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This document provides additional results for the authors’ paper “A Practical Two-
Step Method for Testing Moment Inequalities.”

S.1. THE GAUSSIAN PROBLEM

IN THIS SECTION, we assume that W = (W1� � � � �Wk)
′ ∼ P ∈ P = {N(μ�Σ) :

μ ∈ R
k} for a known covariance matrix Σ. In this setting, we may equivalently

describe the problem of testing (1) as the problem of testing

H0 :μ ∈ Ω0 versus H1 :μ ∈ Ω1�(S.1)

where

Ω0 = {μ :μj ≤ 0 for 1 ≤ j ≤ k}(S.2)

and Ω1 =R
k \Ω0. Here, it is possible to obtain some exact results, so we focus

on tests φn =φn(W1� � � � �Wn) of (S.1) that satisfy

sup
μ∈Ω0

EP[φn] ≤ α(S.3)

for some prespecified value of α ∈ (0�1) rather than (3). In Section S.1.1 below,
we first establish an upper bound on the power function of any test of (S.1) that
satisfies (S.3) by deriving the most powerful test against any fixed alternative.
We then describe our two-step procedure for testing (S.1) in Section S.1.2.
Proofs of all results can be found in the Supplement Appendix.

Before proceeding, note that, by sufficiency, we may assume without loss of
generality that n = 1. Hence, the data consist of a single random variable W
distributed according to the multivariate Gaussian distribution with unknown
mean vector μ ∈ R

k and known covariance matrix Σ. For 1 ≤ j ≤ k, we denote
by Wj the jth component of W and by μj the jth component of μ. Note further
that, because Σ is assumed known, we may assume without loss of generality
that its diagonal consists of ones; otherwise, we can simply replace Wj by Wj

divided by its standard deviation.

S.1.1. Power Envelope

In this subsection only, we assume further that Σ is invertible.
Below, we calculate the most powerful (MP) test of μ ∈ Ω0 satisfying (S.3)

against a fixed alternative μ = a, where a ∈ Ω1. The power of such a test, as
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a function of a, provides an upper bound on the power function of any test of
(S.1) satisfying (S.3) and is, therefore, referred to as the power envelope func-
tion. In Andrews and Barwick (2012a, 2012b), numerical evidence was given
to justify their conjecture of how to calculate the MP test of μ ∈ Ω0 satisfying
(S.3) against μ = a and hence how to calculate the power envelope function.
Theorem S.1 below verifies the claim made by Andrews and Barwick (2012a).
Note that the power of the MP test of μ ∈ Ω0 satisfying (S.3) against μ= a de-
pends on a through its “distance” from Ω0 in terms of the Mahanolobis metric
d(x� y)= √

(x− y)′Σ−1(x− y), that is,

inf
μ∈Ω0

√{
(μ− a)′Σ−1(μ− a)

}
�(S.4)

THEOREM S.1: Let W be multivariate normal with unknown mean vector μ
and known covariance matrix Σ. For testing μ ∈ Ω0 against the fixed alternative
μ = a, where a ∈ Ω1, the MP test satisfying (S.3) rejects for large values of T =
W ′Σ−1(a− μ̄), where

μ̄= arg min
μ∈Ω0

(μ− a)′Σ−1(μ− a)�

In fact, the distribution that puts mass 1 at the point μ̄ is least favorable, and the
critical value at level α can be determined so that

Pμ̄{T > c1−α} = α�

Under μ= μ̄,

E[T ] = μ̄′Σ−1(a− μ̄)�

Var[T ] = (μ̄− a)′Σ−1(μ̄− a)�

so

c1−α = μ̄′Σ−1(a− μ̄)+ z1−α

√
(μ̄− a)′Σ−1(μ̄− a)�

where z1−α is the 1−α quantile of the standard normal distribution. Moreover, the
power of this test is given by

1 −�
(
z1−α −

√
(μ̄− a)′Σ−1(μ̄− a)

)
�

where �(·) denotes the standard normal c.d.f.

Since the most powerful tests vary as a function of the vector a, it follows that
there is no uniformly most powerful test. Furthermore, as argued in Lehmann
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(1952), the only unbiased test is the trivial test whose power function is con-
stant and equal to α. Invariance considerations do not appear to lead to any
useful simplification of the problem either; also see Andrews (2012) for some
negative results concerning similarity.

REMARK S.1: Note that T = W ′Σ−1(a−μ̄) in Theorem S.1 is a linear combi-
nation

∑
1≤j≤k cjWj of the W1� � � � �Wk. Even if all components of a are positive,

depending on Σ, μ̄ may not equal zero. One might, therefore, suspect that the
test described in Theorem S.1 does not satisfy (S.3). However, the proof of the
theorem shows that if μ̄ has any components that are negative, then the corre-
sponding coefficient of Wj in T must be zero; components of μ̄ that are zero
have corresponding coefficient of Wj in T that are nonnegative.

S.1.2. A Two-Step Procedure

There are, of course, many ways in which to construct a test of (S.1) that
controls size at level α. For instance, given any test statistic T = T(W1� � � � �Wk)
that is nondecreasing in each of its arguments, we may consider a test that
rejects H0 for large values of T . Note that, for any given fixed critical value c,
Pμ{T(W1� � � � �Wk) > c} is a nondecreasing function of μ. Therefore, if c = c1−α

is chosen to satisfy

P0

{
T(W1� � � � �Wk) > c1−α

} ≤ α�

then the test that rejects H0 when T > c1−α is a level α test. A reasonable choice
of test statistic T is the likelihood ratio statistic, which is given by

T = inf
μ∈Ω0

{
(W −μ)′Σ−1(W −μ)

}
�(S.5)

By analogy with (S.4) and Theorem S.1, rejecting for large values of the “dis-
tance” of W to Ω0 is intuitively appealing. It is easy to see that such a test
statistic T is nondecreasing in each of its arguments.

A second choice of monotone test statistic is the “modified method of mo-
ments” test statistic

T =
k∑

j=1

W 2
j · 1{Wj > 0}�

A further choice of monotone test statistic is the maximal order statistic
T = max{W1� � � � �Wk}. For any given choice of monotone test statistic, a crit-
ical value c1−α may be determined as the 1 − α quantile of the distribution
of T when (W1� � � � �Wk)

′ is multivariate normal with mean 0 and covariance
matrix Σ. Unfortunately, as k increases, so does the critical value, which can
make it difficult to have any reasonable power against alternatives. The main
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idea of our procedure, as well as that of Andrews and Barwick (2012a), is to
essentially remove from consideration those μj that are “negative.” If we can
eliminate such μj from consideration, then we may use a smaller critical value
with the hopes of increased power against alternatives.

Using this reasoning as a motivation, we may use a confidence region to help
determine which μj are “negative.” To this end, let M(1 −β) denote an upper
confidence rectangle for all the μj simultaneously at level 1 − β. Specifically,
let

M(1 −β) =
{
μ ∈ R

k : max
1≤j≤k

(μj −Wj)≤K−1(1 −β)
}

(S.6)

= {
μ ∈R

k :μj ≤Wj +K−1(1 −β) for all 1 ≤ j ≤ k
}
�

where K−1(1 −β) is the 1 −β quantile of the distribution

K(x) = Pμ

{
max
1≤j≤k

(μj −Wj)≤ x
}
�

Note that K(·) depends only on the dimension k and the underlying covariance
matrix Σ. In particular, it does not depend on the μj , so it can be computed
under the assumption that all μj = 0. By construction, we have, for any μ ∈R

k,
that

Pμ

{
μ ∈ M(1 −β)

} = 1 −β�

The idea is that, with probability at least 1 − β, we may assume that, under
the null hypothesis, μ in fact will lie in Ω0 ∩ M(1 − β) rather than just Ω0.
Instead of computing the critical value under μ = 0, the largest value of μ
in Ω0, we may, therefore, compute the critical value under μ̃, the “largest”
value of μ in the (data-dependent) set Ω0 ∩M(1 −β). It is straightforward to
determine μ̃ explicitly. In particular, μ̃ has jth component equal to

μ̃j = min
{
Wj +K−1(1 −β)�0

}
�(S.7)

But, to account for the fact that μ may not lie in M(1 −β) with probability at
most β, we reject H0 when T(W1� � � � �Wk) exceeds the 1−α+β quantile of the
distribution of T under μ̃ rather than the 1−α quantile of the distribution of T
under μ̃. Such an adjustment is in the same spirit as the “size correction factor”
in Andrews and Barwick (2012a), but requires no computation to determine;
see Remark S.5 for further discussion. The following theorem establishes that
this test of (S.1) satisfies (S.3).

THEOREM S.2: Let T(W1� � � � �Wk) denote any test statistic that is nondecreas-
ing in each of its arguments. For μ ∈R

k and γ ∈ (0�1), define

b(γ�μ)= inf
{
x ∈ R :Pμ

{
T(W1� � � � �Wk)≤ x

} ≥ γ
}
�
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Fix 0 ≤ β ≤ α. The test of (S.1) that rejects H0 if T > b(1 − α + β� μ̃) satisfies
(S.3).

REMARK S.2: Although we are unable to establish that the left-hand side of
(S.3) equals α, we are able to establish that the left-hand side of (S.3) is at least
α−β. To see this, simply note that b(1 − α+β� μ̃) ≤ b(1 − α+β�0), so

sup
μ∈Ω0

Pμ

{
T > b(1 − α+β� μ̃)

} ≥ P0

{
T > b(1 − α+β�0)

} = α−β�

REMARK S.3: As emphasized above, an attractive feature of our procedure
is that the “largest” value of μ in Ω0 ∩ M(1 − β) may be determined explic-
itly. This follows from our particular choice of initial confidence region for
μ, namely, from its rectangular shape. If, for example, we had instead chosen
M(1 −β) to be the usual confidence ellipsoid, then there might not even be a
“largest” value of μ in Ω0 ∩M(1 −β), and one would have to compute

sup
μ∈Ω0∩M(1−β)

b(1 − α+β�μ)�

This problem persists even if the initial confidence region is chosen by invert-
ing tests based on the likelihood ratio statistic (S.5), despite the resulting con-
fidence region being monotone decreasing in the sense that, if x lies in the
region, then so does y whenever yj ≤ xj for all 1 ≤ j ≤ k.

REMARK S.4: In some cases, it may be desired to test the null hypothesis
that μ ∈ Ω̃0, where

Ω̃0 = {μ :μj = 0 for j ∈ J1�μj ≤ 0 for j ∈ J2}
and J1 and J2 form a partition of {1� � � � �k}. Such a situation may be accommo-
dated in the framework described above simply by writing μj = 0 as μj ≤ 0 and
−μj ≤ 0, but the resulting procedure may be improved upon by exploiting the
additional structure of the null hypothesis. In particular, Theorem S.2 remains
valid if T is only required to be nondecreasing in its |J2| arguments with j ∈ J2

and μ̃ is replaced by the vector whose jth component is equal to 0 for j ∈ J1

and min{Wj + K̃−1(1 −β)�0} for j ∈ J2, where K̃−1(1 −β) is the 1 −β quantile
of the distribution

K̃(x) = Pμ

{
max
j∈J2

(μj −Wj)≤ x
}
�

REMARK S.5: In the context of the Gaussian model considered in this sec-
tion, it is instructive for comparison purposes to consider a parametric coun-
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terpart to the nonparametric method of Andrews and Barwick (2012a). To de-
scribe their approach, fix κ < 0. Let μ̂ be the k-dimensional vector whose jth
component equals zero if Wj > κ and −∞ otherwise (or, for practical purposes,
some very large negative number). Define the “size correction factor”

η̂= inf
{
η> 0 : sup

μ∈Ω0

Pμ

{
T > b(1 − α� μ̂)+η

} ≤ α
}
�(S.8)

The proposed test of (S.1) then rejects H0 if T > b(1 − α� μ̂) + η̂. The addi-
tion of η̂ is required because, in order to allow the asymptotic framework to
better reflect the finite-sample situation, the authors did not allow κ to tend
to zero with the sample size n. Note that the computation of η̂ as defined in
(S.8) is complicated by the fact that there is no explicit solution to the supre-
mum in (S.8). One must, therefore, resort to approximating the supremum
in (S.8) in some fashion. Andrews and Barwick (2012a) proposed to approxi-
mate supμ∈Ω0

Pμ{T > b(1 − α� μ̂) + η} with supμ∈Ω̃0
Pμ{T > b(1 − α� μ̂) + η},

where Ω̃0 = {−∞�0}k. Andrews and Barwick (2012a) provided an extensive
simulation study, but no proof, in favor of this approximation. Even so, the
problem remains computationally demanding and, as a result, the authors only
considered situations in which k ≤ 10 and α = 0�05. In contrast, our two-step
procedure is simple to implement even when k is large, as it does not require
optimization over Ω0, and has proven size control for any value of α (thereby
allowing, among other things, one to compute a p-value as the smallest value
of α for which the null hypothesis is rejected). In the nonparametric setting
considered below, where the underlying covariance matrix is also unknown,
further approximations are required to implement the method of Andrews and
Barwick (2012a). See Remark 2.6 for related discussion.

REMARK S.6: Let φα�β be the test as described in Theorem S.2. Similarly to
the approach of Andrews and Barwick (2012a), one can determine β to max-
imize (weighted) average power. In the parametric context considered in this
section, one can achieve this exactly modulo simulation error. To describe how,
let μ1� � � � �μd be alternative values in Ω1, and let w1� � � � �wd be nonnegative
weights that add up to 1. Then, β can be chosen to maximize

d∑
i=1

wiEμi
[φα�β]�

This can be accomplished by standard simulation from N(μi�Σ) and discretiz-
ing β between 0 and α. The drawback here is the specification of the μi and wi.
In our simulations, we have found that a reasonable choice is simply β= α/10.
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SUPPLEMENT APPENDIX

PROOF OF THEOREM S.1: For 1 ≤ j ≤ k, let ej be the jth unit basis vector
having a 1 in the jth coordinate. To determine μ̄ for the given a, we must
minimize

f (μ) = (μ− a)′Σ−1(μ− a)

over μ ∈Ω0. Note that

∂f (μ)

∂μj

= 2(μ− a)′Σ−1ej�

First of all, we claim that the minimizing μ̄ cannot have all of its components
negative. This follows because, if it did, the line joining the claimed solution
and a itself would intersect the boundary of Ω0 at a point with a smaller value
of f (μ). Therefore, the solution μ̄ must have at least one zero entry.

Suppose that μ̄ is the solution and that μ̄j = 0 for j ∈ J, where J is some
nonempty subset of {1� � � � �k}. Let fJ(μ) = f (μ) viewed as a function of μj

with j /∈ J and with μj = 0 for j ∈ J. Then, the solution to the components
μ̄j with j /∈ J (if there are any) must be obtained by setting partial derivatives
equal to zero, leading to the solution of the equations

(μ− a)′Σ−1ej = 0 ∀j /∈ J

with μj fixed at 0 for j ∈ J. Now, the MP test for testing ū against a rejects for
large values of W ′Σ−1(a− ū), which is a linear combination of W1� � � � �Wk. The
coefficient multiplying Wj is e′

jΣ
−1(a− ū). But for j /∈ J, this coefficient is zero

by the gradient calculation above.
Next we claim that, for j = 1� � � � �k, the coefficient of Wj is nonnegative.

Fix j. Consider f (μ) as a function of μj alone with the other components fixed
at the claimed solution for μ̄. If the derivative with respect to μj at 0 were
positive, that is,

(μ̄− a)′Σ−1ej > 0�

then the value of μj could decrease and result in a smaller minimizing value
for f (μ). Therefore, it must be the case that

(a− μ̄)′Σ−1ej ≥ 0;
the left-hand side is precisely the coefficient of Wj .

Thus, the solution μ̄ has the property that, for testing μ̄ against a, the MP
test rejects for large

∑
1≤j≤k cjWj such that μ̄j = 0 implies cj ≥ 0 and μ̄j < 0 im-

plies cj = 0. This property allows us to prove that μ̄ is least favorable. Indeed,
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if the critical value c is determined so that the test is level α under μ̄, then for
μ ∈ Ω0,

Pμ

{∑
j∈J

cjWj > c

}
≤ P0

{∑
j∈J

cjWj > c

}
= Pμ̄

{∑
j∈J

cjWj > c

}
�

The first inequality follows by monotonicity and the second one by the fact
that μ̄j = 0 for j ∈ J. The least favorable property now follows by Lehmann
and Romano (2005, Theorem 3.8.1).

The remainder of the proof is obvious. Q.E.D.

PROOF OF THEOREM S.2: First note that b(γ�μ) is nondecreasing in μ,
since T is nondecreasing in its arguments. Fix any μ with μi ≤ 0. Let E be
the event that μ ∈ M(1 −β). Then, the Type I error satisfies

Pμ{reject H0} ≤ Pμ

{
Ec

} + Pμ

{
E ∩ {reject H0}

}
= β+ Pμ

{
E ∩ {reject H0}

}
�

But when the event E occurs and H0 is rejected—so that T > b(1 − α+β� μ̃),
then the event T > b(1 − α + β�μ) must occur, since b(1 − α + β�μ) is non-
decreasing in μ and μ ≤ μ̃ when E occurs. Hence, the Type I error is bounded
above by

β+ Pμ

{
T > b(1 − α+β�μ)

} ≤ β+ (
1 − (1 − α+β)

) = α� Q.E.D.
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