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Abstract. We establish the validity of subsampling confidence intervals for the mean of
a dependent series with heavy-tailed marginal distributions. Using point process theory,
we focus on GARCH-like time series models. We propose a data-dependent method for
the optimal block size selection and investigate its performance by means of a simulation
study.
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1. INTRODUCTION

Estimation of the mean is often the first step in an analysis of a stationary time
series. If the observations can be assumed to be generated by a stationary model
with finite variance, there is a well-known asymptotic theory for the sample mean
(see e.g. Brockwell and Davis, 1991 Section 7.1), and a large body of research
devoted to the estimation of the asymptotic variance.

In this paper we assume that the observations follow the model Xt ¼ l + Yt,
where {Yt} is a zero-mean stationary time series with heavy-tailed univariate
marginal distributions. We assume that these distributions regularly vary with
index j satisfying 1 < j < 2, so that the mean exists but the variance is infinite.
Linear processes with infinite-variance heavy-tailed distributions have been
studied by Cline and Brockwell (1985), Mikosch et al. (1995), Anderson and
Meerschaert (1997) and Kokoszka and Taqqu (1994, 1996, 2001), among others.
McElroy and Politis (2002) considered constructing subsampling confidence
intervals for l assuming {Yt} is such a linear process. It has recently been
established that the popular GARCH processes have regularly varying marginal
distribution which may exhibit infinite variance for some choices of parameters
(see Basrak et al., 2002a, 2002b) and the asymptotic theory for sample
autocovariances and extrema for such processes has been developed (see Davis
and Mikosch, 1998; Mikosch and Stărică, 2000). In this paper, we extend the
theory of McElroy and Politis (2002) to such processes and develop a data-driven
procedure for choosing the optimal subsampling block size.
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The paper is organized as follows. In Section 2, we provide the necessary
background on subsampling confidence intervals. Section 3 contains the relevant
statistical theory, while Section 4 focuses on its practical implementation. The
mathematical proofs and tables are collected in the Appendix.

2. SUBSAMPLING CONFIDENCE INTERVALS

We investigate the validity of the subsampling confidence intervals for l based on
the statistic

Tn ¼ n1=2
�Xn � l
r̂n

; ð1Þ

where

r̂2n ¼
1

n

Xn
t¼1

ðXt � �XnÞ2: ð2Þ

Thus we approximate the sampling distribution of Tn by

Ln;bðxÞ ¼
1

n� bþ 1

Xn�bþ1

t¼1

1
b1=2ð�Xn;b;t � �XnÞ

r̂n;b;t
� x

� �
: ð3Þ

We refer to Politis et al. (1999) for a systematic account of the subsampling
methodology. A theoretical justification for the subsampling method considered
in this paper is based on Theorem 1 which is stated below. It is almost identical to
Theorem 11.3.1 of Politis et al. (1999), the only difference being that we do not
assume independent observations. For the sake of completeness we state here this
result and outline its proof.

Suppose we have observed a sample X1, …, Xn and ĥn is an estimator of h and
Jn is the sampling distribution of snðĥn � hÞ = r̂n, where r̂n > 0: Set also

JnðxÞ ¼ P
snðĥn � hÞ
r̂n � x

( )
: ð4Þ

Assumption 1. There are nondegenerate distributions J, V, W, such that W has
no mass at the origin, and positive sequences {tn} and {un} such that, sn ¼ tn/un and

Jn !
d
J ; ð5Þ

tnðĥn � hÞ!d V ; ð6Þ

unr̂n !
d
W : ð7Þ
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Consider the subsampling approximation to Jn(x) given by

Ln;bðxÞ ¼
1

n� bþ 1

Xn�bþ1

t¼1

1
sbðĥn;b;t � ĥnÞ

r̂n;b;t
� x

( )
; ð8Þ

where ĥn; b; t; r̂n; b; t are computed from the observations Xt, Xt+1, …, Xt+b)1.
In Theorem 1 we assume that the time series under consideration is strong

mixing. We recall the definition and some related facts here which will be referred
to in the sequel. Suppose {Xt, t 2 Z} is a stationary random sequence. The
mixing rate function mk of {Xt} is defined as

mk ¼ sup jP ðA \ BÞ � P ðAÞP ðBÞj; A 2 rðXs; s � 0Þ; B 2 rðXs; s > kÞf g; ð9Þ

with the r-algebras in (9) defined in the usual way. (The mk in (9) are usually
denoted ak but confusion with the coefficients in the GARCH specification has
to be avoided (19).) If mk fi 0 as k fi 1, the sequence {Xt} is said to be
strong mixing or a-mixing, and if there are constants K > 0 and 0 < a < 1
such that mk < Kak, it is said to be strongly mixing with geometric rate. We
refer to Doukhan (1994) or Bradley (1986) for systematic accounts of mixing
conditions.

Theorem 1. Suppose the process {Xt} is strong mixing, Assumption 1 holds, and

b ! 1;
b
n
! 0;

sb
sn

! 0;
tb
tn
! 0:

Then, the following conclusions hold:

(i) If x is a continuity point of J(Æ), then Ln; bðxÞ !
P

JðxÞ:
(ii) If J(Æ) is continuous, then supx jLn; bðxÞ � JðxÞj !P 0:
(iii) Denote

cn;bð1� aÞ ¼ inffx : Ln;bðxÞ � 1� ag;
cð1� aÞ ¼ inffx : JðxÞ � 1� ag:

If J(Æ) is continuous at c(1 ) a), then

P snðĥn � hÞ=r̂n � cn;bð1� aÞ
n o

! 1� a;

i.e., the subsampling confidence intervals yield asymptotically correct coverage
probability.

The proof of Theorem 1 is the same as that of Theorem 11.3.1 in Politis et al.
(1999), except that to show the convergence

1

n� bþ 1

Xn�bþ1

t¼1

1
sbðĥn;b;t � hÞ

r̂n;b;t
� x

( )
!P JðxÞ
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one must follow the argument in the proof of Theorem 3.2.1. of Politis et al.
(1999), rather than use an argument for independent observations.

The difficulty in applying Theorem 1 lies in verifying Assumption 1 for a
specific class of time series of interest. The case of independent observations was
studied in Chapter 11 of Politis et al. (1999). Moving average models with heavy-
tailed innovations were investigated by McElroy and Politis (2002). Their method
of proof relies on representing the partial sum of observations as a multiple of the
partial sum of the noise plus a small remainder term. In the present paper we
focus on GARCH-type sequences introduced in Section 3 and use point-process
techniques which can also be used to establish the results of McElroy and Politis
(2002).

Remark 1. The approximation (8) allows for the construction of one-sided or
equal-tailed two-sided confidence intervals for l. As an alternative, two-sided
symmetric confidence intervals could be constructed by estimating the two-sided
distribution function

Jn;j�jðxÞ ¼ P snjĥn � hj=r̂n � x
n o

: ð10Þ

The according subsampling approximation is given by

Ln;b;j�jðxÞ ¼
1

n� bþ 1

Xn�bþ1

t¼1

1
b1=2j�Xn;b;t � �Xnj

r̂n;b;t
� x

� �
: ð11Þ

The asymptotic validity of this approach follows immediately from the validity of
(8) and the continuous mapping theorem.

3. ASSUMPTIONS AND RESULTS

In this section we describe a nonparametric specification intended to model a time
series which exhibits no ‘correlation’ but has a significant ‘correlation in absolute
values’. Series with such characteristics arise in finance and economics. Condition
(12), in which !v denotes vague convergence, together with (13) is equivalent to
the requirement that the one-dimensional marginal distributions are in the
domain of attraction of a j-stable law (see e.g. Meerschaert and Scheffler, 2001,
Propn 6.1.37). If we assume, as we do in this paper, that a stochastic process has
infinite variance, we cannot assume that the observations are uncorrelated
because the covariances do not exist. Instead we assume condition (14) which
means that truncated variables are uncorrelated. Other assumptions are present in
Assumption 2. We have found it convenient to use the theory of point processes,
as it has been successfully applied in the context of GARCH processes by Davis
and Mikosch (1998) and Mikosch and Stărică (2000). Our approach draws
heavily on Davis and Hsing (1995) and we refer the reader to this paper for
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further details. In particular, condition (15) is implied by a very weak form of
mixing assumed by Davis and Hsing (1995), which in turn is implied by strong
mixing which is necessary for the validity of the subsampling method. Our proofs
rely, however, only on condition (15) and the other conditions in Assumption 2.

Assumption 2. The sequence {Yt} is strictly stationary with symmetric univariate
marginal distributions which satisfy

nP ðY1=an 2 �Þ!v lð�Þ; ð12Þ

with the an defined by nP(|Y1| > an) fi 1 and the measure l given by

2lðdxÞ ¼ jjxj�j�1
1fx < 0gdxþ jx�j�11fx > 0gdx: ð13Þ

Moreover we assume that for every y > and t „ s

E½Yt1fjYtj � ygYs1fjYsj � yg� ¼ 0 ð14Þ

and

Xn
t¼1

dYt=an !
d X1

i¼1

X1
j¼1

dPiQij ; ð15Þ

with the limiting point process as in Theorem 2.3 and Corollary 2.4 of Davis and
Hsing (1995).

Remark 2. We assume a symmetric distribution to avoid lengthy mathematical
arguments and notation. The case of a nonsymmetric distribution could be
handled similarly as in Davis and Hsing (1995) by introducing appropriate
centering constants.

Theorem 2. If Assumption 2 holds, then

1

an

Xn
t¼1

Yt;
1

a2n

Xn
t¼1

Y 2
t

 !
!d ðS1; S2Þ; ð16Þ

where S1 is the distributional limit, as e fi 0, of
P1

i¼ 1

P1
j¼ 1 PiQij1fPijQijj > eg

[the existence of this limit was established in Theorem 3.1 of Davis and Hsing
(1995)] and W2 is equal in distribution to

P1
i¼ 1

P1
j¼ 1 P

2
i Q

2
ij. The random variable

S1 is symmetric j-stable and S2 is positive j/2-stable.

Under the additional assumption that the process is strong mixing, Theorem 2
implies the validity of the subsampling confidence intervals for l. Indeed, the
assumptions of Theorem 1 hold with

h ¼ l; ĥn ¼ �Xn; tn ¼ na�1
n ; un ¼ n1=2a�1

n : ð17Þ

More specifically, (6) holds because

221SUBSAMPLING MEAN OF HEAVY-TAILED DEPENDENT OBSERVATIONS

� Blackwell Publishing Ltd 2004



tnð�Xn � lÞ ¼ tn
n

Xn
t¼1

Yt ¼
1

an

Xn
t¼1

Yt !
d
S1

Since un�Yn ¼ n�1=2a�1
n

Pn
t¼ 1 Yt !

P
0, we have

u2nr̂
2
n ¼

u2n
n

Xn
t¼1

Y 2
t � ðun�YnÞ2 �

1

a2n

Xn
t¼1

Y 2
t !d S2

so (7) also holds. Relation (5) follows now from the joint convergence in
Theorem 2. To summarize, we have thus established the following result:

Theorem 3. If Assumption 2 is satisfied and the process {Yt} is strong mixing,
then the conclusions of Theorem 1 hold, with sn ¼ n1=2; h ¼ l; ĥn ¼ �Xn; r̂n
defined in (2) and J being the distribution of S1S�1=2

2 with S1 and S2 as in Theorem 2.

We now focus on the popular class of GARCH processes. The observations
Y1, …, Yn are said to follow a GARCH(p, q) model if they satisfy the
equations:

Yt ¼ rtet; ð18Þ

r2t ¼ xþ
Xp
j¼1

ajY 2
t�j þ

Xq
j¼1

bjr
2
t�j: ð19Þ

The innovations ek in (18) are i.i.d. and x, aj, bj are non-negative parameters.
Several authors formulated conditions under which a GARCH process is

strong mixing with geometric rate (see Maercker and Moser, 1999; Boussama,
2000; Basrak et al., 2002b; Carasco and Chen, 2002). These conditions are not
restrictive but are difficult to verify as they are often formulated in terms of
abstract quantities which are very difficult to estimate from the available
observations. Basrak et al. (2002a, 2002b) showed that under similar
conditions the finite dimensional distributions of of GARCH processes are
multivariate regularly varying, a property which implies Pareto-like tails
considered in this paper. The special cases of ARCH(1) and GARCH(1,1) are
considered in Davis and Mikosch (1998) and Mikosch and Stărică (2000),
respectively. Finally, notice that if the innovations et in (18) are symmetric,
then (14) holds.

The tail index j can be found as the solution of the equation
Eða1e21 þ b1Þj=2 ¼ 1 (see Theorem 2.1 in Mikosch and Stărică, 2000). This
equation can be solved analytically only in a few special cases; in general,
simulations must be used. The estimation of j from the observations Y1, …, Yn is
discussed in Berkes et al. (2003).

We conclude this section by recalling that McElroy and Politis (2002)
established analogs of Theorems 2 and 3 for linear sequences of the form
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Yt ¼
X1
j¼0

cjZt�j ð20Þ

with the weights cj satisfying X1
j¼0

jcjj < 1: ð21Þ

This model nests causal ARMA(p, q) and AR(1) specifications. The i.i.d.
innovations Zt are in the domain of attraction of a j-stable law with 1 < j < 2.

4. CHOICE OF THE BLOCK SIZE AND A SIMULATION STUDY

4.1. Choice of the block size

The application of the subsampling method requires a choice of the block size b;
the problem is very similar to the choice of the bandwidth in applying smoothing
or kernel methods. Unfortunately, the asymptotic requirements b fi 1 and
b/n fi 1 as n fi 1 give little guidance when faced with a finite sample.
Instead, we propose to exploit the semi-parametric nature of models treated in
this paper to estimate a ‘good’ block size in practice.

Our aim is to construct a 1 ) a confidence interval for the mean l, but the
methodology described below can be adapted to other parameters of interest as
well. In finite samples, a subsampling interval will typically not exhibit coverage
probability exactly equal to 1 ) a; moreover, the actual coverage probability
generally depends on the block size b. Indeed, one can think of the actual coverage
level 1 ) k of a subsampling confidence interval as a function of the block size b,
conditional on the underlying probability mechanism P – i.e. the fully specified
moving average or GARCH-type model in our application – and the nominal
confidence level 1 ) a. The idea is now to adjust the ‘input’ b in order to obtain
the actual coverage level close to the nominal one. Hence, one can consider the
block size calibration function g : b fi 1 ) k. If g(Æ) were known, one could
construct an ‘optimal’ confidence interval by finding ~b that minimizes
|g(b) ) (1 ) a)| and use ~b as the block size; note that |g(b) ) (1 ) a)| ¼ 0 may
not always have a solution.

Of course, the function g(Æ) depends on the underlying probability mechanism P
and is therefore unknown. We now propose a semi-parametric bootstrap method
to estimate it. The idea is that, in principle, we could simulate g(Æ) if P were known
by generating data of size n according to P and computing subsampling
confidence intervals for h for a number of different block sizes b. This process
is then repeated many times and for a given b one estimates g(b) as the fraction of
the corresponding intervals that contain the true parameter. The method we
propose is identical except that P is replaced by an estimate P̂n whose mean is
equal to �Xn, the sample mean of the original data.
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We suggest the use of the assumed model class in the estimation of P̂n. For
example, if a general moving average process is assumed, one would start by
determining the order of the process by a model selection criterion that is robust
against infinite variance (e.g. see Bhansali, 1988). (Note that even if the true
process has order infinity, for a fixed sample size n, a finite-order model should
serve as a good approximation.) Suppose the so-estimated order is q̂. Fitting an
MA(q̂) model to the zero-mean data Ŷt ¼ Xt � �Xn, by the Whittle estimator
technique of Mikosch et al. (1995), then yields estimated coefficients ĉ0; . . . ; ĉq̂
and centered residuals Ẑq̂þ 1; . . . ; Ẑn. We can now define P̂n as the law of the
following sequence, X �

1 ; . . . ; X
�
n (and the definition makes it obvious how to

generate such a sequence in practice):

• Draw Z�
�q̂þ 1; . . . ; Z

�
n i.i.d. from the empirical distribution of the centered

Ẑq̂þ 1; . . . ; Ẑn.
• Let Y �

t ¼
Pq̂

j¼ 0 ĉjZ
�
t� j, for t ¼ 1, …, n.

• Let X �
t ¼ �Xn þ Y �

t , for t ¼ 1, …, n.

Of course if a finite ARMA(p, q) model of known order is assumed, this model
should be used instead; the modifications are obvious.

To give another example, if a GARCH(1,1) model is assumed, one would
start again by computing the Ŷt ¼ Xt � �Xn. Then, the model parameters x, a1,
and b1 are estimated from the Ŷt by quasi-maximum likelihood, assuming
conditional normality. Using the estimated parameters, and resampling from the
centered and normalized residuals, one then builds up the Y �

t sequence. And in
the last step, the sample mean �Xn of the original data is added to them in order
to arrive at the X �

t sequence. Again, the probability mechanism that gives rise
to this sequence is P̂n.

Algorithm 1 describes how to pick the block size b, in practice.

Algorithm 1 (Choice of the Block Size)

Step 1. Fix a selection of reasonable block sizes b between limits blow and bup.
Step 2. Generate K pseudo sequences X �

k1; . . . ; X
�
kn, k ¼ 1, …, K, from an

estimated model P̂n. For each sequence, k ¼ 1, …, K, and for each b,
compute a subsampling confidence interval CIk,b for l.

Step 3. Compute ĝðbÞ ¼ #f�Xn 2 CIk; bg=K .
Step 4. Find the value ~b that minimizes jĝðbÞ � ð1 � aÞj.

Remark 3. There is no universal good block size. For each combination of
confidence level and confidence interval type (one-sided, equal-tailed, or
symmetric) a separate block size should be computed.

Remark 4. Algorithm 1 is, by an order of magnitude, more expensive than the
computation of the final subsampling interval once the block size has been
determined. While it is advisable to choose the selection of candidate block sizes
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in Step 2 as fine as possible (ideally, include every integer between blow and bup),
this may computationally not be feasible, especially in simulation studies. In those
instances, a coarse grid should be employed.

4.2. Simulation study

We now present a small simulation study. Two data generating processes (DGP)
are considered. The first DGP is an AR(1) model with stable innovations with
index j1 as in McElroy and Politis (2002), who present results only for fixed block
sizes:

Yt ¼ /Yt�1 þ Zt:

The second DGP is a GARCH(1,1) model with normal innovations. By choosing
positive values for x, a1 and b1 such that the equation Eða1e21 þ b1Þj=2 ¼ 1 has a
solution 1 < j < 2, we can generate GARCH(1,1) time series with finite mean
but infinite variance. We also consider the IGARCH model defined by the
requirement that a1 + b1 ¼ 1 because it is often used in practice (e.g. see Engle
and Bollerslev, 1986). This is a model with infinite variance but j ¼ 2, so it is not
covered by the theory developed in the present paper. We must therefore rely
solely on simulations to assess the performance of the subsampling method. A
theoretical investigation of this case would be difficult.

Without loss of generality, the true mean l is always set equal to zero. Of
interest is the coverage probability of two-sided subsampling confidence intervals
with nominal coverage levels 95% and 90%. We include two types of intervals in
the study, the two-sided equal-tailed interval and the two-sided symmetric
interval. The sample sizes considered are n ¼ 200 and n ¼ 500. To keep the
computational cost at a reasonable level in this simulation study, we choose
K ¼ 300 in Algorithm 1 and select a very coarse grid of three input block sizes.
(Note that when applying the method to a real-life data set one should choose
K ¼ 1000 and a finer grid.) As outlined above, we resample from the
(standardized and) centered residuals and do not use their distributional form.

The results, based on 2000 replications, are presented in Tables I–VI. We first
discuss the results for the AR(1) model with stable innovations. It is seen that
equal-tailed confidence intervals tend to undercover while symmetric confidence
intervals tend to overcover. Performance improves as j gets closer to 2. For
j ¼ 1.8 the data-dependent choice of block size yields coverages close to the
nominal level. On the other hand, for j ¼ 1.2 they are quite far away from the
nominal level even for n ¼ 500. Similar findings had been obtained by Politis et al.
(1999, Ch. 11) who made inference for the mean of i.i.d. random variables having
a stable distribution. It appears that very large sample sizes are needed when the
stable index is close to 1.

To understand intuitively why the results get worse as j approaches 1, note that
for such observations values very far away from the mean are very likely, a
realization of a series of this type will look like very small ‘oscillations’ around the
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mean with a few long ‘spikes’ that dominate the picture. To focus attention,
suppose the time series {Yt} has one large positive ‘outlier’. This means that �Y will
be large while most of the �Yn;b;t will be small because these subsamples will not
include the ‘outlier’. Thus, as the differences �Yn; b; t � �Y , which are equal to the
differences �Xn; b; t � �X , are small, the distribution Ln, b will be shifted too much to
the left and its right tail may not reach sufficiently far to zero. A reversed picture
would arise if we had one dominating negative ‘outlier’, and both cases would
result in an increased probability of not covering the mean. By contrast, for
symmetric confidence intervals we are looking at the distribution of j�Yn; b; t � �Y j
which, for the reasons explained above, tend to be shifted too much to the right
and away from zero, and hence its upper quantiles will be too large. If we add
these excessive quantiles to the sample mean, we will get too wide a confidence
interval and a resultant overcoverage. We note that these explanations are
intuitive and somewhat speculative and we present them with the hindsight of the
available simulation results.

We also note that the usual bootstrap procedure does not work even for i.i.d.
observations with infinite variance as realized by Athreya (1987). Instead,
resamples must have a size smaller than that of the original sample (see Arcones
and Giné, 1989, 1991).

The results are somewhat superior for the GARCH(1,1) model. Also here
they improve as j approaches 2 and tend to be better for the symmetric
intervals. But even for j � 1.19, coverages are reasonable for the sample sizes

TABLE I

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is an AR(1) Model with Stable

Innovations and the Sample Size is n ¼ 200. ET Stands for Equal-tailed and SYM Stands

for Symmetric. The Data-dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 10 b ¼ 30 b ¼ 50 ~b

/ ¼ 0.5; j ¼ 1.2
ET 0.90 0.82 0.78 0.72 0.81
SYM 0.90 0.98 0.96 0.91 0.97
ET 0.95 0.88 0.80 0.74 0.88
SYM 0.95 0.99 0.97 0.94 0.99

b ¼ 10 b ¼ 25 b ¼ 40 ~b

/ ¼ 0.5; j ¼ 1.5
ET 0.90 0.87 0.82 0.77 0.86
SYM 0.90 0.96 0.93 0.90 0.94
ET 0.95 0.92 0.85 0.80 0.92
SYM 0.95 0.99 0.96 0.93 0.98

b ¼ 10 b ¼ 20 b ¼ 30 ~b

/ ¼ 0.5; j ¼ 1.8
ET 0.90 0.90 0.86 0.82 0.89
SYM 0.90 0.92 0.88 0.85 0.90
ET 0.95 0.95 0.90 0.85 0.95
SYM 0.95 0.97 0.94 0.91 0.95
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TABLE III

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is a GARCH(1,1) Model with Normal

Innovations and the Sample Size is n ¼ 200. ET Stands for Equal-tailed and SYM Stands for

Symmetric. The (Approximate) Index j was Determined by Numerical Simulation. The Data-

dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 10 b ¼ 35 b ¼ 60 ~b

x ¼ 1, a1 ¼ 1.3, b1 ¼ 0.05; j � 1.19
ET 0.90 0.89 0.82 0.75 0.88
SYM 0.90 0.98 0.95 0.90 0.93
ET 0.95 0.94 0.86 0.79 0.94
SYM 0.95 0.99 0.97 0.93 0.97

b ¼ 10 b ¼ 35 b ¼ 60 ~b

x ¼ 1, a1 ¼ 1.1, b1 ¼ 0.1; j � 1.43
ET 0.90 0.90 0.84 0.76 0.90
SYM 0.90 0.97 0.95 0.90 0.93
ET 0.95 0.95 0.87 0.79 0.95
SYM 0.95 0.99 0.97 0.93 0.97

b ¼ 10 b ¼ 30 b ¼ 50 ~b

x ¼ 1, a1 ¼ 0.9, b1 ¼ 0.15; j � 1.83
ET 0.90 0.90 0.84 0.78 0.90
SYM 0.90 0.95 0.91 0.85 0.90
ET 0.95 0.95 0.86 0.80 0.95
SYM 0.95 0.99 0.95 0.90 0.95

TABLE II

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is an AR(1) Model with Stable

Innovations and the Sample Size is n ¼ 500. ET Stands for Equal-tailed and SYM Stands

for Symmetric. The Data-dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 20 b ¼ 80 b ¼ 140 ~b

/ ¼ 0.5; j ¼ 1.2
ET 0.90 0.80 0.75 0.70 0.80
SYM 0.90 0.98 0.95 0.90 0.96
ET 0.95 0.85 0.77 0.72 0.85
SYM 0.95 0.99 0.97 0.93 0.98

b ¼ 20 b ¼ 60 b ¼ 100 ~b

/ ¼ 0.5; j ¼ 1.5
ET 0.90 0.85 0.81 0.77 0.85
SYM 0.90 0.95 0.92 0.88 0.93
ET 0.95 0.89 0.83 0.79 0.89
SYM 0.95 0.98 0.95 0.92 0.97

b ¼ 20 b ¼ 50 b ¼ 80 ~b

/ ¼ 0.5; j ¼ 1.8
ET 0.90 0.90 0.85 0.80 0.89
SYM 0.90 0.92 0.88 0.85 0.90
ET 0.95 0.93 0.88 0.84 0.93
SYM 0.95 0.96 0.93 0.90 0.95
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TABLE V

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is a GARCH(1,1) Model with Normal

Innovations and the Sample Size is n ¼ 200. ET Stands for Equal-tailed and SYM Stands for

Symmetric. The Data-dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 10 b ¼ 20 b ¼ 30 ~b

x ¼ 1, a1 ¼ 0.1, b1 ¼ 0.9; j ¼ 2
ET 0.90 0.91 0.88 0.85 0.89
SYM 0.90 0.91 0.89 0.86 0.90
ET 0.95 0.96 0.92 0.89 0.95
SYM 0.95 0.97 0.94 0.92 0.95

b ¼ 10 b ¼ 30 b ¼ 50 ~b

x ¼ 1, a1 ¼ 0.5, b1 ¼ 0.5; j ¼ 2
ET 0.90 0.91 0.85 0.78 0.90
SYM 0.90 0.95 0.91 0.85 0.90
ET 0.95 0.96 0.89 0.83 0.95
SYM 0.95 0.99 0.95 0.90 0.95

b ¼ 10 b ¼ 25 b ¼ 40 ~b

x ¼ 1, a1 ¼ 0.9, b1 ¼ 0.1; j ¼ 2
ET 0.90 0.91 0.88 0.83 0.90
SYM 0.90 0.96 0.94 0.90 0.91
ET 0.95 0.95 0.90 0.86 0.95
SYM 0.95 0.98 0.96 0.94 0.95

TABLE IV

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is a GARCH(1,1) Model with Normal

Innovations and the Sample Size is n ¼ 500. ET Stands for Equal-tailed and SYM Stands for

Symmetric. The (Approximate) Index j was Determined by Numerical Simulation. The Data-

dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 20 b ¼ 85 b ¼ 150 ~b

x ¼ 1, a1 ¼ 1.3, b1 ¼ 0.05; j�1.19
ET 0.90 0.86 0.82 0.73 0.86
SYM 0.90 0.97 0.95 0.90 0.92
ET 0.95 0.93 0.85 0.76 0.93
SYM 0.95 0.99 0.97 0.93 0.96

b ¼ 20 b ¼ 60 b ¼ 100 ~b

x ¼ 1, a1 ¼ 1.1, b1 ¼ 0.1; j�1.43
ET 0.90 0.88 0.85 0.80 0.87
SYM 0.90 0.97 0.95 0.90 0.91
ET 0.95 0.93 0.87 0.83 0.93
SYM 0.95 0.99 0.97 0.95 0.96

b ¼ 20 b ¼ 60 b ¼ 100 ~b

x ¼ 1, a1 ¼ 0.9, b1 ¼ 0.15; j�1.83
ET 0.90 0.89 0.85 0.80 0.88
SYM 0.90 0.95 0.91 0.88 0.90
ET 0.95 0.93 0.88 0.83 0.93
SYM 0.95 0.98 0.95 0.91 0.95
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considered, in contrast to the linear case. Note the very good coverages for
j ¼ 2 also, the case of an IGARCH model, not covered by our theory. The
data-dependent method to pick the block size is seen to perform very well and is
comparable with the ‘optimal’ fixed block size, which would be unknown in
practice.

Our intuition as to why the results are superior for the GARCH(1,1) model is
that realizations of such models do not exhibit isolated spikes but rather ‘clusters
of high volatility’, so there will be more subsamples with large sample means in
the presence of a large overall sample mean, and consequently the differences
�Xn; b; t � �X will not be ‘too positive large’ or ‘too negative large ’ ‘too often’.

APPENDIX: MATHEMATICAL PROOFS

Proof of Theorem 2. As in the proof of Theorem 3.1 in Davis and Hsing (1995), note
that for any e > 0 and real t1, t2 the map

Te :
X
i

dxi 7!
X
i

ðt1xi þ t2x2i Þ1fjxij > eg ðA:1Þ

is continuous with respect to the point process
P1

i¼ 1

P1
j¼ 1 dPiQij . Therefore by (15) and the

continuous mapping theorem, we obtain

TABLE VI

Estimated Coverage Probabilities of Nominal 90% and 95% Subsampling Confidence

Intervals Based on 2000 Replications. The DGP is a GARCH(1,1) Model with Normal

Innovations and the Sample Size is n ¼ 500. ET Stands for Equal-tailed and SYM Stands for

Symmetric. The Data-dependent Choice of Block Size is Denoted by ~b

Type Target b ¼ 20 b ¼ 50 b ¼ 80 ~b

x ¼ 1, a1 ¼ 0.1, b1 ¼ 0.9; j ¼ 2
ET 0.90 0.90 0.88 0.84 0.89
SYM 0.90 0.92 0.90 0.87 0.90
ET 0.95 0.94 0.90 0.87 0.94
SYM 0.95 0.96 0.94 0.91 0.95

b ¼ 20 b ¼ 70 b ¼ 200 ~b

x ¼ 1, a1 ¼ 0.5, b1 ¼ 0.5; j ¼ 2
ET 0.90 0.90 0.85 0.80 0.90
SYM 0.90 0.94 0.90 0.86 0.91
ET 0.95 0.94 0.88 0.83 0.94
SYM 0.95 0.98 0.95 0.91 0.96

b ¼ 20 b ¼ 60 b ¼ 100 ~b

x ¼ 1, a1 ¼ 0.9, b1 ¼ 0.1; j ¼ 2
ET 0.90 0.89 0.85 0.80 0.89
SYM 0.90 0.93 0.90 0.86 0.90
ET 0.95 0.93 0.88 0.83 0.93
SYM 0.95 0.96 0.94 0.90 0.95
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t1S1nðeÞ þ t2S2nðeÞ!
d
t1S1ðeÞ þ t2S2ðeÞ; ðA:2Þ

where

S1nðeÞ ¼ a�1
n

Xn
t¼1

Yt1fjYtj > eang; S2nðeÞ ¼ a�2
n

Xn
t¼1

Y 2
t 1fjYtj > eang ðA:3Þ

and

S1ðeÞ ¼
X1
i¼1

X1
j¼1

PiQij1fPijQijj > eg; S2ðeÞ ¼
X1
i¼1

X1
j¼1

P 2
i Q

2
ij1fPijQijj > eg: ðA:4Þ

The remainder of the proof relies on Theorem 3.2 of Billingsley (1999). We will show
that there are random variables S1 and S2 such that (S1(e), S2(e)) converges in distribution
to (S1, S2), as e fi 0, and that for any r > 0

lim
e!0

lim sup
n!1

P ½jS1n � S1nðeÞj > r� ¼ 0 ðA:5Þ

and

lim
e!0

lim sup
n!1

P ½jS2n � S2nðeÞj > r� ¼ 0; ðA:6Þ

where

S1n ¼
1

an

Xn
t¼1

Yt; S2n ¼
1

a2n

Xn
t¼1

Y 2
t : ðA:7Þ

Finally, we will identify the distributions of S1 and S2.
Denote by

/eðt1; t2Þ ¼ E exp½it1S1ðeÞ þ it2S2ðeÞ�

the joint characteristic function of S1(e) and S2(e). We will show that /e(t1, t2) is uniformly
Cauchy on the set {(t1, t2) : max(|t1|, |t2|) £ 1}. This implies that /e(t1, t2) converges

pointwise to a function which is continuous at the origin, so by the multivariate continuity
theorem (see e.g. Remark on p. 147 of Durrett, 1991), there exist random variables S1 and
S2 such that (S1(e), S2(e)) converges in distribution to (S1, S2), as e fi 0. Similarly as in
Davis and Hsing (1995) we write

/vðt1; t2Þ � /uðt1; t2Þ ¼: E1ðt1; t2; u; v; dÞ þ E2ðt1; t2; u; v; dÞ ¼: E1 þ E2; ðA:8Þ

where

E1 ¼ E expðit1S1ðvÞ þ it2S2ðvÞÞ 1� expðit1ðS1ðuÞ � S1ðvÞÞ þ it2ðS2ðuÞ � S2ðvÞÞÞ½ �f
	1fmaxðjS1ðuÞ � S1ðvÞj; jS2ðuÞ � S2ðvÞjÞ � dgg;

E2 ¼ E expðit1S1ðvÞ þ it2S2ðvÞÞ 1� expðit1ðS1ðuÞ � S1ðvÞÞ þ it2ðS2ðuÞ � S2ðvÞÞÞ½ �f
	1fmaxðjS1ðuÞ � S1ðvÞj; jS2ðuÞ � S2ðvÞjÞ > dgg:

Fix g > 0 and choose d so that E1 < g/2 provided max(|t1|, |t2|) £ 1. Observe that

jE2j � 2P ½jS1ðuÞ � S1ðvÞj > d� þ 2P ½jS2ðuÞ � S2ðvÞj > d�:

Davis and Hsing (1995, p. 897) verified that for sufficiently small e > 0
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sup
0<u<v<e

2P ½jS1ðuÞ � S1ðvÞj > d� < g=4; ðA:9Þ

provided that for each r > 0

lim
e!0

lim sup
n!1

P a�1
n j
Xn
t¼1

Yt1fjYjj � eangj > r

" #
¼ 0: ðA:10Þ

Note that condition (A.10) follows from (12) and (14) of Assumption 2. Indeed,

var a�1
n

Xn
t¼1

Yt1fjYjj � eang
" #

¼ a�2
n nE½Y 2

1 1fjY1j � eang�� 2ð2�jÞ�1e2nP ½jY1j> any�

� 2ð2�jÞ�1e2�j; as n!1: ðA:11Þ

In addition to (A.9) we must show that for sufficiently small e

sup
0<u<v<e

2P ½jS2ðuÞ � S2ðvÞj > d� < g
4
: ðA:12Þ

Relation (A.12) follows from Lemma 1 below.
Relation (A.5) is the same as (A.10) and has already been verified, whereas relation (A.6)

follows from (A.11).
We have established that (16) holds for some random variables S1 and S2. Applying the

projection onto the first coordinate we obtain the marginal distribution of S1 from

Theorem 3.1 of Davis and Hsing (1995). Similarly, setting

Wi ¼
X1
j¼1

Q2
ij;

and using the notation introduced in Lemma 1, we get the representation

X1
i¼1

X1
j¼1

P 2
i Q

2
ij ¼ c2=j

X1
i¼1

C�j=2
i Wi with EjWijj=2 < 1:

The series
P1

i¼ 1 C
�j=2
i Wi converges absolutely a.s. (see e.g. Remark 4 on p. 29 of

Samorodnitsky and Taqqu, 1994), so

S2ðeÞ!
a:s:X1

i¼1

X1
j¼1

P 2
i Q

2
ij:

Lemma 1. Under Assumption 2, for each d > 0,

lim
u;v!0

P
X1
i¼1

X1
j¼1

C�2=j
i Q2

ij1fu < C�1=j
i jQijj � vg > d

" #
¼ 0;

where Ci ¼
Pi

k¼ 1 nk and the nk are i.i.d. exponential with mean 1. [Recall that we can take
Pi ¼ c1=jC�1=j

i with the constant c defined in Theorem 2.3 of Davis and Hsing (1995).] where
Ci ¼

Pi
k¼ 1 nk and the nk are iid exponential with mean 1. [Recall that we can take

Pi ¼ c1=jC�1=j
i with the constant c defined in Theorem 2.3 of Davis and Hsing (1995).]

Proof. It is well known that in the series representations of the type considered in the
present lemma, the term involving C1 dominates the remaining terms (see e.g. the
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‘Discussion’ on pp. 26–8 of Samorodnitsky and Taqqu, 1994). We will therefore first show
that

lim
u;v!0

P C�2=j
1

X1
j¼1

Q2
1j1fu < C�1=j

1 jQijj � vg > d

" #
¼ 0 ðA:13Þ

and then verify that

lim
u;v!0

P
X1
i¼2

X1
j¼1

C�2=j
i Q2

ij1fu < C�1=j
i jQijj � vg > d

" #
¼ 0: ðA:14Þ

To prove relation (A.13), it suffices to show that

lim
u;v!0

P
X1
j¼1

jQ1jjj1fC1uj < jQ1jjj � C1vjg > C1d

" #
¼ 0: ðA:15Þ

The probability in (A.15) is equal toZ 1

0

P
X1
j¼1

jQ1jjj1fxuj < jQ1jjj � xvjg > xd

" #
e�x dx;

so by the dominated convergence theorem it is enough to check that that for any fixed
x > 0

lim
u;v!0

P
X1
j¼1

jQ1jjj1fxuj < jQ1jjj � xvjg
" #

¼ 0

which in turn follows from

lim
u;v!0

X1
j¼1

E jQ1jjj1fxuj < jQ1jjj � xvjg
� �

¼ 0: ðA:16Þ

By Theorem 2.6 of Davis and Hsing (1995),
P1

j¼ 1 EjQ1jjj < 1, so relation (A.16) follows

from the dominated convergence theorem.
To verify (A.14), observe that if for i ‡ 2, EC�2=j

i < 1 and that in this case
EC�2=j

i ¼ Cði � 2=jÞ=CðiÞ � i�2=j. Therefore, since Q2
ij � jQijjj, we have

E
X1
i¼2

X1
j¼1

C�2=j
i Q2

ij

�����
����� �

X1
i¼2

EC�2=j
i

 ! X1
j¼1

EQ2
1j

 !
¼ O

X1
i¼2

i�2=j

 !
¼ Oð1Þ:

Thus relation (A.14) follows from Markov’s inequality and the dominated convergence

theorem. QED
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NOTES

1. The stable innovations were generated using software of John Nolan; see the
webpage http://academic2.american.edu/�jpnolan/
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