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Abstract. We consider the problem of making inference for the autocorrelations of a
time series in the possible presence of a unit root. Even when the underlying series is
assumed to be strictly stationary, the robustness against a unit root is a desirable property
to ensure good finite-sample coverage in case the series has a near unit root. In addition to
discussing a confidence interval for the autocorrelation at a given lag, we also consider a
simultaneous confidence band for the first k autocorrelations. We suggest the use of the
subsampling method applied to properly studentized statistics, which results in confidence
intervals and bands with asymptotically correct coverage probability. An application to
practical model selection is given, while a simulation study examines finite-sample
performance.

Keywords. Autocorrelations; confidence band; confidence interval; integrated series;
subsampling; unit root.

1. INTRODUCTION

Consider time series data X1, X2,…,XT, where {…, X�1, X0, X1,…} is a sequence
of random variable with mean zero. It is assumed that either {Xt} or
{DXt ¼ Xt � Xt�1} is strictly stationary, so that we are either in the stationary
or in the unit root case. Consider the jth order autocorrelation defined as

qðjÞ ¼ lim
t!1

EXtXtþj

EX 2
t

:

Of course, in the stationary case the limit is superfluous. In the unit root case,
however, the limit is generally needed and then equal to 1. Our objective is two-
fold. First, we would like to construct a robust confidence interval for q(j) for
some fixed integer j ‡ 1. Second, we are interested in a robust simultaneous
confidence band, or more generally a joint confidence region, for the vector
q ¼ (q(1),…,q(k))¢.

Here, robustness means that we want confidence sets with asymptotically
correct coverage probability whether we are in the stationary case or not. Note
that the robustness against a unit root is a desirable property even if the
underlying series is supposed to be stationary, say on economic grounds (such as
dividend yields, for instance). The reason is that if a method does not work
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asymptotically when the series has a unit root, it is likely to exhibit poor finite-
sample properties when the series has a near unit root. To illustrate this point,
consider the problem of making inference for the autoregressive parameter in the
simple AR(1) model:

Xt ¼ qð1ÞXt�1 þ �t:

Obviously, in this model, the first-order autocorrelation is equal to the
autoregressive parameter q(1). When |q(1)| < 1, the time series is strictly
stationary and a normal approximation can be used to construct a confidence
interval for q(1) with asymptotically correct coverage probability. However, this
interval exhibits poor coverage in finite samples when q(1) is very close to 1 and
the samples size is not very large. For example, when T ¼ 200, q(1) ¼ 0.99, and
the innovations are i.i.d. standard normal, the estimated coverage of this interval
with normal level 0.95 is only 0.82; see Politis et al. (1999, Table 12.1). The reason
is that, when q(1) ¼ 1, the series has a unit root and the normal approximation is
no longer valid.

The problem of making inference for autocorrelations is nontrivial. Even if the
series is stationary and far from integrated, Romano and Thombs (1996) show
that asymptotically valid inference can, outside of simple linear models, basically
only be achieved by resampling methods. Indeed, the limiting distribution of the
estimator of q(j), the jth-order sample autocorrelation, is normal with mean zero
but the corresponding variance appears intractable. If in addition one would like
to allow for the possibility of the series being integrated, matters complicate much
further. The limiting distribution of the jth-order autocorrelation under a unit
root is nonstandard, and the rate of convergence is T as opposed to

ffiffiffiffi
T

p
;

consequently, the block bootstrap fails in this case. Although the rate problem
can be avoided by properly studentizing the estimator, the problem of different
types of limiting distributions remains. The approach we suggest is to construct
confidence bands based on the subsampling method.

The remainder of the paper is organized as follows. Section 2 details how to
construct a subsampling confidence interval for a specific autocorrelation q(j).
Section 3 generalizes to the construction of a confidence band for the first k
autocorrelations. Section 4 discusses the choice of the block size, which is an
important model parameter. Section 5 examines finite sample performance via a
simulation study. Finally, Section 6 concludes.

2. THE SUBSAMPLING CONFIDENCE INTERVAL

This section details the confidence interval for the jth-order autocorrelation, for
some fixed integer j ‡ 1, that we propose. To start out, we present the
distributional assumptions on the underlying time series. For this reason, we
define the new series {Ut} to be identical to the series {Xt} if {Xt} is strictly
stationary; otherwise, that is, if {Xt} is not stationary but {DXt} is stationary, we
define Ut ¼ DXt.
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Assumption 1. Assume that the stationary series {Ut} is strong mixing with
mixing coefficients aU(Æ), and that it satisfies the following conditions: E(Ut) ¼ 0,
E|Ut|

b < 1 for some b > 2, fU(0) > 0, where fU(Æ) denotes the spectral density of
{Ut}, and

P1
k¼1 aU ðkÞ

1�2=b < 1.

The estimator of q(j) we suggest is the one commonly used in the unit root
literature, based on an OLS regression of Xt+j on Xt. It has the form

q̂T ðjÞ ¼
PT�j

t¼1 XtXtþjPT�j
t¼1 X 2

t

:

Its OLS standard error is given by

q̂T ðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2T ðjÞPT�j
t¼1 X 2

t

s
where s2T ðjÞ ¼

1

T � j� 1

XT�j

t¼1

ðXtþj � q̂T ðjÞXtÞ2:

This leads to a studentized statistic defined as

n̂T ðjÞ ¼
q̂T ðjÞ � qðjÞ

r̂T ðjÞ
:

If the sampling distribution of n̂T ðjÞ, or alternatively the one of jn̂T ðjÞj were
known, confidence intervals for q( j) could be constructed based on the
appropriate quantile(s) of that distribution. Knowing the distribution of n̂T ðjÞ
would allow for the construction of one-sided and equal-tailed two-sided
intervals. Knowing the distribution of jn̂T ðjÞj would allow for the construction
of symmetric two-sided intervals. Symmetric confidence intervals often show
improved coverage probability in comparison with equal-tailed ones when the
asymptotic distribution is normal; for example, see Hall (1988) and Politis et al.
(1999, Ch. 10). Nevertheless, equal-tailed intervals give some information on the
skewness of the underlying distribution which may also be interesting.

To this end, denote the underlying probability mechanism by P and let

JT ðx; P Þ ¼ ProbPfn̂T ðjÞ � xg;

and

JT ;j�jðx; P Þ ¼ ProbPfjn̂T ðjÞj � xg:

Based on the block of data {Xt,…,Xt+b�1} of size b, compute the jth-order
autocorrelation and the corresponding standard error denoted by q̂b;tðjÞ and
r̂b;tðjÞ respectively. Next, define the quasi-studentized statistic

n̂b;tðjÞ ¼
q̂b;tðjÞ � q̂T ðjÞ

r̂b;tðjÞ
:

253INFERENCE FOR AUTOCORRELATIONS

� Blackwell Publishing Ltd 2004



We use the term ‘quasi-studentized’ to indicate that in the numerator we do not
subtract the true value of q( j) but the corresponding estimate based on the entire
sample.

Then, the subsampling approximation to JT (x, P) is given by

LT ;bðxÞ ¼
1

T � bþ 1

XT�bþ1

t¼1

1fn̂b;tðjÞ � xg;

while the subsampling approximation to JT,|Æ|(x, P) is given by

LT ;b;j�jðxÞ ¼
1

T � bþ 1

XT�bþ1

t¼1

1fjn̂b;tð jÞj � xg;

where 1{Æ} is the indicator function. The following theorem shows that
constructing symmetric confidence intervals for q( j) based on the quantiles of
LT,b and/or LT,b,|Æ| is asymptotically justified.

Theorem 1. Assume Assumption 1 and that b/T fi 0 and b fi 1 as T fi 1.
Let c(1 � a) be a 1 � a quatile of the distribution LT,b, that is, let
c(1 � a) ¼ inf{x: LT,b(x) ‡ 1 � a}. Then, the equal-tailed confidence interval

CIET ¼ ½q̂T ð jÞ � r̂T ð jÞcð1� a=2Þ; q̂T ð jÞ � r̂T ð jÞcða=2Þ�

has asymptotic coverage probability of 1 � a.
Let c|Æ|(1 � a) ¼ inf{x : LT,b,|Æ|(x) ‡ 1 � a}. Then, the symmetric confidence

interval

CISYM ¼ ½q̂T ðjÞ � r̂T ð jÞcj�jð1� aÞ; q̂T ð jÞ þ r̂T ð jÞcj�jð1� aÞ�

has asymptotic coverage probability of 1 � a.

Proof. We focus on the case of approximating JT,|Æ|(x, P) by LT,b,|Æ|(x); the case
of approximating JT(x, P) by LT,b(x) is similar.

Arguing along the lines of Corollary 12.2.1 of Politis et al. (1999), it is
sufficient to verify the following three conditions, whether we are in the
stationary or in the unit root case: for some sequence sT ¼ T c with c > 0,

(i) JT,|Æ|(P) converges weakly to a nondegenerate continuous limiting distri-
bution.

(ii) sT ðq̂T ðjÞ � qðjÞÞ converges weakly to a random variable having a nonde-
generate distribution.

(iii) sT r̂T ðjÞ converges weakly to a random variable having a (possibly degen-
erate) distribution which puts no mass at zero.

Stationary case. Let sT ¼ T1/2. It follows from Romano and Thombs (1996) that
sT ðq̂T ðjÞ � qðjÞÞ converges weakly to Y, where Y has a normal distribution with
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mean zero and some positive variance j2(j). Next, sT r̂T ðjÞ converges in
probability, and hence weakly, to the constant

mðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðX1þj � qðjÞX1Þ2

EX 2
1

s
:

Finally, by Slutzky’s theorem, JT,|Æ|(P) converges weakly to the distribution of |Z|
where Z follows a normal distribution with mean zero and variance j2( j)/m2( j).
Unit root case. Let sT ¼ T. Conditions (ii)–(iii) then follow from Phillips (1986,
1987). Moreover, it follows from the same work that n̂T ð jÞ converges weakly to
random variable V having a nondegenerate distribution. Hence, condition (i) is
implied by the continuous mapping theorem where the limiting distributions is the
one of |V|. Note that all limiting distributions are nonstandard but well-defined.

Remark 1. The limiting variance j2( j)/m2( j) in the stationary case is in general
not equal to 1 and therefore n̂T is not a proper studentized statistic in the strictest
of senses. However, the validity of the subsampling method does not depend on
j2( j)/m2( j) being equal to 1 and we shall use the term ‘studentized’ in an
appropriately loose sense; note that it might be more appropriate, although less
familiar, to use the term ‘self-normalized statistic’ instead.

Remark 2. As mentioned in the Introduction, Romano and Thombs (1996)
have shown that, outside of semi-parametric models such as ARMA models, the
only viable option is to resort to resampling/subsampling methods in order to
construct valid confidence intervals for the autocorrelations of stationary time
series. For example, in the stationary case, confidence intervals could be
constructed based on the moving blocks bootstrap (Künsch, 1989) or on the
stationary bootstrap (Politis and Romano, 1994). However, the discontinuity in
the type of the limiting distribution when the underlying series moves from strictly
stationary to having a unit root causes these bootstrap intervals to fail. Hence, it
appears that the subsampling-based approach we propose is the only one yielding
asymtotically consistent confidence intervals for q(j) in full generality, whether the
series is stationary or unit-root integrated.

3. THE SUBSAMPLING CONFIDENCE BAND

This section details the confidence band for the first k autocorrelations (for some
fixed k ‡ 2) that we propose. Using the same notation as in the previous section,
define q̂T ¼ ðq̂T ð1Þ; . . . ; q̂T ðkÞÞ0 and n̂T ¼ ðn̂T ð1Þ; . . . ; n̂T ðkÞÞ0. If the sampling
distribution of kn̂Tk were known, a joint confidence region for
q ¼ (q(1),…,q(k))¢ could be computed; here, jjÆjj is any norm on Rk. When jjÆjj
is chosen to be jjÆjj1, that is, the sup norm, the resulting confidence region will
actually be a simultaneous confidence band for the sequence (q(1),…,q(k)).
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Let

JT ;k�kðx; P Þ ¼ ProbPfkn̂Tk � xg:

Based on the block of data {Xt,…,Xt+b�1} of size b, compute n̂b;tðjÞ for j ¼ 1,…,k
and let n̂b;t ¼ ðn̂b;tð1Þ; . . . ; n̂b;tðkÞÞ0. Then, the subsampling approximation to
JT,jjÆjj (x, P) is given by

LT ;b;k�kðxÞ ¼
1

T � bþ 1

XT�bþ1

t¼1

1fkn̂b;tk � xg;

where 1{Æ} is the indicator function. The following theorem shows that
constructing a confidence region for q based on the quantiles of LT,b,jjÆjj is
asymptotically justified. For ease of notation, define a (data-dependent) distance
between q̂T and an arbitrary autocorrelation vector ~q as

dT ;k�kðq̂T ; ~qÞ ¼ kð½q̂T ð1Þ � ~qð1Þ�=r̂T ð1Þ; . . . ; ½q̂T ðkÞ � ~qðkÞ�=r̂T ðkÞÞ0k:

Theorem 2. Assume Assumption 1 and that b/T fi 0 and b fi 1 as T fi 1.
Let cjjÆjj(1 � a) ¼ inf{x: LT,b,jjÆjj(x) ‡ 1 � a}. Then, the confidence region

CR ¼ f~q : dT ;k�kðq̂T ; ~qÞ � ck�kð1� aÞg ð1Þ

has asymptotic coverage probability of 1 � a.

Proof. Let JT(P) denote the k-dimensional sampling distribution of n̂T with
distribution function

JT ðy; P Þ ¼ ProbPfn̂T � yg; for y 2 Rk:

The corresponding subsampling approximation is then given by

LT ;bðyÞ ¼
1

T � bþ 1

XT�bþ1

t¼1

1fn̂b;t � yg:

We now claim that in order to prove the theorem it is enough to show that

(I) JT(P) converges weakly to a nondegenerate continuous limiting law J(P).
(II) LT,b(y) fi J(y, P) in probability for every continuity point y of J(Æ, P).

To see why, note that by the continuous mapping theorem, (I) implies that
JT,jjÆjj(P) converges weakly to JjjÆjj(P), where JjjÆjj(P) is the distribution of jjVjj
when V is a random vector having distribution J(P). Moreover, by the
continuous mapping theorem again, (II) implies that LT,b,jjÆjj(x) fi JjjÆjj(x, P)
in probability for every continuity point x of JjjÆjj(Æ, P), including cT,jjÆjj(1 � a).
The latter, by a standard argument, is sufficient for the asymptotic consistency
of the confidence region (1).
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A straightforward multivariate extension of Theorem 12.2.2 of Politis et al.
(1999) shows that conditions (I)–(II) can be verified by demonstrating that, for
some sequence sT ¼ Tc with c > 0,

(i) JT (P) converges weakly to a nondegenerate continuous limiting distribu-
tion.

(ii) sT ðq̂T ðjÞ � qðjÞÞ converges weakly to a random variable having a non-
degenerate distribution, for i £ j £ k.

(iii) sT r̂T ðjÞ converges weakly to a random variable having a (possibly degen-
erate) distribution which puts no mass at zero, for 1 £ j £ k.

Stationary case. Let sT ¼ T1/2. It follows from Romano and Thombs (1996) that
sT ðq̂T � qÞ converges weakly to Y, where Y has a normal distribution with mean
zero and some positive-definite covariance matrix R. As before, for arbitrary j,
sT r̂T ðjÞ converges in probability, and hence weakly, to the constant m( j). Let W be
the k · k diagonal matrix with jth element 1/m( j). Then, by Slutzky’s theorem, n̂T
converges weakly to the normal distribution with mean zero and covariance
matrix WRW, which verifies (i). Conditions (ii)–(iii) are proved in the same way as
in the proof of Theorem 1.

Unit root case. Let sT ¼ T. As stated in proof of Theorem 1, the weak
convergence of each entry n̂T ðjÞ to a nondegenerate limiting distribution follows
by Phillips (1986, 1987); see also Hall (1989). Using the standard functional limit
theorem machinery, it can be easily seen that therefore the vector n̂T also has
nondegenerate limiting distribution. Conditions (ii)–(iii) are proved in the same
way as in the proof of Theorem 1.

Remark 3. The theorem allows for the construction of a confidence region for
q based on an arbitrary norm ||Æ||. Note that in general it may difficult to write
down the region in closed form. However, for the special choice of the sup norm
jjÆjj1, the confidence region yields a confidence band. First, recall that for a vector
a 2 Rk,

kak1 ¼ sup
1�j�k

jakj:

Then, a simple calculation shows that for this choice of norm, the confidence
region (1) simplifies to the band

½q̂T ðjÞ � r̂T ðjÞ � cjj�jj1ð1� aÞ�; j ¼ 1; . . . ; k;

which can be easily visualized and interpreted.

Remark 4. We have detailed the construction of the confidence band for the
parameter q ¼ (q(1),…,q(k))¢, for a given integer k. An analogous construction
would obviously also apply when the parameter of interest is
q ¼ (q(q + 1),…,q(q + k))¢, for two given integers q and k.
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We now give an application of Theorem 2 and Remark 3 to the subject of
model selection, in particular choosing the order q when fitting the familiar MA(q)
model

Xt ¼
Xq
i¼0

hiZt�i

to the data; here h0 is taken to be 1, and {Zt} is an uncorrelated (but not
necessarily independent) time series with mean zero. The usual approach is to
build this model up by increasing the order q one step at a time until a
‘satisfactory’ model is obtained. Note that an MA(q) model for {Xt} is essentially
equivalent to the autocorrelations of {Xt} vanishing for lags greater than q; for
example, see Priestley (1981) or Brockwell and Davis (1991). Therefore, a
‘satisfactory’ model may be defined as the one with smallest order (say q̂) for
which q̂ðjÞ is not significantly different from zero for j > q̂.

The usual way of accomplishing this objective is the use of confidence bands
around zero that are based on Bartlett’s formula; for example, the �1:96=

ffiffiffiffi
T

p

confidence bands that are typically included with a correlogram for comparison
purposes are supposed to help the practitioner decide whether an independent
model for {Xt} is satisfactory, that is, an MA(0) model with i.i.d. innovations {Zt}.

Nevertheless, if the {Zt} are uncorrelated but not independent, the confidence
bands based on Bartlett’s formula are not valid for checking the validity of an
MA(q) model with q ¼ 0 or higher. Thus, we resort to the proposed subsampling
confidence bands. The procedure is as follows:

• Fix an order of interest, say q, and an integer k ‡ 2.
• Consider the statistic q̂T ¼ ðq̂T ðq þ 1Þ; . . . ; q̂T ðq þ kÞÞ0 as an estimator of
the parameter q ¼ (q(q + 1),…, q(q + k))¢.

• Construct the approximate 1 � a confidence band around zero of the type
�r̂ðjÞck�k1ð1 � aÞ, valid for j ¼ q + 1, q + 2,…, q + k.

• If at least one of the statistics q̂T ðq þ 1Þ; . . . ; q̂T ðq þ kÞ is outside the
confidence band, reject the hypothesis that MA(q) is a satisfactory model at
level a.

4. CHOICE OF THE BLOCK SIZE

The practical problem in constructing the subsampling confidence sets is the
choice of the block size b. Note that the asymptotic requirements b/T fi 0 and
b fi 1 as T fi 1 give little guidance. We therefore propose the following
calibration method. The method will be illustrated for the construction of a
confidence interval for the jth autocorrelation q( j). An analogous idea can be used
to construct a confidence band for the first k autocorrelations.

The goal is to compute a 1 � a confidence interval for q( j) for some fixed j. In
finite samples, a subsampling interval will typically not exhibit coverage probability
exactly equal to 1 � a; moreover, the actual coverage probability generally depends
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on the block size b. Indeed, one can think of the actual coverage level 1 � k of a
subsampling confidence interval as a function of the block size b, conditional on the
underlying probability mechanism P, the nominal confidence level 1 � a, and the
sample size T. The idea is now to adjust the ‘input’ b in order to obtain the actual
coverage level close to the nominal one. Hence, one can consider the block size
calibration function g : b fi 1 � k. If g(Æ) were known, one could construct an
‘optimal’ confidence interval by finding ~b that minimizes |g(b) � (1 � a)| and use ~b
as the block size; note that |g(b) � (1 � a)| ¼ 0 may not always have a solution.

Of course, the function g(Æ) depends on the underlying probability mechanism P
and is therefore unknown. We now propose a semi-parametric bootstrap method
to estimate it. The idea is that in principle we could simulate g(Æ) if P were known
by generating data of size T according to P and computing subsampling
confidence intervals for h for a number of different block sizes b. This process is
then repeated many times and for a given b one estimates g(b) as the fraction of
the corresponding intervals that contain the true parameter. The method we
propose is identical except that P is replaced by an estimate P̂T .

We suggest to use an AR(p) model

Xt ¼ /1Xt�1 þ � � � þ /pXt�p þ �t

combined with block-resampling the residuals as the estimate P̂T , giving rise to a
sequence X �

1 ; . . . ; X
�
T in the following manner

Algorithm 1. (Sampling from the estimated model)

1. Estimate the AR(p) model, yielding fitted parameters /̂1; . . . ; /̂p and residuals
�̂pþ1; . . . ; �̂T .

2. Block-bootstrap the residuals to get ��pþ1; . . . ; �
�
T

3. X �
t ¼ Xt for t ¼ 1,…, p.

4. X �
t ¼ /̂1X

�
t�1 þ � � � þ /̂pX

�
t�p þ ��t for t ¼ p + 1,…,T

Remark 5. Alternatively, an ARMA(p, q) model could be used. (In fact, any
low-order model that captures most of the linear dependence structure will do in
practice.) If desired, one can determine p (and/or q) by any of the popular model
selection criteria such as AIC or BIC.

Remark 6. We consider it important to block-bootstrap the residuals �̂t rather
than using Efron’s bootstrap (that is, treating the residuals as approximately i.i.d.)
in order to capture and ‘leftover’, nonlinear dependence. Take the simple case of
an uncorrelated but dependent sequence such as Xt ¼ ZtZt�1 and Zt i.i.d.
standard normal. In that case an AR(p) or ARMA(p, q) model will not capture
any of the dependence but block-bootstrapping the residuals will. Analogous
reasoning applies to linear models with uncorrelated but dependent innovations.

Having specified how to generate data from the estimated model P̂T , we next
detail the algorithm to determine the block size ~b to be used in practice.
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Algorithm 2. (Choice of the block size)

1. Fix a selection of reasonable block sizes b between limits blow and bup.
2. Generate L pseudo sequences X �

l;1; . . . ; X
�
l;T , l ¼ 1,…,L, according to Algo-

rithm 1. For each sequence, l ¼ 1,…,L, and for each b, compute a sub-
sampling confidence interval CIl,b for q(j).

3. Compute ĝðbÞ ¼ #fq̂T ðjÞ 2 CIl;bg=L.
4. Find the value ~b that minimizes jĝðbÞ � ð1 � aÞj.

Remark 7. Algorithm 1 is by an order of magnitude more expensive than the
computation of the final subsampling interval once the block size has been
determined. While it is advisable to choose the selection of candidate block sizes
in Step 2 as fine as possible (ideally, include every integer between blow and bup),
this may computationally not be feasible, especially in simulation studies. In those
instances, a coarse grid should be employed.

Remark 8. An analogous method can be used for the construction of a
confidence band for the first k autocorrelations. The modifications are obvious
and left to the reader.

5. SIMULATION STUDY

The goal of this section is to highlight the small sample performance of the
proposed subsampling method. We will focus on a symmetric confidence interval
for the first autocorrelation q(1). The data generating process (DGP) we consider
is the ARMA(1, 1) model given by

Xt ¼ /Xt�1 þ �t þ h�t�1;

where{�t} is a sequence of strictly stationary, uncorrelated variables with mean
zero. The parameter values included in the study are / ¼ 1, 0.95 and 0.8, and
h ¼ 0.8, 0 and�0.8 respectively. The innovations are either �t ¼ Zt or �t ¼ ZtZt�1,
where the Zt are i.i.d. standard normal. Note that the latter specification for �t
results in an uncorrelated but dependent sequence. The sample size is n ¼ 128.

For the data-dependent choice of the block size, we fit and AR(p) model to each
generated data set, where the order p is determined by the BIC criterion. Also, we
use the stationary bootstrap of Politis and Romano (1994) with average block size
bBoot ¼ 10 on the residuals.

We estimate coverage probabilities of nominal 90% and 95% confidence
intervals based on 1000 repetitions per scenario. The results are presented in
Tables I and II. The estimated coverage probabilities are given for several fixed
block sizes and also for the data-dependent block size ~b determined byAlgorithm 2;
note that the fixed block sizes listed constitute the input block sizes for Algorithm 2.

One can see the following. The best fixed block size generally depends very
much on the parameters / and h, so that the choice of a good block size in
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practice is both important and nontrivial. However, our algorithm to determine
the data-dependent block size in practice seems to work satisfactorily. The
estimated coverage levels are in general close to the nominal level except when
h ¼ �0.8, which is a well-known problematic case in the literature. For example,
when / ¼ 1 and h ¼ �0.8, it comes to a near ‘cancellation’ of the unit root, so
that the observed time series might appear white noise when indeed it is
integrated. Apparently, much larger sample sizes are needed in such scenarios in
order for the inference to become reliable. Note, however, that is also true for
other methods, such as unit-root tests.

6. CONCLUSIONS

In this paper, we have investigated the problem of constructing asymptotically
consistent confidence intervals and confidence bands for autocorrelations of a
time series in the possible presence of a unit root. It is desirable to have confidence

TABLE I

Estimated Coverage Probabilities of Symmetric Subsampling Confidence Intervals for q(1)
with Nominal Levels 0.90 and 0.95

Target b ¼ 5 b ¼ 15 b ¼ 25 b ¼ 35 ~b

/ ¼ 1, h ¼ 0.8
0.90 0.99 0.93 0.88 0.85 0.89
0.95 1.00 0.97 0.94 0.89 0.95
/ ¼ 1, h ¼ 0
0.90 0.95 0.85 0.81 0.78 0.88
0.95 0.99 0.92 0.87 0.83 0.94
/ ¼ 1, h ¼ �0.8
0.90 0.04 0.03 0.05 0.05 0.07
0.95 0.15 0.06 0.07 0.07 0.15
/ ¼ 0.95, h ¼ 0.8
0.90 1.00 0.96 0.92 0.88 0.91
0.95 1.00 0.98 0.95 0.93 0.95
/ ¼ 0.95, h ¼ 0
0.90 0.96 0.88 0.82 0.78 0.91
0.95 0.99 0.93 0.89 0.86 0.95
/ ¼ 0.95, h ¼ �0.8
0.90 0.76 0.74 0.72 0.70 0.75
0.95 0.87 0.81 0.78 0.75 0.85
/ ¼ 0.8, h ¼ 0.8
0.90 0.99 0.92 0.87 0.82 0.89
0.95 1.00 0.97 0.92 0.89 0.94
/ ¼ 0.8, h ¼ 0
0.90 0.94 0.87 0.82 0.77 0.89
0.95 0.98 0.92 0.87 0.83 0.94
/ ¼ 0.8, h ¼ �0.8
0.90 0.91 0.84 0.80 0.75 0.86
0.95 0.93 0.91 0.87 0.82 0.93

Notes: The sample is n ¼ 128 and the residuals are �t ¼ Zt, where the Zt are i.i.d. standard normal.
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sets that are robust against a unit root even in the case when the time series is
assumed to be stationary. The reason is that when the series has a near unit root a
robust method is expected to yield better finite sample performance compared
with a method which breaks down in the presence of unit root; for example, see
Politis et al. (1990, Ch. 12) for some evidence in the context of simple AR(1)
models.

We suggested the use of the subsampling technique in order to construct
asymptotically valid confidence sets. By subsampling appropriate studentized
statistics, a confidence interval or a confidence band can be computed that have
the right coverage probability in the limit, whether the underlying time series is
stationary or not. Having a robust confidence band has an immediate application
to the practical issue of model selection.

The main problem in applying the method is the choice of the block size in
practice. To this end, we proposed a fully automatic, data-dependent algorithm.
Some simulation studies showed good performance of the method with a
moderate sample size.

TABLE II

Estimated Coverage Probabilities of Symmetric Subsampling Confidence Intervals for q(1)
with Nominal Levels 0.90 and 0.95

Target b ¼ 5 b ¼ 15 b ¼ 25 b ¼ 35 ~b

/ ¼ 1, h ¼ 0.8
0.90 1.00 0.96 0.93 0.89 0.92
0.95 1.00 0.98 0.96 0.94 0.96
/ ¼ 1, h ¼ 0
0.90 1.00 0.95 0.89 0.85 0.92
0.95 1.00 0.98 0.94 0.91 0.96
/ ¼ 1, h ¼ �0.8
0.90 0.84 0.44 0.30 0.23 0.78
0.95 0.95 0.64 0.45 0.36 0.90
/ ¼ 0.95, h ¼ 0.8
0.90 1.00 0.96 0.93 0.89 0.91
0.95 1.00 0.99 0.97 0.94 0.96
/ ¼ 0.95, h ¼ 0
0.90 1.00 0.94 0.89 0.84 0.92
0.95 0.99 0.93 0.89 0.86 0.95
/ ¼ 0.95, h ¼ �0.8
0.90 0.89 0.75 0.72 0.67 0.80
0.95 0.96 0.83 0.79 0.74 0.90
/ ¼ 0.8, h ¼ 0.8
0.90 0.99 0.92 0.88 0.84 0.88
0.95 1.00 0.97 0.93 0.90 0.94
/ ¼ 0.8, h ¼ 0
0.90 0.99 0.83 0.80 0.75 0.87
0.95 1.00 0.93 0.88 0.83 0.93
/ ¼ 0.8, h ¼ �0.8
0.90 0.91 0.75 0.74 0.71 0.81
0.95 0.99 0.85 0.80 0.78 0.90

Notes: The sample is n ¼ 128 and the residuals are �t ¼ ZtZt�1, where the Zt are i.i.d. standard normal.

262 D. N. POLITIS, J. P. ROMANO AND M. WOLF

� Blackwell Publishing Ltd 2004



ACKNOWLEDGEMENT

Research of the author Michael Wolf supported by DGES grant BEC2001-1270
and by the Barcelona Economics Program of CREA.

NOTE

Corresponding author: Dimitris N. Politis, Department of Mathematics,
University of California, San Diego, La Jolla, CA 92093, USA, Tel: 858 534-
5861, Fax: 858 534-5273, E-mail: politis@euclid.ucsd.edu

REFERENCES

Brockwell, P. and Davis, R. A. (1991) Time Series: Theory and Methods, 2nd edn. New York:
Springer.

Hall, P. (1988) On symmetric bootstrap confidence intervals. Journal of the Royal Statistical Society,
Series B 50, 35–45.

Hall, A. (1989) Testing for a unit root in the presence of moving average errors. Biometrika 76, 49–56.
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