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Abstract. In this article, asymptotic inference for the mean of i.i.d. ob-
servations in the context of heavy-tailed distributions is discussed. While both
the standard asymptotic method based on the normal approximation and
Efron's bootstrap are inconsistent when the underlying distribution does not
possess a second moment, we propose two approaches based on the sub-
sampling idea of Politis and Romano (1994) which will give correct answers.
The ®rst approach uses the fact that the sample mean, properly standardized,
will under some regularity conditions have a limiting stable distribution. The
second approach consists of subsampling the usual t-statistic and is somewhat
more general. A simulation study compares the small sample performance of
the two methods.
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1 Introduction

It has been two decades since Efron (1979) introduced the bootstrap proce-
dure for estimating sampling distributions of statistics based on independent
and identically distributed (i.i.d.) observations. While the bootstrap has en-
joyed tremendous success and has led to something like a revolution of the
®eld of statistics, it is known to fail for a number of counterexamples. One
well-known example is the case of the mean when the observations are heavy-
tailed. If the observations are i.i.d. according to a distribution in the domain
of attraction of a stable law with index a < 2 (see Feller, 1971), then the
sample mean appropriately normalized converges to a stable law. However,
Athreya (1987) showed that the bootstrap version of the normalized mean has
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a limiting random distribution, implying inconsistency of the bootstrap. An
alternative proof of Athreya's result was presented by Knight (1989).
Kinateder (1992) gave an invariance principle for symmetric heavy-tailed ob-
servations. It has been realized that taking a smaller bootstrap sample size can
result in consistency of the bootstrap; but knowledge of the tail index of the
limiting law is needed. See Athreya (1985) and Arcones (1990); also see Wu,
Carlstein, and Cambanis (1993) and Arcones and GineÂ (1989).

In this article, we describe how the subsampling method (Politis and
Romano, 1994) can be used to make asymptotically correct inference for the
mean in the heavy-tailed case without knowledge of the tail index. We present
two di¨erent approaches. The ®rst one appeals to the limiting stable distribu-
tion when the sample mean is normalized accordingly. This involves knowl-
edge or estimation of the tail index of the underlying distribution. The second
approach uses the idea of self-normalizing sums (e.g., Logan et al., 1973),
avoiding the explicit estimation of the tail index.

The paper is organized as follows. In Section 2, we present an extension of
the general subsampling theory which allows to subsample studentized stati-
stics when the scale estimator does not converge in probability; this extension
is needed for the approach utilizing self-normalizing sums. The two explicit
subsampling approaches for making inference for the univariate mean in the
context of heavy-tailed observations are discussed in Section 3. We propose a
method for choosing the block size in Section 4. A simulation study in Section
5 sheds some light on small sample performance. Conclusions are stated in
Section 6. All tables and ®gures appear at the end of the paper.

2 The subsampling method

2.1 Standard theory

The subsampling methodology was introduced by Politis and Romano (1994)
as an inference procedure that allows to construct asymptotically valid con®-
dence regions under very weak assumptions. We will brie¯y describe the basic
method before presenting an extension of the general theory pertaining to
studentized statistics.

Consider a random sample of i.i.d. variables X1; . . . ;Xn in an arbritrary
sample space S. Denote the common underlying probability measure by P.
The goal is to construct a con®dence interval for some parameter y �
y�P� A R. Let ŷn � ŷn�X1; . . . ;Xn� be an estimator of y. No assumptions on
the form of the estimator are made, although it seems natural in the i.i.d.
context to use an estimator that is symmetric in its arguments.

The basic subsampling method consists of approximating the sampling
distribution of ŷn ÿ y by computing the estimator on smaller subsets (or sub-
samples) of the observed data and using the empirical distribution of these
subsample values after an appropriate normalization. To be more speci®c, for

an integer b < n, let Y1; . . . ;YNn; b
be equal to the Nn;b � n

b

� �
subsets of size b

of fX1; . . . ;Xng, ordered in any fashion. Now, let ŷb; i be equal to the statistic
ŷb evaluated at the data set Yi. Then, the subsampling approximation of

ProbPftn�ŷn ÿ y�U xg

56 J. P. Romano, M. Wolf



is given by

Ln;b�x� � Nÿ1
n;b

XNn

i�1

1ftb�ŷb; i ÿ ŷn�U xg: �1�

Here, tn and tb are appropriate normalizing constants chosen such that
tn�ŷn ÿ y� has a nondegenerate limiting distribution. Hence, tn is the rate of
convergence of ŷn and in regular cases we have tn � n1=2.

The quantiles of Ln;b��� can then be used to construct approximate one-
sided con®dence intervals for y in the obvious fashion. These intervals will
have asymptotically correct coverage given that tn�ŷn ÿ y� has a non-
degenerate limiting distribution and that tn=tn ! 0, b=n! 0, and b!y as
n!y; see Politis and Romano (1994) for details.

When two-sided con®dence intervals for y are desired, they can be con-
structed by the intersection of two one-sided intervals, resulting in so-called
equal-tailed intervals. An alternative procedure is to construct symmetric in-
tervals ± extending equally far to the left and to the right of the point estimate
ŷn ± by estimating the two-sided sampling distribution function

ProbPftnjŷn ÿ yjU xg:

The corresponding subsampling approximation is then given by

Ln;b; j�j�x� � Nÿ1
n;b

XNn

i�1

1ftbjŷb; i ÿ ŷnjU xg: �2�

Given the existence of an Edgeworth expansion, symmetric subsampling in-
tervals often exhibit improved coverage properties; for example, see Chapter
10 of Politis, Romano, and Wolf (1999).

Note that the exact calculations of Ln;b�x� and Ln;b; j�j�x� are prohibitive
for moderate or large sample sizes, since they require the evaluation of

Nn;b � n

b

� �
subsample statistics. However, a stochastic approximation may

be used instead. Let I1; . . . ; Is be chosen randomly with or without replace-
ment from f1; 2; . . . ;Ng. Then, Ln;b�x� may be approximated by

L̂n;b�x� � sÿ1
Xs

i�1

1ftb�ŷb; Ii
ÿ ŷn�U xg �3�

and Ln;b; j�j�x� may be approximated analogously. These stochastic appro-
ximations do not a¨ect the asymptotic validity of the method provided that
s!y as n!y.

The application of the basic subsampling method requires knowledge of
the rate of convergence tn. But, for our application of the mean of heavy-
tailed observations, it is well known that the rate of convergence depends on
the tail index of the limiting law and is therefore unknown in practice; see
Proposition 3.1. One way out of this dilemma is to estimate the rate of con-
vergence from the data and use the estimated rate in the construction of the
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subsampling distribution. This is the general idea of Bertail, Politis, and
Romano (1999); see Subsection 3.1. Another solution is to consider the usual
t-statistic for the sample mean which turns out the a self-normalized sum, that
is, it always has a proper limiting distribution. Subsampling studentized stati-
stics when the estimate of scale converges in probability was considered by
Politis and Romano (1993). This covers the situation of i.i.d. data with ®nite
variance but not the heavy-tailed case. The following subsection provides an
extension of the theory that allows for the estimate of scale to converge in
distribution.

2.2 Subsampling studentized statistics

Focus is now on a studentized statistic t�n �ŷn ÿ y�=ŝn, where ŝn is some posi-
tive estimate of scale. Note that the appropriate normalizing constant t�n may
be di¨erent from its counterpart tn in the non-studentized case. De®ne J �n �P�
to be the sampling distribution of t�n �ŷn ÿ y�=ŝn based on a sample of size n
from P. Also de®ne the corresponding cumulative distribution function

J �n �x;P� � ProbPftn�ŷn ÿ y�=ŝn U xg:

The essential assumption needed to construct asymptotically valid con®-
dence regions for y now becomes slightly more involved than for the non-
studentized case.

Assumption 2.1. J �n �P� converges weakly to a limit law J ��P�. In addition,
an�ŷn ÿ y�P�� converges weakly to V, and dnŝn converges weakly to W, for
positive sequences fang and fdng satisfying tn � an=dn. Here, V and W are two
random variables, where W does not have positive mass at zero.

The subsampling method is modi®ed to the studentized case in the obvious
way. Let ŝb; i be equal to the estimate of scale based on the subsample Yi.
Analogous to (1) de®ne

L�n;b�x� � Nÿ1
n;b

XNn; b

i�1

1ftb�ŷb; i ÿ ŷn�=ŝb; i U xg: �4�

L�n;b�x� then represents the subsampling approximation to J �n �x�. The follow-
ing theorem shows that this approximation leads to asymptotically correct
con®dence intervals for y.

Theorem 2.1. Assume Assumption 2.1, ab=an ! 0, tb=tn ! 0; b=n! 0 and
b!y as n!y. Let x be a continuity point of J ��� ;P�. Then

(i) L�n;b�x� ! J ��x;P� in probability.

(ii) If J ��� ;P� is continuous, then supx jL�n;b�x� ÿ J ��x;P�j ! 0 in probabil-
ity.

(iii) For a A �0; 1�, let cn;b�1ÿ a� � inffx : L�n;b�x�V 1ÿ ag. Correspond-
ingly, de®ne c�1ÿ a;P� � inffx : J ��x;P�V 1ÿ ag. If J ��� ;P� is con-
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tinuous at c�1ÿ a;P� then ProbPftn�ŷn ÿ y�=ŝn U cn�1ÿ a�g ! 1ÿ a as
n!y. Thus, the asymptotic coverage probability under P of the interval
I1 � �ŷn ÿ ŝntÿ1

n cn�1ÿ a�;y� is the nominal level 1ÿ a.

Proof: To prove (i), note that

L�n;b�x� � Nÿ1
n;b

XNn; b

i�1

1ftb�ŷn; i ÿ ŷn�=ŝn; i U xg

� Nÿ1
n;b

XNn; b

i�1

1ftb�ŷn; i ÿ y�=ŝn; i U x� tb�ŷn ÿ y�=ŝn; ig: �5�

We want to show that the terms tb�ŷn ÿ y�=ŝn; i are negligible in the last
equation. To this end, for t > 0, let

Rn;b�t� � Nÿ1
n;b

XNn; b

i�1

1ftb�ŷn ÿ y�=ŝn; i U tg

� Nÿ1
n;b

XNn; b

i�1

1fdbŝn; i V dbtb�ŷn ÿ y�=tg

� Nÿ1
n;b

XNn; b

i�1

1fdbŝn; i V ab�ŷn ÿ y�=tg:

Here, we are making use of the fact that both the sequences an and bn are
positive. By Assumption 2.1 and ab=an ! 0, we have for any d > 0 that
ab�ŷn ÿ y�U d with probability tending to one. Therefore, with probability
tending to one

Rn;b�t�VNÿ1
n;b

XNn; b

i�1

1fdbŝn; i V d=tg:

We need to consider the case t > 0 only, as the scale estimates ŝn; i are positive.
Due to the usual subsampling argument (Politis and Romano, 1994, Theorem
2.1), Nÿ1

n;b

PNn; b

i�1 1fdbŝn; i V d=tg converges in probability to P�W V d=t�, as

long as d=t is a continuity point of W. Hence, we can make sure that Rn;b�t� is
arbitrarily close to one by choosing d small enough; remember we assume that
W does not have positive mass at zero. In other words, for any t > 0, we have
Rn;b�t� ! 1 in probability. Let us now rewrite (5) in the following way

L�n;b�x� � Nÿ1
n;b

XNn; b

i�1

1ftb�ŷn; i ÿ y�=ŝn; i U x� tb�ŷn ÿ y�=ŝn; ig

UNÿ1
n;b

XNn; b

i�1

1ftb�ŷn; i ÿ y�=ŝn; i U x� tg � �1ÿ Rn;b�t��;
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for any positive number t. The last inequality follows because the i-th term in
(5) is less than or equal to

1ftb�ŷn; i ÿ y�=ŝn; i U x� tg � 1ftb�ŷn ÿ y�=ŝn; i > tg; �6�
then, sum over all i. We have seen that �1ÿ Rn;b�t�� ! 0 in probability and
hence by a standard subsampling argument again we get, for any e > 0,
L�n;b�x�U J ��x� t;P� � e with probability tending to one, provided that x� t
is a continuity point of J ��� ;P�. Letting t tend to zero shows that L�n;b�x�U
J ��x;P� � e with probability tending to one. A similar argument leads to
L�n;b�x�V J ��x;P� ÿ e with probability tending to one. Since e is arbitrary,
this implies L�n;b�x� ! J ��x;P� in probability, and thus we have proved (i).

The proofs of (ii) and (iii) given (i) are very similar to the proofs of (ii) and
(iii) given (i) in Theorem 2.1 of Politis and Romano (1994) and thus are
omitted. 9

Remark 2.1. The issues of symmetric con®dence intervals and stochastic ap-
proximation, as discussed for the case of the non-studentized subsampling
method, apply as well and the corresponding results are analogous.

3 Subsampling inference for the mean

Suppose the Xi are i.i.d. univariate random variables in the domain of attrac-
tion of a stable law with index 1 < aU 2. For a detailed discussion of stable
distributions, the reader is referred to Zolotarev (1986) and Samorodnitsky
and Taqqu (1994). When 1 < a < 2, it follows that the underlying distribution
P possesses a ®nite mean but that its variance is in®nite. The goal is to ®nd a
con®dence interval for y � E�Xi�. Our choice for the estimator is the sample
mean ŷn � X n � nÿ1

Pn
i�1 Xi. The subsampling methodology requires a nor-

malization resulting in a nondegenerate limiting distribution. In this section,
we will discuss two possible approaches, one that relies on a stable limiting
law and another one which uses self-normalizing sums.

3.1 Appealing to a limiting stable law

In case the underlying distribution belongs to the normal domain of attraction
of a stable law, we can make use of the following result.

Proposition 3.1. Assume X1;X2; . . . is a sequence of random variables in
the normal domain of attraction of a stable law with index of stability
1 < aU 2. Denote the common mean by y. Then, nÿ1=a�X1 � � � � � Xn ÿ ny� �
n1ÿ1=a�X n ÿ y� converges weakly to an a-stable distribution with mean zero.

Proof: The proof follows immediately from the CLT when a � 2. For the case
of 1 < a < 2, it is a consequence of Theorem 3 in section XVII.5 of Feller
(1971). 9

One might be tempted to use this result to construct con®dence intervals
for y based on the quantiles of the (estimated) limiting stable distribution.
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However, in addition to the stable index a, this distribution also depends on a
skewness and on a scale parameter which are very di½cult to estimate.

On the other hand, the non-studentized subsampling technique only
requires knowledge or a consistent estimate of the index a, since the normali-
zing constants are given by tn � n1ÿ1=a and tb � b1ÿ1=a, respectively. Let ân �
ân�X1; . . . ;Xn� denote an estimator of a based on the segment X1; . . . ;Xn. This
notation includes the (rare) case where a is known, since ân 1 a is a valid
estimator. Then the subsampling approximation of

ProbPftn�X n ÿ y�U xg

is given by

Lâ
n�x� � Nÿ1

n

XNn

i�1

1fb1ÿ1=ân�X b; i ÿ X n�U xg; �7�

where X b; i � bÿ1
P i�bÿ1

j�i Xj. Given that ân � a� oP��log n�ÿ1�, this appro-

ximation can be used to construct asymptotically valid con®dence intervals for
y; see Theorem 5 of Bertail et al. (1999).

Therefore, applying the subsampling method only requires a log n consis-
tent estimator for the tail index a. Several such estimators are known, among
them the Pickands (1975), Hill (1975), and deHaan and Resnick (1980) esti-
mators. Tail index estimators typically are based upon a number q of extreme
order statistics. Asymptotic consistency of the estimators requires that q!y
but q=n! 0 as n!y. Unfortunately, the choice of q in practice is a very
di½cult problem and its e¨ect can be tremendous even for sample sizes above
thousand; for example, see Mittnik et al. (1996) and Resnick (1997).

At this point, we propose an alternative tail index estimator based on the
subsampling technique. As noticed before, when the underlying distribution is
in the normal domain of attraction of a stable law, the proper normalizing
constant is n1ÿ1=a so that the rate of convergence is b 1 1ÿ 1=a. Bertail et al.
(1999) discuss consistent subsampling estimators for the rate of convergence
of general statistics. These estimators depend on a number I of subsampling
distributions with di¨erent block sizes, where I V 2, and on a number J of
corresponding estimated quantiles, where J V 1. In the paper basically two
estimators are described, the Quantile estimator and the Range estimator. We
will use the Range estimator, denoted by b̂I ; j. See Bertail et al. (1999) for the
derivation of this estimator and a proof of its consistency. In their Theorem 2
it is shown that under mild regularity conditions, bI ;J � b � oP��log n�ÿ1�.

For our application of the mean in the heavy-tailed context, it was seen
that b � 1ÿ 1=a, as long as the underlying distribution is in the normal
domain of attraction of a stable law with tail index a. Hence, an obvious
estimator of a is given as

âI ;J � 1=�1ÿ b̂I ;J�: �8�

It immediately follows that under the same regularity conditions of Theorem 2
of Bertail et al. (1999), we have âI ;J � a� oP��log n�ÿ1�.
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Remark 3.1. As an alternative to subsampling, the bootstrap with resample
size m < n may be considered. However, as in the case of subsampling, the
proper standardization of the bootstrap distribution depends on the underly-
ing tail index. In the case where the standardization is known, Athreya (1985)
showed that the bootstrap distribution converges to the right limit
in probability, given that m!y and m=n! 0. Arcones and GineÂ (1989)
strengthened this result to almost sure convergence under the condition of
m�log log n�=n! 0. Neither paper discusses the validity of the bootstrap
approach in conjunction with an estimated rate. Also, no suggestion of how to
pick the resample size m in practice is made. A general discussion of the
bootstrap with resample size m < n can be found in Bickel, GoÈtze, and van
Zwet (1997).

Wu, Carlstein, and Cambanis (1993) introduced an averaged bootstrap
that overcomes the randomness in the limiting law of the bootstrap with re-
sample size m � n. They showed that the averaged bootstrap converges to the
correct limit in the case of heavy-tailed data having an exact stable distribu-
tion, provided that appropriate sample-based adjustments for scale and
skewness are made. However, this approach may not extend to distributions
in the domain of attraction of stable laws.

3.2 Using self-normalizing sums

It is well known that if the observations are i.i.d. from a distribution with
®nite second moment, then the t-statistic

Tn � n1=2 X n ÿ y

Sn

has a limiting standard normal distribution. Here, Sn is the square root of the
usual estimate of variance

S2
n �

1

nÿ 1

Xn

i�1

�Xi ÿ X n�2:

The fact that Tn has, under fairly general conditions, a nondegenerate limiting
distribution even if the underlying distribution has an in®nite second moment
makes it a self-normalizing sum. The limiting behavior of Tn for heavy-tailed
distributions has, among others, been studied by Hotelling (1961), Efron
(1969), and Logan et al. (1973). In the paper of Logan et al. (1973), exact
densities of the limiting distribution of Tn are derived for the case of the un-
derlying distribution belonging to the domain of attraction of a stable law. It
is seen that the density does not only depend in a complicated way on the tail
index a but also on some other characteristics of the limiting distribution.
Again, this greatly diminishes the appeal of any inference based on the explicit
estimation of the limiting distribution. On the other hand, the following
proposition allows for an easy application of the subsampling method.

Proposition 3.2. Assume fXig is a sequence of i.i.d. random variables in the
domain of attraction of an a-stable law with 1 < aU 2. Denote the common
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mean by y. De®ne ŷn � X n, the usual sample mean, and ŝn � Sn, the usual
sample standard deviation. Also, let tn � n1=2 and tb � b1=2. Assume that b!
y and b=n! 0 as n!y.

Then the conclusions of Theorem 2.1 hold.

Proof: We have to show that the conditions of Assumption 2.1 are met. To
this end de®ne

Un � n1=2 X n ÿ y

�nÿ1
Pn

i�1�Xi ÿ y�2�1=2
�9�

� Vn

Wn
; �10�

where

Vn � X1 � � � � � Xn ÿ ny

n1=aL�n� and Wn � �X1 ÿ y�2 � � � � � �Xn ÿ y�2
n2=aL2�n�

 !1=2

:

�11�

Here, L��� is a slowly varying function ensuring that Vn converges to a stable
law G; for example, see Feller (1971, Section XVII.5).

First consider the case where the Xi have a stable distribution. Logan et al.
(1973) show that in this case �Vn;Wn� has a nondegenerate joint limiting dis-
tribution, where the limiting distribution of Wn does not have positive mass at
zero. Indeed, the limiting distribution of W 2

n is a positive stable law with index
a=2.

It turns out that in the general case, where the Xi are in the domain of
attraction of G, the joint limiting distribution of �Vn;Wn� is identical to that of
the stable case. Again, see Logan et al. (1973).

By simple algebra, ®nally

Tn � Un
nÿ 1

nÿW 2
n

� �1=2

;

where the second term converges to one in probability. Hence the conditions
of Assumption 2.1 are satis®ed. 9

The power of Proposition 3.2 lies in the fact that we always can subsample
the t-statistic Tn, regardless of the tail index a of the underlying distribution.
Therefore, it is not necessary to know or to estimate a. In addition this ap-
proach is not restricted to distributions in the normal domain of attraction of
stable laws and therefore it is more general than the method of Subsection 3.1.

Remark 3.2. Arcones and GineÂ (1991) showed that bootstrapping the t-
statistic with resampling size m < n will also give asymptotically correct
results, given that m!y and m=n! 0. They suggested to choose m �
n=�log log n�1�d for some small d > 0.
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4 Choice of the block size

A practical issue in using the subsampling method is the choice of the block
size b. Politis, Romano, and Wolf (1997) propose a calibration technique that
corrects for over- or undercoverage of subsampling intervals for ®nite samples
by adjusting the nominal con®dence level accordingly. This technique involves
generating pseudo sequences X �1 ; . . . ;X �n using a suitable bootstrap method ±
Efron's (1979) bootstrap for i.i.d. data or KuÈnsch's (1989) moving blocks
bootstrap for time series data. Hence, this idea is limited to applications where
standard bootstrap methods are also consistent and would fail for our prob-
lem at hand. We therefore present a di¨erent method which will work under
more general conditions, that is, whenever subsampling applies.

Our method is of heuristic nature and we do not claim any optimality
properties. It is based on the fact that for the subsampling method to be con-
sistent the block size b needs to tend to in®nity with the sample size n but a
smaller rate, satisfying b=n! 0. For b too close to n all subsample statistics
ŷn; i will be almost equal to ŷn, resulting in the subsampling distributions Ln;b

or L�n;b being too tight and in undercoverage of subsampling con®dence
intervals. Indeed, for very large block sizes the con®dence intervals will shrink
towards the singleton ŷn, which consequence of the fact that the subsampling
distributions Ln;b��� and L�n;b��� both collapse to a point mass at zero as the
block size b tends to n (e.g., Lahiri, 1998). On the other hand, if b is too small,
the intervals can undercover or overcover depending on the state of nature
(e.g., Politis, Romano, and Wolf, 1997). This leaves a number of b values in
the ``right range'' where we would expect almost correct results, at least for big
sample sizes. We exploit this idea by computing subsampling intervals for a
large number of block sizes b and then looking for a region where the intervals
do not change very much. Within this region we then pick one interval
according to some arbitrary criterion.

While this method can be carried out by ``visual inspection'' it is desirable
to also have some automatic selection procedure, at the very least when sim-
ulation studies are to be carried out. The procedure we propose is based on
minimizing a running standard deviation. Assume we compute subsampling
intervals for block sizes b in the range of bsmall to bbig. The endpoints of the
con®dence intervals should change in smooth fashion, as b changes. This
might be somewhat violated if we use a stochastic approximation, such as (3),
for moderate or large sample sizes. In that case it seems sensible to enforce
some smoothness by applying a running mean to the endpoints of the inter-
vals. A running standard deviation applied to the endpoints then determines
the volatility around a speci®c b value. We choose the value of b with the
smallest volatility. Here is a more formal description of the algorithm.

Algorithm 4.1 (Minimizing Con®dence Interval Volatility)

1. For b � bsmall to b � bbig compute a subsampling interval for y at the
desired con®dence level, resulting in endpoints Ib; low and Ib;up.

2. If a stochastic approximation such as (3) was used in Step 1, smooth the
lower and upper endpoints separately, using a running mean of span
m. This means replace Ib; low by the average of fIbÿm; low; Ibÿm�1; low; . . . ;
Ib�m; lowg and do the same for Ib;up.
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3. For each b compute a volatility index VIb as the standard deviation of the
interval endpoints in a neighborhood of b. More speci®cally, for a small
integer k, let VIb be equal to the standard deviation of fIbÿk; low; . . . ;
Ib�k; lowg plus the standard deviation of fIbÿk;up; . . . ; Ib�k;upg.

4. Pick the value b� with the smallest volatility index and report �Ib �;low; Ib �;up�
as the ®nal con®dence interval.

Some remarks concerning the implementation of this algorithm are in order.

Remark 4.1. The range of b values, determined by bsmall and bbig, which is
included in the minimization algorithm is not very important, as long as it is
not too narrow.

Remark 4.2. To make the algorithm more computationally e½cient, it might
be desirable to skip a number of b values in a regular fashion. For example,
include only every other b between bsmall and bbig.

Remark 4.3. The algorithm contains two model parameters, m and k. Sim-
ulation studies have shown that the algorithm is very insensitive to both
parameters. We usually employ m � 2 or m � 3 and the same for k.

We now illustrate how the algorithm works with the help of two simulated
data sets. First, we generated a data set of size n � 100 i.i.d. from a
symmetric stable distribution with mean zero and tail index a � 1:5. The
range of b values was chosen as bsmall � 4 and bbig � 40. We computed sym-
metric subsampling intervals according to the approaches of Subsection 3.1,
taking a to be known, and of Subsection 3.2, avoiding the knowledge of ex-
plicit estimation of a. Since the stochastic approximation of the kind (3) was
employed with N � 1000, we smoothed the endpoints according to Step 2 and
m � 2. The minimization of the volatility in Step 3 was done using k � 2. The
results are shown at the top of Figure 1. The left plot corresponds to the
approach appealing to a limiting stable law, while the right plot corresponds
to the self-normalizing approach. The block sizes b chosen by the algorithm
are highlighted by a star. The resulting ®nal con®dence intervals are included
in the plots.

This exercise was repeated for another data set of size n � 500 i.i.d. from
a symmetric stable distribution with mean zero and tail index a � 1:7. The
range of b was there chosen as bsmall � 4 and bbig � 100.

The plots show that the self-normalizing approach is somewhat less sensi-
tive to the choice of the block size, that is, the con®dence interval endpoints
change more slowly as b changes. While the plot only shows the results for
two data sets, this behavior is typical and was observed for many other sim-
ulations as well.

Remark 4.4. Arcones and GineÂ (1991) considered bootstraping the t-statistic
with a smaller bootstrap size m, which corresponds to the block size b of the
subsampling method. They suggested to choose m � n=�log log n�1�d for some
small d > 0. For example, they used m � 35 with n � 50, and m � 65 with
n � 100. This seems to correspond to dA 0:02.
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5 Small sample performance

The purpose of this Section is to shed some light on the small sample perfor-
mance of the subsampling method by means of a simulation study. In partic-
ular, we want to compare the two approaches of Subsections 3.1 and 3.2.
Performance is judged by coverage probabilities of nominal 95% two-sided
con®dence intervals. We include both equal-tailed and symmetric subsampling
intervals (see Section 2) in the study.

Fig. 1. Illustration of the Minimizing Con®dence Interval Volatility Algorithm for two data sets.
The plots on the left correspond to the approach appealing to a stable limit, while the plots on the
right correspond to the self-normalizing approach. The block sizes selected by the algorithm are
highlighted by a star. The ®nal con®dence intervals appear within the plots.
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The application of the Range estimator âI ;J requires choices of I, J, the
block sizes bi, and the quantiles t2j and t2jÿ1; see Bertail et al. (1999). we chose
I � 5, J � 10, the t2jÿ1 equally spaced between 0.01 and 0.25 and t2j � 1ÿ
t2jÿ1, for j � 1 . . . J. Finally, the block size bi was chosen as n0:5gi , rounded
to the nearest integer. Here, gi � 1� �log i=I�=�log 100�, for i � 1 . . . I . For
example, with I � 5 and a sample size of n � 100, this yields block sizes of 4,
6, 7, 8, and 9.

We consider three data generating mechanisms. First, the stable distribu-
tion with mean zero, varying tail index parameter a and varying skewness
parameter b. Second, the standard Pareto distribution with distribution func-
tion P �X U x� � 1ÿ xÿa, for x > 1, and varying tail index parameter a; note
that the mean of this distribution is given as a=�aÿ 1� for a > 0. Third, a
`symmetrized' Pareto distribution de®ned by X � Y ÿ 1 with probability 0.5
and X � 1ÿ Y with probability 0.5, where Y has a standard Pareto distribu-
tion with tail index parameter a; note this distribution has mean zero. Stan-
dard Pareto observations can be easily generated by applying the inverse of
the distribution function to Uniform [0,1] observations. For the generation of
stable observations, we ®rst used the function rstab� � of the statistical pack-
age S-Plus. However, we experienced some problems, since, for skewed dis-
tributions (b 0 0), rstab� � does not seem to produce variables with the speci-
®ed mean. In the end, we used the program Stable 2.11 provided by John
Nolan at http://www.cas.american.edu/~jpnolan/stable.html.

Our simulation results are based on 1000 repetitions for each scenario. The
sample size chosen is always n � 100. The model parameters for block size
selection Algorithm 4.1 were bsmall � 4, bbig � 30, m � 2, and k � 2. Esti-
mated coverage probabilities of nominal 95% con®dence intervals are based
on 1000 repetitions for each scenario. The results are presented in Table 1. SL
stands for the approach of Subsection 3.1, appealing to a Stable Limit, SN
stands for the Self-Normalizing approach of Subsection 3.2. The subscripts
ET and SYM denote equal-tailed and symmetric intervals, respectively; see
Section 2. CLT stands for the Central Limit Theorem approach, falsely as-
suming a ®nite variance.

The results for symmetric, stable observations are overall quite satis-
factory, although the di¨erence between the equal-tailed and symmetric SN
intervals is noteworthy. For skewed, stable observations, coverage decreases
with a and this is even more true for Pareto observations. The overall best
choice appear to be symmetric SN intervals and while their performance is far
from perfect, they present a signi®cant improvement over the CLT intervals.
However, it appears that in the context of heavy-tailed observations far bigger
sample sizes are needed to achieve overall satisfactory performance as com-
pared to the ®nite variance case.

6 Summary

In this paper, we have demonstrated that the subsampling method can be used
to construct asymptotically correct con®dence intervals for the mean when the
observations are i.i.d. from a distribution with in®nite variance. We proposed
two di¨erent approaches. The ®rst one is based on the fact that the sample
mean, properly standardized, will have a limiting stable law given that the
underlying distribution belongs to the normal domain of attraction of a stable
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law. This approach has the practical disadvantage that the tail index of the
underlying distribution has to be estimated. The second approach consists of
subsampling the usual t-statistic, which turns out to be a self-normalized sum.
It is more general, in the sense that it is not restricted to distributions in the
normal domain of attraction of a stable law, and avoids having to estimate the
tail index. We proved a theorem that shows the validity of this approach,
extending the theory of Politis and Romano (1994).

To deal with the problem of choosing the block size, we proposed an al-
gorithm that minimizes con®dence interval volatility over a sensible range of
block sizes. Here, volatility is measured by applying a running standard devi-
ation to the con®dence interval endpoints in the neighborhood of a particular
block size.

We employed a simulation study to examine small sample performance.
As to be expected, the results depend on the underlying distribution. Using the
second approach, subsampling the t-statistic, to construct symmetric con®-
dence intervals yielded the overall best results.
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