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Abstract

In this article, a general theory for the construction of confidence intervals or regions in
the context of heteroskedastic-dependent data is presented. The basic idea is to approximate
the sampling distribution of a statistic based on the values of the statistic computed over
smaller subsets of the data. This method was first proposed by Politis and Romano (1994b)
for stationary observations. We extend their results to heteroskedastic observations, and
prove a general asymptotic validity result under minimal conditions. In contrast, the usual
bootstrap and moving blocks bootstrap are typically valid only for asymptotically linear
statistics and their justification requires a case-by-case zmalysis. Gur general asymptotic
results are applied to a regression setting with dependent heteroskedastic errors. © 1997
Elsevier Science S.A.
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1. Introduction

It has been almost two decades since Efron (1979) introduced the bootstrap
procedure for estimating sampling distributions of statistics based on indepen-
dent and identically distributed (i.i.d.) observations. It is well known that, in the
i.i.d. setup, the bootstrap often gives more accurate approximations than classi-
cal large sample approximations (e.g. Singh, 1981; Babu, 1986). However, when
the observations are not necessarily independent the classical bootstrap no longer
succeeds, as showed by Singh (1981). Most extensions in the literature so far
only apply to the stationary case. They can roughly be divided into resampling
and subsampling methods.
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There are, broadly speaking, two approaches to using resampling methods
for strictly stationary dependent data. One is to apply Efron’s bootstrap to an
approximate i.i.d. setting by focusing on the residuals of some general regres-
sion model. Such examples include linear regression (Freedman, 1981; Freedman,
1984; Wu, 1986; Liu, 1988), autoregressive time serics (Efron and Tibshirani,
1983; Bose, 1988), nonparametric regression and nonparametric kernel spectral
estimation (Hirdle and Bowman, 1988; Franke and Hirdle, 1992). In all of
the above situations the residuals are resampled, not the original observations.
In addition to being restricted to relatively simple contexts where structural mod-
els are both plausible and tractable, little is known how this approach would
perform for heteroskedastic observations. The fitted residuals will, in general, no
longer behave like i.1.d. observations but exhibit some form of heteroskedasticity.
However, it is known that Efron’s bootstrap works reasonably well even when the
data are independent but not identically distributed (Freedman, 1981; Liu, 1988;
Liu and Singh, 1992), so one might hope for some robustness to heteroskedas-
ticity as well. As a second approach, resampling methods for less restrictive
contexts have been suggested more recently. They are based on “blocking” ar-
guments, in which the data are divided into blocks and these blocks, rather than
individual data values or estimated residuals, are resampled. Carlstein (1986) pro-
posed non-overlapping blocks, whereas Kiinsch (1989) and Liu and Singh (1992)
independently introduced the ‘moving blocks’ method which employs overlap-
ping blocks. Subsequent research seems to have favored this scheme. Politis and
Romano (1992) consider a blocks of blocks scheme to obtain valid inference
of parameters of the infinite-dimensional joint distribution of the process, such
as the spectrum. It turns out that Kiinsch’s bootstrap enjoys some robustness
property to heteroskedasticity, as was pointed out by Lahiri (1992) in the case
of the sample mean. In both Carlstein’s and Kiinsch’s bootstrap blocks of fixed
length are resampled. so that the newly generated pseudo-time series is no longer
stationary. T~ £ix this shortcoming, Politis and Romano (1994a) suggested the
stationary bootstrap.

As an alternative to resampling methods, Politis and Romano (1994b) proposed
the subsampling approach. Rather than resampling blocks from the original time
series as ingredients to generating a new pseudo-time series, each individual sub-
block or subseries of observations is looked upon as a valid ‘sub-time series’ in
its own right. The motivation is as follows. Each block, as a part of the origi-
nal series, was generated by the true underlying probability mechanism. It then
seems reasonable to hope that one can gain information about the sampling dis-
tribution of a statistic by evaluating it on all subseries, or ‘subsamples’. On the
other hand, building new pseudo-time series by joining randomly sampled, inde-
pendent blocks together induces a different probability mechanism. Dependency
will be reduced, and, for Carlstein’s and Kiinsch’s bootstrap, stationarity will be
lost. However, in typical applications the underlying dependence is sufficiently
weak. Therefore, the main contributions come from short lags which are well
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approximated by the ‘blocking” methods, ensuring that these methods nevertheless
work.

Another attractive feature of the subsampling method is that it has been shown
to be valid under very weak assumptions. Apart from regularity an< dependency
conditions, the only requirement, in the stationary setup, is that the sampling
distribution of the properly normalized statistic of interest has a nondegenerate
limiting distribution. The moving blocks method has essentially been shown to be
valid for functions of linear statistics and smooth functionals only (sce Kiinsch,
1989; Biihlmann, 1994).

In this paper we present conditions which ensure that the subsampling method
is still asymptotically valid for heteroskedastic observations. The paper is orga-
nized as follows. In Section 2 the method is described, and the main theorems are
presented. In Section 3 some applications and examples are discussed. In addition,
a result for the validity of the moving blocks method for heteroskedastic data is
stated. We talk about the problem of choosing of the blocksize in Section 4.
Section 5 presents two simulation studies to address finite sample properties of
the method. As a real-life example, we apply the subsampling method to vari-
ance ratio tests in Section 6. Section 7 gives a conclusion of the paper and some
outlook on future research. Three appendices contain a central limit theorem for
heteroskedastic-dependent random variables, the proofs of technical results, and
tables for the outcomes of the simulation studies and the variance ratio tests.

2. The general theorem

Suppose {...,X_1,X0,Xi,...} is a sequence of random variables taking val-
ues in an arbitrary sample space S, and defined on a common probability space.
Denote the joint probabiliiy law governing the infinitc sequence by P. The goal is
to construct a confidence region for some real or vector-valued parameter 6(P),
on the basis of observing {Xi,...,X;}. The time series {X;} will be assumed
to satisfy a certain weak-dependence condition. Specifically, given a random se-
quence {Y:}, let #™ be the c-algebra generated by {¥;, n<i<m}, and define
the corresponding mixing sequence by

ay(k)= supsup |P(4 N B) — P(A)P(B)|,
n AB

where 4 and B vary over the o-fields & and %, respectively. The sequence
{Y;} is called a-mixing or strong mixing if ay(k)—0 as k — oc.

Let 0,= (},,(Xl,. ...X,) be an estimator of O(P)cRF. Let é,,,a = éb(Xa,...,
Xat+p—1), the estimator of 0 based on the subsample X, ..., Xg15—1. Define J; o(P)
to be the sampling distribution of ‘L'[,(ég-,a —0(P)), where 15 is an appropriate nor-
malizing constant. For any Borel set 4 € #* define:

Js,a(4, P) = Probp{ts(05,, — O(P)) € 4}. (N
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Essentially, the only assumption that we will need to construct asymptotically
valid confidence regions for §(P) is the following.

Assumption A. There exists a limiting law J(P) such that
(i) Ju.1(P) converges weakly to J(P) as n — oo, and
(ii) for every Borel set 4 whose boundary has mass zero under J(P),

1 n—b4-1

Py “z::l JIp.a(4,P)— J(4,P),

for any sequences #,b with n,b— oo and b/n —G.

Condition (i) states that the estimator, properly normalized, has a limiting dis-
tribution. It is hard to conceive of any asymptotic theory free of such a require-
ment. Typically, much stronger assumptions are in force to ensure asymptotic
normality. Condition (ii) states that the distribution functions of the normalized
estimator based on the subsamples will be on average close to the distribution
function of the normalized estimator based on the entire sample, for large n.
A somewhat stronger condition is the following,

Assumption B. There exists a limiting law J(P) such that
(i) J,.1(P) converges weakly to J(P) as n— oo, and
(ii) for any index sequence {ap}, Jp.q,(4,P)—J(4), for every Borel set 4
whose boundary has mass zero under J(P), as b — oo.

Here, condition (ii) requires that the distribution function of the normalized
statistic evaluated over a subsample converges to the same limiting law as the
distribution function of the normalized estimator based on the entire sample,
uniformly in the starting point of the subsample. Assuming (i), the condition is
satisfied for stationary processes, but also for processes that exhibit asymptotic
stationarity. For example, one can consider a Markov chain with an equilibrium
distribution. Assumption A follows from Assumption B.

In order to describe our method, let ¥, , be the block of size b of the consec-
utive data {X,,...,X,1p—1}. Only a very weak assumption on b will be required.
Typically, b/n —+0 and b—co as n — oco. Now, let ();,.,, be equal to the statis-
tic (3,, evaiuated at the data set Y, ,. The approximation to J, ;(4, P) we study is
defined by

n—b+1

Z 1{1'1,(0/,,,—0,, I)EA} 2)

IIA
( ) b+l a=1

The motivation behind the method is the following. For any a, ¥, is a ‘true’
subsample of size b. Hence, the exact distribution of Tb(éh a—0(P)) is Jpq If
condition (ii) of Assumption A is satisfied, then the empirical distribution of the
n—b+1 values of ‘L'[,(();, a — 0(P)) should serve as good approximation to J,(P).
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Replacing O(P) by é,,,l is permissible because 1;,(0,“ — 8) is of order 13/, in
probability and we will assume that /1, — 0.

Theorem 2.1. Assume Assumption A or Assumption B, and that 1,/t,— 0,

bmn—0 and b— o0 as n— . Also, assume that ay(m)— 0 as m — oo. Then

(i) L(A)—J(4,P) in probability, for each Borel set A whose boundary has
mass zero under J(P).

(ii) pr(La, J(P))— 0 in probability for every metric p, that metrizes weak
convergence on RF.

(iti) Let {Y,} aud Y be random vectors with L(¥,Y=L, and L(Y)=J(P).
Then, for any almost everywhere J(P) continious real function f and any
metric py which metrizes weak convergence on R, p)(L(f(Y,)), L(f(Y)))
— O in probability. In particular, for a norm ||| on R* py(ZL(| %),
ZLAUIYI)— 0 in probability. This allows us to find confidence regions for
oP).

(iv) Let Y be a random vector with £(Y)=J(P). For a norm ||-|| on R* define
univariate distvibutions L, ., and J). (P) in the following way:

n—b+1

Ly jq(x) = ;‘:‘;ﬁ agl 1{lt6(0p.. — 0n.0)|| <x},
Jy.(x, P) = Prob{|| ¥ || <x}.
For 2€(0,1), let
cnr(1— o) =inf{x:L, . (x)=1 —a},
enu(l =) =sup{x:L, . (x)<1 — 2}
Correspondingly, define
ct(1 = P)=inf{x:Jyy(x,P)=1 - a},
cy(l — 2, P) = sup{x :Jj(x, P)S1 — 2}
Let {c,(1 — 2)} be a sequence such that
Cu(l —a)<en(l — )< u(l — 2).
If Jy (-, P) is continuous at c((1 — o), then
Probp{|[u(0,1 ~ OPY|| <c(1-)} — 1 —a as n—oo.

Thus, the asymptotic coverage probability under P of the region
{0:1l7u(0 ~ O, )| <cu(1 — )} is the nominal level 1 — a.

Consider the special case of univariate parameters, that is, 0(P) € R. The stan-
dard choice for a norm on the real line is the absolute value function |-|.
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In this context, applying the subsampling method as outlined above boils down
to estimating

Jn1,1-(%, P) = Probp{t, | 0,1 — O(P)| <x}. (3)

The resultmg confidence regions are two-sided symunetric intervals
[0,, 1—6, 0,, 1+¢], where ¢ is chosen so that Probp{|0,, 1 — 0] > ¢} =a. However,
in some scenarios we might be particularly interested in cne-sided confidence
intervals, upper or lower ones depending on context. In this case, we would have
to estimate the ‘standard’ distribution function

Jn1(x, P) = Probp{s(0,1 — O(P))< x}. 4)

It is obvious that the subsampling method can be used here - take the Borel
sets A of form (—oo,x]. For a corresponding theorem see Politis et al. (1995).
Following this route, we could construct two-sided equal-tatled intervals as the
intersection of two one-sided intervals: [(),,1 1, 0,11 + é2), where ¢ and é
are chosen so that Probp{# <0, — &} =a/2 and Probp{0> 0, + é&;} =o/2.
Hall (1988) showed that symmetric confidence intervals often enjoy enhanccd
coverage and, even in asymmetric circumstances, can be shorter than equal-tailed
confidence intervals. We will compare the finite sample performance of symmetric
and equal-tailed intervals in simulation studies in Section 5.

3. Applications

In this section we demonstrate the validity of the subsampling method in some
specific situations: the univariate mean, smooth functions of the mean and multi-
variate linear regression. We also state a result concerning the moving blocks
method for the mean case.

Example 3.1 (The univariate mean). Suppose {X;} is a sequence of random
variables with common mean 0. Denote the joint probability law governing the
sequence by P. The goal is tu construct a confidence interval for 0, on the basis
of observing {Xi,...,X,}. Let Oba—Ob(Xa, ,,+b =b" 'Zj‘“’ "X, = =Xp.4
be our estimator of 0 based on the block {Xa, Xytb-1}- Define Jp o(P) to be
the sampling distribution of b*(Xp.q— 0). Also deﬁne the corresponding cumula-
tive distribution function:

Jb.a(x, Py =Probp{b'*(X} ., — 0)<x}. &)

The approximation to J,,i(x, P) we study is defined by

n—b+1 — .
> b (Xpq — X1)<x}. (6)

=5 A
d=
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The following theorem gives sufficient moment and mixing conditions for which
the subsampling technique will allow us to draw first order correct inference
about 6.

Theorem 3.1. Let {X;} be a sequence of random variables defined on a common
probability space. Denote the corresponding (generalized) mixing coefficients by
ax(-). Define

- _I/2(1+I\':| s 2 _
Tk,a—k Z X, ak,a—var(Tk,a)-

i=a

Assume the following conditions. For some o > 0:

o |1 Xillyy05 <4 for all i, 7

e o7 ,— 0 >0 uniformly in a, (8)

o C(4)=Y (k+ 1P (k)<K. ©)
k=1

Furthermore, assume that b/n—0 and b— oo as n— oo, and lei J(P)=N
(0,52).
Then the conclusions of Theorem 2.1 will be true.

Example 3.2 (Moving blocks for the mean case). Consider again the situation
of Example 3.1. We will show that the moving blocks method, which was in-
troduced by Kiinsch (1989) and Liu and Singh (1992) for the case of stationary
time series, will still work in this heteroskedastic setting.

To describe the methed (for the case of the mean), let ¥, , be the block of size
b of the consecutive data {X,,...,X,5—1} and ¥t /=], =|b/n]. Conditional on
the sample {X},...,X,}, denote the empirical distribution of Y 1,..., Y5, (where
g=qu=n->b+1) by P’. ie, P puts mass !/g on each of the Y ,. Define
a pseudo-time series {X}",...,X;;} in the following way: Let ¥¥,..., ¥, iid. ~
B} and join them together to one big block: {X}",..., Xp } ={¥} 1»--, Bl Bia 1
coes Y52 poeees Bip 15 e o0 Yoy} Here, of course, Y%, ; denotes the ith element of the
block 7.

The corresponding cumulative distribution function is given by

Ly (x)="Probp: {(b])"*(X*p1,1 — Xn1)<x}. (10)

The following theorem states that the moving blocks method is also asymptot-
ically valid, provided we strengthen the moment and mixing conditions on the
sequence {X;}.
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Theorem 3.2. Let {X;} be a sequence of random variables defined on a common
probability space. Denote the corresponding (generalized ) mixing coefficients by
ax(-). Define

‘ -1 a+k—1 ) 2

a=k—" 3 X, i o = Var(Tiq).

i=a

Assume the fellowing conditions. For some 6 > 0

o || Xilly3s <4 for all i, (11)
e 67 ,— 6> >0 uniformly in a, (12)
e C(6)= Z (ke + 1))y <K (13)

Furthermore, assume that bjn—0 and b—oc as n— o0, and let J(P)=N
(0,0%).
Then the conclusions of Theorem 2.1 will be true if we replace L,(-) by L}(-).

Remark 3.1. Relative to the result for the subsampling method we need stronger
moment and mixing conditions on the sequence {X;} here in order to show that
the variance of the moving blocks distribution converges in probability to the
proper limit. For details the reader is referred to the proof of the theorem in the
appendix.

Remark 3.2. There have been previous results extending the moving blocks
method for the sample mean to the heteroskedastic case. A result similar to Theo-
rem 4.2 was obtained by Fitzenberger (1995) in his Theorem 3.1. Note, however,
that he needs a stronger condition on the block size b, namely b= o(n'/ 2). Fur-
thermore, his proof is somewhat invalidated by some mistakes. Under stronger
assumptions, Lahiri (1992) not only showed a result similar to Theorem 3.2,
but also obtained second-order properties. However, he uses an even ore strin-
gent requirement on the block size, namely &= o(n'*). As will be discussed in
Section 4, this rate is too small in many situations.

Example 3.3 (Smooth functions of the multivariate mean). Suppose {X;} is a
sequence of multivariate random variables with common mean 0 € R, and k > 1.
Denote the joint probability law governing the sequence by P. Assume that
on the basis of observing {X,...,X,} we are interested in finding a confi-
dence reglon for {= f(0), where f(-) is a smooth function from R to R”.
Let &y o="Co(Xanen s Xaspo1) = f(b ‘Z“+b 'X)= f(Xs..) be our estimator of
{ based on the block {Xas-..sXarp—1}. Define J, o(P) to be the sampling distri-
bution of b'2(f(Xp4) — ). For any Borel set 4 € 87 let

Jpa(A, P)=Probp{b"(f(X,.) — )€ 4}. (14)
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The approximation to J, 1(4,P) we study is defined by

n—6+1

P 21 {62 (f(Xp.a) — f(Xn1)) €4} (15)

Ly(4)=
Theorem 3.3. Let {X;} be a sequence of random vectors with common mean
0c Rt Denote the corresponding mixing coefficients by a(-). Define T, =
k= 2N X and S0 =Cov(Ti.,). Assume the following conditions hold. For

i=a

some 0 > 0:

° E|X,-,,~|2+‘5<A Jor all i and all 1<j< p, (16)

e X, — 2>0 uniformly in a, (17)
2 .

o CA)=3 (k+ 1Y (k)<K. (18)
k=1

o f:RX—RPis continuously differentiable. (19)

Furthermore assume that bjn — 0 and b — cc as n — >, and let J(P)=
N(0,JZJT), where J is the Jacobian of f at 0. Then, the conclusions of Theo-
rem 2.1 will be true.

Exumple 3.4 (Least-squares linear regression). Consider the linear model
v=Xf + ¢ where y and ¢ are (# x 1) vectors, f# is a (p x 1) vector and
X a (n x p) matrix. Here X may be stochastic. The goal is to draw inference
on f. In order to be able to apply the subsampling method we need to define
subvectors and submatrices:

Yo.a = (Vas+ s Yatb—1 )T, Eh,a =(8are v s Eatb—1 )T
and
.\‘:‘: x'lr
Xba= : , where X = | :
be—-l x;,r

Our estimator of f# based on X, , and y,, then is defined as
Bra = X5 o Xo.a) ™ X o Vb (20)

In the classical regression model the &;’s are assumed to be i.i.d. Here, we require
only a weak dependence condition. Define J;, ,(P) to be the sampling distribution
of b'2(f3, , — P). Also, for any Borel set 4 € RP, define

J.a(A, P)=Probp{b"(f, , - B)€ 4}. @20
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The approximation to J, (4, P) we study is defined by

n—b+

1 ! 3 5oL
L= =577 = WP - huayed) (22)

Theorem 3.4. Let {(xi,¢)} be a sequence of random vectors defined on a com-
mon probability space. Denote the mixing coefficients for the {(x;,&)} sequence
by a(-). Define

Jatk—1

T/'{.aEk—E Z Xi&j,
i=a

Hrw = Cov(Ti.a),
Mia = EQF, Xiall).

Assume the following conditions hold. For some 6>0:

e E(x;;6)=0 for all iandall 1<j<p, (23)
o Elx; ;&< 4, for all i and all 1<j< p, (24)
o Elx, ;|*" <A, for all i and all 1<j< p, (25)
e V..— V>0 uniformly in a, (26)
o My ,— M >0 uniformly in a, 27)
o C(4)= Af;] k + 1224 <K. (28)

Furthermore assume that bin—0 and b—oo as n— oo, and let J(P)=
NOM'vM—),
Then the conclusions of Theorem 2.1 will be true.

Remark 3.3. Alternatively, the moving blocks method could be used for mak-
ing inference on the regression parameter . The procedure is analogous to the
mean case, except the resampled blocks consist of regressors and the correspond-
ing dependent variables. A related result concerning the validity of the moving
blocks method for multivariate least-squares linear regression in the context of
heteroskedastic data was presented in Fitzenberger (1995). In a small simulation
study in Section 5 we compare finite sampie performance of the subsampling and
the moving blocks method in a linear regression set-up.

4. Choice of the blocksize

An apparent drawback of all blocking methods is that for applications a block-
size has to be chosen. For small to moderate sample sizes, performance can
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depend rather critically on that choice, for example, as shown in our simulation
studies in the next section. So far, contributions in the literature on how to pick
the blocksize in practice have been restricted to the case of stationary data, and
we shall give a brief overview here.

It is well known that for quite gencral statistics both the subsampling and
the moving blocks variance estimators are asymptotically equivalent to a kernel
smoothed (with Bartlett’s kernel) cstitzator of the spectral density at the origin
(cf. Kiinsch, 1989; Politis and Romano, 1994b), where the bandwidth of the
kernel corresponds to the inverse of the blocksize. The relevant spectral density
is the one of the process given by the influence function of the statistic of intercst.
Hence for variance estimation, choosing the blocksize is asymptotically equivalent
to choosing the bandwidth for the Bartlett kernel. Bithlmann and Kiinsch (1994)
exploit this equivalence.

A more important and ambitious goal than estimating a variance is the con-
struction of confidence intervals. In Ilall et al. (1995) it is shown that the optimal
asymptotic rate of the block size for the moving blocks method depends signif-
icantly on context, being equal to n'3, n'/* and n'” in the cases of variance
or bias estimation, estimation of a one-sided distribution function and estimation
of a two-sided distribution function, respectively. The latter two quantities are
needed for construction of equal-tailed and symmetric confidence intervals, re-
spectively. Therefore, it scems that the strategy of Biihlmann and Kiinsch (1994)
is suboptimal for constructing confidence intervals. Hall et al. (1995) present a
practical rule for selecting the block size empirically. It is based on the fact the
asymptotic formula is &~ Cn'*, where k=3, 4 or 5 is known, and C is a con-
stant that depends on the underlying process. The rule suggested provides a way
for estimating the optimal block size for a time series of smaller iength than the
oﬁgiqal, say m <n. Once this has been determined, at b,, say, the optimal blocks
§ize b, for ttle original series of length » may be estimated from the formula
b, = (”/m)l/kbm-

It is not difficult to modify this empirical rule for the subsampling method. Un-
fortunately, it did not work very well when we tested it via simulation studies. In
particular, as will become clear from later simulation studies and from Table 1
in the appendix that the optimal biocksize for making inference on the univari-
ate mean depends very much on the actual degree of dependence, at the very
least for AR(1) processes. Loosely speaking, longer blocks are needed to capture
greater dependence. Hall’s method, however, turned out to be quite insensitive
to changing the AR(1) parameter in our simulations.

We propose a new method that in a certain sense avoids having to find the
“best” blocksize. One can think of the accuracy of an approximate or asymptotic
confidence procedure in terms of s calibration (Loh, 1987). Suppose we use
the procedure to construct a confider.ce region with nominal confidence levei
1 — A. We can denote the actual confidence level by 1 — a. 2 is known to us, o
typically is not. If we knew the calibration function A:1 — 7 —1 — a, we could
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Table 1
Mean, AR(1) model, n=256

Gaussian innovations

Parameter  Interval b=1 b=4 b=8 b=16 bH=32 CAL Nominal level
p=02 Moving blocks 096 095 095 093 0.90 95%

p=02 Subsampling 096 095 093 0.91 095  95%

p=05 Moving blocks 0.76 089 092 092 0.90 95%

p=05 Subsampling 093 093 091 0.90 094  95%

p=08 Moving blocks  0.47 0.72 0.83 0.87 0.86 95%

p=08 Subsampling 0.74 0.82 0.85 0.85 092  95%

p=-05 Moving blocks 1.00 098 096 094 0.90 95%
p=-—05  Subsampling 098 096 094 0.90 095 95%
Exponential innovations

Parameter  Interval b=1 b=4 b=8 b=16 b=32 Cal. Nominal level
p=02 Moving blocks  0.90 0.94 0.95 0.93 0.90 95%

p=02 Subsampling 096 095 092 0.90 094  95%

p=035 Moving blocks  0.71 08 0.89 089 0.87 95%

p=05 Subsampling 0.89 0.87 0.87 0.86 094 95%

p=08 Moving blocks 046 073 0.81 0.86 0.85 95%

p=038 Subsampling 0.72 0.80 0.83 0.83 092 95%

p=-05 Moving blocks 1.00 095 093 092 0.88 95%
p=—05  Subsampling 095 092 090 0.88 094 95%

construct a confidence region with exactly the desired coverage, by selecting the
value of A that satisfies #(1 — A)=1 — 2. Fortunately, the calibration function
h(-) can be estimated by bootstrap methods. The basic bootstrap principle applies
here as well. One generates pscudo-sequences from a known model B, then
constructs confidence regions from each generated pseudo-sequence, and observes
how frequently the parameter 0, is contained in those regions. In the context of
dependent data, one needs to employ a more suitable bootstrap method, such
as the moving blocks bootstrap or the stationary bootstrap, in order to generate
appropriate bootstrap samples.

In the case we want to apply the calibration scheme to a blocking method,
we can do it conditional on a reasonable blocksize. This means that we fix a
sensible blocksize and calibrate the confidence procedure using that particular
blocksize. The problem of finding the “best” blocksize is therefore reduced to
the problem of finding a reasonable blocksize, which is a lot easier. In many
scenarios we will have a pretty good idea what a rcasonable blocksize will be,
either from prior experience or related simulation studies. In case, we are in
the dark with respect to how to pick a reasonable blocksize, see Remark 4.1
below.
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To describe the general method more formally we can use the following
algorithm.

4.1
1.

Do WN

Description of the calibration method

Generate K pseudo-sequences X**, ..., X;*, according to a suitable bootstrap
distribution .
For each sequence, £ = 1,...,K,

la. Compute an 1 — Z level confidence region CIi_;, for a grid of values
of A.

. For each 4 compute i(1 — %)=#{f, € CK_,}/K.

. Interpolate iz(-) between the griAd values.

. Find the value of 2 satisfying #(1 — A)=1—a.

. Construct a confidence interval with nominal level 1 — 4.

Remark 4.1. 1. A “suitable bootstrap method” in step 1 of the above requires

a block size byp in the case of the moving blocks method and the equiv-
alent counterpart p in the case of the stationary bootstrap. The choice of
this block size will have a sccond-order effect and is, therefore, less im-
poriant. To be on the safer side, a nested bootstrap could be employed o
determine an appropriate block size. This means that we would use the
same bootstrap method in steps 1 and la of the above algorithm with
the same block size byB (or the same p), limiting the grid of 4 values
to Z=ua. Repeating this algorithm for a number of byg (p) values, we
then wouid select the value byg (p) that yields estimated coverage closest
tol—a.

. If we use the calibration scheme to calibrate a blocking method, we need

to start out with a reasonable block size. In situations, where we do not
know what a reasonable block size is, we can use the following trick. In
the same way as the actual confidence level can be regarded as function of
the nominal confidence level (conditional on a fixed block size), it can be
considered as a function of the block size (conditional on a fixed nominal
level). Fixing the nominal level at the desired level, that is, choesing 2 =2,
we can therefore estimate the block calibration function g:b— 1 — 2, using
an analogous calibration algorithm:

1* Generate K pseudo-sequences X;,..., X, according to a suitable boot-
strap distribution P.
For each sequence, k=1,...,K,
la*. Compute an 1 — « level confidence region CIf, for a selection of
block sizes b. A

2* For each b compute §(b)=#{6, € CIL}/K.
A reasonable block size will then satisfy g(b)~1 — a.
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3. Two-sided equal-tailed intervals should always be computed as the inter-
section of two separately calibrated one-sided intervals. Particularly if the
sampling distribution of 0, is asymmetric, the amount of calibration needed
in the lower tail can be very different from the one needed in the upper
tail.

It is obvious that calibrating an asymptotically correct procedure will again
result in an asymptotically correct procedure. The hope is that the calibrated
procedure will have better finite sample properties. In the context of i.i.d. obser-
vations, it has been shown that calibrating a procedure increases its asymptotic
correctness. Two comprehensive references are Efron and Tibshirani (1993) and
Hall (1992). Proving snoh a result in the context of dependent data is beyond
the scope of this paper. We will shed some light on the performance of the cali-
brated subsampling method by means of simulation studies. Further research will
be necessary to further explore theoretical and practical properties.

5. Simulation studies

In this section we will shed some light on the finite sample properties of
the subsampling method and also the moving blocks method. We present two
simulation studies, one for the case of the univariate sample mean and one for
multivariate least-squares linear regression. Tables for both simulation studies are
provided in Appendix C. One should note that simulation studies on blocking
methods are computationally fairly expensive. This is even more true in the case
of calibrated blocking methods. Since the subsampling method is a lot faster than
the moving blocks bootstrap we restricted the calibration method to subsampling
intervals for the sake of these simulation studies. Also, to keep the computations
manageable we had to limit the number K of pseudo-sequences to estimate the
calibration function A(-) to K =200. For any real application, one should use
K =1000.

5.1. The univariate mean

In this simulation study we compare the finite sample performance of sub-
sampling and moving blocks confidence intervals for the univariate mean. Per-
formance is measured in terms of coverage probability of two-sided 95% level
intervals. In order to generate the data we use heteroskedastic autoregressive
AR(1) processes with different parameters. The innovations are independent but
heteroskedastic. To be more specific, let ¥; be i.i.d. random variables. We then
define weakly dependent, heteroskedastic time series by

AR(1): x;=pxi_y+v; and v; =a;¥;.
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Here {a;} denotes a sequence of real numbers that might be regarded as seasonal
effects. Throughout, we chose {a;} to be the infinite repetition of the sequence
{1, 1,1, 2,3, 1,1, 1, 1, 2 4, 6}. Without loss of generality, we fix the true
mean at zero. This can be achieved by choosing a distribution with zero mean
for the unscaled innovations, ¥;. For our simulations we use two distributions,
standard normal and centered exponential with scale parameter 1. As parameters
for the AR(1) model p=0.2, 0.5, 0.8 and —0.5 are considered.

We can quickly check that the assumptions of Theorem 3.1 are satisfied. The
moment condition (7) and asymptotic covariance stationarity, condition (8), hold
by our choice of distributions for the innovations and of the sequence of constants
for the ‘seasonal effects’. By Theorem 5 in Section 2.4 of Doukhan (1994), the
strong mixing coefficients of the AR(1) and AR(2) processes {x;} are geometri-
cally decreasing which implies (9).

Since we are drawing inference from dependent and heteroskedastic data, we
cannot hope to do very well for small data sets. In the simulations we chose
n =256 as the sample size. 1000 random samples were generated for each s=oc-
nario. The moving blocks intervals are based on 1000 resamples for each sample.
The blocksizes range from b=1 to =32 for the moving blocks method and
from b=4 to b=32 for the subsampling method.

In Remark 2.2 we discussed equal-tailed and symmetric intervals. In all our
simulations we found almost equal coverage probabilities. The difference between
the two approaches was almost always less than 1% with no consistent winner.
Since coverage was often off by several percent from the nominal level, we de-
cided that this difference was not worth mentioning in comparison, and therefore
only report the results for equal-tailed intervals.

Table 1 provides the results. We first discuss the findings for fixed block-
sizes. As a first observation, it is striking how close the two methods are in
terms of coverage probability. The difference is less than or equal to 1% in
most cases, with no method dominating the other. Secondly, finite sample per-
formance is far from perfect, and gets worse as the degree of dependence in
the data increases. Thirdly, the distribution of the innovations certainly makes
a difference, with somewhat worse results for exponential than for normal
innovations.

In the AR(1) case we get satisfactory results only for p=0.2. For blocksizes
b=4 and b=8 coverage probabilities seem accurate, but for bigger blocksizes
the confidence intervals definitely undercover. When increasing p we find that
the optimal blocksize increases while overall performance decreases. The confi-
dence intervals undercover for all block sizes, with relatively best performance
at b=8 and b=16 for p=0.5, and b=16 and b=32 for p=0.38, respectively.
As expected, Efron’s bootstrap (b=1) always does worst. For a negative auto-
correlation parameter (p = — 0.5) the story is different. We find overcoverage for
small and undercoverage for large blocksizes, with exact coverage somewhere in
between.
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At this point two things have become clear. First, the choice of the block-
size definitely matters. Picking a “wrong” blocksize will yield bad finite sample
performance. Secondly, in some scenarios even the “best” blocksize does not
very well. For our simulations with p=0.8 we found that the intervals under-
cover on the order of 10%, at best. We proposed the calibration method hoping
that in such instances it will pick an appropriate nominal level, resulting in im-
proved coverage. The results for calibrated symmetric subsampling intervals are
also reported in Table 1. As starting points for the reasonable blocksize in our
calibration algorithm we used b= 10 for p=0.2, 0.5 and —0.5, and =20 for
p=0.8. Again, in any real application, a reasonable starting blocksize can be eas-
ily chosen by a block calibration method as discussed before. Except for p=0.8,
the calibrated subsampling intervals are right on target. For p=0.8, they still
underover by about 3%, but this is a considerable improvement over the “best”
blocksize alone. Also, estimated coverage probabilities are basically identical for
normal and exponential innovations, showing robustness of the calibration method
towards skewed sampling distributions.

5.2. Multivariate linear regression

Our second simulation study is concerned with multivariate least squares
linear regression. We assess finite sample performance of the subsampling and
the moving blocks methods for inference on a (single) regression parameter.
Performance is measured in terms of coverage probability of two-sided 95%
confidence intervals. For comparison we also include some more standard kernel
estimation approaches. Here the strategy is to find confidence intervals based on
the ¢ statistic constructed using the OLS regression coefficient estimator and a
variance estimator obtained by a kernel technique. Andrews (1991) compared
various kernels applied to covariance estimation in multivariate linear regression.
He found that the so-called quadratic spectral (QS) kernel has certain asymptotic
optimality properties, which were then substantiated in a Monte Carlo study. In
a follow-up paper, Andrews and Monahan (1992) suggested prewhitened kernel
estimators as an improvement over regular kernel estimators, at least when cov-
erage probabilities are of main interest. Again, the prewhitened QS (QS-PW)
kernel seems favored over other kernels. We were interested to see whether the
subsampling or the moving blocks method could improve upon either of the QS
kernel approaches. In addition, we decided to include another kernel in our sim-
ulation study, the Bartlett (BT) kernel, partly because it can be considered more
traditional in the economics literature, and partly due to its close connection to
the subsampling and moving blocks variance estimators. For all kernel methods,
an automatic bandwidth selection, as proposed by Andrews (1991), is employed
in our simutation study.

We use the same basic model as in Andrews (1991), given by

yi=xIp+¢, 29
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where x;;=1 and x;=(1,%;)" and By are 5 x 1 vectors. Throughout we are
concerned with construction confidence intervals for the regression parameter
p2. Without loss of generality, we set f=0. As far as the data generating
processes are concerned, we restrict ourselves to one of the processes consid-
ered by Andrews (1991), namely AR(1)-HETI, in which the errors and re-
gressors are AR(1) processes with multiplicaiive heteroskedasticity overlaid on
the errors. To be more specific, let § and the componenis of %; be indepen-
dent random variables gencrated according to the same AR(1) model. Then we
define

AR(])—HET] Xi j = PXi—1.j + Vi js j=2,...,5;
Ei =p§,‘_| -+ V:-; and & = |x,-,2|5,~.

In Andrews’ notation HET stands for some kind of heteroskedasticity, although
one should note that for this process the ¢ are only conditionally heteroskedas-
tic. The same is true for all other HET models in Andrews (1991). Never-
theless, even conditional heteroskedasticity should make inference on f> more
difficult. As far as the distribution of the innovations v/ goes, Andrews (1991)
did not venture beyond normality. In analogy to our simulation study for the
univariate mean, however, we also examine exponential innovations. The val-
ues considered for the AR(1) parameter p are 0.2, 0.5, 0.8 and —0.5. Note
also that in Andrews (1991) and Andrews and Mohanan (1992) both regres-
sor and error variables were scaled so as to always have unconditional vari-
ance equal to one. We decided not to follow this strategy, but rather chose
standard normal and centered exponential (with scale parameter 1) as distribu-
tions for the innovations. Thus, the variance of the regressors and the errors
increases with the degree of dependence, which is more realistic. The sam-
ple size considered for our simulations is n =128, mainly since most results
in the two papers by Andrews et al. ar for this size. 1000 random samples
were generated for each scenario. The moving blocks intervals are based on
1000 resamples for each sample. The blocksizes considered range from b=1
to b=32 for the moving blocks method and from b=35 to b=32 for the sub-
sampling method. As in the univariate mean case, we only compute calibrated
subsampling intervals. We used b= 10 as a starting blocksize for the calibration
method.

We can quickly check that the conditions of Theorem 3.4 are satisfied.The
moment conditions (23)-(25) are met by our choice for the ditributions of the
innovations. Asymptotic covariance stationarity [conditions (26) and(27)] fol-
lows trivially from the second order stationarity of the stochastic processes. This
leaves to verify the mixing condition (28). By Theorem 5 in Section 2.4 of
Doukhan (1994), the strong mixing coefficients of the (independent) AR(!) pro-
cesses X j, j=2,...,5 and & are geometrically decreasing. By Theorem 3.49 in
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Table 2
AR(1)-HETI model, n=128

Gaussian innovations
Parameter Interval b=1 b=5 b=6 b=7 b=8 b=12 b=16 b=32 Nom. level

p=02 MBgr 091 091 09T 090 089 0.88 0.86 0.78 95%

p=02 SUBgt 1.00 099 096 093 090 0.87 0.77 95%
p=02 MBsym 092 092 092 092 092 091 0.90 0.86 95%
p=02 SUBgym 1.00 099 097 095 092 0.89 0.81 95%
p=05 MBET 084 087 086 086 086 0.85 0.83 0.76 95%
p=05 SUBgt 100 098 094 090 087 0.85 0.73 95%
p=05 MBgym 085 0.89 0.89 0.89 090 0.89 0.88 0.85 95%
p=05 SUBsyMm 1.00 099 096 094 090 0.88 0.80 95%
p=08 MBgt 06l 075 077 076 076 076 075 069 95%
p=08 SUBgt 1.00 093 087 0.83 0.0 0.77 0.66 95%
p=038 MBgym 062 0.79 081 082 083 0.84 0.84 0.82 95%
p=08 SUBsym 1.00 097 €91 088 0.85 0.82 079 95%
p=-05 MBgp 085 088 088 087 087 086 0.85 0.79 95%
p=-05 SUBgr 1.00 097 092 088 0.87 0.85 0.77 95%
p=~-05 MBgyyy 085 089 090 09 09 090 0.89 0.85 95%
p=—05 SUBgym 100 098 095 093 090 0.89 0.84 95%

Exponential innovations
Parameter Interval b=1 b=5 b=6 b=7 b=8 b=12 b=16 b=32 Nom. level

p=02 MBgr 082 081 082 081 081 079 0.78 0.70 95%

p=02  SUBgr 100 093 085 081 078 076 069 95%
p=02 MBgym 086 086 086 087 086 085 085 08  95%
p=02  SUBsym 100 098 093 089 08 083 079  95%
p=05 MBgr 078 080 080 080 079 078 076 070 95%
p=05  SUBgr 100 094 087 082 078 076 068 95%
p=05 MBgyy 082 086 086 086 086 086 085 082 9%
p=05  SUBsym 100 098 093 090 085 084 080 95%
p=08 MBpr 057 073 072 072 073 072 071 064  95%
p=08  SUBgr 100 093 087 083 078 074 064  95%
p=08 MBgym 059 077 079 079 080 082 08 080 95%
p=08  SUBgym 100 097 091 088 083 081 075 95%
p=-05 MBgr 033 084 084 083 083 082 080 074 95%
p=-05 SUBgr 100 092 087 084 083 080 072  95%
p=-05 MBsym 085 089 089 089 089 088 087 083  95%
p=—05 SUBsym 100 096 092 089 088 086 082  95%

White (1984) the same type of decay holds for the sequence (x;,&). This, of
course, implies condition (28).

The results of our study are provided in Tables 2 and 3. Again, we first briefly
discuss the results for fixed blocksizes, given in Table 2. In some respects our
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Table 3
AR(1)-HET!I model, n=128

Gaussian innovations

Parameter BT Qs QS-PW SUB-CAL Nominal level
p=02 0.92 0.92 0.92 0.96 95%

p=05 0.88 0.88 0.88 0.94 95%

p=08 0.81 0.82 0.79 091 95%
p=-05 0.89 0.89 0.90 0.94 95%
Exponential innovations

Parameter BT Qs QS-PW SUB-CAL Nominal level
p=02 0.86 0.86 0.85 0.95 95%

p=05 0.84 0.84 0.82 0.92 95%

p=08 0.75 0.76 0.72 0.89 95%
p=-05 0.87 0.88 0.89 0.92 95%

findings are very different from those in the case of the univariate mean. Firstly,
the subsampling and the moving blocks method no longer closely agree. The
subsampling method is more sensitive to the choice of the blocksize, but gives
better results for “the right choice”. Fortunately, this choice is not affected very
much by the degree of dependence. Secondly, symmetric intervals have signifi-
cantly better coverage than two-sided intervals. Thirdly, the kind of dependence
seems to affect coverage probabilities in a different manner. We do not see an
inherently different effect of positive and negative AR(1) parameters. The moving
blocks intervals undercover consistently, whereas subsampling intervals overcover
for small blocksizes and undercover for large blocksizes, and this is true for both
positive and negative AR(1) parameters.

The results of the keriel methods and the calibrated subsampling method are
given in Table 2. The subsampling intervals clearly exhibit better coverage prop-
erties than the kernel intervals and are close to the target level, except for p=0.8.
The kernel intervals undercover consistently. Interestingly, the prewhitened ker-
nel QS-PW seems not necessarily superior to the simple QS kernel. Especially
if the degree of dependence is high, it appears to undercover even more. This is
somewhat in contrast to the results in Andrews and Mohanan (1992). For expo-
nential innovations, coverage probabilities are reduced for all intervals compared
to normal intervals, typically in the range of 2 to 5%. However, the cover-
age reduction is largest for the kernel methods, indicating that they are some-
what less robust against the distribution of the innovations than subsampling or
moving blocks methods. It seems that in using a normal approximation the kernel
methods are paying a price for ignoring the potential skewness of the distribution
of an estimator.
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6. Variance ratic tests

A stylized version of the Efficient Market Hypothesis states that stock returns
are serially independent and hence unpredictable. Combined with the additional
assumption that log returns are identically distributed according to some normal
distribution, this yields the historic log-random-walk-model, which has become
the workhorse of the financial asset pricing theory. For example, it is the basis of
the celebrated Black and Scholes (1973) model for pricing derivative securities.
A weaker and maybe more interesting hypothesis is that log returns are serially
uncorrelated, but possibly dependent. However, a number of recent papers have
challenged these traditional views claiming that stock returns can be partially
predicted, be it from past returns or other variables (e.g., the stock’s dividend
yield). A common way of testing predictability of returns from past returns has
been the use of variance ratio tests. These tests use the simple fact that the
variance of the sum of uncorrelated random variables is equal to the sum of the
individual variances.

Assume that we observe the price of a stock at equal time intervals i. Define
the one-period real total return as Ry = (P + diy1)/P,, where F, is the end-
of-period real stock price and d; is the real dividends paid during period /. Here
d; could be zero in case the stock does not pay dividends. Assume that the
log returns 7; = log(R;) are covariance stationary. We are interested in the null
hypothesis of uncorrelated returns:

Hy : ;= log(R;) are serially uncorrelated with common mean g and variance o2,

Suppose our sample consists of mq observations r,...,r,,. Unbiased estimators
of 1t and ¢? are given by

mq

R 1
= o ; 1, (30)

1 my

6 = > (i~ AV G1)

mg — 15

Under Hy the following is also an unbiased estimator of ¢°:

1m q . 2
=7 > ( 3 Fipl—k — q.u) , 32)

i=q \ k=1

~

4

el ]

where [ =q(mg — q + 1)(1 — ¢q/(nq)). However, if the log returns are serially
correlated, this is no longer true. Under positive serial correlation a",lz will tend
to be greater than o2, under negative serial correlation it will tend to be smaller
than 6. A g-period variance ratio test statistic can therefore be defined by

22

%
M) ==- (33)
i



D.N. Politis, J.P. Romano, M. Wolfl Journal of Econometrics 81 (1997) 281-317 301

It can ecasily seen to be a consistent (although biased) estimator of the general
g-period variance ratic statistic

—1
VR(@)=1+ Zj;, (1 - Ky,

where p; is the k-order autocorrelation coefficient of {r}.

The statistic M,(g) was introduced by Lo and MacKinlay (1988). It is obvious
that under Hy it should be close to unity. If the log returns #; exhibit positive
serial correlation, it will tend to be greater then unity, and vice versa for negative
serial correlation. Under the null hypothesis, M,{(g) will have a limiting normal
distribution with mean one, which is even robust against some heteroskedasticity.
However, the limiting variance very much depends on the dependency struc-
ture of the » and is nontrivial to estimate, see Lo and MacKinlay (1988). Ap-
plying this methodology for periods ¢=2,4,8, and 16 to weekly data of the
CRSP equal- and value-weighted indices from 12/1962 to 12/1992, Campbell
et al. (1995) are able to reject the null hypothesis of uncorrelated .

Malliaropulos (1996) employs a bootstrap approach to variance ratio tests in
order to avoid having to rely on a limiting normal distribution. Using monthly
observaticns of the FT-A All Share index from 01/1964 to 09/1993, he is not
able to reject the stronger null hypothesis of i.i.d. ;. Clearly, this is in contrast
to the findings of Campbell et al. (1995). One should note however, that this
bootstrap approach is only able to test the stronger i.i.d. hypothesis. In general,
this is an undesirabie property, since there is already a growing consensus among
financial economists that (conditional) return volatilities change over time and
second moments of log returns are correlated, which implies that returns are
dependent. Moreover, for testing the stronger null hypothesis exact tests could be
constructed.

Applying the subsampling method to variance ratio tests has a two-fold
advantage. One does not have to estimate a complicated limiting distribution and
it also works for dependent and heteroskedastic returns. We look at the CRSP
equal- and value-weighted indices from 12/1947 to 12/1986 and the S&P 500
index from 12/1947 to 12/1994. All three data sets consist of monthly observa-
tions. Our strategy is to construct 95% calibrated subsampling intervals for the
variance ratio statistic VR(q) at various periods ¢ and to check whether unity is
contained in the intervals. We consider the periods ¢ =2,4, and 8. We employed
blocksizes of b= 16,32, and 48, respectively, for the calibration method outlined
in Section 4. The results are presented in Table 4 in Appendix C. While we find
evidence for predictability for the CRSP equal-weighted index, we fail to do so
for the CRSP value-weighted index and for the S&P 500 index. These results
are somewhere in the middle between the findings of Campbell et al. (1993)
and Malliaropulos (1996). However, one needs to take into account that we used
different data sets — Campbell et al. analyzed weekly CRSP observations.
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Table 4
Confidence Intervals for VR(q)

CRSP equal-weighted

Period M (q) 95% Cl
g=2 1.153 [1.09, 1.22]
q=4 1.236 [1.07, 1.40]
q=8 1.367 [1.08, 1.65]
CRSP valuc-weighted

Period M (q) 95% CI
qg=2 1.06 [1.o1, t.11)
qg=4 1.109 [0.97, 1.24]
¢=8 1.312 [0.99, 1.63]
S&P 500

Period My (q) 95% ClI
qg=2 1.023 [0.97, 1.08]
qg=4 0.998 [0.90, 1.10]
q=8 1.066 [0.88, 1.26]

It is apparent that this brief discussion does not fully do justice to the prob-
lem of variance ratio tests. For one, the different methods should be applied
to identical data sets in order to be really able to compare their results. Also,
simulation studies seem in order to address finite sample performances. These
issues are beyond the scope of this paper and will be explored in further
research.

7. Conclusion

In this paper we have demonstrated that the subsampling method is a valid
tool in heteroskedastic settings. In the stationary case, the asymptotic validity
hinged on the simple assumption of a limit distribution for the normalized statis-
tic based on the entire sample. Now, an additional sufficient condition is that
the normalized statistic based on a subseries will be on average close to the
same limiting distribution, at least for large samples. This allows for considerable
local heteroskedasticity, and it applies to inference for multivariate parameters.
To demonstrate the validity of the method for the mean, smooth functions of
a multivariate mean and multivariate linear regression, we employed a central
limit theorem for a triangular array of heteroskedastic weakly dependent ran-
dom variables. We state this theorem together with a moment bound for het-
eroskedastic random variables in the appendix as results interesting in their own
rights.
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Preliminary simulation studies showed that the finite sample performance of
blocking methods can strongly depend on the blocksize. Unfortunately,
asymptotic theory provides little guidance as how to select a blocksize in prac-
tice. We proposed a calibration approach to deal with this problem. The idea is
to start out with a reasonable blocksize and to then improve coverage accuracy
by adjusting the nominal confidence level so as to better match the desired target
confidence level of a confidence region.

As has been done in the context of i.i.d. data, it might be possible to derive
second-order properties for calibrated confidence procedures in the context of
dependent data. Due to the very involved mathematics of Edgeworth expansions
for dependent data, such results basically would have to be restricted to the
strictly stationary case. Future research will be devoted to this problem.

Two simulation studies were carried out for the cases of the univariate mean
and multivariate least squares linear regression. They demonstrate that the calibra-
tion method yields good results, even when compared with the “best” blocksize.
For the linear regression case we also compared the subsampling method with
more standard kernel methods, as widely used in the econometrics literature.
Our simulation studies suggest that calibrated subsampling intervals can resuit
in considerable improvement for finite sample scenarios, in particular when the
regression residuals exhibit strong serial correlation.

As an example, we applied the subsampling methodology to the problem of
variance ratio tests, which are commonly used to check for serial correlations
of random variables. Our findings using stock return data are soimewhat different
than results of more traditional methods relying on limiting normality and of a
bootstrap method. We believe that this is one of many areas where subsampling
can shed new light on issues that maybe have not been solved to complete
satisfaction yet.

Appendix A. Central limit theorem for triangular arrays

Before applying our basic theorems for the construction of confidence regions,
we will need a method to verify Assumptions A or B. In this section, we present
a central limit theorem for a triangular array of weakly dependent heteroskedastic
random variables. Central limit theorem for strong mixing random variables have
been proved by Rosenblatt (1958), Ibragimov (1962), Oodaira and Yoshihara
(1972), White and Domowitz (1984) and many others. A survey of the literature
can be found in Doukhan (1994). Note that in many cases strict stationarity
was assumed in addition to moment and mixing conditions. Our theorem is an
extension of previous results, as it applies to triangular arrays. For the procf of the
theorem we need the following moment bound for strong mixing heteroskedastic
random variables. The result is implicitly contained in a theorem of Doukhan
(1994).
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Lemma A.1 (Moment bound, Doukhan, 1994). Let {X;} be a sequence of mean
zero random variables. Denote the corresponding mixing sequence by wy(-).
Define, for 122 and 6>0

OC

C(1,0) = Y (k + 1) 20 k), (A.1)
k=0
d
L(m.d.d) = 3 1Xill 21 (A2)
D(t,8,d) = Max {L(z,6,d),[L(2,6,d)]"*}. (A3)

Then the following bound holds:

T

<BD(1,d,d),

d

B[S x

i=1

where B is a constant only depending on t, 6 and the mixing coefficients xy(-).
We will be specific about the constant B for the two special cases t is an even
integer and ©=2 + d.

1. If ¢ is an even integer
d ¢
ZX,-' <B(c.9)D(c,0,d), (A4)

i=1

E

where bounds for the constants B(c,d) can be computed recursively. For
example, for ¢ up to 4

B(1,0) < 1,

B(2,6) < 18Max {1,C(2,9)},
B(3,4) < 102Max {1,C(3,3)}.
B(4,3) < 3024 Max {1,C*(4,5)}.

2. For 1=2+9,
B<[3024 Max {1,C%(4,)} 24293+, (A.5)

In case we have an uniform bound on the 2 + 20 moments of the sequence {X;}
we can obtain a less sharp but more concisely stated bound.

Corollary A.I1 (Concise moment bound). If we assume in addition to the con-
ditions of Lemma A.1 that

Xillyo5 <4 for all i, (A.6)
2+4+2¢
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then

2+0

d
1+0/2
<rd'™*o?,

2 X

i=1

E

where T is a constant that only depends on A, 6 and the mixing coefficients
ax(-). More explicitly,

I =[3024 Max {1, C(4,5)}]244C3 =000 +1) 42X 1+oD)
where C(4,0) is defined as in (A.1).
We now present the central limit theorem for triangular arrays.
Theorem A.l. Let {X,;,1<i<d,} be a iriangular array of mean zero random

variables. Denote the mixing sequence corresponding to the nth row by o,(-).
Define

a+k—1
Sn,k,a = Z )(n,i,
i=a
, atk—1
T;r.k.a =k™2 AXn,i,

i=a
2 —
Opka= Var(T, 1.q)-

Assume the following conditions hold: For some 3>0:

o [ Xuillaos <4 for all n,i, (A7)

° qik,l, — 6% > 0 uniformly in a(*), (AR)
o0 N <

o C(M=Y (k+ 12y k)<KK  for all n, (A9)
k=0

where A and K are finite constants independent of n, k or a.
(%) This means: For uny sequence {k,} that tends to infinity with n,

sup,|c?

2
kg — 0] — 0 as n— oo

Then Toa,1 = N(0,6%), ie. dy > % X, = N(0,6°).

Appendix B. Preofs of technical results

Proof of Theorem 2.1. For a set A denote its interior, closure and boundary
by 4% A~ and &(4), respectively. For a set 4 and a positive constant & define
sete 4_; CA C A, in the following way. Set My, = U,¢;4) B(x, &), where B(x,¢)
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denotes the (closed) ball with center x and radius &. Then 4, =4 U M, and
A e = A\M Ao

We will now prove the theorem. To simplify the notation, let g=¢, =n—b+1.
Let

U,,(A)-—-% \é 1{t4(0s,a — O(P)) € 4}.

To prove (i), it suffices to show that U,(4) converges in probability to J(4,P)
for every Borel set 4 whose boundary has measure zero under J{P). This can
be seen by noting that

1 a n
L=~ il Hts(Bs.0 — OCP)) + T(0(P) — 1) € 4},

so that for every ¢>0,
Un(A—:YH{E,} SLW(AYHE } SUn(4+.),

where 1{E,} is the indicator of the event E, = {1, ||0(P) — (5,,,1|| <¢}. But, the
event E, has probability tending to one. So, with probability tending to one,

(]II(A—::) <Ln(A ) s L]II(A+1: )
Thus, if 4., and A_, are Borel sets whose boundaries have mass zero under
J(P), then U(A+,;) — J(A+., P) in probability implies

J(A-;,P) —e<Ly(A)<J (A4, P) + &

with probability tending to one. Now, let ¢ — 0 such that 4., are Borel sets
whose boundaries have mass zero under J(P). Therefore, we may restrict our

attention to U,(4).
Since E(Uy(4)) = (ll 1 Jba(A4, P), the proof of (i) reduces by Assumption A

to showing that Var(U,(4)) — 0 as » — oo. Define
ha=tsl0sa — 0PN €4}, a=1,....q,

q—h

Sqn= 21 Cov(lp,a, I,a+1)-
a=

1
q
Then

1 q-1
Var(Uy(x)) = 5 (Sq,o +23 sq,h)
h=1

h=1 h=

1 b1 q-!
= E Sq,0 + 2 E Sq.h +2 stq‘;,

=D*+D,
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where D* = I(sqo +2307 1 ;1) and D— ) sun It is readily seen that

|D*| = O(b/q) To handle D we apply a well-known mixing inequality for bounded
random variables (e.g., Theorem A.5 in Hall and Heyde, 1980). For 2>b,

lCOV([b,aaIb,aH!)I <daxy(h—b+1)

and therefore,

8 95
IDI< X ax(h) = 0.

h=1

Thus, both D and D* converge to zero, which completes the proof of (i).
In crder to prove (ii) we need the following result.

Lemma B.1 (Billingsley, 1968). Let {Q,} and Q be probability measures on
RE. Also, let % be a subclass of #* such that
(@) % is closed under the formation of finite intersections and
(b) for every x in R* and every positive ¢ there is an A in U withx € A°CAC
B%x, ).
If 0,(A4) — Q(A4) for every A in U, then Q, = Q, or, equivalently, pr(Q,, Q) —0
for any metric that metrizes weak convergence on RE.

Define a class of sets %y (the subscript indicates that the class may depend
on J(P)) in the following way. Let D be a dense countable subset in the set
of all points in R* that have mass zero under J(P). For each x& D let E, be
a dense countable subset containing positive real numbers ¢ for which d(B%(x, £))
has mass zero under J(P). Now, set ¥;p) = U.\'E Do €E, S(x, &, ). Since ¥jp) is a
countable union of countable sets, it is countable itself. Finally, define % p) to
contain all the finite intersections of elements of 7jp). We see immediately that
%Py is countable again and meets the conditions (a) and (b) of Lemma B.1
Furthermore, each set 4 € % p) has a boundary of mass zero under J(P).

Let {n;} be a subsequence of {r}. For each 4 € %p, we can then find a further
subsequence {n;} such that Ly, (4)—J(4,P) almost surely (by the fact that
L,{A)—J(4,P) in probabdility). Since %) is countable, there is a common
subsequence {#;,} such that, on a set of probability one, L,, (4)—J(4, P) for all
A € Upy. By Lemma B.1 then, pr(Lp, ,J(P))—0 almost surely and this shows
that pr(L,,J(P))—0 in probability.

The proof of (iii) is obvious once we have (ii). The proof of (iv) is very
similar to the proof of Theorem 1 of Beran (1984) given our result (i).

Proof of Lemma A.l. This result is implicitly contained in Theorem 2 of Sec-
tion 1.4 in Doukhan (1994). For a more detailed derivation see the proof of
Lemma 3.1 in Politis et al. (1995).
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Proof of Theorem A.1. In the proof of the theorem we will approximate a sum
of weakly dependent random variables by a corresponding sum of independent
random variables. The following lemma will help us to establish an upper bound
of the sup difference of the corresponding characteristic functions. The proof is
given in Ibragimov (1962).

Lemma B.2 (Ibragimov, 1962). Let {Z,} denote a sequence of random vectors
defined on a probability space, and let ! = 6(Z;;a<t<b). Also denote the
mixing sequence corresponding to the Z, by uz(-). Let Y| and Y» be random
variables measurable with respect to F . and #,, respectively. In addition,
let Y| and Y; be independent random variables having the same distribution
as Yy and Ys, respectively. Denote the characteristic functions of Yy + Y» and
Y[+ Y; by ¢ and ¢, respectively.

Then sup,|@(t) — @' (2)| < 1602(m).

We will now prove the theorem. The main idea of the proof is to split the
sum X, ; + --- + X, 4, into alternate blocks of length b, (the big blocks) and
I, (the small blocks). This is the traditional approach to proving central limit
theorems for dependent random variables, and is commonly attributed to Markov
or Bernstein (1927) (“Bernstein sums™). Define

Uni = Xugi-1)bu+in+1 + o+ Xo=vyp 1)+, 1 SISy,

where r, is the largest integer i for which (i — 1)(b, + ;) + b, <d,. Further define
Voi = Xui—0)buttytbtl + 000+ Xuithy+ 1)+, 1 ST Hy,
V;t.r,, =Xty — )by +l )b, +1 T 0t +)(n.d,,-

Then S,.a,.1= > 1oy Uni + > i\ Vi and the technique will be to choose the
1, small enough that > ;" ¥, ; is small in comparison with 3", U, ; but large
enough to ensure that the U, ; are nearly independent.

Let b,=|dy*| and /,=|d)"|, where |-] denotes the integer part of a real
number. Since 5, is the largest integer i such that (i — 1)(b, + I,) + b, <d,,

by~dX, L, ~dVY, o ~d (B.1)
We will now proceed to show that dy V? >, Vii converges to zero in proba-
kility, as d,, tends to infinity. Since its expected value equals zero, it suffices to
check that its variance tends to zero. First note that by Lemma A.1 and assump-
tion (A.9), for all n,i

E|V.l> <10K4%1, = Bl,. (B.2)
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Therefore,

i 2
o h <
Var'? (dn_llz > “”‘) =E" (d"_l/z 2 Khi)

= i=l

y
< Y EY(d; V)
i=1

< [nf (Bln/dn)]/z] +[BUu+ba)/di]'? (by (B2))
i=1

< B2 {rlfd)? + [+ b))
<0Wd; ") (by (B.1)

- 0.

By Slutzky’s Theorem it remains to prove that d,, 12 Zr" U,.i = N(0,a?).

Let U, ,;, 1<i<#, be independent random variables having the same distri-

butions as U, ;, 1 <i<r,. By Lemma B.2 applied inductively, the characteristic
functions of d; ' S Uni and of dy 2 Som, Ul differ by at most 16r,%u(/s).
Note that by assumption (A.9) we may assume, without loss of generality, that
an(k)<K/k?. Therefore,

t6ryo(ly) < 16"111(/1:2:
<0, ") (by (B.1))
— 0.

Thus, the proof will be completed by showing that d; 2 > = N(0,6%).

This will be accomplished in two steps:
St([’ ] [Var(z’n ”' ]2/(2+()) Z:I;, ;.i|2+0‘_’00
Step 2: FVar(3, U

The result then follows by Lyapounov’s Central Limit Theorem and Slutsky’s
Theorem.

lll

n, 1)'—>0

Proof of Step I:

1 1 7 32
;EVar (Z Ulu) - ,,b,, E E(Un:)

i=

= = E 112
'nbnzg: (Un.)
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=—Eammwf

Fn i=t
— ¢ (by assumption (A.8)). (B.3)
Let us assume, without loss of generality, that 1 <K. With Corollary A.1 then
'b_l/ZIJ,: ‘|2+(5 < [3024 Max {1,C3(4)}]24(4(2—0')/15+l)A(2+(5)(|+6/2)
< [3024K2]24(4(2—<5)/15+1 )A(2+()')(l+:)‘/2)

(by assumption (A.9))

Il

A. (B4)
Finally,

2248) .
[Var(z )] 3 Bju
i=

) 2/(2+0) T .
=umJ“W2Lme(z MH S Elby U,
nYn =

N

. 2/(2+9)
<y [Sovar (Su )| na Gy ey

<(1/r)?20(1)0(r,)  (by (B.3))
<O((r,)™")
— 0.

Proof of Step 2: We just showed that (1/nb,)Var(3X 1, Ul;)—a6>. But,
¥n n/dn’_’l by (B.1).

Proof of Theorem 3.1. For the proof we will assume, without loss of general-
ity, that true mean is equal to zero, i.c. 0=0. By Theorem 2.1 it is sufficient
to verify our Assumption B, as the mixing condition ay(k)—0 is implied by
assumption (9).

Condition (i) of Assumption B follows immediately from Theorem A.l. For
condition (ii) let {i»} be an index sequence. Now apply Theorem A.l to the
triangular array, the nth row of which is the block of size b of the consecutive
data {X;,,...,X;,+»—1} (recall that we consider b as a function of n).

Proof of Theorem 3.2. Again, we will assume without loss of generality that
0 =0. To refresh the memory of the reader we will state a result which we are

going to use in the proof. Its proof fcllows by application of Lindeberg’s CLT.
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Proposition B.1. Let F and {F,} be distribution functions with corresponding
means and variances pi, {lin}, 6* and {62}, respectively. Assume

(WO)F,=>F and
(2) 620’

Let {X,i, 1<i<d,} be a triangular array of random variables, the nth row of
which satisfies: X,,1,...,Xnq, i.id. ~ F, and define X, = ;- S X
Then dY*(X, — ) = N(0,62) as dy-»o0.

We will now prove the theorem. Note that

— - ! . !
6D ®yy - X =1 (S0~ Xoi}) =12 (1 £23,)
i=1 i=l

We see that the Z;; are iid. ~ L,, where L, is defined as in (6) from Ex-
ample 3.1. Here, we have shown (under even weaker assumptions) that L, =
N(0,6?) in probability. The next step will be to check that Var(L,)—a? in
probability also. An application of Proposition B.1 will then complete the proof.

The value of X, has no effect on the variance of L,. Therefore, by our
definition Ty, = b'?X},,

Var(L,)) == T, — Ty, where Tp= > Tp,.
qda=t q a=1
Step 1: .31 T7,—a? in probability.

Proof. E[$35_, I;,%a]=$ 4107 ,—0% as n—oo (by assumption (12).

Hence, it is sufficient to check that Var( % Y_\ T},) tends to zero.
Define

194 2 o2
Sq.d = E 21 COV(T;),av 7;7.a+d)‘
a=

Then
14 1 q—1
Var (— > 7;;,(;) =—|s50+2) Sqa
q a=1 7\ d=1
1 b—1 q—1
=—{s0+23 sqa+2 544
q d=1 d=b
=A%+ A,

| b—1 — 2yt
where A" = _(sqc + 2> i-15qq4) and A= % Dd=b Sa.d-
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By a well-known mixing inequality (e.g., Corollary A.2 in Hall and Heyde,
1980),

COV( 7;7:.211’ 7;3::—;-11) < 8”7;72,41”2+5 “7;)%(1—}‘(1”24—6 ai’/(z.*-‘i)(Max {O’d - b})
< 842K, o **)(Max {0,d — b}),

where K, is a constant depending only upon K. This last inequality can be seen

as follows
4+2ls)l/‘(2+")

1 . . s
< B(b2+()A4+20K* )!,(24-0)

a+h—1

> X

i=a

1
1Ralloeo =5 (E

(by Theorem A.l and assumption (13))
< 4K,

Trivially now,

q—d S/ .
Sg.a = 2 Cov(T,, Trara) <8A*KIA 0 (Max {0,d — b}).

a=\

Hence,
* 4 2b
A" <164 K*5—>0,

and

q—b

,b 54246 .
A< 16A4K;5 3 ay(d)”*t -0 (by assumption (13)).
d=1

Step 2: T,—0 in probability.
Proof. Analogous to the proof of Step I.

From the proof of Theorem 3.1 we already know that L, = N(0,5°). Thus,
both Var(L,)— o2 in probability and p,(L,, N(0,5%))— 0 in probability, where p
is any metric that metrizes weak convergence on R. Hence, for any subsequence
ny, one can extract a further subsequence ny, such that both pi(L,, ,N(O, 62))—0
and Var(L,,,l_)—-nr2 almost surely. By Proposition B.1 it then follows that, on
a set of probability one, pi(L;, ,N(0,62))—0. This proves that py(L;,N(0,6%))
in probability. '
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Proof of Theorem 3.3. For the proof we will assume, without loss of generality,
that the true mean is equal to zero, i.e. §=0. The mixing condition in Theo-
rem 2.1 is clearly implied by our assumption (18). Therefore, it will be suflicient
to show that assumption B.1 is satisfied.

To prove part (ii) of assumption B.1, let @5 be an index sequence that may
depend on 5. We will accomplish the proof in two steps.

Step 1: Tpq, = N(0,2).

Proof. By the Cramér—Wold device it will suffice to look at linear combina-
tions of the type ATZ~12p~12X; .= where 1 is a vector in R?. Without loss of
generality we may assume that A has unit length. We observe that

e E(ATZ-12X, ,;)=0 for 0<i<b -1, )

e by assumption (16) and Minkowski, E|ATZ~12X, ;>+2° < 4*, where 4* is
a constant that depends only on 4 and X (since ||| =1),

L]

, b-1
a,z,‘ah =Var (ATZ""Zb"'/Z z% Xa,,+,-)
=

=T 1V2Cov(T;, 4, )2~ 12

=Tx"V2g, . 2712, 1 by assumption (17).

Apply Theorem A.1 to deduce that ATX~1/2p~172 Z?————ol X, +i = N(0,1) (to do so
let X, ;=ATZ~V2X,, .;_ there). Since we did not specify i, we may follow by
the Cramér-Wold device that £~'/2T;, ,. = N(0,7) or, equivalently, that T} ,, =
N(O, Z).

Step 2: b™'*(f (Th.a,) — £(0)) = N(0,JZJT).

Proof. This follows immediately from step 1, condition (19) and the multivariate
d-method.

Part (i) of assumption B.l1 now follows trivially by letting b=n and a5 = 1
in (ii).

Proof of Theorem 3.4. The mixing condition in Theorem 2.1 is clearly implied
by our assumption (28). Therefore, it will be sufficient to show that assumption
B.1 is satisfied.

To prove part (ii) of assumption B.1, let a5 be an index sequence that may
depend on b. We will accomplish the proof in two steps.
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Step 1: b='2X] ep.4, = N(O, V).

Proof. By the Cramér—Wold device it will suffice to look at linear combinations
of the type ATV=12p~12X]T &, .., where / is a vector in RP. Without loss of
generality, we may assume that 2 has unit length. We observe that

o EQGATV~V2x,, 1 i64,4:)=0 for 0<i<b - 1, _

e by assumption (24) and Minkowski, E[ATV ~12x,, e, 1:/*r2° < A%, where 4}
is a constant that depends only on 4, and V (since ||Z] =1),

[

b—1

2 “Tyr—1/25—1/2

a,,,ahz‘Jar (/. y—12p-V ;)xa,,+ie,,,,+,->
i=l

b—1
STy —1/2 12 , —12
= Ty —12Cov (b 2y x,,,,+,~al,,,+,~) y-12;
i=0

- -1 —1m . .
=Ty WV =1 by assumption (26).

Apply Theorem A.1 to deduce that ATV =12p=12 50 by @ iea s = N(O, 1) (to
do so let X, ;=ATV~! xa,+,_|?,,h+, 1 there). Since we did not specify 4, we
may follow by the Cramér-Wold device that ¥ ~'2b='2X[T &, , = N(0,I) or,

equivalently, that 5~'2X[ &, ,, = N(0,V).
Step 2: V2B, . — B) = N(O,M~' VM),

Proof. b2, — BY=(XF, Xb.0r/D) 072X &y, By the imposed mixing
and moment conditions on the sequence {x;} we have (X,I a;Xb.a,/b) — Mp 4, —0
in probability. In fact, denote the (i, j)th entry of [(X,, Xba,/b) — Mpa,] by
(Ds)ij. Then

b—1

1
(Dh)i,j Z Xap+LiXap+1,j — E(J\a/-}-l lxlI/+lj)
1 0

By definition, E((D5);,;j)=0. It will be suf’ﬁment to check that Var((Dp); ;)—0.
Define

1 ap+b—(d+1)

Shd = Z E Cov(xa,i-xa.j,xa+d,ixa+d.j )-
a=ap

Then

] b1
Var((D); ;)= A (Sb,o +25° Sh,d) .

d=1
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By the mixing inequality for bounded random variables again,
e
Cov(xyiXa jsXat+d.i Xa+d.j) < 8 ”xa,ixa,j”2+(; uxa+(l,ixa+d.j”2+5 gc(d)b’(2+‘)
< 845y (@)@ (by assumption (26)).

Therefore, sp.q <8A?%-‘)a(d )? and that implies
Var((D),,)< 1 oo Z A(d)"*+ 0.

Recalling that My, — M by assumption (27), we thus have (X, ba,X;, alD)—M
in probability. By step 1, b=V2X] &4, is Op(1) and therefore

[(Xp o, Xp,ar /D) " — M~ 172X, &.4,—0 in probability.

But, M~'67'12X]T &, 4, = N(O,M~'VM~") by step 1 again and this completes
the proof of part (ii) of assumption B.1.

Part (i) of assumption B.1 now follows trivially by letting b=n and a, = 1
in (ii).
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