decreases. The confi- 
dence intervals undercover for all block sizes, with relatively best 
at b=8 and b= 16 for p=O.5, and b= 16 and b=32 for p=O.S, 
As expected, Efron’s bootstrap (b = 1) always does worst. For a negative auto- 
correlation parameter (p = - 0.5) the story is different. We find overcoverage for 
small and undercoverage for large blocksizes, with exact coverage somewhere in 
between. 
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At this point two things have become clear. First, the choice of the block- 
size definitely matters. Picking a “wrong” blocksize will yield bad finite sample 
performance. Secondly, in some scenarios even the “best” blocksize does not 
very well. For our simulations with p = 0.8 we found that the intervals under- 
cover on the order of lo%, at best. We proposed the calibration method hoping 
that in such instances it will pick an appropriate nominal level, resulting in im- 
proved coverage. The results for calibrated symmetric subsampling intervals are 
also reported in Table 1. As starting points for the reasonable blocksize in our 
calibration algorithm we used b = 10 for p =0.2, 0.5 and -0.5, and h = 20 for 
p = 0.8. Again, in any real application, a reasonable starting blocksize can be eas- 
ily chosen by a block calibration method as discussed before. Except for p = 0.8, 
the calibrated subsampling intervals are right on target. For p = 0.8, they still 
underover by about 3%, but this is a considerable improvement over the “best” 
blocksize alone. Also, estimated coverage probabilities are basically identical for 
normal and exponential innovations, showing robustness of the calibration method 
towards skewed sampling distributions. 

5.2. Mtrltivari~m lineur rqwsion 

Our second simulation study is concerned with multivariate least squares 
linear regression. We assess finite sample performance of the subsampling and 
the moving blocks methods for inference on a (single) regression parameter. 
Performance is measured in terms of coverage probability of two-sided 95% 
confidence intervals. For comparison we also include some more standard kernel 
estimation approaches. Here the strategy is to find confidence intervals based on 
the t statistic constructed using the OLS regression coefficient estimator and a 
variance estimator obtained by a kernel technique. Andrews (1991) compared 
various kernels applied to covariance estimation in multivariate linear regression. 
He found that the so-called quadratic spectral (QS) kernel has certain asymptotic 
optimal@ properties, which were then substantiated in a Monte Carlo study. In 
a follow-up paper, Andrews and Monahan (1992) suggested prewhitened kernel 
estimators as an improvement over regular kernel estimators, at least when cov- 
erage probabilities are of main interest. Again, the prewhitened QS (QS-PW) 
kernel seems favored over other kernels. We were interested to see whether the 
subsampling or the moving blocks method could improve upon either of the QS 
kernel approaches. In addition, we decided to include another kernel in our sim- 
ulation study, the Bartlett (BT) kernel, partly because it can be considered more 
traditional in the economics literature, and partly due to its close connection to 
the subsampling and moving blocks variance estimators. For all kernel methods, 
an automatic bandwidth selection, as proposed by Andrews (1991), is employed 
in our simulation study. 

We use the same basic model as in Andrews ( 1991), given by 

yj = x;p + Cj, (29) 
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where Xi.1 = 1 and xi = (1, _Fi)’ and pa are 5 x 1 vectors. ~rougho~t we are 
concerned with construction confidence intervals for the regression para 
fin. Without loss of generality, we set /? =O. As 
processes are concerned, we restrict ourselves to one of 
ered by Andrews ( 1991), namely AR( 1 )-HETl, in whi 
gressors are AR( 1) processes with multiplicative bet 
the errors. To be more specific, let $ and the corn 
dent random variables generated according to the same 
define 

AR(lkHETl: xi,j=pxi_l,j + \vi,j, j=2 ,..., 5; 

In Andrews” notation NET stands for some kind of he edasticity, althoug 
one should note that for this process the ai arc only co onally heteroskedas- 
tic. The same is true for all other HET models in A ws ( 1991). Never- 
theless, even conditional heteroskedasticity should make inference on & more 
difficult. As far as the distribution of the innovations vi goes, Andrews (1991) 
did not venture beyond normality. In analogy to our s lation study for the 
univariate mean, however, we also examine exponenti novations. The val- 
ues considered for the AR( 1) parameter p are 0.2, 0.5, 0.8 and -0.5. Note 
also that in Andrews ( 1991) and Andrews and Mohan ( 1992) both regres- 
sor and error variables were scaled so as to always h e unconditional vari- 
ance equal to one. We decided not to follow this strategy, but rather chose 
standard normal and centered exponential (with scale parameter 1) as dis~bu- 
tions for the innovations. Thus, the variance of the regressors and the errors 
increases with the degree of dependence, which is m realistic. The sam- 
ple size considered for our simulations is n = 128, mai ince most results 
in the two papers by Andrews et al. ar for this size. random samples 
were generated for each scenario. The moving blocks als are based on 
1000 resamples for each sample. The blocksizes cons d range from b= 1 
to b= 32 for the moving blocks method and from b= b=32 for the sub- 
sampling method. As in the univariate mean case, we mpute calibmted 
subsampling intervals. We used b = 10 as a starting blocksize for the calibration 
method. 

We can quickly check that the conditions of Th 
moment conditions (23)-(25) are met by our choice 
innovations. Asymptotic covariance stationarity [con 
lows trivially from the second order stationarity of th 
leaves to verify the mixing condition (28). By The 
Doukhan ( 1994), the strong mixing coefficients of the 
cesses Xi, j, j = 2,. . . , 5 and 4 are geometrically dec 

.4 are satistied.The 
dLtributions of the 
(26) and(27)] fol- 

ic processes. This 

Theorem 3.49 in 
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Table 2 
AR( 1 )-HETI model, n = 12X 

Gaussian innovations 

Parameter Interval h=l 

p = 0.2 MBET 0.91 
p = 0.2 SUBET 
p = 0.2 MBSYM 0.92 
p = 0.2 SUBSYM 

p=o.5 MBET 0.84 
p=o.5 SUBET 
p = 0.5 MBSYM 0.85 
p = 0.5 SUBSYM 

p = 0.8 MBET 0.61 
/I = 0.8 SUBET 
p = 0.8 MBSYM 0.62 
p = 0.8 SUBSYM 

p = --0.5 MBET 0.85 
p = -0.5 SUBET 
p = -0.5 MBsyhl 0.85 
/J = -0.5 SUBSYM 

Exponential innovations 

Parameter Interval h=l 

p = 0.2 MBET 0.82 
p = 0.2 SUBET 
p = 0.2 MBSYM 0.86 
p = 0.2 SUBSYM 

p = 0.5 M&T 0.78 
p=o.5 SUBET 
p=o.5 MBSYM 0.82 
p = 0.5 SUBSYM 

;, -;I 0.8 MBET 0.5? 
p = 0.8 SUBET 
p = 0.8 MBSYM 0.59 
p = 0.8 SUBSYM 

p = -0.5 MBET 0.83 
p = -0.5 SUBET 
p= -0.5 MBSYM 0.85 
p=-0.5 SUBsyhq 

h=5 b=6 h=7 b=X b= 12 b= 16 b=32 Nom. level 

0.91 0.91 0.90 0.89 0.88 0.86 0.7X 
1.00 0.99 0.96 0.93 0.90 0.87 0.77 
0.92 0.92 0.92 0.92 0.91 0.90 0.86 
1.00 0.99 0.97 0.95 0.92 0.89 0.81 

0.87 0.86 0.86 0.86 0.85 0.83 0.76 
1.00 0.98 0.94 0.90 0.87 0.85 0.73 
0.X9 0.89 0.89 0.90 0.89 0.88 0.85 
1.00 0.99 0.96 0.94 0.90 0.88 0.80 

0.75 0.77 0.76 0.76 0.76 0.75 
1.00 0.93 0.87 0.83 0.80 0.77 
0.79 0.81 0.82 0.83 0.84 0.84 
1.00 0.97 0.91 0.88 0.85 0.82 

0.88 0.88 0.87 0.87 0.86 0.85 
1.00 0.97 0.92 0.88 0.87 0.89: 
0.89 0.90 0.90 0.90 0.90 0.89 
1.00 0.98 0.95 0.93 0.90 0.89 

0.69 
0.66 
0.82 
0.79 

0.79 
0.77 
0.85 
0.84 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

b=5 b=6 b=7 b=X b= 12 b= 16 b=32 Nom. level 

0.81 0.82 0.81 0.81 0.79 
1.00 0.93 0.85 0.81 0.78 
0.86 0.86 0.87 0.86 0.85 
1.00 0.98 0.93 0.89 0.85 

0.80 0.80 0.80 0.79 0.78 
1.00 0.94 0.87 0.82 0.78 
0.86 0.86 0.86 0.86 0.56 
1.00 0.98 0.93 0.90 0.85 

@.?3 0.72 0.72 0.73 
1.00 0.93 0.87 0.&3 
0.77 0.79 0.79 0.80 
1.00 0.97 0.91 0.88 

0.84 0.84 0.83 0.83 
1.00 0.92 0.87 0.84 
0.89 0.89 0.89 0.89 
1.00 0.96 0.92 0.89 

0.72 
0.78 
0.82 
0.83 

0.82 
0.83 
0.88 
0.88 

0.78 
0.76 
0.85 
0.83 

0.76 
0.76 
0.85 
0.84 

0;71 
0.74 
0.82 
0.81 

0.80 
0.80 
0.87 
0.86 

0.70 
0.69 
0.X2 
0.79 

0.70 
0.68 
0.82 
0.80 

0.64 
0.64 
0.80 
0.75 

0.74 
0.72 
0.83 
0.82 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

95% 
95% 
95% 
95% 

White (1984) the same type of decay holds for the sequence (xi, Ci). This, of 
course, implies condition (28). 

The results of our study are provided in Tables 2 and 3. Again, we first briefly 
discuss the results for fixed blocksizes, given in Table 2. In some respects our 



D.N. Politis, J.P. Romano, M. WolflJournal of Econometrics 81 (P597) 281-317 299 

Table 3 
AR( I)-HETI model, n = 12s 

Gaussian innovations 

Parameter BT QS QS-PW SUB-CAL Nominal level 

p = 0.2 0.92 0.92 
/’ = 0.5 0.88 0.88 
p = 0.8 0.81 0.82 
p = -0.5 0.89 0.89 

Exponential innovations 
Parameter BT QS 

p = 0.2 0.86 0.86 
p = 0.5 0.84 0.84 
p = 0.8 0.75 0.76 
p = -0.5 0.87 0.88 

0.92 0.96 95% 
0.88 0.94 95% 
0.79 0.91 95% 
0.90 0.94 95% 

QS-PW 

0.85 
0.82 
0.72 
0.89 

SUB-CAL Nominal level 

0.95 95% 
0.92 95% 
0.89 95% 
0.92 95% 

findings are very different from those in the case of the univariate mean. Firstly, 
the subsampling and the moving blocks method no longer closely agree. The 
subsampling method is more sensitive to the choice of the blocksize, but gives 
better results for “the right choice”. Fortunately, this choice is not affected very 
much by the degree of dependence. Secondly, symmetric intervals have signifi- 
cantly better coverage than two-sided intervals. Thirdly, the kind of dependence 
seems to affect coverage probabilities in a different manner. We do not see an 
inherently different effect of positive and negative AR( I ) parameters. The moving 
blocks intervals undercover consistently, whereas subsampling intervals overcover 
for small blocksizes and undercover for large blocksizes, and this is true for b&z 
positive and negative AR( 1) parameters. 

The results of the kernel methods and the calibrated subsampling met are 
given in Table 2. The subsampling intervals clearly exhibit better coverage prop- 
erties than the kernel intervals and are close to the target level, except for p = 0.8. 
The kernel intervals undercover consistently. Interestingly, the prewhite~d ker- 
nel QS-PW seems not necessarily superior to the simple QS kernel. E 
if the degree of dependence is high, it appears to undercover even 
somewhat in contrast to the results in Andrews and Mohanan (1992). For expo- 
nential innovations, coverage probabilities are reduced for all intervals co 
to normal intervals, typically in the range of 2 to 5%. However, the 
age reduction is largest for the kernel methods, indicating that they are some- 
what less robust against the distribution of the innovations than sub~mpIing or 
moving blocks methods. It seems that in using a normal approximation the 
methods are paying a price for ignoring the potential skewness of the distri 
of an estimator. 



6. Variance ratio tests 

A stylized version of the Efficient Market Hypothesis states that stock returns 
are serially independent and hence unpredictable. Combined with the additional 
assumption that log returns are identically distributed according to some normal 
distribution, this yields the historic log-random-walk-model, which has become 
the workhorse of the thrancial asset pricing theory. For example, it is the basis of 
the celebrated Black and Scholes (1973) model for pricing derivative securities. 
A weaker and maybe more interesting hypothesis is that log returns are serially 
uncorrelated, but possibly dependent. However, a number of recent papers have 
challenged these traditional views claiming that stock returns can be partially 
predicted, be it from past returns or other variables (e.g., the stock’s dividend 
yield). A common way of testing predictability of returns from past returns has 
been the use of variance ratio tests. These tests use the simple fact that the 
variance of the sum of uncorrelated random variables is equal to the sum of the 
individual variances. 

Assume that we observe the price of a stock at equal time intervals i. Define 
the one-period real total return as Ri+r = (9+r + di+r )/fi, where lj is the end- 
of-period real stock price and di is the real dividends paid during period i. Here 
di could be zero in case the stock does not pay dividends. Assume that the 
log returns I; = log(Ri) are covariance stationary. We are interested in the null 
hypothesis of uncorrelated returns: 
HO : r; E log(Ri) are serially uncorrelated with common mean 11 and variance o*. 

Suppose our sample consists of /~zq observations 1-1, . . . , I-,,,~,. Unbiased estimators 
of 11 and o* are given by 

Under Ho the following is also an unbiased estimator of (r?: 

(30) 

(31) 

(32) 

where I=q(mq - q -t I)( 1 - q/(mq)). However, if the log returns are serially 
correlated, this is no longer true. Under positive serial correlation r# will tend 
to be greater than 02, under negative serial correlation it will tend to be smaller 
than tr*. A q-period variance ratio test statistic can therefore be defined by 

M,(q)= 3. (33) 
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It can easily seen to ‘be a consistent (although biased) estimator of 
q-period variance ratio statistic 

q--l 
VNq) = 1 + 2 c (1 - k/q)/&, 

k=l 

where pk is the k-order autocorrelation coefficient of (Q}. 
The statistic M,.(q) was introduced by Lo and Ma&inlay (1988). It is obvious 

that under HO it should be close to unity. If the log returns ri exhibit 
serial cotrelation, it will tend to be greater then unity, and vice versa for 
serial correlation. Under the null hypothesis, En,(q) will have a limiting coral 
distribution with mean one, which is even robust against some heteroskedasticity. 
However, the limiting variance very much depends on the de~~de~cy struc- 
ture of the ri and is nontrivial to estimate, see Lo and MacKinlay (1988). Ap- 
plying this methodology for periods q = 2,4,8, and 16 to weekly data of 
CRSP equal- and value-weighted indices from 12/ 1962 to 12/ 1992, Camp 
et al. (1995) are able to reject the null hypothesis of uncorrelated ri. 

Malliaropulos (1996) employs a bootstrap approach to variance ratio tests in 
order to avoid having to rely on a limiting normal distribution. Using monthly 
observations of the FT-A All Share index from 0111964 to 0911993, be is not 
able to reject the stronger null hypothesis of i.i.d. r;-. Clearly, this is in contest 
to the findings of Campbell et al. (1995). One should note however, that this 
bootstrap approach is only able to test the stronger i.i.d. hypothesis. In general, 
this is an undesirable property, since there is already a growing consensus amon 
financial economists that (conditional) return volatilities change over time an 
second moments of log returns are correlated, which implies that returns 
dependent, Moreover, for testing the stronger null hypothesis exact tests could 
constructed. 

Applying the subsampling method to variance ratio tests has a two- 
advantage. One does not have to estimate a complicated limiting dist~b~tion 
it also works for dependent and heteroskedastic returns. We look at the CR 
equal- and value-weighted indices from 12/ 1947 to 12/1986 and the S&P 
index from 1211947 to 1211994. All three data sets consist of monthly obse 
tions. Our strategy is to construct 95% calibrated subsampling intervals for 
variance ratio statistic V&q) at various periods q and to check whether . . 
contained in the intervals. We consider the periods q = 2,4, and 8. We e 
blocksizes of h = 16,32, and 48, respectively, for the calibration method out 
in Section 4. The results are presented in Table 4 in Appendix C. While w 
evidence for predictability for the CRSP equal-weighted index, we fail 
for the CRSP value-weighted index and for the S&P 500 index. These results 
are somewhere in the middle between the findings of Campbell et al. (1 
and Malliaropulos (1996). However, one needs to take into account that we use 
different data sets - Campbell et al. analyzed ~vx#“~ CRSP observations. 
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Table 4 
Confidence Intervals for VR(q) 

CRSP equal-weighted 

Period M-G?) 

q-2 1.153 
q=4 I .236 
q=8 I .367 

CRSP value-weighted 
Period M+l) 
q=2 I .06 
q=4 I.109 
q=8 I.312 

S&P 500 
Period M.(q) 
q=2 I .023 
q=4 0.998 
q=8 I .066 

95% Cl 

[1.09, I.221 
[1.07, I.401 
[l.OS, I.651 

95% Cl 
[l.Ol, l.ll] 
20.97, I .24] 
[0.99, I .63] 

95% Cl 
ro.97, I .OS] 
[OM, I.101 
[0.88, I .26] 

It is apparent that this brief discussion does not fully do justice to the prob- 
lem of variance ratio tests. For one, the different methods should be applied 
to identical data sets in order to be really able to compare their results. Also, 
simulation studies seem in order to address finite sample performances. These _ . 
issues are beyond the scope of this paper and will be explored in 
research. 

further 

7. Conclusion 

In this paper we have demonstrated that the subsampling method is a valid 
tool in heteroskedastic settings. In the stationary case, the asymptotic validity 
hinged on the simple assumption of a limit distribution for the normalized statis- 
tic based on the entire sample. Now, an additional sufficient condition is that 
the normalized statistic based on a subseries will be on average close to the 
same limiting distribution, at least for large samples. This allows for considerable 
local heteroskedasticity, and it applies to inference for multivariate parameters. 
To demonstrate the validity of the method for the mean, smooth functions of 
a multivariate mean and multivariate linear regression, we employed a central 
limit theorem for a triangular array of heteroskedastic weakly dependent ran- 
dom variables. We state this theorem together with a moment bound for het- 
eroskedastic random variables in the appendix as results interesting in their own 
rights. 
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Preliminary simulation studies showed that the finite ~ple buoyance of 
blocking methods can strongly depend on the blocksize. Un 
asymptotic theory provides little guidance as how to select a blocks 
tice. We proposed a calibration approach to deal with this problem. 
to start out with a reasonable blocksize and to then improve coverage 
by adjusting the nominal confidence level so as to better match the desi 
confidence level of a confidence region. 

As has been done in the context of i.i.d. data, it might be possible to derive 
second-order properties for calibrated confidence procedures in the context of 
dependent data. Due to the very involved mathematics of Edgeworth expansions 
for dependent data, such results basically would have to be restricted to the 
strictly stationary case. Future research will be devoted to this problem. 

Two simulation studies were carried out for the cases of the univariate mean 
and multivariate least squares linear regression. They demonstrate that the calibm- 
tion method yields good results, even when compared with the “best” bl size. 
For the linear regression case we also compared the subsampling meth with 
more standard kernel methods, as widely used in the econometrics literature. 
Our simulation studies suggest that calibrated subsampling intervals can result 
in considerable improvement for finite sample scenarios, in particular when the 
regression residuals exhibit strong serial correlation. 

As an example, we applied the subsampling methodology to the problem of 
variance ratio tests, which are commonly used to check for serial correlations 
of random variables. Our findings using stock return data are somewhat diff~er~t 
than results of more traditional methods relying on limiting normality and of a 
bootstrap method. We believe that this is one of many areas where s~lb~rnpling 
can shed new light on issues that maybe have not been solved to complete 
satisfaction yet. 

Appendix A. Central limit th~or~m for triang~l~r arrays 

Before applying our basic theorems for the construction of confidence regions, 
we will need a method to verify Assumptions A or B. In this section, we present 
a central limit theorem for a triangular array of weakly dependent heteroskedastic 
random variables. Central limit theorem for strong mixing random variables have 
been proved by Rosenblatt (1958), Ibragimov (1962), Oodaira and Yosbihara 
( 1972), White and Domowitz (1984) and many others. A survey of the literature 
can be found in Doukhan ( 1994). Note that in many cases strict stationary 
was assumed in addition to moment and mixing conditions. Our theorem is an 
extension of previous results, as it applies to triangular arrays. For the proof of the 
theorem we need the following moment bound for strong mixing heteroskedastic 
random variables. The result is implicitly contained in a theorem of Dou 
(1994). 
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Lattmt A. I (Moment bound, Doukhan, 1994). Let {Xi} be a squence of’nrem 
zero rundont wriubles. Denote the coswspondiq mixing sqtuence by 2x(. ). 
De-jirte, jbr z 2 2 and 6 > 0 

Tim 

C(z, 6) _= E (k + 1)r-2x$‘T+“‘(k), (A.1) 
Ii=0 

(A.2) 

D(z, S,d) 3 Max {L(z, S,d), [L(2, &n)]“*}. 

the jtillowing bound holds: 

(A.3) 

B( l,(S) ,< 

B(2,6) < 

BP,& < 

B(4,6) < 

1, 
18Max{l,C(2,S)}, 

102Max{l,C(3,0:)}., 

3024 Max { 1, C’(4,6)}. 

2. For r=2+S, 

B ,< [3024 h4ax { 1, C’(4, ~S)}j2”‘4’2-“““f”. (A.5) 

In case we have an uniform bound on the 2 -t 26 moments of the sequence {,q} 
we can obtain a less sharp but more concisely stated bound. 

C~IWIIW_J~ A.1 (Concise moment bound). [/ u*e ussimt~ ih crddition to the c’on- 
ditions of Lentntc~ A. 1 tit& 

IIXill~+*,j <A jh al/ i, 66) 
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where r is u constunt that on& depends on A, S und the mixing coefJicients 
Ixx(+). More esplicitly, 

r +024Max (1, C2(4,S)}]24(4(2-“)iii+l)A(2 +&(l+w, 

where C(4,6) is dejined us in (A. 1). 

We now present the central limit theorem for triangular arrays. 

Theorem A. 1. Let {X,j,i, 1 <i <d,,} be u triungzdur array qj’meun zero rundom 
vuriubles. Denote the mixing sequence correspotmding 10 the nth row by E,,(.). 
Dej?ne 

Assume the jb~lowing conditions hold For some 6 > 0: 

o ll-%ill2+2,j <A for UN n, i, 

0 o,$,, + o2 7 7 > 0 lrnij~rmly in a(*), 

0 C,,(4)= E (k + 1)2&‘4+“‘(k)<K Jar all n, 
k-0 

(A-7) 

(A.f% 

(A.9) 

where A wrd K ure jinite iwstunts independeflt of’n, k or a. 

(*) This meuns: For trny sequence (k,,) thut tends to inj%ty with n, 

sup, I o,f,k&l - 21 -* 0 as R -+ cm. 

Then r,;,.‘/,,,l + N(0,c2), i.e. d,T’12 C$, X,,,: + N(O,o”). 

Appendix B. Proofs of technical results 

Proof oJ’ Theorem 2.1. For a set A denote its interior, closure and boundary 
by A’, A-‘ and a(A), respectively. For a set A and a positive constant E define 
sets A_,, c A CA+,; in the following way. Set MA,,: = U.rEi(Aj B(x, E), where B(x, E) 
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denotes the (closed) ball with center x and radius E. Then A+,; =A U Ad& and 
A_, G A\i&,. 

We will now prove the theorem. To simplify the notation, let q E q,, z n -b+ 1. 
Let 

14 - 
G(A) = - c l{rs(%, - e(P)) ~4. 

4 n=l 

To prove (i), it suffices to show that U,(A) converges in probability to J(A,P) 
for every Bore1 set A whose boundary has measure zero under J(P). This can 
be seen by noting that 

MA)= $ $, 1{d/~h,o - e(p))+ rb(@P) - &,,)EA), 
a 

so that for every E > 0, 

G&4-,:)1{&} GXQL&} <U&t+,:), 

where l{&} is the indicator of the event E,, s {Tb 11 O(P) - &, 111 GE}. But, the 
event E,j has probability tending to one. So, with probability tending to one, 

U,(A-::)~L,,(A)~U,(A+,:). 

Thus, if A+,; and A_, are Bore1 sets whose boundaries have mass zero under 
J(P), then U,,(Ak,:) + J(Ak,:, P) in probability implies 

J(A-t:,P) - sG&(A)<J(A+,,P) + s 

with probability tending to one. Now, let E --f 0 such that A*c are Bore1 sets 
whose boundaries have mass zero under J(P). Therefore, we may restrict our 
attention to U,(A). 

Since E( U,(A)) = i ~~=r Jb,,(A,P), the proof of(i) reduces by Assumption A 
to showing that Var(&(A)) + 0 as n + 00. Define 

Ib,o= 1{Tb@bb.u - W’)lEA), Q= I,...,% 

Then 

1 b-l q--l 
=- 

4 
+ 2 c sq,h + 2 c sq,h 

h=l h=b 
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where D* = $(s,,o + 2 c,“z: +,h) and D = $ ~~~~ sy,h. It is 
ID” I= O(b/q). To handle D we apply a well-known mixing ineq~~ali~ for 
random variables (e.g., Theorem A.5 in Hall and Heyde, 1980). For h>b, 

ICov(b,db,a+h)j <4aX(h - 6 + 1) 

and therefore, 

Thus, both D and D* converge to zero, which completes the proof of (i). 

In crder to prove (ii) we need the following result. 

Lemma B. I (Billingsley, 1968). Let {Q,,} and Q be probability measures on 
I@. Also, let ‘% be a subclass of .5@ such that 

(a) Q is closed under the formation of finite intersections and 
(b) for every x in Rk and every positive E there is an A in Q with x E A0 C_ A C 

B%, 8). 
Zf Q,*(A) + Q(A) for every A in 92, then Q,, =S Q, or, equivalently, p,+(Q,,, Q) + 0 
for any metric that metrizes weak convergence on Rk. 

Define a class of sets *J(p) (the subscript indicates that the class may depend 
on J(P)) in the following way. Let D be a dense countable subset in the set 
of all points in Rk that have mass zero under J(P). For each x E D let E, be 
a dense countable subset containing positive real numbers E for which c?@*(x,E)) 
has mass zero under J(P). Now, set ?::itp) G &,c,EE, S(X,E,). Since e(p) is a 
countable union of countable sets, it is countable itself. Finally, define 
contain all the finite intersections of elements of c(p). We see immediate 
*J(P) is countable again and meets the conditions (a) and (b) of Lemma B.l 
Furthermore, each set A E @J(P) has a boundary of mass zero under J(P). 

Let {nj} be a subsequence of {n}. For each A E Cii#~cp, we can then find a fu~her 
subsequence {nj,} such that L,,(A)--tJ(A,P) almost surely (by the fact that 
L,(A)-+.Z(A,P) in probability). Since @J(P) is countable, there is a common 
subsequence {nj,,,} such that, on a set of probability one, L,,JA)+J(A,P) for all 
A E @J(P). By Lemma B.l then, pk(L, ,,,,, J(P))+0 almost surely and this shows 
that &L,J(P))+O in probability. 

The proof of (iii) is obvious once we have (ii). The proof of (iv) is very 
similar to the proof of Theorem 1 of Beran (1984) given our result (i). 

Proof of Lemma A.I. This result is implicitly contained in Theorem 2 of Sec- 
tion 1.4 in Doukhan (1994). For a more detailed derivation see the proof of 
Lemma 3.1 in Politis et al. (1995). 
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Proof‘ of Theorem A. 1. In the proof of the theorem we will approximate a sum 
of weakly dependent random variables by a corresponding sum of independent 
random variables. The following lemma will help us to establish an upper bound 
of the sup difference of the corresponding characteristic functions. The proof is 
given in Ibragimov (1962). 

Lemncs B.2 (Ibragimov, 1962). Let {Z,} denote (I sequence qj’randon~ vectors 
defined on u probability space, und let .q,’ E o(Z,; n < t < b). Also denote the 
mising sequence corresponding to the Z, by a~(.). Let Y, und Y2 be randont 
vctriubles n~eusuruble with respect to .F, md &y,:,,, respectively. In addition, 
let Y( cmd Yi be independent rmdorn vmiubles huving the sunle distribution 
us Yt and Y2, respectively. Denote the churmteristic jimtions of’ Y, -I- Yz and 
YI + Yi bJ> cp und q’, respectively. 
Then sup,lq(t) - q’(t)1 < 16~4~11). 

We will now prove the theorem. The main idea of the proof is to split the 
sum X,, 1 + . . . + X,r.tl,, into alternate blocks of length b,, (the big blocks) and 
I,, (the small blocks). This is the traditional approach to proving central limit 
theorems for dependent random variables, and is commonly attributed to Markov 
or Bernstein (1927) (“Bernstein sums”). Define 

hi =X,,.(i-I)(~,+/,,)+I + . . * +~,(i-i)(b,,+l,,)+~,,,, 1 QiGr,], 

where r,, is the largest integer i for which (i - 1 )(b,, + I,I) + b,, cd,,. Further define 

~,.;,.i=,.(i-I)(b,,+/,,)+l,,,+l + 0.. +X,,.j(h,,+/,,)+j ,,,, 1 GiGi;,, 

VI.,;, =~~.(t;,-l)(b,,+/,,)+h,+l + . * . +x,1,,/,,. 

Then S,,.~,,J = CF;l U,,.; + C;L, I$.;, and the technique will be to choose the 
I,, small enough that xi!_, I& is small in comparison with xi!_, U,,,i but large 
enough to ensure that the U,,,i are nearly independent. 

Let b,, = [dy4J and I,, = [&‘4 J , where 1.1 denotes the integer part of a real 
number. Since r;, is the largest integer i such that (i - 1 )(b,, + I,,) + b,, cd,!, 

b,, N dy4, I,, N d;14, r;I N dli4 II * (B-1) 

We will now proceed to show that d,;“” Cy;, I& converges to zero in proba- 
bility, as dN tends to infinity. Since its expected value equals zero, it suffices to 
check that its variance tends to zero. First note that by Lemma A.1 and assump- 
tion (A..9), for all n,i 

EjI&12 < IOKd’I,, = BI,,. (B.2) 
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Therefore, 

\ i=l / 

6, c E”‘(d;‘i2 I$)’ 
i=l 

6-l 
2 (~~,,/d,d’2 1 +Mh, +h,)/4~11’2 (by (B.2)) 

-+ 0. 

By Slutzky’s Theorem it remains to prove that cI,Y”~ CF., U,z,i + N(0, a’). 
Let U$, 1 <i <v,~, be independent random variables having the same distri- 

butions as U,j.i, 1 <i <I;,. By Lemma B.2 applied inductively, the chamcte~st~c 
functions of ~4;“~ CFL, Llt1.i and of &“2 C:L, U,: i differ by at most 16r;,~~(Z~~). 
Note that by assumption (A.9) we may assume, kthout loss of generality, that 
CC,,,(~) < K/k2. Therefore, 

16i;,a,t(l,,) < 16r;,K/f: 

d O(d,;“‘) (by (B.1)) 

Thus, the proof will be completed by showing that dty “2 CT!_, Vi, =+ N(0, c2 ). 
This will be accomplished in two steps: 

S&p 1: [Var(CyJ_, U~,i)]2’(2+6)C~:, EjU$12+6+0. 

Step 2: iVar(CFY_, U,:.i)--tb2. 

The result then follows by Lyapounov’s Central Limit Theorem and Slut&y’s 
Theorem. 

Prooj- of step I: 

= $ ‘$ E(Uj.i)’ 
II t1r-I 

= $ $ E(Ll,,i12 it I1 r-l 



3 10 D. N. Politis. J. P. Romano, A4. Wolf/ Journal of Econometrics 81 (1997) 281-d I7 

= _!_ 5 E(b,“*U,,,i)* 
Ijf i=l 

+ o* (by assumption (A.8)). (B.3) 

Let us assume, without loss of generality, that 1 ,<K. With Corollary A.1 then 

E]b,;“2U;,i]2+6 < [3024 Max { 1, Ci(4)}]2 4(4(2--6)/6+1 )A(*+&( l+cS/2) 

< [3024K 2 12 4(4(2-(i)/S+l )d(2+s)(1+S/2) 

(by assumption (A.9)) 

z A. (B.4) 

Finally, 

<(l/r,,)(2+6)‘20(1)O(1;,) (by (B.3)) 

-=O((r )-“!*) . II 

+ 0. 

Proof of Step 2: We just showed that (l/~,b,~)Var(C~!_, U$)+o*. But, 
r,,b,Jd,, --+ 1 by 03.1). 

Proof of Theorem 3.1. For the proof we will assume, without loss of general- 
ity, that true mean is equal to zero, i.e. 0 =O. By Theorem 2.1 it is sufficient 
to verity our Assumption B, as the mixing condition or,~(k)+O is implied by 
assumption (9). 

Condition (i) of Assumption B follows immediately from Theorem A. 1. For 
condition (ii) let {it,) be an index sequence. Now apply Theorem A. 1 to the 
triangular array, the nth row of which is the block of size b of the consecutive 
data {Xi,,, . . . , &,+&I} (recall that we consider b as a function of n). 

Proof of Theorem 3.2. Again, we will assume without loss of generality that 
O=O. To refresh the memory of the reader we will state a result which we are 
going to use in the proof. Its proof follows by application of Lindeberg’s CLT. 
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Proposition B.I. Let F und (F”) be distribution f~?~ct~ons with corres~~mdi~g 
means and variances ,a, {p,,), a2 and {a:}, respectively. Assa~e 

(1) F,, =S F and 
(2) a,2-+0? 

Let {X,l,,i, 1 <i~d,~} be a triangular array of random var les, the nth row of 
which satisfies: X,,, 1, . . . ,&.d,, i. i.d. N Fh and define x,a = i cf:, Xt,i. 
Then d,‘,‘*(z,, - p,,) + N(O,o*) as d,,--too. 

We will now prove the theorem. Note that 

(bl)“2(y;t,, - &, ) = Z”2 f $b”2{Fb,j -x,*,,}) -I’l’ (i $.ZJ$). 
I-l r-l 

We see that the .Z’;,i are i.i.d. N L,,, where L,, is defined as in (6) horn Ex- 
ample 3.1. Here, we have shown (under even weaker ass tions) that L,, * 
N(0, a2) in probability. The next step will be to check Var(L,)+cr2 in 
probability also. An application of Proposition B.l will then complete the proof. 

The value of xn,t has no effect on the variance of L,. Therefore, by our 
definition Tb,a s b’12zb ,a, 

var(L,) = i $, T& - Tb2, 
a 

where Tb zz ; $ T/,,‘,. 
n 

Step 1: $ Cz, T,& + o2 in probability. 

Proof E[i Cz=, Z&l = f Cz=, c$, +c? as n--t cc (by ass~mp~ion (12). 

Hence, it is sufficient to check that Var(i xi=, Tia) ten 
Define 

sq.d = ; ‘c; Cov(Gfrrv $:Ta+d). 
a 

Then 

var(;&&) =f (sq,o+2zsq,d) 

1 b-l q-1 
=- 

4 
‘q.0 + 2 c sq,d + 2 c sq,d 

d=l d=b 

=A* +A, 

where A* = $sq,e + 2 Gill S,r,d,d) and A = $ ~~~~sq,d. 
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By a well-known mixing inequality (e.g., Corollary A.2 in Hall and Heyde, 
1980), 

Cov( ThuI. Gl+d ) d SIlG$II2+~j III;&+c,lI~+~ @‘2f”‘Wax {(Ad - 6)) 
< 8[A*K*]* %$‘*+“‘(Max {O,n - b}), 

where K, is a constant depending only upon K. This last inequality can be seen 
as follows 

G ~(b2+hA”+2dK, )!/(2+6) 

(by Theorem A.1 and assumption (13)) 

< A*K,. 

Trivially now, 

Hence, 

b 
A*<16A4K.*--+O 

*4 ’ 

and 

AG,6A4K~~~~~ra(d)“.“i”‘i0 (by assumption (13)). 
‘ 

Step 2: T/,+0 in probability. 

PIWO~.’ Analogous to the proof of Step 1. 

From the proof of Theorem 3.1 we already know that L,, + N(O,o’). Thus, 
both Var(&)+o* in probability and ~r(L,,,N(0,o”))+0 in probability, where pt 
is any metric that metrizes weak convergence on R. Hence, for any subsequence 
nl, one can extract a further subsequence nl, such that both pt (II,,,, , N(0, o?)) --f 0 
and Var(L,,,, )- rr* almost surely. By Proposition B. 1 it then follows that, on 
a set of probability one, pt(f.,T, ,,N(O,o*))eO. This proves that pt(Lb,N(O,o’)) 
in probability. 
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Proof of Theorem 3.3. For the proof we will assume, without loss of genemli~~ 
that the true mean is equal to zero, i.e. 6=0. 
rem 2.1 is clearly implied by our assumption (18 
to show that assumption B.l is satisfied. 

To prove part (ii) of assumption B.l, let ab be an index sequence that 
depend on b. We will accomplish the proof in two steps. 

step 1: T,,,,, 9 N(0, z). 

Proof By the Cramer-Wold device it will suffice to look at linear combina- 
tions of the type ;?,??‘/2b-‘~2.$,ah, where I. is a vector in Iwp. Without loss of 
generality we may assume that L has unit length. We observe that 

o E(LrC-*‘2X,,+i)=0 for O<i<b - 1, 
CJ by assumption (16) and Minkowski, EI~~~-“2X,,+i12’2s~A*, where A* is 

a constant that depends only on A and C (since 1jI.11 = 1), 
@ 

B -1 

b&,, G Var E?,Z-1!‘2b-‘/2 C Xa,,+i 
i=O > 

= 3,Tr”2CoV(?j)a* )z-“2A 

= lT,p2& a .y-‘/21,-+ 1 . * h by assumption (17). 

Apply Theorem A.1 to deduce that 2T.Z-‘/2b-‘/2 CFzd X,,+i =S N(0, I) (to do so 
let X,,i = AT!Tc-“2XUj,+i-~ there). Since we did not specify i., we may follow by 
the Cramer-Wold device that Z-‘i2 Tbeuh + N(O,I) or, equivalently, that Tb,ah =+ 
N(0, 0 

step 2: b-“2(f( T’,a,,) - f(o)) =e- N(O,JZJT). 

Proof This follows immediately from step 1, condition (19) and the multivariate 
b-method. 

Part (i) of assumption B.1 now follows trivially by letting b = n and ab E 1 
in (ii). 

Proof of Theorem 3.4. The mixing condition in Theorem 2.1 is clearly implied 
by our assumption (28). Therefore, it will be sufficient to show that ~sumptio~ 
B.l is satisfied. 

To prove part (ii) of assumption B. 1, let ab be an index sequence that may 
depend on b. We will accomplish the proof in two steps. 
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‘I2 T Step 1: b- J&,,E tq,, =s N(0, V). 

ProoJ By the Cram&-Wold device it will suffice to look at linear combinations 
of the type LT V-‘12b-‘!2XhTa,,~h,(r,,r where I. is a vector in IWJ’. Without loss of 
generality, we may assume that i. has unit length. We observe that 

o E(i,TV-“2X,,,+iE,,,+i)=0 for O,<i<b - 1, 
e by assumption (24) and Minkowski, E1%TV-“2X~~+iE,,,+i12’2S < A;, where A; 

is a constant that depends only on A’ and V (since jlL]l = l), 
. 

2 
bb,“,, - 

= var jTV-U$-W 
b-1 

i C Xu,,+iGt,,+i 
i=o > 

b-l 
= jbTV-l/2CoV 

i 

b-l/2 C xU,,+iG,+i V-“*I. 
i=O > 

= i.TI/-- I”&,, V--‘~“i.- 1 by assumption (26). 

Apply Theorem A.1 to deduce that j?V-‘!2b-“2 cf’z,’ Xl,,,+iCu,,+i + N(0, 1) (to 
do so let X = jTV-‘!‘x 11.1 * uh+i- 1 h+i- I there). Since we did not specify I,, we 
may follow by the Cramer-Weld device that I’-“zb-‘i2XhT~,,Eh~~,, + N(O,I) or, 
equivalently, that b-‘j3XT F /,,a,, +.u,, =j N(O, V). 

Step 2: b’12(lj,+,,, - /I) =s N(O,M-’ VW’). 

Proof b’12(&,cr,, - 8) = (X&,,,&Jb)-’ b-‘i2X&,,c~:h.c ,,,. By the imposed mixing 
and moment conditions on the sequence {xi} we have (X~c,,,X~,c,,,/b) - Mb,,,, +O 
in probability. In fact, denote the (i,j)th entry of [(X&,,,&Jb) - Mh,o,,] by 
(Dh)i+ Then 

(Dh1i.j = $ ‘Ei xus+l,ixo,+t,j - E(x‘,:,,+/.ix,,,+/,j). 

By definition, E((Db)i,i)=O. It will be sufficient to check that Var((D/,)i,j)+O. 
Define 

Then 

Var((D)i,j)= i sb.0 + 2b5 sl,.(l . 
tl=l > 
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By the mixing inequality for bounded random variables again, 

< 8d~l’*+“‘r(d)“!‘2’“’ (by assumption (26)). 

Therefore, Sb,d < 84 k or(d)& and that implies 

Recalling that Mb,,,, -+A4 by assumption (27), we thus have (X&$b,(ll,/b)+kf 
in probability. By step 1, b-“2X&,,,~b,ah is Op( 1) and therefore 

[(X&,,,Xb.c,,,/b)-’ - n/l-‘]b-“2X~,,,Eb.u,, +O in probability. 

But, M- ’ b- t ‘*X&,, cl, a, 3 I + N(0, A4-’ t/M-’ ) by step 1 again and this completes 
the proof of part (ii) of assumption 13.1. 

Part (i) of assumption B.1 now follows trivially by letting b = n and ab G I 
in (ii). 
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