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STEPWISE MULTIPLE TESTING AS FORMALIZED DATA SNOOPING

BY JOSEPH P. ROMANO AND MICHAEL WOLF1

In econometric applications, often several hypothesis tests are carried out at once.
The problem then becomes how to decide which hypotheses to reject, accounting for
the multitude of tests. This paper suggests a stepwise multiple testing procedure that as-
ymptotically controls the familywise error rate. Compared to related single-step meth-
ods, the procedure is more powerful and often will reject more false hypotheses. In
addition, we advocate the use of studentization when feasible. Unlike some stepwise
methods, the method implicitly captures the joint dependence structure of the test sta-
tistics, which results in increased ability to detect false hypotheses. The methodology
is presented in the context of comparing several strategies to a common benchmark.
However, our ideas can easily be extended to other contexts where multiple tests oc-
cur. Some simulation studies show the improvements of our methods over previous
proposals. We also provide an application to a set of real data.

KEYWORDS: Bootstrap, data snooping, familywise error, multiple testing, stepwise
method.

If you can do an experiment in one day, then in 10 days you can test 10 ideas, and maybe
one of the 10 will be right. Then you’ve got it made. Solomon H. Snyder

1. INTRODUCTION

MUCH EMPIRICAL RESEARCH in economics and finance inevitably involves
data snooping. Unlike in the physical sciences, it is typically impossible to de-
sign replicable experiments. As a consequence, existing data sets are analyzed
not once but repeatedly. Often, many strategies are evaluated on a single data
set to determine which strategy is “best” or, more generally, which strategies
are “better” than a certain benchmark. A benchmark can be fixed or random.
For example, in the problem of determining whether a certain trading strat-
egy has a positive capital asset pricing model (CAPM) alpha, the benchmark
is fixed at zero.2 On the other hand, in the problem of determining whether a
trading strategy beats a specific investment, such as a stock index, the bench-
mark is usually random. If many strategies are evaluated, some are bound to
appear superior to the benchmark by chance alone, even if in reality they are
all equally good or inferior. This effect is known as data snooping (or data
mining).

1Romano’s research supported by National Science Foundation Grant DMS-01-0392. We
thank the co-editor and three anonymous referees for helpful comments that have led to an
improved presentation of the paper. We have benefited from discussions with Peter Hansen,
Olivier Ledoit, and seminar participants at the European Central Bank, Hong Kong University
of Science and Technology, UCLA, Universidad de Zaragoza, Universität Mannheim, Universität
Zürich, and Universitat Pompeu Fabra. All remaining errors are ours.

2See Example 2.3 for a definition of the CAPM alpha.
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Economists have long been aware of the dangers of data snooping. For ex-
ample, see Cowles (1933), Leamer (1983), Lovell (1983), Lo and MacKinley
(1990), and Diebold (2000), among others. However, in the context of com-
paring several strategies to a benchmark, little has been suggested to properly
account for the effects of data snooping. A notable exception is White (2000).
The aim of this work is to determine whether the strategy that is best in the
available sample indeed beats the benchmark, after accounting for data snoop-
ing. The measure by which we account for data mining is the (asymptotic) con-
trol of the familywise error rate (FWE). The FWE is defined as the probability
of incorrectly identifying at least one strategy as superior.3

White (2000) coins his technique the bootstrap reality check (BRC). Often
one would like to identify further outperforming strategies, apart from the one
that is best in the sample. While the specific BRC algorithm of White (2000)
does not address this question, it could be modified to do so. The main contri-
bution of our paper is to provide a method that goes beyond the BRC: it can
identify strategies that beat the benchmark but which are not detected by the
BRC. This is achieved by a stepwise multiple testing method, where the modi-
fied BRC would correspond to the first step. Further outperforming strategies
can be detected in subsequent steps, while maintaining control of the FWE. So
the method we propose is more powerful than the BRC.

To motivate our main contribution, consider the following three exemplary
people who would benefit from the more powerful stepwise method. First,
a trader who back-tests several quantitative trading ideas on historical data
and wants to know how many of these are worth launching for real; then the
benchmark is whichever benchmark the trader is subjected to. Second, a CEO
of a multistrategy mutual fund family who has to choose which individual port-
folio managers to promote by comparing them with the market index. Third,
the manager of a fund of hedge funds who has to choose in which individual
hedge fund he wants to invest his clients’ capital by benchmarking them against
the risk-free rate.

The challenge of constructing an “optimal” forecast provides another mo-
tivation. Imagine several different forecasting strategies are available to fore-
cast a quantity of interest. As described in Timmermann (2006, Chapter 6),
(i) choosing the (lone) strategy with the best track record is often a bad idea,
(ii) simple forecasting schemes, such as equal-weighting various strategies, are
hard to beat, and (iii) trimming off the worst strategies is often required. Ac-
cordingly, a sensible approach would be to identify (hopefully) all strategies
that underperform a simple-minded benchmark4 and to then use the equal-
weighted average of the remaining strategies for out-of-sample forecasts. (Ob-

3This means at least one strategy that in truth is as good as or inferior to the benchmark will
get identified as superior to the benchmark by the statistical method.

4For example, when forecasting inflation the simple-minded benchmark might be the current
inflation.
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viously, methods that can identify outperforming strategies can also be modi-
fied to identify underperforming strategies.5)

As a second contribution, we propose the use of studentization to improve
level and power properties in finite samples. Studentization is not always feasi-
ble, but when it is we argue that it should be incorporated and we give several
good reasons for doing so.

The remainder of the paper is organized as follows. Section 2 describes the
model, the formal inference problem, and some existing methods. Section 3
presents our stepwise method. Section 4 discusses modifications when studen-
tization is used. Section 5 lists several possible extensions. Section 6 briefly dis-
cusses alternatives to controlling the FWE. Section 7 proposes how to choose
the bootstrap block size in the context of time series data. Section 8 sheds some
light on finite-sample performance via a simulation study. Section 9 provides
an application to real data. Section 10 concludes. The Appendices contain
proofs of mathematical results, an overview of the most important bootstrap
methods, some power considerations for studentization, and a brief discussion
of multiple testing versus joint testing.

2. NOTATION AND PROBLEM FORMULATION

2.1. Notation and Some Examples

One observes a data matrix xt�s with 1 ≤ t ≤ T and 1 ≤ s ≤ S + 1. The data
are generated from some underlying probability mechanism P that is unknown.
The row index t corresponds to distinct observations and there are T of them.
In our asymptotic framework, T will tend to infinity. The column index s corre-
sponds to strategies and there are a fixed number S of them. The final column,
S + 1, is reserved for the benchmark. We include the benchmark in the data
matrix even if it is nonstochastic. For compactness, we introduce the follow-
ing notation: XT denotes the complete T × (S + 1) data matrix; X(T)

t�· is the
(S + 1)× 1 vector that corresponds to the tth row of XT ; and X(T)

·�s is the T × 1
vector that corresponds to the sth column of XT .

For each strategy s, 1 ≤ s ≤ S, one computes a test statistic wT�s that mea-
sures the “performance” of the strategy relative to the benchmark. We assume
that wT�s is a function of X(T)

·�s and X(T)
·�S+1 only. Each statistic wT�s tests a univari-

ate parameter θs. This parameter is defined in such a way that θs ≤ 0 under the
null hypothesis that strategy s does not beat the benchmark. In some instances,
we will also consider studentized test statistics zT�s =wT�s/σ̂T�s, where the stan-
dard error σ̂T�s estimates the standard deviation of wT�s. In the sequel, we often
call wT�s a basic test statistic to distinguish it from the studentized statistic zT�s.

5The ability to detect as many underperforming strategies as possible would also be useful to
a CEO of a multistrategy mutual fund company who has to choose which individual portfolio
managers to fire.



1240 J. P. ROMANO AND M. WOLF

To introduce some compact notation, the S × 1 vector θ collects the individual
parameters of interest θs, the S × 1 vector WT collects the individual basic test
statistics wT�s, and the S × 1 vector ZT collects the individual studentized test
statistics zT�s.

We proceed by giving some relevant examples where several strategies are
compared to a benchmark, giving rise to data snooping.

EXAMPLE 2.1—Absolute Performance of Investment Strategies: Historical
returns of investment strategy s, say a particular mutual fund or a particular
trading strategy, are recorded in X(T)

·�s . Historical returns of a benchmark, say
a stock index or a buy-and-hold strategy, are recorded in X(T)

·�S+1. Depending
on preference, these can be “real” returns or log returns; also, returns may be
recorded in excess of the risk-free rate if desired. Let µs denote the population
mean of the return for strategy s. Based on an absolute criterion, strategy s
beats the benchmark if µs > µS+1. Therefore, we define θs = µs − µS+1. Using
the notation

x̄T�s = 1
T

T∑
t=1

xt�s�

a natural basic test statistic is

wT�s = x̄T�s − x̄T�S+1�(1)

As we will argue later on, a studentized statistic is preferable and is given by

zT�s = x̄T�s − x̄T�S+1

σ̂T�s

�(2)

where σ̂T�s is an estimator of the standard deviation of x̄T�s − x̄T�S+1.

EXAMPLE 2.2—Relative Performance of Investment Strategies: The basic
setup is as in the previous example, but now consider a risk-adjusted com-
parison of the investment strategies, based on the respective Sharpe ratios.
With µs again denoting the mean of the return of strategy s and with σs de-
noting its standard deviation, the corresponding Sharpe ratio is defined as
SRs = µs/σs.6 An investment strategy is now said to outperform the bench-
mark if its Sharpe ratio is higher than that of the benchmark. Therefore, we
define θs = SRs − SRS+1. Let

sT�s =
√√√√ 1

T − 1

T∑
t=1

(xt�s − x̄T�s)2�

6The definition of a Sharpe ratio is often based on returns in excess of the risk-free rate, but
for certain applications, such as long–short investment strategies, it can be more suitable to base
it on the nominal returns.
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Then a natural basic test statistic is

wT�s = x̄T�s

sT�s
− x̄T�S+1

sT�S+1
�(3)

Again, a preferred statistic might be obtained by dividing by an estimate of the
standard deviation of this difference.

EXAMPLE 2.3—CAPM Alpha: Historical returns of investment strategy s, in
excess of the risk-free rate, are recorded in X(T)

·�s . Historical returns of a market
proxy, in excess of the risk-free rate, are recorded in X(T)

·�S+1. For each strategy s,
a simple time series regression

xt�s = αs +βsxt�S+1 + εt�s(4)

is estimated by ordinary least squares (OLS). If the CAPM holds, all inter-
cepts αs are equal to zero.7 So the parameter of interest here is θs = αs. Since
the CAPM may be violated in practice, a financial advisor might want to iden-
tify investment strategies that have a positive αs. Hence, an obvious basic test
statistic would be

wT�s = α̂T�s�(5)

Again, it can be advantageous to studentize by dividing by an estimated stan-
dard deviation of α̂T�s:

zT�s = α̂T�s

σ̂T�s

�(6)

2.2. Problem Formulation

It is assumed that, depending on the underlying probability mechanism P ,
the parameter θs = θs(P) either satisfies it is less than or equal to 0 or not. So,
the parameter θs can really be viewed as a functional of the unknown P . For a
given strategy s, consider the individual testing problem

Hs :θs ≤ 0 vs. H ′
s :θs > 0�

A multiple testing method yields a decision concerning each individual testing
problem by either rejecting Hs or not.8 In an ideal world, one would reject Hs

7We trust there is no possible confusion between a CAPM alpha αs and the level α of multiple
testing methods discussed later on.

8This is related to, but distinct from, the problem of joint testing; see Appendix D for a brief
discussion.
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exactly for those strategies for which θs > 0. In a realistic world, and given a fi-
nite amount of data, this usually cannot be achieved with certainty. To prevent
us from declaring true null hypotheses to be false, we seek control of the fam-
ilywise error rate. The FWE is defined as the probability of rejecting at least
one of the true null hypotheses. More specifically, if P is the true probability
mechanism, let I0 = I0(P)⊂ {1� � � � � S} denote the indices of the set of true hy-
potheses; that is, s ∈ I0 if and only if θs ≤ 0. The FWE is the probability under
P that any Hs with s ∈ I0 is rejected9:

FWEP = ProbP{Reject at least one Hs : s ∈ I0(P)}�
In case all the individual null hypotheses are false, the FWE is equal to zero by
definition.

We require a method that, for any P , has FWEP no greater than α, at least
asymptotically. In particular, this constraint must hold for all P and, therefore,
regardless of which hypotheses are true and which are false. That is, we de-
mand strong control of the FWE. A method that only controls the FWE for
a probability mechanism P such that all S null hypotheses are true is said to
have weak control of the FWE. As remarked by Dudoit, Shaffer, and Boldrick
(2003), this distinction is often ignored. Indeed, White (2000) only proves weak
control of the FWE for his method. The remainder of the paper equates con-
trol of the FWE with strong control of the FWE.

A multiple testing method is said to control the FWE at level α if, for the
given sample size T , FWEP ≤ α for any P . A multiple testing method is said
to asymptotically control the FWE at level α if lim supT FWEP ≤ α for any P .
Methods that control the FWE in finite samples can typically be derived only
in special circumstances or they suffer from lack of power because they do not
incorporate the dependence structure of the test statistics. We therefore seek
control of the FWE asymptotically, while trying to achieve high power at the
same time.

Several well known methods that (asymptotically) control the FWE exist.
The problem is that they often have low power. What is the meaning of
“power” in a multiple testing framework? Unfortunately, there is no unique
definition as in the context of testing a single hypothesis. Some possible no-
tions of power are the following:
• Minimal power: The probability of rejecting at least one false null hypothesis.

Since our goal is to reject as many false null hypotheses as possible, rather
than just rejecting at least one of them, this notion is not suitable for our
purposes. Indeed, if we adopted this notion, then the stepwise method we
will present would not improve upon the BRC of White (2000).

• Global power: The probability of rejecting all false null hypotheses. Ar-
guably, this notion is too strict for our purposes. While we aim to reject as

9To show its dependence on P , we may write FWE = FWEP .
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many false null hypotheses as possible, we do not necessarily consider it a
failure to miss a single one of them.

• Average power: The average of the individual probabilities of rejecting each
false null hypothesis. This is equivalent to the expected number of false null
hypotheses that will be rejected. Therefore, we consider it the most appro-
priate notion for our purposes.

• The expected proportion of false null hypotheses that will be rejected.
• The probability of rejecting at least γ · 100% of the false null hypotheses,

where γ ∈ (0�1] is a user-specified number.
For the sake of argument, when we use statements like “more powerful” in

the remainder of the paper, we mean in the sense of better average power.
However, these statements would also apply to any other reasonable notion of
power that increases the number of false hypotheses rejected. (Only with the
notion of minimal power, which is not suitable for our purposes, there is no
difference between our stepwise method and the BRC.)

A special case in comparing the power of two multiple testing methods, say
methods 1 and 2, arises in the following scenario: by design, method 1 rejects
all hypotheses rejected by method 2 and possibly some further ones. It then
trivially follows that method 1 is more powerful than method 2.

2.3. Existing Methods

The most familiar multiple testing method for controlling the FWE is the
Bonferroni method. It works as follows. For each null hypothesis Hs, one com-
putes an individual p-value p̂T�s. It is assumed that if Hs is true, the distribution
of p̂T�s is Uniform(0�1), at least asymptotically.10 The Bonferroni method at
level α rejects Hs if p̂T�s ≤ α/S. If the null distribution of each p̂T�s is (asymp-
totically) Uniform(0�1), then the Bonferroni method (asymptotically) controls
the FWE at level α. The disadvantage of the Bonferroni method is that it is, in
general, conservative, which can result in low power.

Actually, there exists a simple method which (asymptotically) controls the
FWE at level α but is more powerful than the Bonferroni method. This step-
wise procedure is due to Holm (1979) and works as follows. The individual
p-values are ordered from smallest to largest, p̂T�(1) ≤ p̂T�(2) ≤ · · · ≤ p̂T�(S), with
their corresponding null hypotheses labeled accordingly, H(1)�H(2)� � � � �H(S).
Then H(s) is rejected at level α if p̂T�(j) ≤ α/(S − j + 1) for all j = 1� � � � � s. In
comparison with the Bonferroni method, the criterion for the smallest p-value
is equally strict, α/S, but it becomes less and less strict for larger p-values.
This explains the improvement in power. Still, the Holm method can be quite
conservative.

10Actually, the following weaker assumption would be sufficient: If Hs is true, then
ProbP(p̂T�s ≤ x) ≤ x, at least asymptotically.



1244 J. P. ROMANO AND M. WOLF

The reason for the conservativeness of the Bonferroni and the Holm meth-
ods is that they do not take into account the dependence structure of the
individual p-values. Loosely speaking, they achieve control of the FWE by
assuming a worst-case dependence structure. If the true dependence struc-
ture could be accounted for, one should be able to (asymptotically) control
the FWE but at the same time increase power. To illustrate, take the extreme
case of perfect dependence, where all p-values are identical. In this case, one
should reject Hs if p̂T�s ≤ α. This (asymptotically) controls the FWE, but obvi-
ously is more powerful than both the Bonferroni and Holm methods.

In many economic or financial applications, the individual test statistics are
jointly dependent. Often, the dependence is positive. It is therefore important
to account for the underlying dependence structure to avoid being overly con-
servative. A partial solution, for our purposes, is provided by White’s (2000)
bootstrap reality check. The BRC estimates the asymptotic distribution of
max1≤s≤S(wT�s − θs), implicitly accounting for the dependence structure of the
individual test statistics. Let smax denote the index of strategy with the largest
statistic wT�s. The BRC decides whether or not to reject Hsmax at level α, asymp-
totically controlling the FWE. It therefore addresses the question whether the
strategy that appears best in the observed data really beats the benchmark.11

However, it does not attempt to identify as many outperforming strategies as
possible. The method we present in the next section does just that. In addition,
we argue that by studentizing the test statistics, in situations where studenti-
zation is feasible, one can hope to improve size and certain power properties
in finite samples. This represents a second enhancement of White’s (2000) ap-
proach.

Hansen (2004) offers some improvements over the BRC; in addition, see
Hansen (2003). First, his method reduces the influence of “irrelevant” strate-
gies, meaning strategies that significantly underperform the benchmark. Sec-
ond, he also proposes the use of studentized test statistics zT�s instead of basic
test statistics wT�s. However, like the BRC, the method of Hansen (2004) only
addresses the question whether the strategy that appears best in the observed
data really beats the benchmark.

3. STEPWISE MULTIPLE TESTING METHOD

Our goal is to identify as many strategies as possible for which θs > 0. We do
this by considering individual hypothesis tests

Hs :θs ≤ 0 vs. H ′
s :θs > 0�

A decision rule results in acceptance or rejection of each null hypothesis. The
individual decisions are supposed to be taken in a manner that asymptotically

11Equivalently, it addresses the question whether there are any strategies at all that beat the
benchmark.
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controls the FWE at a given level α. At the same time, we want to reject as
many false hypotheses as possible in a finite sample.

We describe our method in the context of using basic test statistics wT�s. The
extension to the studentized case is straightforward and will be discussed later
on. The method begins by relabeling the strategies according to the size of
the individual test statistics, from largest to smallest. Label r1 corresponds to
the largest test statistic and label rS to the smallest one, so that wT�r1 ≥ wT�r2 ≥
· · · ≥ wT�rS . Then the individual decisions are taken in a stepwise manner.12 In
the first step, we construct a rectangular joint confidence region for the vector
(θr1� � � � � θrS )

′ with nominal joint coverage probability 1 − α. The confidence
region is of the form

[wT�r1 − c1�∞)× · · · × [wT�rS − c1�∞)�(7)

where the common value c1 is chosen in such as way as to ensure the
proper joint (asymptotic) coverage probability. It is not immediately clear how
to achieve this in practice. Part of our contribution is to describe a data-
dependent way to choose c1 in practice; details are below. If a particular
individual confidence interval [wT�rs − c1�∞) does not contain zero, the cor-
responding null hypothesis Hrs is rejected.

If the joint confidence region (7) has asymptotic joint coverage probability
1 − α, this method asymptotically controls the FWE at level α. The method of
White (2000) corresponds to computing the confidence interval [wT�r1 − c1�∞)
only, resulting in a decision on Hr1 alone. However, his method can be eas-
ily modified to be equivalent to our first step.13 The critical advantage of our
method is that we do not stop after the first step unless no hypothesis is re-
jected. Suppose we reject the first R1 relabeled hypotheses in this first step.
Then S − R1 hypotheses remain, corresponding to the labels rR1+1� � � � � rS . In
the second step, we construct a rectangular joint confidence region for the vec-
tor (θrR1+1� � � � � θrS )

′ with, again, nominal joint coverage probability 1 − α. The
new confidence region is of the form[

wT�rR1+1 − c2�∞
) × · · · × [wT�rS − c2�∞)�(8)

where the common constant c2 is chosen in such a way as to ensure the proper
joint (asymptotic) coverage probability. Again, if a particular individual con-
fidence interval [wT�rs − c2�∞) does not contain zero, the corresponding null

12Our stepwise method is a stepdown method, since we start with the null hypothesis that cor-
responds to the largest test statistic. The Holm method is also a stepdown method. It starts with
the null hypothesis that corresponds to the smallest p-value, which in return corresponds to the
largest test statistic. Stepwise methods that start with the null hypothesis that corresponds to the
smallest test statistics are called stepup methods; e.g., see Dunnett and Tamhane (1992).

13Since the method of White (2000) amounts to computing the constant c1, it has the potential
to identify further outperforming strategies, apart from the one that appears best in sample.
Namely, the method rejects all null hypotheses Hrs for which [wT�rs − c1�∞) does not contain 0.
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hypothesis Hrs is rejected. This stepwise process is then repeated until no fur-
ther hypotheses are rejected. By continuing after the first step, more false hy-
potheses can be rejected.14 The stepwise procedure is therefore more powerful
than the single-step method. Nevertheless, the stepwise procedure still asymp-
totically controls the FWE at level α; the proof is in Theorem 3.1. Hence, our
stepwise multiple testing (StepM) procedure improves upon the single-step
BRC of White (2000) very much in the way that the stepwise Holm method
improves upon the single-step Bonferroni method.

REMARK 3.1: By design, the StepM procedure rejects all hypotheses that the
BRC rejects and potentially some more. One consequence is that often more
false null hypotheses are rejected. Clearly, this is an advantage, resulting in im-
proved power. However, another consequence is that more true null hypothe-
ses can be rejected as well. Even so, the main point here is that the resulting
procedure can greatly increase the chance of rejecting false hypotheses while
still controlling the FWE at a prescribed (small) level. Thus, our improvement
is in the same sense in which the Holm procedure is an improvement over the
Bonferroni procedure, which is well accepted and documented in the litera-
ture. The BRC can be viewed as a procedure to improve upon Bonferroni by
using the bootstrap to get a less conservative critical value. In the same way,
our procedure improves upon the Holm procedure by using the bootstrap to
(implicitly) estimate the dependence structure of the test statistics to achieve
greater power. Table I summarizes the characteristics of the various proce-
dures. While all of them (asymptotically) control the FWE, power increases
(i) in each column going down and (ii) in each row going from left to right.

How should the value c1 in the joint confidence region construction (7) be
chosen? Ideally, one would take the 1−α quantile of the sampling distribution
of max1≤s≤S(wT�rs − θrs ). This is the sampling distribution of the maximum of
the individual differences “test statistic minus true parameter.” Concretely, the
corresponding quantile is defined as

c1 ≡ c1(1 − α�P)= inf
{
x : ProbP

{
max
1≤s≤S

(wT�rs − θrs ) ≤ x
}
≥ 1 − α

}
�

TABLE I

CHARACTERISTICS OF VARIOUS PROCEDURES THAT ASYMPTOTICALLY
CONTROL THE FWE

Handles Worst-Case Dependence Accounts for True Dependence Structure

Single-step Bonferroni White (2000), Hansen (2004)
Stepwise Holm (1979) Our stepwise procedure

14The reason is that c1 > c2 > c3 > · · · typically.



STEPWISE MULTIPLE TESTING 1247

The ideal choice of c2, c3, and so on in the subsequent steps would be anal-
ogous. For example, the ideal c2 for (8) would be the 1 − α quantile of the
sampling distribution of maxR1+1≤s≤S(wT�rs − θrs ) defined as (with R1 treated as
fixed)

c2 ≡ c2(1 − α�P)= inf
{
x : ProbP

{
max

R1+1≤s≤S
(wT�rs − θrs )≤ x

}
≥ 1 − α

}
�

The problem is that P is unknown in practice and, therefore, the ideal quan-
tiles cannot be computed. The feasible solution is to replace P by an esti-
mate P̂T . For an estimate P̂T and any j ≥ 1, let Rj−1 denote the number of
hypotheses rejected in the first j − 1 steps (with R0 ≡ 0) and define

ĉj ≡ cj(1 − α� P̂T )(9)

= inf
{
x : ProbP̂T

{
max

Rj−1+1≤s≤S
(w∗

T�rs
− θ∗

T�rs
)≤ x

}
≥ 1 − α

}
�

Here the notation w∗
T�rs

makes it clear that we mean the sampling distribution
of the test statistics under P̂T rather than under P ; the notation θ∗

T�rs
makes it

clear that the true parameters are those of P̂T rather than those of P , that is,
θ∗
T = θ(P̂T ).15 We can summarize our stepwise method by the following algo-

rithm. The algorithm is based on a generic estimate P̂T of P . Specific choices
of this estimate, based on the bootstrap, are discussed below.

ALGORITHM 3.1—Basic StepM Method:
1. Relabel the strategies in descending order of the test statistics wT�s: strat-

egy r1 corresponds to the largest test statistic and strategy rS to the smallest.
2. Set j = 1 and R0 = 0.
3. For Rj−1 + 1 ≤ s ≤ S, if 0 /∈ [wT�rs − ĉj�∞), reject the null hypothesis Hrs .
4. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the total number of hypotheses rejected
so far and, afterward, let j = j + 1. Then return to step 3.

To present our main theorem in a compact and general fashion, we make
use of the following high-level assumption. Several scenarios where this as-
sumption is satisfied will be detailed below. Introduce the following notation:
JT (P) denotes the sampling distribution under P of

√
T(WT − θ) and JT (P̂T )

denotes the sampling distribution under P̂T of
√
T(W ∗

T − θ∗
T ).

ASSUMPTION 3.1: Let P denote the true probability mechanism and let
P̂T denote an estimate of P based on the data XT . Assume that JT (P) con-

15We implicitly assume here that, with probability 1, P̂T will belong to a class of distributions
for which the parameter vector θ is well defined. This holds in all of the examples in this paper.
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verges in distribution to a limit distribution J(P), which is continuous.
Further assume that JT (P̂T ) consistently estimates this limit distribution:
ρ(JT (P̂T )� J(P)) → 0 in probability for any metric ρ metrizing weak conver-
gence.

THEOREM 3.1: Suppose Assumption 3.1 holds. Then the following statements
concerning Algorithm 3.1 are true.

(i) If θs > 0, then the null hypothesis Hs will be rejected with probability tend-
ing to 1, as T → ∞.

(ii) The method asymptotically controls the FWE at level α; that is,
limT FWEP ≤ α�

(iii) Assume in addition that the limiting distribution J(P) in Assumption 3.1
has a density that is positive everywhere.16 Then the limiting probability in (ii) is
equal to α if and only if there exists at least one θs with θs = 0 and no θs with
θs < 0.

Theorem 3.1 is related to Algorithm 2.8 of Westfall and Young (1993). Our
result is more flexible in the sense that we do not require their subset pivotality
condition (see Section 2.2).17 Furthermore, in the context of this paper, our
result is easier to apply in practice for two reasons. First, it is based on the
S individual test statistics. In contrast, Algorithm 2.8 of Westfall and Young
(1993) is based on the S individual p-values, which would require an extra
round of computation. Second, the quantiles ĉj are computed directly from the
estimated distribution P̂T . There is no need to impose certain null hypotheses
constraints as in Algorithm 2.8 of Westfall and Young (1993).

REMARK 3.2: Part (iii) of the theorem shows that it is not possible to have a
limiting FWE exactly equal to α in general. Indeed, this can only be achieved
if all the nonpositive θs values are exactly equal to 0. If there exists at least
one negative θs value, then the FWE is asymptotically bounded away from α.
(On the other hand, if all the θs values are positive, then the limiting FWE is
trivially equal to zero.) In contrast, a similar result18 for BRC of White (2000)
establishes that its limiting FWE is equal to α if and only if all the θs values
are equal to 0. The impossibility of achieving a limiting FWE exactly equal
to α in general has nothing to do with the problem of multiple testing or the
application of the bootstrap. Instead, it occurs generally even when testing a
single composite null hypothesis for which the rejection probability depends on

16This additional assumption is very weak and holds, for example, in the case of a limiting
multivariate normal distribution with nonsingular covariance matrix.

17For instance, this condition is violated, even asymptotically, when carrying out individual
tests on the correlations of a joint correlation matrix, but our methods apply.

18The corresponding proof is analogous to the proof of part (iii) of the Theorem 3.1 and is left
to the reader.
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the exact value of the parameter in the null hypothesis parameter space. Take
the simple example of X ∼ N(θ�1) and testing H :θ ≤ 0 vs. H ′ :θ > 0. The
uniformly most powerful test rejects H at nominal level α = 0�05 if and only
if X > 1�645, but the actual rejection probability, under the null, is strictly less
than α unless θ lies on the boundary, that is, θ = 0. For example, if θ = −0�5,
then the actual rejection probability equals 0.016. Finally, when the individual
tests are two-sided, namely Hs :θs = 0 vs. H ′

s :θs �= 0, then the limiting FWE of
our stepwise method is indeed equal to α, unless all θs are nonzero (in which
case it is not possible to incorrectly reject a null hypothesis). On the other hand,
the limiting FWE of the BRC is again strictly less than α, unless all θs are equal
to zero.

REMARK 3.3: Our framework assumes that the probability mechanism P is
fixed. In particular, the parameters θs > 0 are fixed. Asymptotically, according
to Theorem 3.1(i), if θs > 0, then Hs will be rejected with probability tending
to 1. Alternatively, one can also study the behavior of multiple testing methods
under contiguous (or local) alternatives θT�s → 0, so that not all false hypothe-
ses are rejected with probability tending to 1. For example, one can consider
sequences θT�s = hs/

√
T with hs > 0 fixed. However, evidently, if alternative

hypotheses are in some sense closer to their respective null hypothesis, then the
methods will typically reject even fewer hypotheses. In other words, the prob-
ability of rejecting any set of hypotheses is smaller (asymptotically), whether
they are true or false. Hence, the limiting probability of rejecting any true hy-
potheses (i.e., the FWE) under a sequence of contiguous alternatives will be
bounded above by α; thus part (ii) of the theorem continues to hold. On the
other hand, part (iii) no longer holds. The existence of local alternatives gen-
erally causes the limiting FWE to be bounded away from α.

We proceed by listing some fairly flexible scenarios where Assumption 3.1 is
satisfied and Theorem 3.1 applies. The list is not meant to be exhaustive.

SCENARIO 3.1—Smooth Function Model with i.i.d. Data: Consider the case
of independent and identically distributed (i.i.d.) data X(T)

t�· , 1 ≤ t ≤ T . In the
smooth function model of Hall (1992), the test statistic wT�s is a smooth func-
tion of certain sample moments of X(T)

·�s and X(T)
·�S+1, and the parameter θs is the

same function applied to the corresponding population moments. Examples
that fit into this framework are given by (1), (3), and (5). If the smooth func-
tion model applies and appropriate moment conditions hold, then

√
T(WT −θ)

converges in distribution to a multivariate normal distribution with mean zero
and some covariance matrix Ω. As shown by Hall (1992), one can use the i.i.d.
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bootstrap of Efron (1979) to consistently estimate this limiting normal distrib-
ution; that is, P̂T is simply the empirical distribution of the observed data.19

SCENARIO 3.2—Smooth Function Model with Time Series Data: Consider
the case of strictly stationary time series data X(T)

t�· , 1 ≤ t ≤ T . The smooth
function model is defined as before and examples (1), (3), and (5) apply. Un-
der moment and mixing conditions on the underlying process,

√
T(WT − θ)

converges in distribution to a multivariate normal distribution with mean zero
and some covariance matrix Ω; e.g., see White (2001). In the time series case,
the limiting covariance matrix Ω not only depends on the marginal distribu-
tion of X(T)

t�· , but it also depends on the underlying dependence structure over
time. The consistent estimation of the limiting distribution now requires a time
series bootstrap. Künsch (1989) gives conditions under which the block boot-
strap can be used, Politis and Romano (1992) show that the same conditions
guarantee consistency of the circular block bootstrap, and Politis and Romano
(1994) give conditions under which the stationary bootstrap can be used; also
see Gonçalves and de Jong (2003).

Test statistics not covered immediately by the smooth function model can
often be accommodated with some additional effort. In many cases where the
bootstrap is known to fail,20 the subsampling method can be used to consis-
tently estimate the limiting distribution of

√
T(WT −θ). Subsampling is known

to work under weaker conditions than the bootstrap; see Politis, Romano, and
Wolf (1999).

SCENARIO 3.3—Strategies that Depend on Estimated Parameters: Consider
the case where strategy s depends on a parameter vector βs. In case βs is
unknown, it is estimated from the data. Denote the corresponding estima-
tor by β̂T�s. Denote the value of the test statistic for strategy s, as a function
of the estimated parameter vector β̂T�s, by wT�s(β̂T�s). Further, let WT(β̂T )
denote the S × 1 vector that collects these individual test statistics. White
(2000), in the context of a stationary time series, gives conditions under which√
T(WT(β̂T ) − θ) converges to a limiting normal distribution with mean zero

and some covariance matrix Ω. He also demonstrates that the stationary boot-
strap can be used to consistently estimate this limiting distribution. Alterna-
tively, the moving blocks bootstrap or the circular blocks bootstrap can be used.
Note that a direct application of our Algorithm 3.1 would use the sampling dis-
tribution of

√
T(W ∗

T (β̂
∗
T )− θ∗

T ) under P̂T . That is, the βs would be reestimated

19Hall (1992) also shows that the bootstrap approximation can be better than a normal approxi-
mation of the type N(0� Ω̂T ) when the limiting covariance matrix Ω can be estimated consistently,
which is not always the case.

20For example, this can happen when the true parameter lies on the boundary of the parameter
space; see Shao and Tu (1995, Section 3.6) and Andrews (2000).
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based on data X∗
T generated from P̂T . However, White (2000) shows that, un-

der certain regularity conditions, it is actually sufficient to use the sampling
distribution of

√
T(W ∗

T (β̂T )− θ∗
T ) under P̂T . Hence, in this case it is not really

necessary to reestimate the βs parameters, at least for first-order asymptotic
consistency. Details are in White (2000).

For concreteness, we now describe how to compute the ĉj in Algorithm 3.1
via the bootstrap.21 In what follows, pseudo data matrices X∗

T are generated by
a generic bootstrap mechanism, denoted by P̂T . The true parameter vector that
corresponds to P̂T is denoted by θ∗

T = θ(P̂T ). The specific choice of bootstrap
method depends on the context. For the reader not completely familiar with
the variety of bootstrap methods that do exist, we describe the most important
ones in Appendix B.

ALGORITHM 3.2—Computation of the ĉj via the Bootstrap:
1. The labels r1� � � � � rS and the numerical values of R0�R1� � � � are given in

Algorithm 3.1.
2. Generate M bootstrap data matrices X∗�1

T � � � � �X∗�M
T . (One should use

M ≥ 1�000 in practice.)
3. From each bootstrap data matrix X∗�m

T , 1 ≤ m ≤ M , compute the individ-
ual test statistics w∗�m

T�1 � � � � �w
∗�m
T�S .

4. (a) For 1 ≤ m≤M , compute max∗�m
T�j = maxRj−1+1≤s≤S(w

∗�m
T�rs

− θ∗
T�rs

).
(b) Compute ĉj as the 1 − α empirical quantile of the M values

max∗�1
T�j� � � � �max∗�M

T�j .

REMARK 3.4: For convenience, one can typically use wT�rs in place of θ∗
T�rs

in
step 4(a) of the algorithm. Indeed, the two are the same under the following
conditions: (1) wT�s is a linear statistic, (2) θs = E(wT�s), and (3) P̂T is based on
Efron’s bootstrap, the circular blocks bootstrap, or the stationary bootstrap.
Even if conditions (1) and (2) are met, wT�rs and θ∗

T�rs
are not the same if P̂T is

based on the moving blocks bootstrap due to edge effects; see Appendix B. On
the other hand, the substitution of wT�rs for θ∗

T�rs
does, in general, not affect

the consistency of the bootstrap approximation and Theorem 3.1 continues to
hold. Lahiri (1992) discusses this subtle point for the special case of time series
data and wT�rs being the sample mean. He shows that centering by θ∗

T�rs
provides

second-order refinements, but it is not necessary for first-order consistency.

REMARK 3.5: A main point of our paper is that, to avoid making parametric
assumptions, we use the bootstrap to approximate critical values. However, for

21Of course, one could use alternative methods to compute the ĉj , such as one based on a
limiting normal distribution in conjunction with a consistently estimated covariance matrix.
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testing one-sided hypotheses in some parametric models, the stepwise proce-
dures we propose enjoy certain optimality properties; see Lehmann, Romano,
and Shaffer (2005). (Of course, in such cases the critical values are derived
from the underlying parametric model.)

4. STUDENTIZED STEPWISE MULTIPLE TESTING METHOD

This section argues that the use of studentized test statistics, when feasible,
is preferred. We first present the general method and then give three good
reasons for its use.

4.1. Description of Method

An individual test statistic is now of the form zT�s = wT�s/σ̂T�s, where σ̂T�s es-
timates the standard deviation of wT�s. Typically, one would choose σ̂T�s in such
a way that the asymptotic variance of zT�s is equal to 1, but this is actually
not required for Theorem 4.1 to hold. The stepwise method is analogous to
the case of basic test statistics, but slightly more complex due to the studen-
tization. Again, P̂T is an estimate of the underlying probability mechanism P
based on the data XT . Let X∗

T denote a data matrix generated from P̂T , let w∗
T�s

denote a basic test statistic computed from X∗
T , and let σ̂∗

T�s denote the esti-
mated standard deviation of w∗

T�s computed from X∗
T .22 We need an analogue

of the quantile (9) for the studentized method. It is given by

d̂j ≡ dj(1 − α� P̂T )(10)

= inf
{
x : ProbP̂T

{
max

Rj−1+1≤s≤S
(w∗

T�rs
− θ∗

T�rs
)/σ̂∗

T�rs
≤ x

}
≥ 1 − α

}
�

ALGORITHM 4.1—Studentized StepM Method:
1. Relabel the strategies in descending order of the test statistics zT�s: strat-

egy r1 corresponds to the largest test statistic and strategy rS to the smallest 1.
2. Set j = 1 and R0 = 0.
3. For Rj−1 + 1 ≤ s ≤ S, if 0 /∈ [wT�rs − σ̂T�rs d̂j�∞), reject the null hypothe-

sis Hrs .
4. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the total number of hypotheses rejected
so far and, afterward, let j = j + 1. Then return to step 3.

22Since P̂T is completely specified, one actually knows the true standard deviation of w∗
T�s .

However, the bootstrap mimics the real world, where the standard deviation of wT�s is unknown,
by estimating this standard deviation from the data. Hansen (2004) uses σ̂∗

T�s = σ̂T�s . While this
results in first-order consistency, it is preferable to compute σ̂∗

T�s from the bootstrap data; see
Hall (1992).



STEPWISE MULTIPLE TESTING 1253

ASSUMPTION 4.1: In addition to Assumption 3.1, assume the following con-
dition. For each 1 ≤ s ≤ S, both

√
Tσ̂T�s and

√
Tσ̂∗

T�s converge to a (common)
positive constant σs in probability.

THEOREM 4.1: Suppose Assumption 4.1 holds. Then the following statements
concerning Algorithm 4.1 are true.

(i) If θs > 0, then the null hypothesis Hs will be rejected with probability tend-
ing to 1 as T → ∞.

(ii) The method asymptotically controls the FWE at level α; that is,
limT FWEP ≤ α�

(iii) Assume in addition that the limiting distribution J(P) in Assumption 3.1
has a density that is positive everywhere. Then the limiting probability in (ii) is
equal to α if and only if there exists at least one θs with θs = 0 and no θs with
θs < 0.

Assumption 4.1 is stricter than Assumption 3.1. Nevertheless, it covers many
interesting cases. Under certain moment and mixing conditions (for the time
series case), Scenarios 3.1 and 3.2 generally apply. Hall (1992) shows that a
studentized version of Efron’s (1979) bootstrap consistently estimates the lim-
iting distribution of studentized statistics in the framework of Scenario 3.1.
Götze and Künsch (1996) demonstrate that a studentized version of the mov-
ing blocks bootstrap consistently estimates the limiting distribution of studen-
tized statistics in the framework of Scenario 3.2. Note that their arguments
immediately apply to the circular bootstrap as well. By similar techniques the
validity of a studentized version of the stationary bootstrap can be established.
Relevant examples of practical interest are given by (2) and (6).

For concreteness, we now describe how to compute the d̂j in Algorithm 4.1
via the bootstrap. Again, pseudo data matrices X∗

T are generated by a generic
bootstrap method.

ALGORITHM 4.2—Computation of the d̂j via the Bootstrap:
1. The labels r1� � � � � rS and the numerical values of R0�R1� � � � are given in

Algorithm 4.1.
2. Generate M bootstrap data matrices X∗�1

T � � � � �X∗�M
T . (One should use

M ≥ 1�000 in practice.)
3. From each bootstrap data matrix X∗�m

T , 1 ≤ m ≤ M , compute the indi-
vidual test statistics w∗�m

T�1 � � � � �w
∗�m
T�S . Also, compute the corresponding standard

errors σ̂∗�m
T�1 � � � � � σ̂

∗�m
T�S .

4. (a) For 1 ≤ m ≤ M , compute max∗�m
T�j = maxRj−1+1≤s≤S(w

∗�m
T�rs

− θ∗
T�rs

)/

σ̂∗�m
T�rs

.
(b) Compute d̂j as the 1 − α empirical quantile of the M values

max∗�1
T�j� � � � �max∗�M

T�j .
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Remark 3.4 applies here as well.
The method to studentize properly depends on the context. In the case of

i.i.d. data there is usually an obvious formula for σ̂T�s, which is applied to the
data matrix XT . To give an example, the formula for σ̂T�s that corresponds to
the test statistic (1) based on i.i.d. data is given by

σ̂T�s =
√∑T

t=1(xt�s − xt�S+1 − x̄T�s + x̄T�S+1)2

T(T − 1)
�(11)

In the Efron bootstrap world, the value of σ̂∗
T�s is then obtained by applying the

same formula to the bootstrap data matrix X∗
T . Things get more complex in the

case of stationary time series data. There no longer exists a simple formula to
compute σ̂T�s from XT . Instead, one typically uses a kernel variance estimator
that can be described by a certain algorithm; e.g., see Andrews (1991) and
Andrews and Monahan (1992). In principle, σ̂∗

T�s can be obtained by applying
the same algorithm to the bootstrap data matrix X∗

T . When X∗
T is obtained

by the moving blocks bootstrap or the circular blocks bootstrap, Götze and
Künsch (1996) suggest using a “natural” variance estimator σ̂∗

T�s. This is due to
the two facts that (i) these two methods generate a bootstrap data sequence by
concatenating blocks of data of a fixed size and that (ii) the individual blocks
are selected independently of each other. For the sake of space, we refer the
interested reader to Götze and Künsch (1996) and Romano and Wolf (2003)
to learn more about natural block bootstrap variance estimators.

4.2. Reasons for Studentization

We now provide three reasons for making the additional effort of studenti-
zation.

The first reason is power. The studentized method is not universally more
powerful than the basic method. However, it performs better for several rea-
sonable definitions of power. Details can be found in Appendix C.

The second reason is level. Consider for the moment the case of a single
null hypothesis Hs of interest. Under certain regularity conditions, it is well
known that (i) bootstrap confidence intervals based on studentized statistics
provide asymptotic refinements in terms of coverage level and that (ii) boot-
strap tests based on studentized test statistics provide asymptotic refinements
in terms of level. The underlying theory is provided by Hall (1992) for the case
of i.i.d. data and by Götze and Künsch (1996) for the case of stationary data.
The common theme is that one should use asymptotically pivotal (test) statis-
tics in bootstrapping. This is only partially satisfied for our studentized multiple
testing method, since we studentize the test statistics individually. Hence, the
limiting joint distribution is not free of unknown population parameters. Such
a limiting joint distribution could be obtained by a joint studentization, taking
also into account the covariances of the individual test statistics wT�s. However,
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this would no longer result in the rectangular joint confidence regions that are
the basis for our stepwise testing method. A joint studentization is not feasible
for our purposes. While individual studentization cannot be proven to result in
asymptotic refinements in terms of the level, it might still lead to finite sample
improvements; see Section 8.

The third reason is individual coverage probabilities. As a by-product, the
first step of our multiple testing method yields a joint confidence region for the
parameter vector θ. The basic method yields the region

[wT�r1 − ĉ1�∞)× · · · × [wT�rS − ĉ1�∞)�(12)

The studentized method yields the region

[wT�r1 − σ̂T�r1 d̂1�∞)× · · · × [wT�rS − σ̂T�rS d̂1�∞)�(13)

If the sample size T is large, both regions (12) and (13) have joint coverage
probability of about 1 − α, but they are distinct as far as the individual cover-
age probabilities for the θrs values are concerned. Assume that the test statistics
wT�s have different standard deviations, which happens in many applications.
Say wT�r1 has a smaller standard deviation than wT�r2 . Then the confidence in-
terval for θr1 derived from (12) will typically have a larger (individual) cover-
age probability compared to the confidence interval for θr2 . This is not the case
for (13), where, thanks to studentization, the individual coverage probabilities
are comparable and hence the individual confidence intervals are balanced.
The latter is clearly a desirable property; see Beran (1988). Indeed, we make
a decision concerning Hrs by inverting a confidence interval for θrs . Balanced
confidence intervals result in a balanced power distribution among the indi-
vidual hypotheses. Unbalanced confidence intervals, obtained from basic test
statistics, distribute the power unevenly among the individual hypotheses.

To sum up, when the standard deviations of the basic test statistics wT�s are
different, the wT�s live on different scales. Comparing one basic test statistic
to another is then like comparing apples to oranges. If one wants to compare
apples to apples, one should use the studentized test statistics zT�s.23

5. POSSIBLE EXTENSIONS

The aim of this paper is to introduce a new multiple testing methodology
based on stepwise joint confidence regions. For the sake of brevity and suc-
cinctness, we have presented the methodology in a compact yet rather flexible
framework. This section briefly lists several possible extensions.

In our setup, the individual null hypotheses Hs are one-sided. This makes
sense because we want to test whether individual strategies improve upon a

23Alternatively, one could compare individual p-values, but this becomes more involved.
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benchmark, rather than whether their performance is just different from the
benchmark. Nevertheless, for other multiple testing problems two-sided tests
can be more appropriate; for example, see the multiple regression example of
the next paragraph. If two-sided tests are preferred, our methods can be easily
adapted. Instead of one-sided joint confidence regions, one would construct
two-sided joint confidence regions. To give an example, the first-step region
based on simple test statistics would look like

[wT�r1 ± ĉ1�|·|] × · · · × [wT�rS ± ĉ1�|·|]�
Here ĉ1�|·| estimates the 1 − α quantile of the sampling distribution of
max1≤s≤S |wT�rs − θrs |. The corresponding modifications of Algorithms 3.1
and 3.2 are straightforward. Note that in the modified Algorithm 3.1, the
strategies would have to be relabeled in descending order of the |wT�s| values
instead of the wT�s values; an analogous situation exists for the modification of
Algorithm 3.2.

Since our focus is on comparing a number of strategies to a common bench-
mark, we assume that a test statistic wT�s is a function of the vectors X(T)

·�s and
X(T)

·�S+1 only, where X(T)
·�S+1 corresponds to the benchmark. This assumption is not

crucial for our multiple testing methods. Take the example of a multiple re-
gression model with regression parameters θ1� θ2� � � � � θS . The individual null
hypotheses are of the form Hs :θs = θ0�s for some constants θ0�s. The alterna-
tives can be (all) one-sided or (all) two-sided. Note that there is no benchmark
here, so the last column of the T × (S+1) data matrix XT would correspond to
the response variable, while the first S columns would respond to the explana-
tory variables. In this setting, wT�s = θ̂T�s, where the estimation might be done
by OLS say. Obviously, wT�s is now a function of the entire data matrix. Still,
our multiple testing methods can be applied to this setting and the modifica-
tions are minor: one rejects Hrs if θ0�rs , rather than zero, is not contained in a
confidence interval for θrs .

We assume the usual
√
T convergence, meaning that

√
T(WT −θ) has a non-

degenerate limiting distribution. In nonstandard situations, the rate of con-
vergence can be another function of T instead of the square root. In these
instances, the bootstrap often fails to consistently estimate the limiting distri-
bution, but if this happens, one can use the subsampling method instead; see
Politis, Romano, and Wolf (1999) for a general reference. Our multiple test-
ing methods can be modified for the use of subsampling instead of the boot-
strap. Examples where the rate of convergence is T 1/3 can be found in Delgado,
Rodríguez-Poo, and Wolf (2001).24 An example where the rate of convergence
is T can be found in Gonzalo and Wolf (2005).

24This paper focuses on the use of subsampling for testing purposes, but the modifications for
the construction of confidence intervals/regions are straightforward.
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6. ALTERNATIVES TO FWE CONTROL

In this paper, we propose (asymptotic) FWE control to account for data
snooping, which is the common approach. However, for certain applications,
FWE control may be too strict. In particular, when the number of hypotheses
is very large, it can become very difficult to reject false hypotheses. Therefore,
it may be appropriate to relax control of the FWE so as to increase power. We
briefly discuss three alternative proposals to this end.

The first proposal is to control the probability of making k or more false
rejections, which is called the k-FWE. Here k is some integer greater than 1.
The second proposal is based on the false discovery proportion (FDP), defined
by the number of false rejections divided by the total number of rejections (and
defined to be zero if there are no rejections at all). In particular, one might
want to control ProbP{FDP > γ}, where γ is a small, user-defined number.
The third proposal is to control E(FDP), the expected value of the FDP, which
is called the false discovery rate (FDR). While different in their approaches,
these three proposals share the same philosophy. By allowing a small number
or (expected) fraction of false rejections, one can improve one’s chances to
reject false hypotheses, and perhaps greatly so.

Lehmann and Romano (2005) propose stepwise methods for controlling the
k-FWE and ProbP{FDP > γ}, based on individual p-values. Their methods
assume a worst-case dependence structure of the p-values and can therefore
be viewed as generalizations of the Holm method. Current research is devoted
to incorporating the dependence structure of p-values and/or test statistics in
such methods to improve power.

Benjamini and Hochberg (1995) propose a stepwise method for controlling
the FDR, based on individual p-values. However, they make the very strong
assumption that the p-values are independent of each other. Benjamini and
Yekutieli (2001) show that the method of Benjamini and Hochberg (1995) re-
mains valid under certain types of dependence. The problem of controlling the
FDR under arbitrary dependence structures remains an open research ques-
tion. For some applications of the method of Benjamini and Hochberg (1995)
to econometric problems and related discussions, see Williams (2003).

7. CHOICE OF BLOCK SIZES

If the data sequence is a stationary time series, one needs to use a time se-
ries bootstrap. Each possible choice—the moving blocks bootstrap, the circular
blocks bootstrap, or the stationary bootstrap—involves the problem of choos-
ing the block size b. (When the stationary bootstrap is used, we denote by b
the expected block size.) Asymptotic requirements on b include b → ∞ and
b/T → 0 as T → ∞, which is of little practical help. In this section, we give
concrete advice on how to select b in a data-dependent fashion. The method
we propose, in the simpler context of constructing a confidence interval for
a univariate parameter, appears in Romano and Wolf (2003), but we state it
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again here for completeness. Note that the block size b has to be chosen from
scratch in each step of our stepwise multiple testing methods and that the in-
dividual choices may well be different.

Consider the jth step of a stepwise procedure. The goal is to construct a
joint confidence region for the vector (θrRj−1+1� � � � � θrS )

′ with nominal coverage
probability of 1 −α. The actual coverage probability in finite samples, denoted
by 1 − λ, is generally not exactly equal to 1 − α. Moreover, conditional on
P and T , we can think of the actual coverage probability as a function of the
block size b. This function g :b → 1 − λ was coined the calibration function by
Loh (1987). The idea is to adjust the input b so as to obtain the actual coverage
probability close to the desired one. More specifically, the solution is to find b̃

that minimizes |g(b)− (1−α)| and use the value b̃ as the block size in practice.
Note that |g(b)− (1 − α)| = 0 may not always have a solution.

Unfortunately, the function g(·) depends on the underlying probability
mechanism P and is unknown. We therefore propose a method to esti-
mate g(·). The idea is that, in principle, we could simulate g(·) if P were known
by generating data of size T according to P and by computing joint confidence
regions for (θrRj−1+1� � � � � θrS )

′ for a number of different block sizes b. This
process is then repeated many times and for a given b one estimates g(b) as the
fraction of the corresponding intervals that contain the true parameter vector.
The method we propose is identical except that P is replaced by a semipara-
metric estimate P̃T . For compact notation, define θ(r)

Rj−1
= (θrRj−1+1� � � � � θrS )

′.

ALGORITHM 7.1—Choice of Block Sizes:
1. The labels r1� � � � � rS and the numerical values R0�R1� � � � are given in Al-

gorithm 3.1 if the basic method is used or in Algorithm 4.1 if the studentized
method is used, respectively.

2. Fit a semiparametric model P̃T to the observed data XT .
3. Fix a selection of reasonable block sizes b.
4. Generate M data sets X̃1

T � � � � � X̃
M
T according to P̃T .

5. For each data set X̃m
T , m = 1� � � � �M , and for each block size b, compute

a joint confidence region JCRm�b for θ(r)
Rj−1

.
6. Compute ĝ(b)= #{θ(r)

Rj−1
(P̃T ) ∈ JCRm�b}/M .

7. Find the value of b̃ that minimizes |ĝ(b)− (1 −α)| and use this value b̃ in
the construction of the jth joint confidence region.

REMARK 7.1: The motivation of fitting a semiparametric model P̃T to P is
that such models do not involve a block size of their own. In general, we suggest
using a low-order vector autoregressive (VAR) model. While such a model will
usually be misspecified, its role can be compared to the role of a semiparamet-
ric model in the prewhitening process for prewhitened kernel variance estima-
tion; e.g., see Andrews and Monahan (1992). Even if the model is misspecified,
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it should contain some valuable information on the dependence structure of
the true mechanism P that can be exploited to estimate g(·).

REMARK 7.2: Algorithm 7.1 provides a reasonable method to select the
block sizes in a practical application. We do not claim any asymptotic opti-
mality properties. On the other hand, in the simpler context of constructing a
confidence interval for a univariate parameter, Romano and Wolf (2003) find
that this algorithm works very well in a simulation study.

REMARK 7.3: We have suggested the use of the subsampling method in non-
standard situations where the bootstrap fails. Arguably, the choice of a good
block size is then even more crucial compared to the application of a block
bootstrap. A calibration method similar to Algorithm 7.1 can also be used with
subsampling. For some simulation evidence that this approach yields good fi-
nite sample performance in general, see Delgado, Rodríguez-Poo, and Wolf
(2001), Giersbergen (2002), Choi (2005), and Gonzalo and Wolf (2005).

8. SIMULATION STUDY

The goal of this section is to shed some light on the finite-sample perfor-
mance of our methods by means of a simulation study. It should be pointed
out that any data generating process (DGP) has a large number of input vari-
ables, including the number of observations T , the number of strategies S, the
number of false hypotheses, the numerical values of the parameters θs , the de-
pendence structure across strategies, and the dependence structure over time
(in the case of time series data). An exhaustive study is clearly beyond the
scope of this paper and our conclusions will necessarily be limited. The main
interest is to see how the stepwise method compares to the single-step method
and to judge the effect of studentization. Performance criteria are the empiri-
cal FWE and the average number of false hypotheses that are rejected. To save
space, only results for the nominal level α = 0�1 are reported.25 We consider
the simplest case of comparing the population mean of a strategy to that of the
benchmark, as in Example 2.1.

8.1. i.i.d. Data

We start with observations that are i.i.d. over time. The number of observa-
tions is T = 100 and there are S = 40 strategies. A basic test statistic is given
by (1) and a studentized test statistic is given by (2). The studentized statistic
uses the formula (11). The bootstrap method is Efron’s bootstrap. The number
of bootstrap repetitions is M = 200 due to the computational expense of the
simulation study. The number of DGP repetitions in each scenario is 5�000.

25The results for α = 0�05 are similar and available from the authors upon request.
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The distribution of the observation XT
t�· is jointly normal. We consider two

cases for the joint correlation matrix. In the first case, there is a common cor-
relation ρ between the individual strategies and also between strategies and the
benchmark; we use ρ = 0 and ρ = 0�5. In the second case, we split the strate-
gies into two groups of size 20 each. All strategies are uncorrelated with the
benchmark. Within groups, there is a common correlation of ρ1 = 0�5. Across
groups, there is a common correlation of ρ2 = −0�2. The mean of the bench-
mark is always equal to 1.

In the first class of DGPs, there are four cases as far as the means of the
strategies are concerned: all means are equal to 1; six of the means are equal
to 1.4 and the remaining ones are equal to 1; twenty of the means are equal
to 1.4 and the remaining ones are equal to 1; all forty means are equal to 1.4.
The standard deviation of the benchmark is always equal to 1. As far as the
standard deviations of the strategies are concerned, half of them are equal to 1
and the other half are equal to 2. Note that the strategies that have the same
mean as the benchmark always have half their standard deviations equal to 1
and the other half equal to 2; the same for the strategies with means greater
than that of the benchmark. The results are reported in Table II. The control
of the FWE is satisfactory for all methods (single step vs. stepwise and basic
vs. studentized). When comparing the average number of false hypotheses re-
jected, one observes that (i) the stepwise method improves upon the single-step
method and (ii) the studentized method improves significantly upon the basic
method. Finally, the bootstrap successfully captures the dependence structure
across strategies. When the correlation matrix differs from the identity, more
false hypotheses are rejected.

In the second class of DGPs, the strategies that are superior to the bench-
mark have their means evenly distributed between 1 and 4. Again there are
four cases: all means are equal to 1; six of the means are greater than 1 and
the remaining ones are equal to 1; twenty of the means are greater than 1 and
the remaining ones are equal to 1; all forty means are greater than 1. For ex-
ample, when six of the means are greater than 1, those are 1.5, 2, 2.5, 3.0, 3.5,
and 4.0. When twenty of the means are greater than 1, those are 1.15, 1.30, . . . ,
3.85, 4.0. For any strategy, the standard deviation is 2 times the corresponding
mean. For example, the standard deviation of a strategy with mean 1 is 2, the
standard deviation of a strategy with mean 1.5 is 3, and so on. The results are
reported in Table III. The control of the FWE is satisfactory for all methods
(single step vs. stepwise and basic vs. studentized). When comparing the av-
erage number of false hypotheses rejected, one observes that (i) the stepwise
method improves significantly upon the single-step method and (ii) the studen-
tized method improves upon the basic method for the single-step approach;
however, it is worse than the basic method for the stepwise approach. Finally,
the bootstrap successfully captures the dependence structure across strategies.
When the correlation matrix differs from the identity, more false hypotheses
are rejected.
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TABLE II

EMPIRICAL FWES AND AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method FWE (Single) FWE (Step) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 10�5 10�5 0�0 0�0
Stud 10�4 10�4 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 10�6 10�6 0�0 0�0
Stud 10�6 10�6 0�0 0�0

All strategy means = 1, ρ1 = 0�5, ρ2 = −0�2
Basic 10�5 10�5 0�0 0�0
Stud 9�9 9�9 0�0 0�0

Six strategy means = 1�4, cross correlation ρ= 0
Basic 9�7 9�7 1�1 1�2
Stud 9�6 10�1 2�2 2�3

Six strategy means = 1�4, cross correlation ρ= 0�5
Basic 10�0 10�3 2�6 2�7
Stud 9�3 10�1 3�8 3�9

Six strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 9�7 10�1 1�4 1�5
Stud 9�7 10�1 2�6 2�6

Twenty strategy means = 1�4, cross correlation ρ = 0
Basic 6�0 7�7 3�7 4�1
Stud 6�7 8�4 7�4 7�8

Twenty strategy means = 1�4, cross correlation ρ= 0�5
Basic 6�1 8�9 8�6 9�6
Stud 6�2 9�4 12�6 13�2

Twenty strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 5�7 7�1 4�6 5�3
Stud 5�8 7�3 8�5 9�0

Forty strategy means = 1�4, cross correlation ρ= 0
Basic 0�0 0�0 7�5 10�0
Stud 0�0 0�0 14�7 17�1

Forty strategy means = 1�4, cross correlation ρ= 0�5
Basic 0�0 0�0 17�2 23�2
Stud 0�0 0�0 25�2 29�3

Forty strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 0�0 0�0 9�5 12�8
Stud 0�0 0�0 16�9 19�5

aThe nominal level is α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number of
strategies is S = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.4. The standard deviation of the
benchmark is 1; half of the strategy standard deviations are 1, the other half are 2. The number of repetitions is 5�000
per scenario.
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TABLE III

EMPIRICAL FWES AND AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method FWE (Single) FWE (Step) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 11�3 11�3 0�0 0�0
Stud 10�4 10�4 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 11�3 11�3 0�0 0�0
Stud 10�4 10�4 0�0 0�0

All strategy means = 1, ρ1 = 0�5, ρ2 = −0�2
Basic 10�4 10�4 0�0 0�0
Stud 10�1 10�1 0�0 0�0

Six strategy means greater than 1, cross correlation ρ = 0
Basic 0�0 9�4 3�6 4�7
Stud 8�6 9�8 3�4 3�5

Six strategy means greater than 1, cross correlation ρ= 0�5
Basic 0�0 10�2 4�1 5�3
Stud 8�5 10�1 4�3 4�5

Six strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 0�0 9�6 3�8 4�8
Stud 8�6 10�2 3�7 3�8

Twenty strategy means greater than 1, cross correlation ρ= 0
Basic 0�0 6�3 9�0 13�7
Stud 5�3 8�2 9�7 10�6

Twenty strategy means greater than 1, cross correlation ρ = 0�5
Basic 0�0 8�4 11�0 16�3
Stud 5�5 9�3 13�1 13�9

Twenty strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 0�0 5�5 9�9 14�4
Stud 5�0 6�7 10�8 11�6

Forty strategy means greater than 1, cross correlation ρ= 0
Basic 0�0 0�0 15�4 24�6
Stud 0�0 0�0 18�1 21�5

Forty strategy means greater than 1, cross correlation ρ= 0�5
Basic 0�0 0�0 19�7 31�5
Stud 0�0 0�0 25�6 29�2

Forty strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 0�0 0�0 17�3 26�3
Stud 0�0 0�0 20�1 23�8

aThe nominal level is α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number of
strategies is S = 40. The mean of the benchmark is 1; the strategy means that are greater than 1 are equally spaced
between 1 and 4. The standard deviation of the benchmark is 2; the standard deviation of a strategy is 2 times its
mean. The number of repetitions is 5�000 per scenario.
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In addition, we provide FWE-corrected results for the average number of
false hypotheses rejected. To this end we adjust the nominal FWE level of the
single-step methods (basic and studentized) by trial and error such that their
empirical FWEs match those of the corresponding stepwise methods. The re-
sults are reported in Tables IV and V (for the two classes of DGPs). It can be
seen that when not all null hypotheses are false, the FWE-corrected single-step
methods perform very similarly now to their stepwise counterparts.26 There-
fore, the power gain of the stepwise methods can basically be explained by their
ability to bring the empirical FWE closer to the nominal one in general. This
finding is certainly of academic interest. On the other hand, a FWE-corrected
single-step method is not feasible in practice, since the proper adjustment of
the nominal level would be unknown. Our simulations show that, depending
on the DGP, sometimes no adjustment is required at all, while at other times
the adjustment can be tremendous, with nominal levels over 70% required!

8.2. Time Series Data

The main modification with respect to the previous DGPs is that now the ob-
servations are not i.i.d., but rather a multivariate normal stationary time series.
Marginally, each vector XT

·�s is an AR(1) process with autoregressive coeffi-
cient ϑ = 0�6. In addition, we consider only the case of a common correlation
ρ = 0 and ρ = 0�5 for the joint correlation matrix of a XT

t�· vector. The number
of observations is increased to T = 200 to make up for the dependence over
time. A basic test statistic is given by (1) and a studentized test statistic is given
by (2). The studentized statistic uses a prewhitened kernel variance estimator
based on the quadratic spectral (QS) kernel and the corresponding automatic
choice of bandwidth of Andrews and Monahan (1992). The bootstrap method
is the circular block bootstrap. The studentization in the bootstrap world uses
the corresponding natural variance estimator; for details, see Götze and Kün-
sch (1996) or Romano and Wolf (2003). The number of bootstrap repetitions
is M = 200 due to the computational expense of the simulation study. The
number of DGP repetitions in each scenario is 2�000.

The choice of the block size is an important practical problem in applying a
block bootstrap. Unfortunately, the data-dependent Algorithm 7.1 is computa-
tionally too expensive to be incorporated in our simulation study. (This would
not be a problem in a practical application where only one data set has to be
processed, instead of several thousand as in a simulation study.) We therefore
found the reasonable block sizes b = 20 for the basic method and b = 15 for
the studentized method, respectively, by trial and error. Given that a variant of
Algorithm 7.1 is seen to perform very well in a less computer intensive simu-
lation study of Romano and Wolf (2003), we are quite confident that it would

26When all null hypotheses are false, then the FWE is equal to zero for all methods and all
nominal levels α by definition, so it is not clear how to carry out a FWE correction is this case.
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TABLE IV

FWE-CORRECTED AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method Nominal Level (Single) FWE (Both) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 10�0 10�5 0�0 0�0
Stud 10�0 10�4 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 10�0 10�6 0�0 0�0
Stud 10�0 10�6 0�0 0�0

All strategy means = 1, ρ1 = 0�5, ρ2 = −0�2
Basic 10�0 10�5 0�0 0�0
Stud 10�0 9�9 0�0 0�0

Six strategy means = 1�4, cross correlation ρ = 0
Basic 10�0 9�7 1�1 1�2
Stud 10�5 10�1 2�3 2�3

Six strategy means = 1�4, cross correlation ρ= 0�5
Basic 10�3 10�3 2�7 2�7
Stud 10�4 10�1 3�9 3�9

Six strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 10�3 10�1 1�5 1�5
Stud 10�3 10�1 2�6 2�6

Twenty strategy means = 1�4, cross correlation ρ = 0
Basic 11�6 7�7 4�1 4�1
Stud 12�2 8�4 7�9 7�8

Twenty strategy means = 1�4, cross correlation ρ= 0�5
Basic 13�2 8�9 9�9 9�6
Stud 13�4 9�4 13�3 13�2

Twenty strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 11�5 7�1 4�9 5�3
Stud 11�6 7�3 8�7 9�0

Forty strategy means = 1�4, cross correlation ρ = 0
Basic 10�0 0�0 7�5 10�0
Stud 10�0 0�0 14�7 17�1

Forty strategy means = 1�4, cross correlation ρ= 0�5
Basic 10�0 0�0 17�2 23�2
Stud 10�0 0�0 25�2 29�3

Forty strategy means = 1�4, ρ1 = 0�5, ρ2 = −0�2
Basic 10�0 0�0 9�5 12�8
Stud 10�0 0�0 16�9 19�5

aIn each case, the nominal level of the single-step method is adjusted so that its empirical FWE matches that of
the stepwise method. Observations are i.i.d., the number of observations is T = 100, and the number of strategies is
S = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.4. The standard deviation of the benchmark
is 1; half of the strategy standard deviations are 1, the other half are 2. The number of repetitions is 5�000 per scenario.
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TABLE V

FWE-CORRECTED AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method Nominal Level (Single) FWE (Both) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 10�0 11�3 0�0 0�0
Stud 10�0 10�4 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 10�0 11�3 0�0 0�0
Stud 10�0 10�4 0�0 0�0

All strategy means = 1, ρ1 = 0�5, ρ2 = −0�2
Basic 10�0 10�4 0�0 0�0
Stud 10�0 10�1 0�0 0�0

Six strategy means greater than 1, cross correlation ρ = 0
Basic 48�5 9�4 4�7 4�7
Stud 11�4 9�8 3�5 3�5

Six strategy means greater than 1, cross correlation ρ= 0�5
Basic 51�2 10�2 5�3 5�3
Stud 11�8 10�1 4�5 4�5

Six strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 43�6 9�6 4�8 4�8
Stud 12�4 10�2 3�8 3�8

Twenty strategy means greater than 1, cross correlation ρ= 0
Basic 77�8 6�3 14�6 13�7
Stud 16�2 8�2 10�7 10�6

Twenty strategy means greater than 1, cross correlation ρ= 0�5
Basic 73�2 8�4 16�7 16�3
Stud 16�5 9�3 14�0 13�9

Twenty strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 62�7 5�5 14�7 14�4
Stud 13�8 6�7 11�3 11�6

Forty strategy means greater than 1, cross correlation ρ = 0
Basic 10�0 0�0 15�4 24�6
Stud 10�0 0�0 18�1 21�5

Forty strategy means greater than 1, cross correlation ρ= 0�5
Basic 10�0 0�0 19�7 31�5
Stud 10�0 0�0 25�6 29�2

Forty strategy means greater than 1, ρ1 = 0�5, ρ2 = −0�2
Basic 10�0 0�0 17�3 26�3
Stud 10�0 0�0 20�1 23�8

aIn each case, the nominal level of the single-step method is adjusted so that its empirical FWE matches that of
the stepwise method. Observations are i.i.d., the number of observations is T = 100, and the number of strategies is
S = 40. The mean of the benchmark is 1; the strategy means that are greater than 1 are equally spaced between 1
and 4. The standard deviation of the benchmark is 2; the standard deviation of a strategy is 2 times its mean. The
number of repetitions is 5�000 per scenario.
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TABLE VI

EMPIRICAL FWES AND AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method FWE (Single) FWE (Step) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 15�7 15�7 0�0 0�0
Stud 5�8 5�8 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 16�3 16�3 0�0 0�0
Stud 5�2 5�2 0�0 0�0

Six strategy means = 1�6, cross correlation ρ = 0
Basic 14�7 15�5 1�8 1�9
Stud 5�0 5�4 1�8 1�8

Six strategy means = 1�6, cross correlation ρ= 0�5
Basic 15�6 16�8 3�7 3�8
Stud 6�8 7�5 3�3 3�4

Twenty strategy means = 1�6, cross correlation ρ = 0
Basic 9�4 12�7 6�1 6�8
Stud 3�7 5�0 5�9 6�3

Twenty strategy means = 1�6, cross correlation ρ= 0�5
Basic 11�6 16�0 12�3 13�3
Stud 4�3 6�8 11�2 12�0

Forty strategy means = 1�6, cross correlation ρ = 0
Basic 0�0 0�0 12�5 16�8
Stud 0�0 0�0 11�6 14�3

Forty strategy means = 1�6, cross correlation ρ= 0�5
Basic 0�0 0�0 24�3 30�2
Stud 0�0 0�0 22�3 27�9

aThe nominal level is α= 10%. Observations are a multivariate time series, the number of observations is T = 200,
and the number of strategies is S = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.6. The standard
deviation of the benchmark is 1; half of the strategy standard deviations are 1, the other half are 2. The number of
repetitions is 2�000 per scenario.

also perform well in the context of multiple testing. We cannot offer any simu-
lation evidence to this end, however.

The first class of DGPs is similar to the i.i.d. case, except that the strategy
means greater than 1 are equal to 1.6 rather than 1.4. The results are reported
in Table VI. The second class of DGPs is similar to the i.i.d. case, except that
the strategy means greater than 1 are evenly distributed between 1 and 7 rather
than between 1 and 4. The results are reported in Table VII.

Contrary to the findings for i.i.d. data, the basic method does not provide a
satisfactory control of the FWE in finite samples and is too liberal. (This is not
because of the choice of block size b= 20, but was observed for all other block
sizes we tried as well.) On the other hand, the studentized method does a good
job of controlling the FWE. Again, the stepwise method does, in general, reject
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TABLE VII

EMPIRICAL FWES AND AVERAGE NUMBER OF FALSE
HYPOTHESES REJECTED

Method FWE (Single) FWE (Step) Rejected (Single) Rejected (Step)

All strategy means = 1, cross correlation ρ= 0
Basic 15�1 15�1 0�0 0�0
Stud 7�4 7�4 0�0 0�0

All strategy means = 1, cross correlation ρ= 0�5
Basic 17�9 17�9 0�0 0�0
Stud 7�4 7�4 0�0 0�0

Six strategy means greater than 1, cross correlation ρ = 0
Basic 0�0 12�4 3�4 4�9
Stud 5�5 6�0 2�0 2�1

Six strategy means greater than 1, cross correlation ρ= 0�5
Basic 0�0 13�0 3�8 5�4
Stud 4�5 5�3 2�5 2�6

Twenty strategy means greater than 1, cross correlation ρ= 0
Basic 0�0 6�1 8�0 13�3
Stud 2�7 3�5 5�2 5�9

Twenty strategy means greater than 1, cross correlation ρ= 0�5
Basic 0�0 12�0 9�5 15�8
Stud 2�3 4�1 7�5 8�5

Forty strategy means greater than 1, cross correlation ρ = 0
Basic 0�0 0�0 13�0 22�1
Stud 0�0 0�0 9�4 11�5

Forty strategy means greater than 1, cross correlation ρ= 0�5
Basic 0�0 0�0 16�5 29�4
Stud 0�0 0�0 14�9 19�3

aThe nominal level is α= 10%. Observations are a multivariate time series, the number of observations is T = 200,
and the number of strategies is S = 40. The mean of the benchmark is 1; the strategy means that are greater than 1 are
equally spaced between 1 and 7. The standard deviation of the benchmark is 2; the standard deviation of a strategy is
2 times its mean. The number of repetitions is 2�000 per scenario.

more false hypotheses compared to the single-step method and the magnitude
of the improvement depends on the underlying probability mechanism.

9. EMPIRICAL APPLICATION

We consider the challenge of performance analysis when a large number of
investment managers are being evaluated. In the words of Grinold and Kahn
(2000, p. 479), “The fundamental goal of performance analysis is to separate
skill from luck. But, how do you tell them apart? In a population of 1,000 in-
vestment managers, about 5 percent, or 50, should have exceptional perfor-
mance by chance alone. None of the successful managers will admit to being
lucky; all of the unsuccessful managers will cite bad luck.”
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Our universe consists of all hedge funds in the Center for International Secu-
rities and Derivatives Markets (CISDM) data base that have a complete return
history from 01/1992 until 03/2004. There are S = 105 such funds and the num-
ber of monthly observations is T = 147. All returns are net of management
and incentive fees, that is, they are the returns obtained by the investors. As is
standard in the hedge fund industry, we benchmark the funds against the risk-
free rate27 and all returns are log returns. So we are in the general situation of
Example 2.1: a basic test statistic is given by (1) and a studentized test statistic
is given by (2). It is well known that hedge fund returns, unlike mutual fund
returns, tend to exhibit nonnegligible serial correlations; for example, see Lo
(2002) and Kat (2003). Indeed, the median first-order autocorrelation of the
105 funds in our universe is 0.172. Accordingly, one has to account for this time
series nature to obtain valid inference. Studentization for the original data uses
a kernel variance estimator based on the prewhitened QS kernel and the cor-
responding automatic choice of bandwidth of Andrews and Monahan (1992).
The bootstrap method is the circular block bootstrap, based on M = 5�000 rep-
etitions. The studentization in the bootstrap world uses the corresponding nat-
ural variance estimator; for details, see Götze and Künsch (1996) or Romano
and Wolf (2003). The block sizes for the circular bootstrap are chosen via Al-
gorithm 7.1. The semiparametric model P̃T used in this algorithm is a VAR(1)
model in conjunction with bootstrapping the residuals.28

Table VIII lists the ten largest basic and studentized test statistics, together
with the corresponding hedge funds. While one expects the two lists to be

TABLE VIII

THE TEN LARGEST BASIC AND STUDENTIZED TEST STATISTICS, TOGETHER WITH THE
CORRESPONDING HEDGE FUNDS, IN OUR EMPIRICAL APPLICATION

x̄T�s − x̄T�S+1 Fund (x̄T�s − x̄T�S+1)/σ̂T�s Fund

1.70 Libra Fund 10.63 Market Neutral∗

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage∗

1.36 Aggressive Appreciation 8.43 Univest (B)∗

1.27 Gamut Investments 6.33 TQA Arbitrage Fund∗

1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage∗

1.14 FBR Weston 5.29 Gabelli Associates∗

1.11 Berkshire Partnership 5.24 Elliott Associates∗∗

1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund
1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust

aThe return unit is 1%. Funds identified in the first step are indicated by the superscript * and funds identified
in the second step are indicated by the superscript **.

27The risk-free rate is a simple and widely accepted benchmark. Of course, our methods also
apply to alternative benchmarks such as hedge fund indices or multifactor hedge fund bench-
marks; for example, see Kosowski, Naik, and Teo (2005).

28To account for leftover dependence not captured by the VAR(1) model, we use the stationary
bootstrap with average block size b = 5 to bootstrap the residuals.
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different, it is striking that they are completely disjoint. However, this result
can be explained by the fact that hedge funds apply very different investment
strategies and, in contrast to mutual funds, can be leveraged in addition. There-
fore, many funds that achieve a high average return do so at the expense of
a (relatively) high risk, measured by the standard deviation. Once the mag-
nitude of the uncertainty about the basic test statistics is taken into account
through studentization, the order of the test statistics changes. The studentized
list presents the more fair ranking, since it accounts for the varying estimation
uncertainty.

We now use the various multiple testing methods to identify hedge funds that
outperform the risk-free rate, asymptotically controlling the FWE at level 0.05.
The basic method does not identify a single fund. On the other hand, the stu-
dentized method identifies six funds in the first step: Market Neutral, Market
Neutral Arbitrage, Univest (B), TQA Arbitrage Fund, Event-Driven Risk Ar-
bitrage, and Gabelli Associates. Furthermore, it identifies a seventh fund in the
second step: Eliott Associates.

The failure of the basic method to identify any outperformers can be at-
tributed to the highly varying risk level across funds. The upper part of Figure 1
shows a scatterplot of the standard errors σ̂147�s against the basic test statis-
tics w147�s. The ratio of the largest standard error to the smallest one equals
1�057/0�0477 = 22�2. As a result, the high risk hedge funds dominate the ĉj val-
ues of the basic method. If the high risk funds corresponded to the funds with
the largest basic test statistics w147�s, then some outperformers might still be
detected. However, as can be seen from the scatterplot, this is not the case; for
example, the fund with the largest standard error actually yields a negative ba-
sic test statistic. (The lower part of Figure 1 displays the cumulative wealth in
excess of the risk-free rate over the investment period of T = 147 months for
the three funds with the highest w147�s, z147�s, and σ̂147�s statistics, respectively.)
On the other hand, the studentized method is robust in this sense because it
accounts for the varying risk levels across funds via studentization. As a result,
the d̂j values of the studentized method are not dominated by the high risk
hedge funds and some outperforming funds are detected.

To look at this issue in some more detail, if the five funds with a standard
error σ̂147�s above 0.8 are deleted from the sample, then the ĉ1 value of the
basic method decreases dramatically from 2.12 to 1.48. Now, the fund with the
largest basic statistic w147�s, the Libra Fund, is identified as an outperformer. In
contrast, the d̂1 value of the studentized method decreases only slightly from
5.25 to 5.18, and the same seven funds as before are identified.29

As a final remark, when the return data are mistakenly analyzed as i.i.d. data,
then the studentized method identifies 34 outperforming funds, while the basic
method still does not identify a single fund.

29Needless to say, deleting strategies from a sample based on their standard errors is an ad hoc
method that is not recommended in practice.
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FIGURE 1.—Top: Scatterplot of the basic test statistics w147�s against the standard errors σ̂147�s

in the empirical application of Section 9. The point (0�0476�0�5062), which corresponds to the
largest studentized statistic z147�s = w147�s/σ̂147�s , is marked by the symbol ∗. Bottom: The cumu-
lative wealth in excess of the risk-free rate, given an initial investment of 1, over the investment
period 01/1992 until 03/2004 for three hedge funds: the one with the largest basic test statistic
w147�s (solid line), the one with the largest studentized statistic z147�s (dotted line), and the one
with the largest standard error σ̂147�s (dashed line).
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10. CONCLUSION

This paper advocates a stepwise multiple testing method in the context of
comparing several strategies to a common benchmark. To account for the un-
desirable effects of data snooping, our method asymptotically controls the fam-
ilywise error rate, which is defined as the probability of falsely rejecting one or
more of the true null hypotheses. Our proposal extends the bootstrap reality
check of White (2000). The way it was originally presented, the BRC addresses
only whether the strategy that appears best in the sample actually beats the
benchmark, asymptotically controlling the FWE. However, the BRC can easily
be modified to potentially identify several strategies that do so. Our stepwise
method would regard this modified BRC as the first step. The crucial difference
is that if some hypotheses are rejected in this first step, our method does not
stop there and it potentially will reject further hypotheses in subsequent steps.
This results in improved power, without sacrificing the asymptotic control of
the FWE. To decide which hypotheses to reject in a given step, we construct
a joint confidence region for the set of parameters that pertains to the set of
null hypotheses not rejected in previous steps. This joint confidence region is
determined by an appropriate bootstrap method, depending on whether the
observed data are i.i.d. or a time series.

In addition, we proposed the use of studentization in situations when it is
feasible. There are several reasons why we prefer studentization, one of them
being that it results in a more even distribution of power among the individual
tests. We also showed that, for several sensible definitions of power, it is more
powerful compared to not studentizing.

It is important to point out that our ideas can be generalized. For exam-
ple, we focused on comparing several strategies to a common benchmark, but
there are alternative contexts where multiple testing, and hence data snoop-
ing, occurs. One instance is simultaneous inference for individual regression
coefficients in a multiple regression framework. With suitable modifications,
our stepwise testing method can be employed in such alternative contexts. To
give another example, the bootstrap may not result in asymptotic control of
the FWE in nonstandard situations, such as when the rate of convergence is
different from the square root of the sample size. In many such situations, one
can use a stepwise method based on subsampling rather than on the bootstrap.

Some simulation studies investigated finite-sample performance. Of course,
stepwise methods reject more false hypotheses than their single-step counter-
parts. Our simulations show that the actual size of the improvement depends
on the underlying probability mechanism—for example, through the number
of false null hypotheses, their respective magnitudes, etc.—and can range from
negligible to dramatic. On the other hand, the studentized stepwise method
can be less powerful or more powerful than the nonstudentized (or basic)
stepwise method, depending on the underlying mechanism. We still advocate
the use of studentization because (i) the underlying mechanism is unknown in
practice, so one cannot know whether studentizing is more powerful or not,
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(ii) but studentizing always results in a more even (or balanced) distribution of
power among the individual hypotheses, which is a desirable property. In ad-
dition, the use of studentization appears particularly important in the context
of time series data. Our simulations show that the nonstudentized (or basic)
method can fail to control the FWE in finite samples when there is notable
dependence over time; the studentized method does much better.
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APPENDIX A: PROOFS OF MATHEMATICAL RESULTS

We begin by stating two lemmas. The first one is quite obvious.

LEMMA A.1: Suppose that Assumption 3.1 holds. Let LT denote a random
variable with distribution JT (P) and let L denote a random variable with distri-
bution J(P). Let I = {i1� � � � � im} be a subset of {1� � � � � S}. Denote by L(I) the
corresponding subset of L, that is, L(I) = (Li1� � � � �Lim)

′. Analogously, denote by
LT(I) the corresponding subset of LT , that is, LT(I) = (LT�i1� � � � �LT�im)

′. Then
for any subset I of {1� � � � � S}, LT(I) converges in distribution to L(I).

LEMMA A.2: Suppose that Assumption 3.1 holds. Let I = {i1� � � � � im} be a sub-
set of {1� � � � �K}. Define L(I) and LT(I) as in Lemma A.1 and use analogous
definitions for WT(I) and θ(I). Also define

ĉI ≡ cI(1 − α� P̂T )= inf
{
x : ProbP̂T

{
max
s∈I

(w∗
T�s − θ∗

T�s)≤ x
}

≥ 1 − α
}
�(14)

Then

[wT�i1 − ĉI�∞)× · · · × [wT�im − ĉI�∞)(15)

is a joint confidence region for (θi1� � � � � θim)
′ with asymptotic coverage probability

of 1 − α.

PROOF: To start out, note that

ProbP

{
(θi1� � � � � θim)

′ ∈ JCR (15)
}

= ProbP

{
max(WT(I)− θ(I))≤ ĉI

}
= ProbP

{
max

√
T(WT(I)− θ(I)) ≤ √

T ĉI
}
�



STEPWISE MULTIPLE TESTING 1273

By Assumption 3.1, Lemma A.1, and the continuous mapping theorem,
maxLT(I) converges weakly to maxL(I), whose distribution is continuous.
Our notation implies that the sampling distribution under P of max

√
T ×

(WT(I) − θ(I)) is identical to the distribution of maxLT(I), so it converges
weakly to maxL(I). By analogous reasoning, the sampling distribution under
P̂T of max

√
T(W ∗

T (I) − θ∗
T (I)) also converges weakly to maxL(I). The proof

that

ProbP

{
max

√
T(WT(I)− θ(I))≤ √

T ĉI
} → 1 − α

is now similar to the proof of Theorem 1 of Beran (1984). Q.E.D.

PROOF OF THEOREM 3.1: We start with the proof of (i). Assume that θs > 0.
Assumption 3.1 and definition (9) imply that

√
T ĉ1 is stochastically bounded,

so ĉ1 converges to zero in probability. By Assumption 3.1 and Lemma A.1,√
T(wT�s − θs) converges weakly, so wT�s converges to θs in probability. These

two convergence results imply that, with probability tending to 1, wT�s − ĉ1 will
be greater than θs/2, resulting in the rejection of Hs in the first step.

We now turn to the proof of (ii). The result trivially holds in case all
null hypotheses Hs are false. So assume at least one of them is true. Let
I0 = I0(P) ⊂ {1� � � � � S} denote the indices of the set of true hypotheses; that
is, s ∈ I0 if and only if θs ≤ 0. Denote the number of true hypotheses by m and
let I0 = {i1� � � � � im}. Part (i) implies that, with probability tending to 1, all false
hypotheses will be rejected in the first step. Since ĉI0 ≤ ĉ1, where ĉI0 is defined
analogously to (14), we therefore have

lim
T

FWEP(16)

= lim
T

ProbP{0 /∈ [wT�s − ĉI0�∞) for at least one s ∈ I0}
≤ lim

T
ProbP{θs /∈ [wT�s − ĉI0�∞) for at least one s ∈ I0}

= 1 − lim
T

ProbP

{
θ(I0) ∈ [wT�i1 − ĉI0�∞)× · · · × [wT�im − ĉI0�∞)

}
= 1 − (1 − α) (by Lemma A.2)

= α�

This proves the control of the FWE at level α. Since the argument does not as-
sume that all S null hypotheses are true, we have indeed proven strong control
of the FWE.

To prove (iii), we claim that, under the additional assumption made, the in-
equality (16) is strict if and only if at least one of the θs ∈ I0 is less than 0.
Obviously, we have equality in (16) when all the θs ∈ I0 are equal to zero, so
assume there exists at least one θs ∈ I0 that is strictly less than 0. Without loss of
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generality, assume θi1 < 0 then. Adopt the notation of Lemma A.2. Since J(P)
has strictly positive density everywhere, the same is true for the distribution
of maxL(I0), which implies that maxL(I0) has a unique 1 − α quantile. Call
this quantile c̄I0 ; that is, Prob{maxL(I0) ≤ c̄I0} = 1 − α. Lemma A.2, together
with the fact that the distribution function of maxL(I0) is strictly increasing
everywhere, imply that

√
T ĉI0 converges to c̄I0 in probability. Hence,

lim
T

ProbP

{
0 /∈ [wT�s − ĉI0�∞) for at least one s ∈ I0

}
= lim

T
ProbP

{∃ s ∈ I0 : 0 /∈ [wT�s − ĉI0�∞)
}

= lim
T

ProbP

{∃ s ∈ I0 :wT�s > ĉI0

}
= lim

T
ProbP

{∃ s ∈ I0 :
√
T(wT�s − θs) >

√
T(ĉI0 − θs)

}
≤ lim

T
ProbP

{∃ s ∈ I0 :
√
T(wT�s − θs) >

√
T ĉI0 − θs

}
(since θs ≤ 0 ∀ s ∈ I0)

= lim
T

ProbP

{∃ s ∈ I0 :
√
T(wT�s − θs) > c̄I0 − θs

}
(since

√
T ĉI0 →P c̄I0 )

= Prob{∃ j ∈ {1� � � � �m} :Lij > c̄I0 − θij }
= Prob

{
Li1 > c̄I0 − θi1 ∪ ∃ j ∈ {2� � � � �m} :Lij > c̄I0 − θij

}
< Prob

{
Li1 > c̄I0 ∪ ∃ j ∈ {2� � � � �m} :Lij > c̄I0 − θij

}
= lim

T
ProbP

{√
T(wT�i1 − θi1) > c̄I0 ∪ ∃ j ∈ {2� � � � �m} :

√
T(wT�ij − θij ) > c̄I0 − θij

}
≤ lim

T
ProbP

{∃ j ∈ {1� � � � �m} :
√
T(wT�ij − θij ) > c̄I0

}
(since θij ≤ 0 ∀ j ∈ {2� � � � �m})

= lim
T

ProbP

{∃ s ∈ I0 :
√
T(wT�s − θs) > c̄I0

}
= lim

T
ProbP

{∃ s ∈ I0 :
√
T(wT�s − θs) >

√
T ĉI0

}
(since

√
T ĉI0 →P c̄I0 )

= lim
T

ProbP{∃ s ∈ I0 :wT�s − θs > ĉI0}
= lim

T
ProbP

{
θs /∈ [wT�s − ĉI0�∞) for at least one s ∈ I0

}
= α�
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The lone strict inequality in this derivation follows from the fact that L(I0)
has strictly positive density everywhere combined with the assumption that
θi1 < 0. Q.E.D.

PROOF OF THEOREM 4.1: The proof is very similar to the proof of Theo-
rem 3.1 and hence it is omitted. Q.E.D.

APPENDIX B: OVERVIEW OF BOOTSTRAP METHODS

For readers not completely familiar with the variety of bootstrap methods
that do exist, we now briefly describe the most important ones. To recall our
notation, the observed data matrix is XT , which can be decomposed into the
observed data sequence X(T)

1�· �X
(T)
2�· � � � � �X

(T)
T�· . When the data are i.i.d., the or-

der of this sequence is of no importance. When the data are a time series, the
order is crucial.

Bootstrap B.1 (Efron’s Bootstrap)

The bootstrap of Efron (1979) is appropriate when the data are i.i.d. The
method generates random indices t∗1 � t

∗
2 � � � � � t

∗
T i.i.d. from the discrete uniform

distribution on the set {1�2� � � � �T }. The bootstrap sequence is then given
by X∗�(T )

1�· �X∗�(T )
2�· � � � � �X∗�(T )

T�· = X(T)
t∗1 �·�X

(T)
t∗2 �·� � � � �X

(T)
t∗T �·. The corresponding T ×

(S + 1) bootstrap data matrix is denoted by X∗
T . The probability mechanism

that generates X∗
T is denoted by P̂T .

Bootstrap B.2 (Moving Blocks Bootstrap)

The moving blocks bootstrap of Künsch (1989) and Liu and Singh (1992)
is appropriate when the data sequence is a stationary time series. It gener-
ates a bootstrap sequence by concatenating blocks of data that are resampled
from the original series. A particular block Bt�b is defined by its starting in-
dex t and by its length or block size b, that is, Bt�b = {X(T)

t�· �X
(T)
t+1�·� � � � �X

(T)
t+b−1�·}.

The moving blocks bootstrap selects a fixed block size 1 < b < T . It then
chooses random starting indices t∗1 � t

∗
2 � � � � � t

∗
l i.i.d. from the uniform distribu-

tion on the set {1�2� � � � � T − b + 1}, where l is the smallest integer for which
l × b ≥ T . The selected blocks are concatenated as {Bt∗1 �b�Bt∗2 �b� � � � �Bt∗

l
�b}. If

l × b > T , the sequence is truncated at length T to obtain the bootstrap se-
quence X∗�(T )

1�· �X∗�(T )
2�· � � � � �X∗�(T )

T�· . The corresponding T ×(S+1) bootstrap data
matrix is denoted by X∗

T . The probability mechanism generating X∗
T is denoted

by P̂T .
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Bootstrap B.3 (Circular Blocks Bootstrap)

The circular blocks bootstrap of Politis and Romano (1992) is appropri-
ate when the data sequence is a stationary time series. It generates a boot-
strap sequence by concatenating blocks of data that are resampled from the
original series. The difference with respect to the moving blocks bootstrap
is that the original data are “wrapped” into a circle in the sense of X(T)

T+1�· =
X1�·(T ) �X

(T)
T+2�· = X(T)

2�· , etc. As before, a particular block Bt�b is defined by its
starting index t and by its block size b. The circular blocks bootstrap se-
lects a fixed block size 1 < b < T . It then chooses random starting indices
t∗1 � t

∗
2 � � � � � t

∗
l i.i.d. from the uniform distribution on the set {1�2� � � � � T }, where

l is the smallest integer for which lb≥ T . The thus selected blocks are concate-
nated as {Bt∗1 �b�Bt∗2 �b� � � � �Bt∗

l
�b}. If lb > T , the sequence is truncated at length T

to obtain the bootstrap sequence X∗�(T )
1�· �X∗�(T )

2�· � � � � �X∗�(T )
T�· . The corresponding

T ×(S+1) bootstrap data matrix is denoted by X∗
T . The probability mechanism

that generates X∗
T is denoted by P̂T .

The motivation of this scheme is as follows. The moving blocks bootstrap
displays certain edge effects. For example, the data points X1�· and XT�· of the
original series are less likely to end up in a particular bootstrap sequence than
the data points in the middle of the series. This is because they appear in one
of the data blocks only, whereas a middle data point appears in b of the blocks.
By wrapping up the data in a circle, each data point appears in b of the blocks.
Hence, the edge effects disappear.

Bootstrap B.4 (Stationary Bootstrap)

The stationary bootstrap of Politis and Romano (1994) is appropriate when
the data sequence is a stationary time series. It generates a bootstrap sequence
by concatenating blocks of data that are resampled from the original series.
As does the circular blocks bootstrap, it wraps the original data into a circle to
avoid edge effects. The difference between it and the two previous methods is
that the block sizes are of random lengths. As before, a particular block Bt�b is
defined by its starting index t and by its block size b. The stationary bootstrap
chooses random starting indices t∗1 � t

∗
2 � � � � i.i.d. from the discrete uniform dis-

tribution on the set {1�2� � � � �T }. Independently, it chooses random block sizes
b∗

1� b
∗
2� � � � i.i.d. from a geometric distribution with parameter 0 < q < 1.30 The

thus selected blocks are concatenated as {Bt∗1 �b
∗
1
�Bt∗2 �b

∗
2
� � � �} until a sequence of

length greater than or equal to T is generated. The sequence is then truncated
at length T to obtain the bootstrap sequence X∗�(T )

1�· �X∗�(T )
2�· � � � � �X∗�(T )

T�· . The cor-
responding T ×(S+1) bootstrap data matrix is denoted by X∗

T . The probability
mechanism that generates X∗

T is denoted by P̂T .

30So the average block size is given by 1/q.
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The motivation of this scheme is as follows. If the underlying data series is
stationary, it might be desirable for the bootstrap series to be stationary as well.
This not true, however, for the moving blocks bootstrap and the circular blocks
bootstrap. The intuition is that stationarity is lost where the blocks of fixed size
are pieced together. Politis and Romano (1994) show that if the blocks have
random sizes from a geometric distribution, then the resulting bootstrap series
is indeed stationary (conditional on the observed data). There is also some
evidence that the dependence on the model parameter q is not as pronounced
as the dependence on the model parameter b in the two previous methods.

REMARK B.1: According to a claim of Lahiri (1999), in the context of vari-
ance estimation, the moving blocks bootstrap can be “infinitely more efficient”
than the stationary bootstrap. However, there is a mistake in the calculations
of Lahiri (1999), invalidating his claim. See Politis and White (2004) for a cor-
rection.

APPENDIX C: SOME POWER CONSIDERATIONS

We assume a stylized and tractable model that allows us to make exact
power calculations. In particular, we consider the limiting model of Scenarios
3.1 and 3.2. Our simple setup specifies that S = 2 and that31

w ∼ N

((
θ1

θ2

)
�

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))

with σ1�σ2, and ρ known. (The subscript T in wT is suppressed for conve-
nience.) Thus, the results in this section will hold approximately for quite
general models where the limiting distribution is normal. As in the rest of the
paper, an individual null hypothesis is of the form Hs :θs ≤ 0. We analyze power
for the first step of our stepwise methods. The basic method is equivalent to
the scheme

Reject Hs if ws > c� where c satisfies Prob0�0{maxws > c} = α�(17)

Here the notation Prob0�0 is shorthand for Probθ1=0�θ2=0. The studentized
method is equivalent to the scheme

Reject Hs if ws/σs > d� where d satisfies Prob0�0{maxws/σs >(18)
d} = α�

The first notion of power we consider is the worst power over the set
{(θ1� θ2) :θs > 0 for some s}. A proper definition of this worst power is

inf
ε>0

inf
{(θ1�θ2):maxθs≥ε}

Power at (θ1� θ2)�(19)

31The argument generalizes easily for S > 2.
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Obviously, this infimum is the minimum of the two powers at (−∞�0) and at
(0�−∞).32

For the basic method, we get

min
(
Probθ1=0{w1 > c}�Probθ2=0{w2 > c})

= min
(
Prob{σ1z1 > c}�Prob{σ2z2 > c})�

where z1 and z2 are two standard normal variables with correlation ρ. For the
studentized method, we get

min
(
Probθ1=0{w1/σ1 > d}�Probθ2=0{w2/σ2 > d})

= Prob{z1 > d}�
We are therefore left to show that c/σs ≥ d for some s. However, assume the
latter relation is false, that is, c/σs < d for both s. Also assume without loss of
generality that σ1 ≤ σ2. Then

Prob0�0{maxws > c} = Prob{maxσszs > c}
= Prob{max(σs/σ1)zs > c/σ1}
≥ Prob{maxzs > c/σ1}
> Prob{maxzs > d}
= Prob0�0{maxws/σs > d}
= α (by (18))�

resulting in a violation of (17). Hence, the infimum in (19) for the basic method
is smaller than or equal to the infimum for the studentized method. Unless
σ1 = σ2, the infimum for the basic method is strictly smaller.

The second notion of power we consider is the worst power against alter-
natives in the class Cδ = {(θ1� θ2) :θs = σsδ for some s}, where δ is a positive
number. Obviously, the worst power is the minimum of the two powers at
(−∞�σ2δ) and at (σ1δ�−∞). The basic method yields

Prob(−∞�σ2δ){maxws > c} = Probθ2=σ2δ{w2 > c}
= 1 −Φ

(
c − σ2δ

σ2

)
= 1 −Φ

(
c

σ2
− δ

)

and

Prob(σ1δ�−∞){maxws > c} = Probθ1=σ1δ{w1 > c}

= 1 −Φ

(
c − σ1δ

σ1

)
= 1 −Φ

(
c

σ1
− δ

)
�

32The power at (−∞�0) denotes the limit of the power at (0� θ2) as θ2 tends to −∞ and
analogously for the power at (−∞�0).
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The studentized method yields

Prob(−∞�σ2δ){maxws/σs > c} = Prob(σ1δ�−∞){maxws/σs > c}
= 1 −Φ(d − δ)�

To demonstrate that the worst power is smaller for the basic method, we must
show that

maxΦ
(

c

σs

− δ

)
≥ Φ(d − δ)�(20)

This is true if c/σs ≥ d for some s, which we already have demonstrated above.
Hence, inequality (20) holds; it is strict unless σ1 = σ2. So, unless σ1 = σ2, the
worst power over Cδ of the basic method is strictly smaller than the worst power
of the studentized method.

APPENDIX D: MULTIPLE TESTING VERSUS JOINT TESTING

To avoid possible confusion, we briefly discuss the differences between mul-
tiple testing and the related problem of joint testing; for a broader discussion
see Savin (1984). It is helpful to consider two-sided hypotheses in doing so.
The individual hypotheses are of the sort

Hs :θs = 0 vs. H ′
s :θs �= 0 for s = 1� � � � � S�(21)

whereas the joint hypothesis states

H :θs = 0 ∀ s vs. H ′ :∃ s with θs �= 0�(22)

In principle, multiple testing is concerned with making individual decisions
about the S hypotheses in (21), whereas joint testing is concerned with test-
ing the single hypothesis (22). However, one typically can use a joint test for
multiple testing purposes and vice versa.

For ease of exposition, consider the simple parametric setup

w ∼ N

((
θ1

θ2

)
�

(
1 0
0 1

))
�

Then the natural joint test rejects H of (22) at significance level α = 0�05 if
and only if w2

1 +w2
2 > 5�99. Scheffé (1959) has shown that this test can be inter-

preted as an induced test where there are an infinite number of separate null
hypotheses of the linear combination form

H(a) :a′θ = a1θ1 + a2θ2 = 0 vs. H ′(a) :a′θ �= 0 with a′a= 1�
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In particular, this test allows decisions to be made about the individual null
hypotheses in (21) by choosing a = (1�0)′ or a = (0�1)′. Therefore, the test
that rejects Hs if and only if w2

s > 5�99 or, equivalently, if and only if |ws|> 2�45,
s = 1�2, controls the FWE at level α= 0�05.

If the goal is to make individual decisions only about each parameter and
not about all possible linear combinations, then the joint test is suboptimal in
a multiple testing framework. A more powerful test, which also controls the
FWE at level α= 0�05, rejects Hs if and only if |ws|> 2�24, s = 1�2.

A further undesirable feature of the joint test, when applied for multiple
testing purposes, is that it does not constitute a consonant testing procedure
in the sense of Hommel (1986): a rejection of the joint hypothesis H does not
necessarily result in the rejection of (at least) one of the individual hypothe-
ses Hs. For example, in the above parametric setup, this happens if the data
point (1�9�1�9)′ is observed.

The message is that multiple testing and joint testing are related but distinct
problems. While a joint test can, in particular, be used to address a multiple
testing problem, it is generally suboptimal to do so and vice versa.33
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