
Journal of Statistical Planning and
Inference 79 (1999) 179–190

www.elsevier.com/locate/jspi

Weak convergence of dependent empirical measures
with application to subsampling in function spaces

Dimitris Politis a, Joseph P. Romano b; ∗, Michael Wolf c
a U.C., San Diego, USA

bDepartment of Statistics, Stanford University, Sequoia Hall, Stanford, CA 94305, USA
cU.C., Los Angeles, USA

Received 7 July 1998

Abstract

Consider the problem of inference for a parameter of a stationary time series, where the
parameter takes values in a metric space (such as a function space). In this paper, we develop
asymptotic theory based on subsampling to approximate the distribution of estimators for such
parameters. The reason for this level of abstraction is to be able to consider parameters that take
values in a function space. For example, we consider the estimation of the distribution of the
empirical process and the spectral process. In order to accomplish this, we provide a general
result based on simple arguments. The main technical result relies on the weak convergence of
triangular arrays of dependent empirical measures, where the variables making up the arrays can
take values in a (possibly nonseparable) metric space. This approach based on subsampling is
quite powerful in that it leads to straightforward arguments where corresponding results based
on the moving blocks bootstrap are much harder to obtain. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let X1; : : : ; Xn denote a realization of a stationary time series. Suppose the in�nite-
dimensional distribution of the in�nite sequence is denoted Q. The problem we consider
is inference for a parameter �(Q). The focus of the present paper is the case when the
parameter space � is a metric space. The reason for considering such generality is to
be able to consider the case when the parameter of interest is an unknown function,
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such as the marginal distribution of the process or the spectral distribution function of
the process.
Our approach to the problem is to estimate the distribution of an estimator by sub-

sampling. In Politis and Romano (1994), a general theory is given to show how sub-
sampling leads to asymptotically valid con�dence intervals for a real parameter. Here,
we extend the arguments to cover the more general case.
In order to accomplish this task, we �rst develop a general result on the closeness of

the empirical measure based on triangular arrays of dependent random variables, where
the random variables take values in a (possibly nonseparable) metric space. In Section 2,
we present such a result, which may be viewed as a generalization of the classical re-
sult of Varadarajan (1958), who considered a sequence of i.i.d. variables in a separable
metric space. The threefold generalization to triangular arrays, to dependent variables,
and to nonseparable metric spaces are all required for the statistical applications.
In Section 3, we apply the result of Section 2 to obtain a general result for sub-

sampling. In Section 4, this result is applied to the special case of estimating the
distribution of the empirical process of a stationary time series. The argument is seen
to be quite simple and direct. Comparable results based on the (moving blocks) boot-
strap are much more involved and they rely on heavier assumptions. In Section 5,
the result is immediately applied to estimating the distribution of the spectral process
(where no bootstrap counterpart has been established).

2. The basic theorem

Throughout this section, S denotes a (possibly nonseparable) metric space, equipped
with a metric d. S is endowed with a �-�eld A, which will be assumed large enough
to contain all closed balls, but perhaps not as large as the Borel �-�eld. The general
problem considered concerns the closeness of the empirical distribution of S-valued
observations to the underlying law. The observations are assumed stationary (though
this can be generalized) and weakly dependent.
Weak dependence is quanti�ed in terms of strong mixing coe�cients. Speci�cally,

let {Xt; t ∈T} denote a collection of random variables de�ned on some common
probability space, and assume T is some subset of the integers. Let Fk denote the
�-�eld generated by {Xt; t6k} and let Gj denote the �-�eld generated by {Xt; t¿j}.
De�ne Rosenblatt’s �-mixing coe�cients by

�X (j)= sup|P(AB)− P(A)P(B)|: A∈Fk; B∈Gk+j; k =1; 2; : : :}: (2.1)

Closeness of measures is described in terms of a metric metrizing weak convergence.
Speci�cally, the bounded-Lipschitz metric �L is de�ned as follows. Let L be the class
of A-measurable functions f satisfying |f(x) − f(y)|6d(x; y) and supx∈S |f(x)|61.
For probability laws P and Q, de�ne

�L(P;Q)= sup{|Pf − Qf|: f∈L}:
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Convergence of �L(Pn; P) to zero and P concentrating on a separable set implies weak
convergence; see Pollard (1984) (p.74).
The following theorem is a generalization of a classical result of Varadarajan (1958),

who considered the case of i.i.d. observations in a separable metric space. Beran et al.
(1987) and Bickel and Millar (1992) extended his result to triangular arrays of i.i.d.
variables in possibly nonseparable metric spaces. The result here covers the dependent
case, which is needed in the next section for inference in time series.

Theorem 2.1. Let Yn;1; : : : ; Yn; jn be S-valued stationary observations with strong mix-
ing sequence �n(·). Assume jn→∞ as n→∞. Denote by Pn the marginal distribution
of Yn;1, and let P̂n denote the empirical measure of the Yn; i, 16i6jn. Assume {Pn}
is �-tight, that is, for every �¿0, there exists a compact set K and �n ↓ 0 so that
Pn(K�n)¿1 − � ∀n, where K�= {x∈ S: d(x; K)¡�}. Assume the mixing coe�cients
satisfy

∑jn
i=1 �n(i)=jn→ 0 as n→∞. Then, �L(P̂n; Pn)→ 0 in probability.

Remark 2.1. The issue of measurability cannot be ignored because �L(P̂n; Pn) need not
even be measurable (because the sup of an uncountable collection of random variables
need not be measurable). Instead of worrying about whether measurability holds, the
proof shows the result is true if we interpret convergence in probability to mean con-
vergence in outer probability; see van der Vaart and Wellner (1996) (Section 1:9).

Remark 2.2. The result can clearly be generalized to nonstationary observations if Pn
is replaced by the expectation of P̂n.

Remark 2.3. The result holds for any metric metrizing weak convergence (by a sub-
sequence argument).

Remark 2.4. The argument can be strengthened to yield an almost sure result when
all the variables are de�ned on a common probability space.

Remark 2.5. The tightness assumption cannot be removed, even in the i.i.d. case; a
counterexample is given in Beran et al. (1987).

Proof of Theorem 2.1. For ease of notation, we assume jn= n. Now, for any real-
valued measurable function f de�ned on S which is uniformly bounded by one, P̂nf−
Pnf→ 0 in probability. Indeed, P̂nf − Pnf has mean zero and variance

�2n(f) = n
−1Pnf(f − Pnf) + 2n−1

n−1∑
i=1

(
1− i

n

)
cov[f(Yn;1); f(Yn;1+i)]

6 n−1 + 8n−1
n∑
i=1
�n(i)≡ bn→ 0; (2.2)

by the standard strong mixing inequality for uniformly bounded variables. The di�-
culty in establishing the theorem lies in showing this convergence is uniform over an
uncountable collection of functions f.
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Now, to show

sup
f∈L

|P̂nf − Pnf|→ 0

in probability, it su�ces to show

sup
f∈Ln

|P̂nf − Pnf|→ 0

in probability, where Ln are the functions of the form f(x)I(x∈K�n), f is a function
in L and �n is as in the statement of the theorem. To appreciate why, �rst note that
Pn(K�n)¿1 − � by �-tightness. Second, by the above variance calculation for general
f, P̂n(K�n) has variance bounded by bn. So, by Chebychev,

pr{1− P̂n(K�n)¿2�} = pr{P̂n(K�n)− Pn(K�n)61− Pn(K�n)− 2�}
6 pr{P̂n(K�n)− Pn(K�n)6−�}
6 pr{|P̂n(K�n)− Pn(K�n)|¿�}
6 var[P̂n(K�n)]=�26bn=�2→ 0:

So,

sup
f∈L

|P̂nf − Pnf|6 sup
f∈Ln

|P̂nf − Pnf|+ sup
f∈Hn

|P̂nf − Pnf|;

where Hn is the collection of functions {f(·)[1−I(· ∈K�n)]: f∈L}. But, the last term
sup
f∈Hn

|P̂nf − Pnf|6 sup
f∈Hn

|P̂nf|+ sup
f∈Hn

|Pnf|

is small because

sup
f∈Hn

|Pnf|6�

and

sup
f∈Hn

|P̂nf|61− P̂n(K�n)62�

with probability tending to one, by the above. Hence, it is su�cient to show supf∈Ln
|P̂nf − Pnf| tends to zero in probability.
Fix �¿0. Next, let {f1; : : : ; fmn} be an �-net (where the metric is sup norm) for the

collection of functions LK = {f(·)I(· ∈K)}. That is, if f∈L, there is an i such that
sup
x∈K

|f(x)− fi(x)|¡�:

Note that the number m� of approximating functions in the �-net is �nite by the Arzela–
Ascoli Theorem. At this point, we cannot assume the approximating functions fi are
bounded-Lipschitz on all of S. However, by the Kirszbraun–McShane extension theo-
rem (see Theorems 6.1.1 and 11.2.3 of Dudley, 1989), the functions fi can be assumed
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to be in L. Now, if x∈K�n , then there exists x̃∈K so that d(x; x̃)¡�n. Then, for any
f∈L,

|f(x)− f(x̃)|6d(x; x̃)¡�n;
where we have used the fact that f is Lipschitz. This inequality is also true for the
approximating functions fi. So,

f(x)6f(x̃) + �n6fi(x̃) + �+ �n6fi(x) + �+ 2�n:

Hence, for any f∈Ln, there exists an i6m� satisfying
sup
x∈K�n

|f(x)− fi(x)|6�+ 2�n: (2.3)

Given an f, let f̃ denote the approximating function fi satisfying Eq. (2.3). Then,

sup
f∈Ln

|P̂nf − Pnf|6 sup
f∈Ln

|(P̂n − Pn)(f −f̃)|+ max
16i6m�

|(P̂n − Pn)fi|

6 2�+ 4�n + max
16i6m�

|(P̂n − Pn)fi|:

To show the left-hand side tends to 0 in probability, �x any �¿0 and let �= �=8.
Then,

pr

{
sup
f∈Ln

|P̂nf − Pnf|¿�

}
6 pr

{
sup
f∈Ln

|(P̂n − Pn)(f −f̃)|¿�=2
}

+pr
{
max
16i6m�

|(P̂n − Pn)fi|¿�=2
}

6 pr
{
max
16i6m�

|(P̂n − Pn)fi|¿�=2
}

as soon as 2�+4�n ≡ �=4+4�n is less than �=2, or equivalently when �¿16�n. Finally,
the last term tends to zero because it can be bounded by m�4b2n=�

2, where bn is de�ned
in Eq. (2:2).

3. A general theorem on subsampling

In this section, we consider the problem of constructing asymptotically valid con�-
dence regions for a parameter of a stationary time series {Xt; t=0;±1;±2; : : :}, whose
joint distribution will be denoted Q. The variables Xt are all de�ned on some common
probability space (
1; F1; �1) and take values in some general measure space (
2; F2),
though 
2 is usually assumed to be the real line. Hence, the joint law of the Xt vari-
ables, denoted by Q, is a probability on the product space which is the countable
product of 
2 endowed with the product �-�eld.
Attention focuses on a parameter �(Q) that takes values in a parameter space �.

At this point, nothing is assumed about �. The goal is to construct an asymptotically
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valid con�dence set for �(Q) based on X1; : : : ; Xn. The whole motivation of the present
paper is to present a general result for the case when � is quite large, such as an
in�nite-dimensional function space.
Suppose an estimator, �̂n= �̂n(X1; : : : ; Xn), of �(Q) is given. In order to construct a

con�dence region for �(Q), some knowledge of the sampling distribution of �̂n(X1; : : : ;
Xn) is required. More generally, let Rn(X1; : : : ; Xn; �(Q)) be a root (a term used by
Beran, 1984), which is just some function of X1; : : : ; Xn, �(Q) and n, taking values in
a metric space S (endowed with a �-�eld A). For example, in the case where � is a
linear space, we might take

Rn(X1; : : : ; Xn; �(Q))= �n[�̂n(X1; : : : ; Xn)− �(Q)]; (3.1)

in which case S =�; here, {�n} is just some normalizing sequence in anticipation of
our asymptotic results. Alternatively, if � is a normed linear space with norm denoted
‖ · ‖, we might take

Rn(X1; : : : ; Xn; �(Q))= �n‖�̂n(X1; : : : ; Xn)− �(Q)‖;

so that S is the real line and possibly distinct from �. In any case, the idea is that if the
sampling distribution of Rn(X1; : : : ; Xn; �(Q)) under Q where known, this information
could be used to obtain a con�dence region for �(Q).
To �x ideas, consider the following examples. In all these examples, assume the

time series consists of stationary real-valued observations. If Q denotes the joint distri-
bution of the process, let Q1 denote the marginal distribution of X1. Let �(Q)=Q1, a
parameter which takes values in the space of distribution functions. Several choices for
S exists, one being D[−∞;∞] equipped with the uniform metric. Here, we could take
�̂ to be the empirical distribution function of the data. Alternatively, one might be in-
terested in a simple real-valued functional of Q1, but our theory is intentionally general
enough to handle general parameters. Certainly, if we can handle inference for Q1, we
should be able to handle functionals of Q1. A more important example in the context
of modelling time series is the spectral distribution function, which again can be as-
sumed to take values in a suitable function space. Note that in both of these examples,
a function space equipped with the supremum norm is nonseparable. These examples
will be developed in the next two sections.
Let Jn(Q) denote the law of Rn(X1; : : : ; Xn; �(Q)), regarded as a random element of

a metric space S. We are implicitly assuming S is endowed with an appropriate �-�eld
so that Rn is measurable. The subsampling approximation to Jn(Q), denoted Ĵ n; b, is
the empirical distribution of the n− b+ 1 values of Rb(Xi; : : : ; Xi+b−1; �̂n) as i ranges
from 1 to n− b+ 1. The main assumption we will need is the following:
Assumption A. Assume Jn(Q) converges weakly to a limit law J (Q) which concen-
trates on a separable subset of S.

As a preliminary step to analyzing Ĵ n; b, we �rst analyze Ln; b, which is de�ned to
be the empirical distribution of the n− b+ 1 values of Rb(Xi; : : : ; Xi+b−1; �(Q)).
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Proposition 3.1. Assume Assumption A. Let X1; : : : ; Xn be a stationary time series
with �-mixing sequence �X (·). Assume �X (i)→ 0 as i→∞. Also, assume b=n→ 0
and b→∞ as n→∞. Then,

�L(Ln; b; Jn(Q))→ 0

in probability.

Proof. Apply Theorem 2.1 with Yn; i=Rb(Xi; : : : ; Xi+b−1; �(Q)) and jn= n−b+1. Note
that Ln; b is the empirical distribution of S-valued stationary observations with exact
distribution Jb(Q). So, Pn is the distribution of Yn;1 and the tightness assumption follows
from Assumption A because Pn= Jb(Q). Also, the mixing sequence of the nth row
Yn;1; : : : ; Yn; jn satis�es �n(i)6�X (i− b) if i− b¿0. Bound �n(i) by 1 otherwise. Then,

jn∑
i=1
�n(i)=jn6

1
n− b+ 1

[
b+

n−b+1∑
i=b+1

�X (i − b)
]

6
b

n− b+ 1 +
1

n− b+ 1
n−b+1∑
i=1

�X (i)→ 0;

by assumptions on �X (·) and b.

The previous result cannot in general be used for inference because the construction
of Ln involves the unknown �(Q). In order to obtain a result for the subsampling law
ˆJ n; b, we specialize a little. In particular, assume Rn takes the form (3:1) so that �= S
and S is a normed linear space with norm ‖ · ‖ and d(x; y)= ‖x − y‖ if x and y are
in S.

Theorem 3.1. Under the assumptions of Proposition 3.1 and the additional assumption
that �b=�n→ 0 as n→∞,

�L( Ĵ n; b; Jn(Q))→ 0

in probability.

Proof. By the triangle inequality, it su�ces to show �L( Ĵ n; b; Ln; b)→ 0 in probability.
Make the same identi�cations as in the proof of Proposition 3.1. Since Ĵ n; b is the
empirical distribution of the values

�b[�̂b(Xi; : : : ; Xi+b−1)− �̂n] = �b[�̂b(Xi; : : : ; Xi+b−1)− �(Q)] + �b[�(Q)− �̂n];

we see that Ĵ n; b is just Ln; b shifted by �b[�(Q)− �̂n]. Now, if f∈L is a (measurable)
bounded Lipschitz function,

| Ĵ n; bf − Ln; bf|6 1
n− b+ 1

n−b+1∑
i=1

d(Yn; i; Yn; i−�b[�(Q)− �̂n])=‖�b[�(Q)− �̂n]‖;
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where Yn; i= �b[�̂b(Xi; : : : ; Xi+b−1)− �(Q)]. So,

�L( Ĵ n; b; Ln; b)6‖�b[�(Q)− �̂n]‖= �b�n ‖�n[�̂n − �(Q)]‖→ 0

in probability by Assumption A.

4. Subsampling the empirical process

One of the great successes of Efrons (1979) i.i.d. bootstrap is it can be used to accu-
rately approximate the distribution of the empirical process, and hence certain function-
als of the empirical process. There has been considerable interest in obtaining similar
results for dependent data using the moving blocks bootstrap of K�unsch
(1989) and Liu and Singh (1992). For example, see B�uhlmann (1993, 1994) and
Naik–Nimbalkar and Rajarshi (1994). Here, we obtain similar results based on sub-
sampling using much simpler arguments. The aforementioned results rely on intricate
chaining arguments and exponential inequalities. Our argument completely avoids such
calculations if the original process of interest converges (which it is known to), whereas
convergence of the moving blocks bootstrap process appears to require these arguments
to be generalized and repeated. In fact, our simple arguments weaken the assumptions
made on the underlying marginal distribution of the process, the choice of block size,
and the mixing coe�cients.
As before, let X1; : : : ; Xn denote a stretch of a stationary process, whose entire joint

distribution is denoted Q. Let P denote the marginal distribution of X1 and let P̂n
denote the empirical measure. Consider the empirical process Zn(·) indexed by a class
of functions f∈F , de�ned by

Zn(f)= n1=2[P̂nf − Pf]:

Here, if the Xi take values in a space 
2, the functions f are assumed to be real-
valued with domain 
2. Regard Zn as a random element of the metric space L∞(F),
the metric space of real-valued bounded functions on F with sup norm denoted ‖ · ‖∞.
The goal is to approximate the distribution of Zn, which we will denote by Jn(Q) in
agreement with the general notation of Section 3.

Assumption A1. Assume the law of Zn converges weakly to a limiting process Z which
concentrates on a separable subset of L∞(F).

Remark 4.1. To avoid measurability problems, we simply assume F to be a permissible
class of functions, as in Pollard (1984). Also note that one needs to endow L∞(F)
with an appropriate �-�eld or, alternatively, understand that weak convergence to be
in the sense of Ho�man–Jorgensen; the latter approach is fully developed in Part 1 of
van der Vaart and Wellner (1996). All our assumptions are wrapped in the assumption
that Zn converges weakly. Arcones and Yu (1994) have given a su�cient condition for
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this assumption to hold. They assume F is a VC graph class with envelope function
F satisfying PFp¡∞ for some p¿2 and �-mixing coe�cients satisfying

∞∑
i=1
[�(i)](p−2)=p¡∞

and ip=(p−2) log(i)�(i)→ 0 as i→∞. Then, Z is a mean 0 Gaussian process with

cov[Z(f); Z(g)]=
∞∑

j=−∞
cov[f(X0); f(Xj)]:

In the special case of the real line when F is the usual class of intervals, Deo (1973)
has obtained a su�cient �-mixing condition and Yoshihara (1975) considers the mul-
tidimensional case. Since no best su�cient mixing condition exists for the weak con-
vergence of Zn, we simply take Assumption A1 as given.

As in Section 3, the subsampling approximation to Jn(Q) is Ĵ n; b, the empirical
distribution of the (n− b+ 1) values Zn;1; : : : ; Zn; n−b+1, where

Zn; i(f)= b1=2[P̂n; if − P̂nf];

and P̂n; i is the empirical measure based on Xi; : : : ; Xi+b−1.

Theorem 4.1. Assume Assumption A1 and that the X process is �-mixing. Then, if
b→∞ and b=n→ 0, we have

�L(Jn(Q); Ĵ n; b)→ 0

in probability.

Proof. Apply Theorem 3.1 with Rn= n1=2[P̂n(·)− P(·)], so that S =�=L∞(F). Here
�n= n1=2 and Assumption A1 is Assumption A specialized to the empirial process.

Remark 4.2. We have aimed for a simple result by elementary but general methods.
Even so, the assumptions are remarkably weak. In the case of the moving blocks
bootstrap, Naik–Nimbalkar and Rajarshi (1994) assume the blocksize b of order np for
some p∈ (0; 14 ), but they obtain an almost sure convergence result (in the special case
of the real line). We could also obtain an almost sure convergence result simply by
strengthing our arguments a little, though the statistical uses for the stronger result are
not clear enough to warrant doing this at this time. B�uhlmann (1994) assumes b= np

for p∈ (0; 12 ). These papers assume the Xi’s are real and vector-valued, respectively,
and that the marginal distributions are continuous, which we do not need. B�uhlmann
(1993) also considers the general empirical process case which we consider here, but
considerably more e�ort is required for the consistency of the moving blocks bootstrap.
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Our mixing assumption is, of course, quite weak, with the real mixing assumption
wrapped up in the veri�cation of Assumption A1.

Remark 4.3. Needless to say, it follows that any continuous functional of the em-
pirical process which has an unknown distribution that can be consistently estimated
by its subsampling counterpart. By looking at the supremum of the empirical process,
asymptotically valid con�dence bands for the unknown measure ensue.

Remark 4.4. Our result can actually be used to prove the corresponding result for the
moving blocks bootstrap. By exploiting the linear structure of the empirical process,
one sees that the moving blocks distribution can be obtained from the subsampling
distribution by an appropriate normalized convolution operation. Since the subsampling
distribution is an approximate Gaussian process, so must be a normalized convolution.
This approach would simplify the arguments of Naik–Nimbalkar and Rajarshi (1994)
and B�uhlmann (1994).

5. Subsampling the spectral measure

The general theory in Sections 2 and 3 was motivated by the problem of approximat-
ing the distribution of the spectral process, which we de�ne below. Let F(·) denote the
spectral distribution function of a real-valued stationary time series, assumed to have
a �nite second moment. Here, �=F(·). Borrowing notation from Dahlhaus (1985), let
In(�) denote the periodogram with tapered data, de�ned by

In(�)= [2�Hn;2(0)]−1dn(�)dn(−�);
where

dn(�)=
n∑
t=1
h[t=(n+ 1)]Xt exp[−i�t]

and

Hn; k(�)=
n∑
t=1
hk [t=(n+ 1)] exp[−i�t]:

The data taper h is assumed of bounded variation and square integrable on [0; 1]. Let
F̂n(·) be the corresponding integrated periodogram given by

F̂n(�)=
2�
n

∑
0¡2�s=n6�

In(2�s=n):

Take �n= n1=2 and regard Sn(·)= n1=2[F̂n(·) − F(·)] as a random element of D[0; �]
endowed with the sup norm ‖ · ‖. Under suitable weak dependence conditions, the
process Sn(·) converges weakly to a mean zero Gaussian process S(·) with covariance

cov[S(�); S(�)]= 2�G(min{�; �}) + 2�F4(�; �);
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where

G(�)=
∫ �

0
f2(�) d�

and

F4(�; �)=
∫ �

0

∫ �

0
f4(�;−�;−�) d� d�;

here, f is the spectral density and f4 is the fourth order cumulant spectrum (see e.g.,
Brillinger, 1975). For various sets of conditions for this weak convergence to hold, see
Anderson (1993), Brillinger (1975), and Dahlhaus (1985). Since the limit distribution
is that of a certain Gaussian process whose covariance structure depends on intricate
fourth order properties of the underlying stationary process, analytical approximations
to this limit law would be di�cult to obtain; but, see Anderson (1993). In sum-
mary, the weak convergence of the process Sn has been well-studied and holds quite
generally under weak dependence. As in Section 4, we assume this convergence as
fundamental.

Assumption A2. Assume the law of Sn converges weakly to a limiting process S whose
paths concentrate on a separable subset of D[0; �].

Letting Jn(Q) denote the law of Sn, we immediately have the following result.

Theorem 5.1. Assume Assumption A2 and that the X process is �-mixing. Then, if
b→∞ and b=n→ 0, we have

�L(Jn(Q); Ĵ n; b)→ 0

in probability.

Remark 5.1. The above arguments apply to the case where � is the standardized spec-
tral distribution function. Consider the process Zn(·)= n1=2[F̂n(·)=F̂n(�) − F(·)=F(�)].
The weak convergence properties of Zn can be deduced from that of Yn, so that
Assumption A holds here as well.

Remark 5.2. Remark 4.3 applies here as well. Thus, we can get asymptotically valid
approximations to the distribution of the supremum of the spectral process, yielding
a con�dence band with asymptotic coverage probability equal to the nominal level.
Actually, one needs to know a little more to claim the limiting coverage probability,
namely that the limiting distribution in Assumption A2 is continuous. But, if the limit
process is Gaussian with mean 0 and continuous sample paths, as it is here, this
continuity property follows by a general result of Tsirel’son (1975). Some simulation
results of uniform con�dence bands by subsampling for this example are presented in
Politis et al. (1993).
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Remark 5.3. In fact, the argument can be generalized to get uniform con�dence bands
for the spectral density itself, which is a harder problem. Here, assumption A must be
weakened so that it is assumed �n‖�̂n − �(Q)‖ − cn has a limit distribution for some
cn. This assumption holds for spectral density estimates; see Woodroofe and VanNess
(1967).
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