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Abstract

In this article, a general central limit theorem for a triangular array of m-dependent random variables is presented. Here,
m may tend to in�nity with the row index at a certain rate. Our theorem is a generalization of previous results. Some
examples are given that show that the generalization is useful. In particular, we consider the limiting behavior of the
sample mean of a combined sample of independent long-memory sequences, the limiting behavior of a spectral estimator,
and the moving blocks bootstrap distribution. The examples make it clear the consideration of asymptotic behavior with
the amount of dependence m increasing with n is useful even when the underlying processes are weakly dependent (or
even independent), because certain natural statistics that arise in the analysis of time series have this structure. In addition,
we provide an example to demonstrate the sharpness of our result. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

Central limit theorems for m-dependent random variables (with m �xed) have been proved by Hoe�ding
and Robbins (1948), Diananda (1955), Orey (1958) and Bergstrom (1970). Berk (1973) proved a theorem
for the case of a triangular array with unbounded m, that is, m may be a function of the row index and tend
to in�nity at a certain rate. However, his theorem is somewhat limited by the fact that it only allows for a
moderate amount of positive dependence. The variance of the sum of the random variables in the nth row
eventually needs to be of the order of the corresponding sample size. Our theorem is intended to extend Berks’
result and allow for stronger dependence structures as well. The point of this paper is to present the theorem
and illustrate it with a number of examples. We would like to note, however, that it will be a necessary tool
for developing inferential procedures for moderately dependent and long-range-dependent random variables;
these are research topics under current investigation.
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Several other authors have also considered the problem of limit theorems for triangular arrays of weakly
dependent random variables, such as Krieger (1984), Samur (1984), and Peligrad (1996). While these authors
consider more general dependence structures based on mixing notions, their results do not imply our result
because in essence they assume that the mixing coe�cients across rows are decaying uniformly in the row
index. In our theorem (as in Berk’s), the strength of dependence in the nth row of the array increases with
n. Stronger dependence, however, is allowed in Rio (1995), in particular, see his Corollary 1. But, his result
still imposes stronger assumptions than our result in some cases.
The paper is organized as follows. Section 2 contains the main theorem. Some examples that show that our

generalizations are useful are presented in Section 3. These include: the sample mean of a combined sample
of independent long-memory sequences; estimates of the variance of the sample mean, and the corresponding
spectral estimates; the moving blocks bootstrap distribution. The sharpness of our result is demonstrated in
Section 4. The proof of the theorem appears in the appendix.

2. The theorem

Theorem 2.1. Let {Xn; i} be a triangular array of mean zero random variables. For each n = 1; 2; : : : let
d= dn; m= mn; and suppose Xn;1; : : : ; Xn;d is an m-dependent sequence of random variables. De�ne

B2n; k; a ≡ Var
(
a+k−1∑
i=a

Xn; i

)
;

B2n ≡ Bn;d;1 ≡ Var
(

d∑
i=1

Xn; i

)
:

Assume the following conditions hold. For some �¿ 0 and some −16
¡ 1:

E|Xn; i|2+�6�n for all i; (1)

B2n; k; a=(k
1+
)6Kn for all a and for all k¿m; (2)

B2n=(dm

)¿Ln; (3)

Kn=Ln =O(1); (4)

�n=L(2+�)=2n =O(1); (5)

m1+(1−
)(1+2=�)=d→ 0: (6)

Then; B−1n (Xn;1 + · · ·+ Xn;d)⇒ N (0; 1):

Remark 2.1. Note that our theorem extends the previous result by Berk (1973) in two ways. Berk essentially
proved this theorem for the special case 
=0. Condition (ii) of his theorem corresponds to assumption (2) of
our theorem with 
 replaced by 0. The greater generality of our theorem is needed to accommodate stronger
dependence structures. For example, it can handle the situation of Var(Xn;1 + · · ·+ Xn;d) ∼ d1+
, for positive

¡ 1. Note that for 
¿ 0 the condition on m in (6) becomes weaker. It is therefore desirable to have this
extension, rather than making 
 = 0 work by a proper standardization of the Xn; i sequence. Second, unlike
Berk’s theorem, our conditions permit the bounding constants in (1)–(3) to depend on the row index n. On
the one hand, this allows for greater ease of using the theorem. For example, to satisfy the moment bound
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(1), one otherwise might have to worry about a proper standardization of the Xn; i in the �rst place. On the
other hand, and more importantly, it might result in weaker conditions on m again. If the bound Ln in (3)
tends to in�nity with n, then the power (2 + �)=2 in (5) can play a crucial rule.
We will illustrate our theorem with some examples in the next section. They show that the greater generality

of our theorem is useful. Example 3.1 utilizes the extension for 
¿ 0. Example 3.2 bene�ts from the fact
that the moment bounds �n; Kn, and Ln may depend on the row index n.

3. Examples

Example 3.1 (Averaging long-memory processes). In the recent literature, there has been an increasing in-
terest in time series exhibiting long memory. Let {Zi} be a stationary time series. Let Zn = n−1

∑n
i=1 Zi, the

sample mean of the observations Z1; : : : ; Zn. Assuming the variance of Zn decays to zero proportional to n−�

for some 0¡�61, that is, assuming

Var(Zn) ' cvarn−� for a positive constant cvar ; (7)

we have short-range dependence in the case �= 1 and long-range dependence (or long memory) in the case
�¡ 1. For a general discussion of long-memory processes, see Beran (1994).

It is usual to characterize a long-memory process by the number H =1− �=2, the so-called Hurst number;
note that 0:5¡H ¡ 1. It is well known that the sample mean of a long-memory process can have a quite
di�erent asymptotic behavior compared to the sample mean of a short-memory process. To be speci�c, consider
the case Zi=G(Yi), where {Yi} is a stationary Gaussian process and G(·) is a su�ciently smooth function. We
assume, without loss of generality, that Zi has mean zero. It turns out that the limiting behavior of Zn depends
on the Hermite rank mHer of G(·); see, for example, Chapter 3 of Beran (1994). Beran uses the notation m
for this rank, but we will employ mHer to avoid confusion with the parameter m indicating m-dependence.
If 1 − 1=(2mHer)¡H ¡ 1, it can be shown that n−�(Z1 + · · · + Zn) converges to a nondegenerate limiting
distribution, where �=1+mHer(H − 1)¿ 0:5. The limiting distribution is normal if mHer = 1, but non-normal
otherwise.
In the latter case, we therefore have a non-normal limiting distribution for the properly standardized sample

mean. We ask under which conditions we can get limiting normality if we combine independent long-memory
sequences of this kind. For instance, this situation may arise when the results of independent experiments are
pooled.
Let {Z1i }; {Z2i }; : : : be independent long-memory processes having the same distribution as {Zi} de�ned

above (with 1 − 1=(2mHer)¡H ¡ 1 and mHer¿ 1). For l = 1; : : : ; h and j = 1; : : : ; m, let Xn;(l−1)m+j = Zlj .
Finally, let d=hm. This means that the Xn; i sequence is obtained by concatenating h independent Zi sequences,
each one of length m. Obviously, {Xn; i} is m-dependent. Note that we could easily extend this discussion
to the case where we include mj data points from the process {Zji } by considering m = min16j6h{mj}.
Under which conditions on h and m will we get limiting normality as d tends to in�nity? The trivial cases
are m ≡ 1, where we will get it by the standard CLT, and h ≡ 1, where we will not get it for the
aforementioned reasons. Hence, let us focus on the scenario of both m and h tending to in�nity, applying
Theorem 2.1.
We assume a �nite 2 + � moment to ensure bound (1). For k¿m and m su�ciently large, we will have

B2n; k; a62cvark
1+
 due to (7). Here, 
=1−�¿ 0. So we can take Kn=2cvar in inequality (2). Next, note that by

(7) again for large d; B2n¿0:5cvarhm
1+
=0:5cvardm
. Hence, we can take Ln=0:5cvar in inequality (3). Bounds

(4) and (5) are now trivially satis�ed. Since d= hm, the rate condition (6) simpli�es to m(1−
)(1+2=�)=h→ 0.
Typically, 
 is not known, but it can be estimated from the data; see Chapters 4–7 of Beran (1994), for
example. Another approach would be to use the conservative choice 
= 0 in practice.
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Example 3.2 (Variance of the sample mean and spectral estimation). Focus is on the problem of estimating
the variance of the (standardized) sample mean of a strictly stationary time series. Assume that {: : : ; Z−1; Z0; Z1;
: : :} is an in�nite sequence of strictly stationary random variables having, without loss of generality, mean
zero. The sample mean based on observing the �nite segment Z1; : : : ; Zn is de�ned as Zn = n−1

∑n
i=1 Zi. The

variance of n1=2Zn is given by

�2n ≡ Var(n1=2Zn) = 
(0) +
n−1∑
i=1

2
(
1− i

n

)

(i);

where 
(i) = Cov (Z1; Z1+i) is the ith autocovariance of the underlying time series. Note that �2n → 2�f(0),
where f(·) is the spectral density function of the Zi process. Thus, the problem of estimating �2n is asymptot-
ically equivalent to estimating the spectral density function at zero. The considerations below apply equally
well to the problem of spectral density estimation. A naive estimate of �2n would be given by

�̂2n;naiv = 
̂(0) + 2
n−1∑
i=1

(
1− i

n

)

̂(i);

where 
̂(i) is an estimate of the ith autocovariance de�ned as


̂(i) =
1
n

n−i∑
j=1

ZjZj+i :

The estimator �̂2n;naiv is also known as 2� times the periodogram at frequency zero in the time-series literature.
However, it is well known that this naive estimator is inconsistent, for example, see Section 10:3 of Brockwell
and Davis (1991). This is basically due to the fact that estimates 
̂(i) for i close to n−1 are not reliable, since
they are based on very few observations. To ensure consistency, the higher-order autocovariance estimates
need to be downweighted in a su�cient way. A very simple downweighting scheme is to assign weight zero
to all 
̂(i) for i¿m, where m is a truncation point depending on the sample size n, and weight one to all

̂(i) for all i6m. As before, we implicitly assume the dependence of m on n to be understood rather than
using the notation mn. The truncation estimator of �2n is then de�ned as

�̂2n;Trunc = 
̂(0) + 2
m∑
i=1


̂(i): (8)

It is well known that under suitable conditions this estimator will be consistent and asymptotically normal
for general stationary sequences; for example, see Sections 10:4 and 10:5 of Brockwell and Davis (1991).
The point of this example is to give a very simple alternative proof using Theorem 2.1 for the special case
of i.i.d. random variables {Zi}. Of course, this may be considered a toy example. The point is that even
in the simple i.i.d. case there are certain restrictions at what rate the truncation point m may increase with
the sample size n. Naturally, we assume that the practitioner trying to estimate the variance of the sample
mean assumes stationarity of the underlying sequence, not knowing about the actual independence structure.
Obviously, in this case we have �2n=�

2=Var(Z1) for all n. Note that this example could be easily extended to
the somewhat more interesting case where {Zi} is a sequence of m̃-dependent random variables. This would
come at the expense of an additional computational burden only.
To apply the theorem, it will be helpful to rearrange the terms in (8) in the following way:

n�̂2n;Trunc = Xn;1 + Xn;2 + · · ·+ Xn;n; (9)

where Xn; i = Z2i + 2ZiZi+1 + 2ZiZi+2 + · · · + 2ZiZi+m: We have multiplied �̂2n;Trunc by n here for notational
convenience later on. Note that we de�ne Zj ≡ 0 for j¿n. This arrangement is useful for our purposes,
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since the Xn; i are easily seen to be m-dependent random variables. Note that if we considered the case of
m̃-dependent Zi, the Xn; i would be (m+ m̃)-dependent random variables.

Proposition 3.1. Let Zi be a sequence of i.i.d. random variables with mean zero and variance �2. Assume
that; for some �¿ 0;

• E|Zi|4+2�6�¡∞,
• m2+2=�=n→ 0.

Then; (n=m)1=2(�̂2n;Trunc − �2)⇒ N(0; 4�4).

Proof. We need to check the conditions of Theorem 2.1. We claim that they are satis�ed if we take 
 = 0.
Note that, for this example, d=n in the notation of the theorem. Recall from (9) that our setup is for n�̂n;Trunc,
rather than �̂n;Trunc. With the de�nition ‖Y ‖p =(E|Y |p)1=p, for p¿ 0, we �rst note that

‖Xn; i ‖2+� = ‖ Z2i + 2ZiZi+1 + · · ·+ 2ZiZi+m ‖2+�
6 ‖Z2i ‖2+� + ‖Zi ‖2+� 2 ‖Zi+1 + · · ·+ Zi+m ‖2+� (due to independence)

6�1=(2+�) + �1=(2+�)2C2+�m1=2:

The last inequality follows from Lemma A.1 which states a moment bound for independent random variables
and is given in the appendix. Here, C2+� is a constant that only depends on 2 + �. Therefore,

E|Xn; i|2+�632+�C2+�2+��m
(2+�)=2 ≡ �n: (10)

The important fact is that �n =O(m(2+�)=2).
Next, we have to look at the B2n; k; a, the variance of Xn; a + · · · + Xn; a+k−1. Since the time series {Zi} is

assumed to be i.i.d., we may take, without loss of generality, a= 1. De�ne

sk; l =
k−l∑
i=1

Cov(Xn; i; Xn; i+l):

Looking at the variance of a block of size k¿m, we then have

B2n; k;1 = Var

(
k∑
i=1

Xn; i

)
= sk;0 + 2

k−1∑
l=1

sk; l:

Since the Zi are i.i.d. mean zero random variables, it is easy to see that Cov(Xn; i; Xn; i+l) = 0 for l¿1, which
implies that sk; l = 0 for l¿1. On the other hand,

Cov(Xn; i; Xn; i) = �2 + 4min(m; n− i)�4;
where �2 = Var(Z21 ) and �

2 = Var(Z1). With �1 = max(�2; 4�4), we therefore get

B2n; k;1 = sk;06mk�1: (11)

Hence, since 
¿0, we may choose Kn =m�1. By the same reasoning, it follows that, for �2 =min(�2; 4�4),

B2n = B
2
n;n;1 = sn;0¿

1
2mn�2: (12)

To be more precise, since we need this result for the limiting variance of �̂2n;Trunc,

B2n = nm
(
�2

m
+ 4

m− 1
m

�4
)
+ o(1): (13)



120 J.P. Romano, M. Wolf / Statistics & Probability Letters 47 (2000) 115–124

For our choice 
 = 0, we can let Ln = 1
2m�2 and so condition (4) is trivially satis�ed. To check condition

(5), it follows by our choice of Ln and the de�nition of �n in (10) that

�n=L(2+�)=2n =O(1):

Conditions (4) and (5) together, therefore, are met for 
 = 0. Thus, �nally, condition (6) is satis�ed for
m2+2=�=n→ 0. Recall that d=n for this example. By (13) it then follows that the proper normalizing constant
for n�̂2n;Trunc is (nm)

−1=2, so the proper normalizing constant for �̂2n;Trunc has to be (n=m)
1=2. Eq. (13) also tells

us that the limiting variance is 4�4.

Example 3.3 (Moving blocks bootstrap). The moving blocks bootstrap was introduced by K�unsch (1989)
and Liu and Singh (1992) as an extension of the classical bootstrap by Efron (1979). It resamples blocks of
data at a time, rather than single data points. The extension is needed in the case of dependent observations,
where Efron’s bootstrap fails. Conditional on observing a sequence Z1; : : : ; Zn, the moving blocks method
generates pseudo sequences Z∗

1 ; : : : ; Z
∗
n by sampling l blocks of size b and concatenating them. Speci�cally,

suppose that b = bn is a �xed sequence of integers satisfying bn → ∞. Then, l = ln is chosen to be the
smallest integer satisfying bnln¿n. Now, given the observed data Z1; : : : Zn, there are n− b+1 blocks of size
b, namely

(Z1; : : : ; Zb); (Z2; : : : ; Zb+1); : : : ; (Zn−b+1; : : : ; Zn):

Conditional on the observed data, sample l of the blocks with replacement to get a total of bl bootstrap
observations, say Z∗

n;1; : : : ; Z
∗
n; bl, though we usually just consider Z

∗
n;1; : : : ; Z

∗
n;n is the case bl is not exactly an

integer.
The point of this example is that, conditional on Z1; : : : ; Zn, a pseudo sequence Z∗

n;1; : : : ; Z
∗
n;n clearly will be

b-dependent. Consider the inference problem of trying to construct a con�dence interval for � = E(Zi). Let
Zn=

∑n
i=1 Zi=n. If the sampling distribution of n

1=2(Zn−�) were known, a con�dence statement could be made.
Asymptotically, under moment and mixing assumptions, and stationary of the Z’s, the limiting distribution of
n1=2(Zn − �) will be normal with mean 0 and asymptotic variance

�2 = Var(Z1) + 2
∞∑
i=1

Cov(Z1; Z1+i):

The bootstrap approximation says we can estimate this distribution by the distribution of n1=2(Z
∗
n − Zn),

conditional on Z1; : : : ; Zn, where Z
∗
n is the average of the bootstrap sample: Z

∗
n =

∑n
i=1 Z

∗
n; i=n. Hence, the

limiting behavior of this distribution can be analyzed by appealing to our theorem, because we are dealing
with a normalized average of bn-dependent variables (and the analysis is all conditional on Z1; : : : ; Zn with the
randomness coming from the block selection). It is well known that to ensure asymptotic consistency of the
moving blocks method, the block size b has to tend to in�nity with the sample size n. This is exactly the set-up
of our theorem. Indeed, the theorem can be applied with Xn; i=Z∗

n; i−E(Z∗
n; i|Z1; : : : ; Zn); dn=n; mn=bn; 
=0,

and � depending on the moments assumed about the Z’s. Since the properties of the moving blocks bootstrap
have already been analyzed elsewhere, we will not give any alternative proofs. Here, we merely point out the
structure of the moving blocks process {Z∗

i }, thereby validating the utility of our results. It should be clear,
however, that asymptotic normality of the bootstrap distribution may ensure because of the independence of
the blocks in the resampling scheme, even if n1=2(Zn − �) is not asymptotically normal.

4. Sharpness of the theorem

The purpose of this section is to demonstrate the sharpness of our result, meaning that the rate condition
(6) cannot be relaxed. Let Yn follow a Bin(n; pn) distribution with pn = �=n�. Here, �¿ 0 and 0¡�61.
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Obviously, we assume that n is big enough to ensure pn61. It is well known that (Yn−npn)=[npn(1−pn)]1=2
converges to a standard normal distribution i� �¡ 1. The “if ” part follows from the Berry–Esseen theorem
and the “only if ” part from the fact that in case � = 1 we have a standardized Poisson limit.
To put this scenario in the framework of our theorem, let Zn;1; : : : ; Zn;n be i.i.d. according to a Bin(1; pn)

distribution. Let m = bn�=�c + 1 and for l = 1; : : : ; n and j = 1; : : : ; m de�ne Xn;(l−1)m+j = Zn;j − pn. Hence,
we generate the Xn; i sequence by including each centered Zn;j term m times, yielding a sequence of length
d= nm. This complication is necessary to ensure condition (5) below.
Condition (1) is trivially satis�ed with �n=1 for any �¿ 0. With 
=0, we can choose Kn=2 for inequality

(2) and Ln =0:5 for inequality (3). These choices automatically take care of bounds (4) and (5). Keeping in
mind that we can pick � arbitrarily large, the rate condition (6) yields that for our choice 
=0 it is su�cient
to have m2=d → 0 or n�−1 → 0 or �¡ 1. By the above discussion this condition is also necessary, since it
is easy to see that B−1n (Xn;1 + · · ·+ Xn;d) is equal to (Yn − npn)=[npn(1− pn)]1=2.

Remark 4.1. Berk (1973) also gave an example to demonstrate the sharpness of his result. Since his theorem
can be considered a special case of ours, the sharpness of our result alternatively follows from Berk’s example.
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Appendix A. Proof of the theorem

Proof of Theorem 2.1. In the proof we will need a result for bounding moments of m-dependent sequences.
We will state it as a corollary of the following lemma, which implicitly is given in Chow and Teicher (1978)
and deals with independent sequences.

Lemma A.1. Let {Yi} be an independent sequence of mean zero random variables. Assume E|Yi|q6� for
some q¿2 and all i.
Then;

E

∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
q

6Cqq�n
q=2;

where Cq is a positive constant depending only upon q.

Proof. See Theorem 2 and Corollary 2 in Section 10:3 of Chow and Teicher (1978).

Corollary A.1. Let {Xi} be an m-dependent sequence of mean zero random variables. Assume E|Xi|q6�
for some q¿2 and all i.
Then; for all n¿2m;

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q

6Cqq�(4mn)
q=2;

where Cq is a positive constant depending only upon q.
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Proof. De�ne t = bn=mc; where b·c denotes the integer part. Now split X1 + · · ·+ Xn into t blocks of size m
and a remainder block: X1 + · · ·+Xn ≡ A1 + · · ·+At +At+1. Due to m-dependence, the odd-numbered blocks
are independent of each other, as are the even-numbered blocks. This allows us to apply Lemma A.1:∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

6

∥∥∥∥∥
∑
i odd

Ai

∥∥∥∥∥
q

+

∥∥∥∥∥
∑
i even

Ai

∥∥∥∥∥
q

(by Minkowski)

6 2Cqm(�)1=q(t=2 + 1)1=2 (by Lemma A:1 and Minkowski):

But, this is equivalent to

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q

6Cqq2
qmq�(t=2 + 1)q=2

6Cqq2
qmq�(t)q=2

6Cqq2
q�(mn)q=2

= Cqq�(4mn)
q=2:

We are now able to prove the theorem. The main idea of the proof follows Berk (1973), but we need some
modi�cations, since our theorem is more general.
For each n, we choose an integer p= pn¿ 2m so that

lim
n→∞ m=p= 0; lim

n→∞ p1+(1−
)(1+2=�)=d= 0: (14)

This can be done, for example, by remembering assumption (6) and choosing p to be the smallest integer
greater than 2m and greater than m1=2d1=2�, where � is equal to 1 + (1 − 
)(1 + 2=�). Next, de�ne integers
t = tn and q= qn by d= pt + q; 06q¡p: The main idea of the proof is to split the sum Xn;1 + · · ·+ Xn;d
into alternate blocks of length p− m (the big blocks) and m (the little blocks). This is a common approach
to proving central limit theorems for dependent random variables, and is attributed to Markov in Bernstein
(1927). Let

Un;i = Xn;(i−1)p+1 + · · ·+ Xn; ip−m; 16i6t;

Vn; i = Xn; ip−m+1 + · · ·+ Xn; ip; 16i6t;

Un; t+1 = Xn; tp+1 + : : :+ Xn;d:

By de�nition, Xn;1 + · · ·+ Xn;d =
∑t+1

i=1 Un;i +
∑t

i=1 Vn; i. Since the Xn; i are m-dependent and p¿ 2m, {Un;i}
and {Vn; i} are each independent sequences. It is easily seen that the di�erence between B−1n (Xn;1 + · · ·+Xn;d)
and B−1n

∑t+1
i=1 Un;i has variance approaching zero. Indeed,

Var

(
B−1n

t∑
i=1

Vn; i

)
= B−2n

t∑
i=1

Var(Vn; i)

6 B−2n t
[
sup
i
Var(Vn; i)

]
6 B−2n tKnm

1+
 (by assumption (2))

6 B−2n (d=p)Knm
1+


6
Kn
Ln

m
p

→ 0 (by assumptions (3) and (4)):
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Hence, provided they exist, the asymptotic distributions of the two quantities B−1n
∑d

i=1 Xn; i and B
−1
n
∑t+1

i=1 Un;i
are the same, and the goal now is to show that B−1n

∑t+1
i=1 Un;i ⇒ N(0; 1):

In order to apply assumption (3) again, we will �rst establish that B−2n Var(
∑t+1

i=1 Un;i) tends to one, or,
equivalently, that B−2n Cov(

∑t+1
i=1 Un;i;

∑t
i=1 Vn; i) tends to zero. Note �rst that Cov(Un;i; Vn;j) = 0 unless j = i

or i − 1. Furthermore,
|Cov(Un;i; Vn;j)| = |E(Un;iVn;j)|

6 [Var(Un;i)Var(Vn; i)]1=2 (by Cauchy−Schwarz)
6Kn(mp)(1+
)=2 (by assumption (2)):

Combining these two facts, we obtain∣∣∣∣∣Cov
(
t+1∑
i=1

Un;i;
t∑
i=1

Vn; i

)∣∣∣∣∣62tKn(mp)(1+
)=2
and �nally,

B−2n

∣∣∣∣∣Cov
(
t+1∑
i=1

Un;i;
t∑
i=1

Vn; i

)∣∣∣∣∣6 2
Kn
Ln

t
dm


(mp)(1+
)=2 (by assumption (3))

6 2
Kn
Ln

1
pm


(mp)(1+
)=2

= 2
Kn
Ln

(
m
p

)(1−
)=2
→ 0 (by assumption (4) and since 
¡ 1):

By Lyapounov’s theorem, it will now su�ce to verify that
∑t+1

i=1 E|Un;i|2+�=B2+�n tends to zero. By
Corollary A.1,

E|Un;i|2+�6C2+�2+��n(4pm)
(2+�)=2; 16i6t + 1;

and therefore
t+1∑
i=1

E|Un;i|2+�=B2+�n 6Const: �n(d=p+ 1)(pm)(2+�)=2=B2+�n :

By assumption (3), �nally,

�n(d=p)(pm)(2+�)=2=B2+�n 6�nL−(2+�)=2n
d
p

( pm
dm


)(2+�)=2

6�nL−(2+�)=2n

(p
d

)�=2
m(1−
)(2+�)=2

= �nL−(2+�)=2n p�=2+(1−
)(2+�)=2d−�=2
(
m
p

)(1−
)(2+�)=2

= O(1)AB (by assumption (5));

where A ≡ p�=2+(1−
)(2+�)=2d−�=2 and B ≡ (m=p)(1−
)(2+�)=2. The second condition on p in (14) implies that A
tends to zero. The �rst condition on p in (14), together with the fact that 
¡ 1, imply that B tends to zero
as well.
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