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Summary. Multilevel or mixed effects models are commonly applied to hierarchical data. The
level 2 residuals, which are otherwise known as random effects, are often of both substantive
and diagnostic interest. Substantively, they are frequently used for institutional comparisons or
rankings. Diagnostically, they are used to assess the model assumptions at the group level.
Inference on the level 2 residuals, however, typically does not account for ‘data snooping’, i.e.
for the harmful effects of carrying out a multitude of hypothesis tests at the same time. We
provide a very general framework that encompasses both of the following inference problems:
inference on the ‘absolute’ level 2 residuals to determine which are significantly different from
0, and inference on any prespecified number of pairwise comparisons. Thus, the user has the
choice of testing the comparisons of interest. As our methods are flexible with respect to the
estimation method that is invoked, the user may choose the desired estimation method accord-
ingly. We demonstrate the methods with the London education authority data, the wafer data
and the National Educational Longitudinal Study data.
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1. Introduction

Multilevel modelling is a popular statistical method for analysing hierarchical data. As such data
are commonplace in many disciplines, it naturally follows that multilevel models are employed
by researchers in a wide array of subject areas, ranging from clinical trials to educational sta-
tistics. The foundation of this technique is the explicit modelling of variability at each level of
the hierarchy. Moreover, regression coefficients for individual level relationships are expressed
as random variables, often a function of covariates at higher levels. Depending on one’s sta-
tistical allegiance, the multilevel model can be viewed from the perspective of a mixed effects
model, a linear model with complex error structure or a hierarchical Bayes model. Commonly
cited motivations for performing a multilevel analysis include the desire to obtain more realistic
gauges of estimation uncertainty (i.e. standard errors), the ability to model explicitly the rela-
tionship between information at different levels and improved estimation and prediction via the
seminal statistical principle of ‘borrowing of strength’ (James and Stein, 1961). For details on
the history, estimation methods and available software for multilevel models, see Raudenbush
and Bryk (2002), Goldstein (2003) and de Leeuw and Kreft (1986, 1995).
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Formally, say that we have an outcome measure yij for the ith observation in the jth group,
e.g. the ith student (level 1) in the jth school (level 2). The sample size in the jth group is nj and
there are a total of J groups. The simplest multilevel model is a two-level variance components
model:

yij =β0j + "ij; .1/

β0j =β0 +uj: .2/

Here the usual assumptions are that each of the uj and "ij are sets of independent and identically
distributed random variables with mean 0 and unknown variances σ2

u and σ2
" respectively, and

cov."ij, uj/ = 0. Often the distributions are assumed normal. However, we do not want to make
any distributional assumptions in this paper, as they might be violated in practice.

Substituting for β0j, we have

yij =β0 +uj + "ij: .3/

This is also recognizable as a random-effects analysis of variance. Covariate information can be
introduced at both the individual and the group level to create a more general multilevel model.
The general model in matrix notation is, for j = 1, . . . , J ,

Yj =Xjγ +Zjuj +εj, .4/

where Yj and εj are column vectors of length nj, Xj is of dimension nj ×p and Zj is of dimen-
sion nj × q. It might be noted that some of the level 1 variables in Zj are often a subset of
variables in Xj and represent random regression coefficients varying over groups; Xj may con-
tain level 2 variables and cross-level interaction terms. The distribution of the level 1 errors can
have the same assumptions as those considered in the basic model (1). The level 2 random error
q-column vector uj is usually assumed to be distributed multivariate N.0, D/. The elements of
uj, expressing the residual variability between level 2 units, may covary. Hence the matrix D is
not generally diagonal. However, as stated earlier, we do not want to make any distributional
assumptions in this paper. γ is a p-vector that includes the level 2 coefficients or fixed effects. In
multilevel modelling, the first term of equation (4) is usually referred to as the fixed part of the
model, and Zjuj + ej is the random part. As equation (3) has no covariates, it would have Xj

and Zj as nj-column vectors of 1s. For a model with a single covariate with non-random slope
and random intercept, Xj would be nj × 2 with the first column consisting of 1s. An example
of this is where the response Yj is an educational outcome and Xj has observations on a prior
ability control covariate that is introduced for adjusting the outcome. We briefly refer to such
an example below.

In this paper, we focus on inference for the random effects, i.e. the level 2 residuals. Infer-
ence for random effects is important for a variety of reasons. Random effects are of substantive
interest since they represent the effect or departure of the jth group from the grand mean. To be
sure, as the ‘true’ random effects are unobserved, we base inference for random effects on the
estimated random effects. In applied research, it is common to see rankings of these estimates,
where the implication is that the groups at the top of the ranking perform better with respect
to the given outcome measure, and vice versa for the groups at the lower end. Goldstein et al.
(1993) argued against such a simplistic use of rankings with respect to educational league tables
in the UK. Instead, they strongly advocated the inclusion of confidence bands to reflect the
uncertainty in the level 2 residual estimates.

Fig. 1 is reproduced from Rasbash et al. (2004), page 39, where a variance components model is
fitted to school achievement data in a sample of 65 schools in six inner London local education
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Fig. 1. ‘Caterpillar plot’ of Rasbash et al. (2004), page 39: the level 2 residuals of the 65 schools in ascending
order together with their respective 95% confidence intervals

authorities. The response variable is the score that is achieved by 16-year-old students in an
examination and the model does not adjust for prior ability measure. With the inclusion of the
confidence bands, it becomes difficult to infer the rankings of the true unknown random effects
uj. Nevertheless, it is likely that Fig. 1 will be used by different individuals for different purposes;
for instance, a school head may want to know whether his or her particular school differs from
the average. Others may be interested in questions that involve inference on several schools at
the same time; for instance, a governing board may be interested in finding out which are the
schools that differ from the average. In such instances, joint testing of several hypotheses at
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the same time occurs. We continue by briefly talking about the general problem of joint testing
of several related hypotheses. Afterwards, we shall discuss how this problem comes up when
making inference for random effects in multilevel models. Although the discussion is mainly
with respect to the intercept-only variance components model, the arguments might just as well
be made for ‘adjusted outcomes’ which have controlled for an intake measure.

Whenever several hypotheses are tested at the same time, a multiple-testing scenario arises.
The challenge then becomes how to decide which hypotheses to reject, accounting for the multi-
tude of tests. The naïve, yet common, approach of basing the decisions on the individual
p-values or the individual confidence intervals, ignoring the multitude of tests, will typically
result in a liberal analysis. Take the example of carrying out S =100 hypotheses tests at the same
time. The naïve approach rejects an individual null hypothesis if the corresponding p-value
is less than or equal to α = 0:05, say. Then, for any given true null hypothesis, the chance of
a false rejection is equal to 0.05. But the ‘combined’ chance of making any false rejection at
all can be much greater than that. To illustrate, assume that all 100 null hypotheses are true
and that the individual test results are independent of each other. Then the expected number
of false rejections is 100 × 0:05 = 5 and the chance of making at least one false rejection is
1 − 0:95100 = 0:994. The naïve approach of basing the decisions on the individual p-values or
the individual confidence intervals, ignoring the multitude of tests, is commonly referred to as
data snooping.

The classical approach to multiple testing is to control the probability of making at least one
false rejection. This probability is called the familywise error rate FWE. For example, the well-
known Bonferroni method controls familywise error at joint level α by comparing the individual
p-values with α=S, where S is the number of hypotheses that are tested at the same time; for
example, see Lehmann and Romano (2005a), section 9.1. So, in the above example, an individual
p-value would have to be less than or equal to 0:05=100=0:0005 so that the corresponding null
hypothesis could be rejected. Intuitively, what happens is that the bar for any individual analysis
must be raised higher so that the overall probability of making a false rejection is controlled.

Of course, safeguards against false rejections are not the only concern of multiple-testing
procedures. Corresponding to the power of a single test, we must also consider the ability of a
procedure to detect false hypotheses, i.e. to make true rejections. In this sense, the Bonferroni
method is suboptimal. There are alternative, albeit more complex, methods that also control
FWE but often detect more false hypotheses; details are given in Section 3.

Another issue is that, if the number of hypotheses tested at the same time is very large, then
FWE can be overly strict. In other words, by controlling the probability of making even one
false rejection, the bar for any individual analysis can be raised so high that it becomes very
difficult to make true rejections. For example, in the Bonferroni method the cut-off for the indi-
vidual p-values, α=S, declines rapidly as the number of tests, S, increases. Hence, when many
hypotheses are under test, we might be willing to tolerate a small number of false rejections
if there is a large number of total rejections. In other words, we might be willing to tolerate a
certain (small) proportion of false rejections out of the total rejections. This proportion is called
the false discovery proportion FDP. By controlling FDP instead of FWE, often a substantial
gain in power can be achieved; details are given in Section 3.

When making inference for random effects in multilevel models, there are two broad possibil-
ities for multiple-testing scenarios to arise. First, there is the problem of absolute comparisons,
i.e. one investigates which random effects are significantly different from 0, thereby identifying
the groups which are particularly ‘good’ (above 0) or ‘bad’ (below 0). If one does not account
for data snooping, then it can be quite likely that some groups will be either falsely identified as
good or falsely identified as bad.
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One might argue that if we are doing hypothesis tests for specific groups we should be employ-
ing a fixed effects rather than a random-effects model. However, these two aspects are indepen-
dent of each other, i.e. we may specify a random-effects model and still be interested in specific
random effects. Indeed, in addition to the above educational statistics example there is a strong
and well-developed tradition of ranking of random effects in the context of animal breeding
(Searle et al., 1992).

1.1. Example 1 (data snooping when making absolute comparisons)
Rasbash et al. (2004), page 39, lined up confidence intervals for the level 2 residuals, which
correspond to schools, with individual coverage probability of 95% in a so-called caterpillar
plot; this plot is reproduced in our Fig. 1.

What this plot allows us to do is to make inference on a single school that was chosen a priori.
For example, a parent who considers sending their child to a particular school might wonder
whether this school is different from the average. She can answer this question at the 5% level
then by checking whether the confidence interval for the level 2 residual corresponding to this
school contains 0 or not. However, the caterpillar plot cannot be used to make inference on
several schools and/or on schools that are determined by looking at the plot first (e.g. exactly
those schools whose confidence intervals do not contain 0). For example, Rasbash et al. (2004),
page 39, state:

‘Looking at the confidence intervals around them, we can see a group of about 20 schools at the lower
and upper end of the plot where the confidence intervals for their [level 2] residuals do not overlap zero.
Remembering that these residuals represent school departures from the overall average . . . , this means
that these are the schools that differ significantly from the average at the 5% level.’

Although the main intention of Rasbash et al. (2004) was to use confidence bands to put uncer-
tainty into perspective, the reader must be careful to avoid the pitfalls of data snooping. If we
want to claim at level 5% that the entire group of about 20 schools that are identified in the above
manner is different from the average, the confidence intervals should have been constructed in
such a way that the joint coverage probability was given by 95%. In such a case we would
typically obtain fewer rejections, as the intervals would naturally be wider.

Second, we may be interested in the set of all pairwise comparisons, where each group is
compared with every other group. Again, if we do not account for data snooping, then it can
be quite likely that some pairs will be falsely declared as different. In both instances, such false
decisions are clearly worrisome, especially if they constitute the basis for policy making, as often
happens in the evaluations of schools.

1.2. Example 2 (data snooping when making pairwise comparisons)
Fig. 2 in section 4.2 of Goldstein and Spiegelhalter (1996) presented school intercept residual
estimates and their 95% overlap intervals based on the method of Goldstein and Healy (1995).
Under their method, the average type I error over all pairwise comparisons should be 0:05. The
intervals are constructed in such a way that, for a single prespecified comparison of two resid-
uals, the two can be distinguished (i.e. declared significantly different) if their corresponding
intervals do not overlap. Goldstein and Spiegelhalter (1996) concluded that, for example, the
school with the smallest estimated residual can be distinguished from each of the highest six
schools. We should be careful not to take this as a multiple comparison arising from the data
themselves, but rather as separate comparisons of particular pairs of schools, as say would be
done by six separate parents who had chosen their pairs of interest a priori. If we attempt the
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former instead, these are multiple, data-dependent comparisons and so the method of Goldstein
and Healy (1995) does not apply. We emphasize that the method itself is a correct method, but,
when it is applied to inference problems for which it was not designed, misleading analyses
can arise. In this light, it is important to point out an unfortunate mistake in Goldstein and
Spiegelhalter (1996), page 395, concerning the use of the method of Goldstein and Healy (1995):

‘We also note . . . that where more than two institutions are compared, [overlap] diagrams such as Figs 2
and 3 present a conservative picture as they are designed only for pairwise comparisons’.

Instead of ‘conservative picture’ it ought to be ‘liberal picture’.
The outline of the paper is as follows. Section 2 formally presents the multiple hypothesis

testing problems of interest. Section 3 discusses how to avoid data snooping via the application
of novel multiple-testing procedures. Section 4 applies the various methods to real data sets.
Section 5 concludes with a brief summary.

2. Inference for level 2 residuals

The general problem of interest concerns inference for random effects in a multiple hypothesis
testing setting. First, we formally define the multiple hypothesis tests of interest. Second, we
introduce a general non-specified method to arrive at an estimate of uj, and a specific bootstrap
method to arrive at an estimate of uj, but based on bootstrap data instead of the real data. (Note
that for our case uj is a scalar and will only be boldface when discussing the general case.)

2.1. Absolute comparisons
In the population, uj from equation (3) is distributed with mean 0 and unknown variance σ2

u.
As j = 1, . . . , J , we would like to know the values of the J realizations uj. Instead, given the
data, we have J estimates ûj. The first problem of interest is to test whether the value of each
uj is significantly different from 0. Formally, for each j, we are testing

Hj : uj =0 versus H ′
j : uj �=0:

To illustrate the inference problem that we are interested in, consider again the caterpillar
plot of Rasbash et al. (2004), page 39, which is reproduced in Fig. 1. On the one hand, there
may be a school head, say of school 4, who wants to know whether his particular school differs
from the average. In this case, he or she is interested only in the single comparison

H4 : u4 =0 versus H ′
4 : u4 �=0:

An examination of the (uncorrected) caterpillar plot is entirely appropriate and allows him or
her to decide whether to reject hypothesis H4 or not. On the other hand, a school governing
board examining all the schools in the district may want to know which schools differ from the
average. In this case, the board must consider all hypotheses Hj simultaneously. An examination
of the (uncorrected) caterpillar plot is no longer appropriate, as, owing to data snooping, typi-
cally too many schools will be identified as different from the average.

We should also like to stress that it would not be useful to test the ‘global’ hypothesis

H : u1 = . . . =uJ =0 versus H ′: some uj �=0:

If the global null H is rejected, we do not necessarily know which are the non-zero uj. Therefore,
our methodology focuses simultaneously on the individual nulls Hj so that the non-zero uj can
be identified.
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2.2. Pairwise comparisons
The next problem of interest concerns making pairwise comparisons. We shall restrict attention
to the two most common scenarios: all pairwise comparisons and comparing one residual with
all the others.

Formally, we are testing

Hj,k : uj =uk versus H ′
j,k : uj �=uk:

When all pairwise comparisons are considered, then the index set is {.j, k/ : 1 � j < k �J} and
there are a total of

(
J
2

)
comparisons. When one residual is compared with all others, then the

index set is {.j, k/ : 1�k �J , k �= j} and there are a total of J −1 comparisons.
Of course, other hypotheses are also possible, such as comparing each residual in a subset of

{1, . . . , J} with each residual in another (disjoint) subset of {1, . . . , J}; the details are left to the
reader.

2.3. Estimation
Various estimation methods exist for multilevel and mixed models; they manifest themselves
in various software packages as well. These methods range from simple two-step methods
(de Leeuw and Kreft, 1986), to iterative methods based on (full or restricted) maximum likeli-
hood (Raudenbush and Bryk, 2002; Longford, 1987; Goldstein, 2003), to Bayesian Markov
chain Monte Carlo methods (Browne, 2003). Regardless of the estimation procedure of choice,
our stepwise multiple-testing method is defined in a general manner such that any estimation
method may be employed.

Let ûj represent a generic estimator for the random effect uj. Similarly, let σ̂.ûj/ represent
the corresponding estimated standard error, i.e. σ̂.ûj/ estimates the unknown standard devia-
tion of ûj. Finally, given a pair of estimated residuals ûj and ûk, let ĉov.ûj, ûk/ represent the
corresponding estimated covariance between ûj and ûk. Regardless of the estimator or test sta-
tistic that is employed, we may formulate the multiple-testing problem and our stepwise testing
procedure.

One commonly employed option for the random-effects estimator is the classic shrinkage esti-
mator, which may be viewed as the posterior mode of the distribution of uj given the data and
estimators of the variance components. It is called a shrinkage estimator because the estimate
for groups with few observations (nj) is ‘shrunk’ towards 0. For the classic mixed effects model
format of equation (4), Laird and Ware (1982) and Robinson (1991) provided full details on
the random-effects estimator and the corresponding estimated standard error. Below we sum-
marize the general development. Assuming that Ωj = cov.Yj/ = σ2I + ZjDZ′

j is known, the
fixed effects and their variances may be estimated by the standard generalized least squares esti-
mators (Laird and Ware, 1982). Of course, in practice Ωj is unknown and must be estimated;
there are various iterative methods for estimating these variance components, e.g. Fisher scoring
and the EM algorithm (Longford, 1987; Dempster et al., 1977). Given an estimate of the vari-
ance components and fixed effects, we have the well-known random-effects estimator (Harville,
1976):

ûj = D̂Z′
jŴj.Yj −Xjγ̂/ .5/

and

v̂ar.ûj −uj/= D̂− D̂Z′
jŴjZjD̂+ D̂Z′

jŴjXj

(∑
i

X′
iŴiXi

)−1X′
jŴjZjD̂, .6/
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where Ŵj = Ω̂
−1
j . The set of estimates in ûj will not be independent of a set of estimates ûk

for a different unit k since they are subject to the same sampling error in estimating γ and D.
The covariance of estimates from different units may be obtained by extracting the appropriate
elements from the general variance–covariance matrix for the entire data (Goldstein, 2003):

E[.û −u/.û −u/′]=S−R′Ω−1.Ω−X.X′Ω−1X/−1X′/Ω−1R, .7/

where u is the complete vector of random effects for all groups, S is block diagonal with blocks
D, R is block diagonal with blocks ZjD, Ω is block diagonal with blocks Ωj and X is obtained
by stacking the Xj. Estimates of the model parameters in equation (7) may then be substituted
to provide the estimates of these covariances.

As stated earlier, the random-effects estimator ûj is a shrinkage estimator, a linear transfor-
mation of the ordinary residuals Yj − Xjγ̂. It may be viewed as a weighted combination of 0
and ūj, where the latter is the ordinary least squares estimate that is obtained by treating uj as
a fixed effect (Laird and Ware, 1982).

2.4. Bootstrap method
There are several variants of the bootstrap for multilevel models, and they may be divided into
three basic categories:

(a) parametric bootstrap,
(b) residual bootstrap and
(c) cases bootstrap.

Categories (b) and (c) are both variants of the non-parametric bootstrap. The parametric boot-
strap generates new data by keeping the explanatory variables fixed and simulating level 1 and
level 2 residuals from an estimated model distribution (typically a normal distribution with mean
0); see Goldstein (2003), section 3.5, and van der Leeden et al. (2007). The residual bootstrap
generates new data by keeping the explanatory variables fixed and resampling the (centred) esti-
mated level 1 and level 2 residuals; see Carpenter et al. (2003) and van der Leeden et al. (2007).
The cases bootstrap generates new data by resampling entire ‘cases’ of response variables jointly
with their explanatory variables. Depending on the context, only level 1 units are resampled,
only level 2 units are resampled or both level 1 and level 2 units are resampled; see van der
Leeden et al. (2007).

The crucial difference between categories (a) and (b), on the one hand, and (c), on the other
hand, is as follows: by design, the level 2 residuals in the bootstrap world are resampled from
a distribution with mean 0. As a result, they are random rather than identical to the level 2
residuals in the real world. In contrast, consider the cases bootstrap (c) when only the level 1
units are resampled but the level 2 units and their unit-specific variables remain fixed. In this
way, the level 2 residuals in the bootstrap world are identical to those in the real world.

Our multiple-testing procedure is based on the construction of simultaneous confidence inter-
vals, similar to the caterpillar plot of Rasbash et al. (2004), page 39, but with a joint coverage
probability of 95%. When the bootstrap is used to construct confidence intervals, then it is nec-
essary that the particular bootstrap method does not impose the constraints of the individual
null hypotheses. The null hypotheses of interest in this paper involve the level 2 residuals, so
we need a bootstrap method that ‘inherits’ exactly these level 2 residuals from the real world.
Therefore, we employ the cases bootstrap (c) that resamples the level 1 units only. To provide
some intuition, if the particular bootstrap method imposed the constraints of the individual
null hypotheses, then all level 2 residuals in the bootstrap world would be equal to 0. As a result,
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the bootstrap confidence intervals would tend to contain 0 rather than the true level 2 residuals.
So, if a particular level 2 residual was indeed different from 0, we would have no power to detect
this; more details are given in Section 3.2.

Given an estimation method to compute ûj, the estimator of the random effect uj, from the
original data set, we employ the cases bootstrap, resampling the level 1 units only, to produce a
sequence of B bootstrap data sets. Let û

Å,b
j denote the estimator of the random effect uj com-

puted by the same estimation method from the bth bootstrap sample and let σ̂.û
Å,b
j / denote its

estimated standard error. The chains {û
Å,b
1 , . . . , û

Å,b
J } and {σ̂.û

Å,b
1 /, . . . , σ̂.û

Å,b
J /} are then used

in the stepwise multiple-testing procedure that is described below. This provides the researcher
with the option of employing his or her preferred estimation procedure.

3. Avoiding data snooping

As discussed in Section 1, much of the current practice for inference on level 2 residuals suffers
from data snooping. In this section, we present novel stepwise multiple-testing methods to
address this shortcoming.

3.1. Problem formulation
We proceed by presenting a unified framework in which a general multiple-testing problem can
be formulated and addressed. This unified framework allows for a concise presentation of our
multiple-testing methods later on, rather than having to develop the methods several times from
scratch for each application.

The unknown probability distribution generating the data is denoted by P . Interest focuses
on a parameter vector θ =θ.P/ of dimension S, i.e. θ = .θ1, . . . , θS/′. The individual hypotheses
are about the elements of θ and of the form

Hs :θs =0 versus H ′
s :θs �=0: .8/

A multiple-testing method yields a decision concerning each individual testing problem by either
rejecting Hs or not. Crucially, in doing so, it takes into account the multitude of the tests. In con-
trast with data snooping, the decisions are not based on the individual p-values or confidence
intervals, ignoring the fact that S tests are carried out at the same time.

3.1.1. Example 3 (absolute comparisons)
If the values of the level 2 residuals uj are under test, then S =J and θs =us.

3.1.2. Example 4 (pairwise comparisons)
If all pairwise comparisons of the level 2 residuals are of interest, then S =(

J
2

)
; if we compare one

residual with all others, then S = J −1. In either case, an element θs is of the form θs = uj −uk,
where s can be taken as referring to the ordered pair .j, k/.

3.2. Problem solution based on the familywise error rate
The traditional approach to account for the multitude of tests is to control the familywise error
rate FWE, which is defined as the probability of making at least one false rejection:

FWEP =P.reject at least one Hs :θs =0/:

The subscript P in FWEP makes it clear that the FWE in any particular application depends
on the underlying probability model P generating the data.
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If FWE is controlled at level α, then the probability that at least one true null hypothesis
will be rejected is less than or equal to α. Hence, we can be 1−α confident that in a particular
application no true null hypotheses have been rejected. In other words, we can be 1 −α con-
fident that all rejected hypotheses are indeed false. However, if the individual tests have each
level α, then the confidence that all rejected hypotheses are indeed false, which is also called the
joint confidence, is generally less than 1−α, and potentially much less. To be more precise, the
joint confidence depends on the number of tests, S, and the dependence structure of the indi-
vidual test statistics. Hence, it can be computed explicitly only in special circumstances where
this dependence structure is known. For example, if the test statistics are independent, then the
joint confidence is given by .1 −α/S . In other words, the joint confidence is smaller than the
individual confidence.

Strictly speaking, a multiple-testing procedure controls FWE if

FWEP �α for all sample sizes .n1, . . . , nJ / and for all P:

However, this is only feasible in special circumstances, usually involving strong distributional
assumptions. Since we do not want to make any distributional assumptions, we focus instead
on asymptotic control of FWE defined as

lim sup
min1�j�J .nj/→∞

.FWEP/�α for all P:

In words, we achieve control of the maximum FWE as the smallest nj increases. In the remainder
of the paper, when we speak of control of FWE—and later of alternative criteria to account for
data snooping—we always mean asymptotic control.

Traditional methods to control FWE are based on the individual p-values p̂1, . . . , p̂S , where
p̂s tests the hypothesis Hs. The well-known Bonferroni method rejects Hs at the (joint) level α if
p̂s �α=S. It is a single-step method, since all p-values are compared with the same critical value.
Its advantage is its simplicity, but it can result in low power, as will now be explained.

First, a perhaps less-well-known improvement is the method of Holm (1979). The p-values
are ordered from smallest to largest: p̂.1/ � p̂.2/ � . . . � p̂.S/. Then the hypothesis H.s/ is rejected
if p̂.j/ �α=.S − j +1/ for all j = 1, . . . , s. This is a stepwise method, since the p-values are com-
pared with increasingly larger critical values. In contrast, the Bonferroni method is a single-step
method, since all p-values are compared with the same critical value α=S. Since the first critical
value for the Holm method is equal to the (common) critical value of the Bonferroni method,
but all subsequent critical values are larger, it follows that all hypotheses that are rejected by the
Bonferroni method will also be rejected by the Holm method, but it can happen that the Holm
method will reject some further hypotheses in addition. Therefore, the Holm method is more
powerful than the Bonferroni method.

Second, and nevertheless, even the Holm method can be quite conservative. It shares with
the Bonferroni method the disadvantage of being based on the individual p-values. Therefore,
to guarantee control of FWE in general, these methods must assume a ‘worst case’ dependence
structure of the test statistics. If the true dependence structure could be taken into account,
power would increase. To give an extreme example, if all test statistics are perfectly correlated
with each other, then the single-step critical value can be increased to α compared with the
Bonferroni worst case critical value of α=S.

Romano and Wolf (2005) developed a novel stepwise multiple-testing procedure that ac-
counts for the dependence structure of the test statistics and therefore is more powerful than
the Holm method. Their framework is that of comparing several strategies (such as investment
strategies) with a common bench-mark (such as a market index) and deciding which strategies
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outperform the bench-mark. Given this context, the individual tests are one sided. We there-
fore now detail how the procedure of Romano and Wolf (2005) must be modified when the
individual tests are two sided, which is the case for the applications that we have in mind.

The test statistic for the null hypothesis Hs is of the form |zs| = |ws|=σ̂s, where ws is a (con-
sistent) estimator of the parameter θs and σ̂s is an estimate of the standard error of ws.

3.2.1. Example 3 continued (absolute comparisons)
We have ws = ûs and σ̂s = σ̂.ûs/. (Recall that S = J in this example, and so we can ‘rewrite’ the
level 2 residuals as u1, . . . , uS here.)

3.2.2. Example 4 continued (pairwise comparisons)
We have ws = ûj − ûk and σ̂s =√{σ̂2.ûj/+ σ̂2.ûk/−2 ĉov.ûj, ûk/}.

The modified method of Romano and Wolf (2005) starts out by sorting the test statistics from
largest to smallest. Label r1 corresponds to the largest test statistic and label rS to the smallest,
so |zr1 |� |zr2 |� . . . � |zrS |. The first step of the procedure computes a 1 −α (asymptotic) joint
confidence region for the parameter vector .θr1 , . . . , θrS /′ of the form

[wr1 ± σ̂r1 d̂1]× . . .× [wrS ± σ̂rS d̂1]: .9/

Here, the common value d̂1 is chosen in such a fashion that the joint coverage by the region (9)
is asymptotically equal to 1 −α. In other words, the probability that all parameters θ1, . . . , θS

are contained in this region is asymptotically equal to 1−α. Of course, the task of finding such
a value d̂1 is non-trivial and central to our proposed method.

Then, for s = 1, . . . , S, the hypothesis Hrs is rejected if 0 is not contained in the interval
[wrs ± σ̂rs d̂1]. Denote by R1 the number of hypotheses that are rejected in this first step. It should
be clear from the order information that is contained in the labels rs and the common multiplier
d̂1 that the hypotheses that are rejected will then be Hrs for s=1, . . . , R1. Obviously, if R1 =0, we
stop. Otherwise, in the second step, we construct a 1 −α (asymptotic) joint confidence region
for the ‘remaining’ parameter vector .θrR1+1 , . . . , θS/′ of the form

[wrR1+1 ± σ̂rR1+1d̂2]× . . .× [wrS ± σ̂rS d̂2]: .10/

Then, for s = R1 + 1, . . . , S, the hypothesis Hrs is rejected if 0 is not contained in the interval
[wrs ± σ̂rs d̂2]. Denote by R2 the number of hypotheses that are rejected in this second step. If
R2 = 0, we stop and otherwise we continue in this stepwise fashion.

We are left to specify how to compute the constants d̂1, d̂2, . . .. We start with the constant d̂1
and ask what its ideal value, called d1, would be. In other words, which value would result in
a finite sample joint coverage of exactly 1 −α by the region (9)? One can show that this ideal
value is the .1−α/-quantile of the sampling distribution under P of max1�s�S.|wrs −θrs |=σ̂rs /,
the maximum of the S centred statistics. The ideal constant, called d2, in the second step is
the .1−α/-quantile of the sampling distribution under P of maxR1+1�s�S.|wrs − θrs |=σ̂rs /, the
maximum over only those statistics relating to hypotheses that were not rejected in the first step.
As a result, d2 � d1 and it is possible that some hypotheses will be rejected in the second step
that were not rejected in the first step; and so on for the subsequent steps.

The problem is that the ideal constants d1, d2, . . . depend on the unknown probability distri-
bution P and are therefore not available. Instead, a bootstrap approach yields feasible constants:
P is replaced by an estimator P̂ and then the quantiles are computed under P̂ . The resulting
bootstrap quantiles are then denoted d̂1, d̂2, . . . to make it clear that they come from an esti-
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mated distribution. Our bootstrap approach is of asymptotic nature, since we resample from P̂ ,
which converges to the true P as the smallest sample size nj increases, as opposed to from the
true P . For details on how to compute the constants d̂j in examples 3 and 4, see Appendix B.
Importantly, as explained there, it holds also true for the bootstrap quantiles that d̂2 � d̂1, say,
so further hypotheses can be rejected in subsequent steps.

We can now summarize our stepwise method by the following algorithm. The name StepM
stands for ‘stepwise multiple testing’.

3.2.3. Algorithm 1 (StepM method)

Step 1: relabel the hypotheses in descending order of the test statistics |zs|; label r1 corresponds
to the largest test statistic and label rS to the smallest.
Step 2: set j = 1 and R0 = 0.
Step 3: for Rj−1 +1� s�S, if 0 �∈ [wrs ± σ̂rs d̂j], reject the null hypothesis Hrs .
Step 4:

(a) if no (further) null hypotheses are rejected, stop;
(b) otherwise, denote by Rj the total number of hypotheses that have been rejected so far

and, afterwards, let j = j +1. Then return to step 3.

We now give some heuristics on why the StepM method provides asymptotic control of
FWE. The formal proof for one-sided alternative hypotheses that is detailed in Romano and
Wolf (2005) can be straightforwardly extended to two-sided hypotheses. Consider the asymp-
totic joint confidence region (9) in the first step. By construction, this region will contain the
entire parameter vector with limiting probability 1 − α. In particular, the probability that at
least one of the parameters θs = 0 will not be contained in that region is asymptotically less
than or equal to α. As a result, the first step asymptotically controls FWE. But even the ‘full’
stepwise method achieves this (while improving power). To see why, consider the second step.
Assume that all rejections in the first step are true rejections; otherwise, the FWE criterion has
been violated already and moving on to the second step can do no further damage. At this stage,
we construct the asymptotic joint confidence region (10) for the remaining parameter vector
.θrR1+1 , . . . , θS/′. By construction, this region will contain the remaining parameter vector with
limiting probability 1 − α. In particular, the probability that at least one of the parameters
θrs = 0, with R1 + 1 � s �S, will not be contained in that region is asymptotically less than or
equal to α: and so on.

The StepM method is a multiple-testing method based on the inversion of joint confidence
regions, i.e., at any given stage, we construct a joint confidence region for the remaining param-
eter vector and then reject a particular null hypothesis Hrs : θrs = 0 if the value 0 for θrs is not
contained in the joint confidence region. By the definition of this region, this happens if and
only if 0 is not contained in the interval [wrs ± σ̂rs d̂j]; see step 3 of algorithm 1. Crucially, when
the bootstrap is used to compute a confidence region, we must resample from an unrestricted
estimate P̂ of the underlying distribution P . Otherwise, when we resample from a restricted esti-
mate of P , then the resulting region will tend to contain the null parameters instead of the true
parameters (in our case the 0s instead of the true θs-values), so it no longer is a valid confidence
region.

We briefly return to the motivating examples at the beginning of this section. Algorithm 1
applied to absolute comparisons with 0 would avoid the data snooping which the diagram in
example 1 might unintentionally encourage. In particular, the joint confidence region (9) could
be easily turned into an appropriate caterpillar plot which allows the user to identify school
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departures from the overall average without falling into the data snooping trap. Nevertheless,
some further departures might be identified in subsequent steps. Therefore, the caterpillar plot
‘adjusted for data snooping’ is a useful and intuitive tool but should not be the end of the
analysis (unless all intervals contain 0).

Algorithm 1 applied to pairwise comparisons would avoid the temptation of data snoop-
ing in situations such as example 2. Note that comparing the lowest school with the highest
school(s) requires an adjustment for data snooping based on all S = (

J
2

)
pairwise comparisons,

since, in each case, the two schools being compared have been selected in a data-dependent
way (i.e. ‘smallest’ versus ‘largest’). Unfortunately, in this example, the first step of our method
cannot be translated into a convenient plot. Furthermore, if a particular school that had been
selected ex ante was compared with some data-dependent schools (e.g. school 5 versus smallest
or largest), then the method would require only an adjustment for data snooping based on all
S = J −1 comparisons of one school with all others.

3.3. Problem solution based on the false discovery proportion
As explained in Section 1, if the number of hypotheses under consideration, S, is very large,
controlling FWE may be too strict. In such instances, we might be willing to tolerate a certain
(small) proportion of false rejections out of the total rejections. This suggests basing error con-
trol on the false discovery proportion FDP. Let F be the number of false rejections that are
made by a multiple-testing method and let R be the total number of rejections. Then FDP is
defined as

FDP=
{

F=R if R> 0,
0 if R=0.

By control of FDP, we mean control of the tail probability P.FDP > γ/ where γ ∈ [0, 1/ is
a user-defined number. Similarly to Section 3.2, we shall focus on asymptotic control of FDP,
i.e. we want P.FDP >γ/ bounded above by α as the smallest nj →∞: Typical values of γ are
γ = 0:05 and γ = 0:1; the choice γ = 0 corresponds to control of FWE.

Given the last observation, there are actually two alternative ways to improve the power of
controlling FWE. To illustrate, consider controlling FWE at level α = 0:05; this corresponds to
controlling FDP at level α = 0:05 and choosing γ = 0. The first possibility is simply to increase
α, say to α = 0:1, but to stick to control of FWE (i.e. to stick to γ = 0). The second possibility is
to stick to α = 0:05 but to switch to ‘actual’ FDP control by choosing a positive γ, say γ = 0:1.
The two possibilities are philosophically different and comparing them is a little like comparing
apples to oranges. Is it better to be 90% confident that all rejections are true rejections (i.e. that
the realized FDP is 0) or is it better to be 95% confident that the realized FDP is at most 0.1?
We do not know how to answer this question. However, we can say that, when the number
of hypotheses that are under test is large, then the second possibility will typically reject more
hypotheses. This will be illustrated with the empirical applications in Section 4.

Lehmann and Romano (2005b) proposed a stepwise method to control FDP that is based
on the individual p-values. But, similar to the Holm (1979) method for FWE control, it often
is overly conservative because it does not account for the dependence structure across the test
statistics. Romano and Wolf (2007) took such dependence into account in a bootstrap method
which, again, we now need to extend to two-sided alternatives.

The goal is to control FDP in the end. However, it turns out that as a stepping-stone towards
this we first need to control the generalized familywise error rate k-FWE, which is defined as the
probability of making at least k false rejections, where k �1 is a prespecified integer:

k-FWEP =P.reject at least k of the Hs :θs =0/:
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The method to control k-FWE is somewhat complex and so the details are deferred to Appen-
dix A. For now, simply assume that we have a method to control k-FWE, which is called the
k-StepM method. With this more general label the simpler 1-StepM method is what we have
previously called simply the StepM method. We now describe how successive control of k-FWE,
for increasing values of k, leads to control of FDP.

To develop the idea, consider controlling P.FDP>0:1/. We start out by applying the 1-StepM
method, i.e. by controlling FWE at level α. Denote by N1 the number of hypotheses that are
rejected. Owing to the FDP control, we can be confident that no false rejection has occurred
and that, in turn, FDP has been controlled. Consider now rejecting HrN1+1 , the next ‘most sig-
nificant’ hypothesis. Of course, if HrN1+1 is false, there is nothing to worry about, so suppose
that HrN1+1 is true. Assuming FWE control in the first step, the FDP on rejection of HrN1+1 then
becomes 1=.N1 + 1/, which is greater than 0:1 if and only if N1 < 9. So if N1 � 9 we can reject
one true hypothesis and still avoid FDP > 0:1. This suggests stopping if N1 < 9 or otherwise
applying the 2-StepM method at level α which, by design, should not reject more than one
true hypotheses. (It does not matter at this point whether the 2-StepM method is applied to
the full set of hypotheses or the remaining set of non-rejected hypotheses. The reason is that all
hypotheses that are rejected by the StepM method will, by design, automatically be rejected by
the 2-StepM method as well.) Denote the total number of hypotheses that are rejected by the
2-StepM method by N2. Reasoning similarly to before, if N2 < 19, we stop and otherwise we
apply the 3-StepM method at level α. This procedure is continued until Nj < 10j − 1 at some
point. The following algorithm summarizes the method for arbitrary γ.

3.3.1. Algorithm 2 (FDP–StepM method)

Step 1: let k = 1.
Step 2: apply the k-StepM method at level α and denote by Nk the number of hypotheses that
are rejected.
Step 3:

(a) if Nk <k=γ −1, stop;
(b) otherwise, let k = k +1 and return to step 2.

3.4. Problem solution based on the false discovery rate
Benjamini and Hochberg (1995) proposed a stepwise method for controlling the expected value
of FDP, E.FDP/, which they coined the false discovery rate FDR. The idea is to ensure that
FDR �γ, at least asymptotically, for some user-defined γ. The method is based on the individual
p-values and works as follows.

The p-values are ordered from smallest to largest: p̂.1/ � p̂.2/ � . . . � p̂.S/ with their corres-
ponding null hypotheses labelled accordingly: H.1/, H.2/, . . . , H.S/. Then define

jÅ =max{j : p̂.j/ �γj}, γj = j

S
γ, .11/

and reject H.1/, . . . , H.jÅ/. If no such jÅ exists, reject no hypotheses. This is an example of a step-
up method. It starts with examining the least significant hypothesis, H.S/, and then moves ‘up’
to the more significant hypotheses. Williams et al. (1999) endorsed this approach for inference
concerning all pairwise comparisons. But two problems need to be mentioned. First, the pro-
cedure of Benjamini and Hochberg (1995) does not work under arbitrary dependence structure
of the individual p-values. There are certain sufficient conditions on this dependence structure,
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but the scenario of all pairwise comparisons does not meet any of them. The underlying reasons
are of rather technical nature; see Benjamini and Yekutieli (2001) and Yekutieli (2002). Yekutieli
(2002) provided a more conservative FDR procedure that is shown to work for the scenario of
all pairwise comparisons. Second, FDR is the expected value of FDP. Controlling the expected
value says rather little about the actual realization of FDP in a given application. Indeed, the
realized value of FDP could be quite far from the nominal upper bound γ on FDR; see Korn
et al. (2004) for some simulation evidence.

To give an example, consider controlling FDR �0:1. This does not allow us to make any infor-
mative statement about the realized FDP in a given application. (If we controlled FDR � 0:1
in a large number of independent applications, then, analogous to the central limit theorem,
we could make certain claims concerning the average realized FDP over the many applica-
tions. However, most applied researchers will be interested in a particular single application
only.) However, if we control P.FDP > 0:1/�0:05, say, then we can be 95% confident that the
realized FDP in a given application is at most 0.1.

3.5. Comparison of problem solutions
Which is the most appropriate of the multiple-testing procedures that we have presented so far?
The answer is ‘it depends’.

The StepM method has the advantage that it allows for the strongest conclusions. Since it
controls the strict FWE criterion, we can be confident that indeed all rejected hypotheses are
false hypotheses. For example, such a joint confidence may be very desirable in the context of
policy making.

However, when the number of hypotheses that are under consideration is very large, control-
ling FWE may be too strict and, as a result, the StepM method may reject only a (relatively)
small number of hypotheses. In such cases, both the FDP–StepM method and the FDR method
offer greater power, at the expense of tolerating a small (expected) fraction of true hypotheses
rejected among all rejections. This can be seen from the empirical applications in Section 4 as
well as from the simulation study in Romano and Wolf (2007). Of the two, the FDP–StepM
method has the advantage that it allows for a statement about the realized FDP in any given
application. Say that we can be 95% confident that the realized FDP is at most 0.1. The FDR
method, in contrast, only controls the expected value of FDP. So, in any given application, the
realized FDP could be quite far from this expected value, say 0.1. This point is made clear in
Korn et al. (2004). Therefore, controlling FDP can be considered ‘safer’ than controlling FDR.

Although, for these reasons, the (globally) most appropriate method does not exist, there
clearly does exist an inappropriate method, namely data snooping by basing inference on the
individual p-values or the individual confidence intervals, without taking the multitude of tests
into account.

4. Applications

We compare the various multiple-testing methods for three data sets. Although we employ a
specific estimation method, the user may implement the various multiple-testing procedures
with his or her estimation method of choice. However, in practice the multiple-testing methods
will have differing practical difficulties given different estimation methods; for example, using a
Markov chain Monte Carlo estimation method in conjunction with bootstrapping may pres-
ent difficulties with respect to time constraints. Random-effects models were estimated via the
nlme package of Pinheiro and Bates (2000) which is contained in the statistical software R
(R Project, 2006). The default estimation method in nlme is restricted maximum likelihood,
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and this is the estimation method that we used; see Pinheiro and Bates (2000), chapter 2, for
further details. R extensions were written for the estimated standard errors of the random-
effects estimates, the covariances between random-effects estimates, and the bootstrapping of
the data, as well as the StepM and FDP–StepM methods themselves. These are available at
http://moya.bus.miami.edu/∼dafshartous/.

In all applications below, we use the significance level α = 0:05 and the value γ = 0:1 (for the
FDP–StepM and the FDR methods). An operationalization of k-StepM building-blocks for the
FDP–StepM method requires a value of a user-set parameter Nmax to be provided (see Appendix
A). Here Nmax = 100 is used. The bootstrap procedures that are required for this, which were
discussed previously in Section 2.4 and are elaborated in Appendix A, use B = 1000 repetitions,
which are deemed sufficient for our purposes; see Efron and Tibshirani (1993), section 19.3.

4.1. Data snooping when making absolute comparisons
Consider the data set that was used in Rasbash et al. (2004) and was considered earlier in exam-
ple 1. Here the response variable is the score that is achieved by 16-year-old students in an
examination and the predictor is the London reading test score that was obtained by the same
students just before they entered secondary school at the age of 11 years. The data are on 4059
students in 65 inner London schools. As in Rasbash et al. (2004), page 11, we fit a multilevel
or random-effects model with random intercept and constant slope across schools. Since there
are 65 schools, there are S = 65 absolute comparisons, where the absolute comparison of a
group’s level 2 residual with 0 is equivalent to examining whether the school’s average exam-
ination score differs from the grand mean after accounting for London reading test score. If
we simply compute the separate test statistics for the random effects and their corresponding
p-values, 28 null hypotheses are rejected, i.e. we conclude that 28 schools differ significantly
from the grand mean. This method is equivalent to forming separate 95% confidence intervals
and rejecting the hypotheses that correspond to intervals that do not include 0. Of course, this
approach does not account for data snooping. The application of the StepM, FDP–StepM
and FDR methods yield 17, 27 and 27 rejections respectively. The results are summarized in
Table 1, which also summarizes the results of all subsequent empirical investigations that we
shall make.

Consider the National Educational Longitudinal Study data set that was used by Afshartous
and de Leeuw (2004), where the base year sample from the 1988 study is used (National Center
for Educational Statistics, 2006). The base year sample consists of 24599 eighth-grade students,
distributed among 1052 schools across the USA. The response variable is student mathematics
score and the predictor is the socio-economic status of the student. As above, we fit a multi-
level or random-effects model with random intercept and constant slope across schools. If
we simply compute the separate test statistics for the random effects and their corresponding
p-values, 289 hypotheses are rejected, i.e. we conclude that 289 of 1052 schools differ significantly
from the grand mean. However, again, this approach does not account for data snooping. The
application of the StepM, FDP–StepM and FDR methods yield 38, 249 and 244 rejections
respectively.

4.2. Data snooping when making pairwise comparisons
Consider the wafer data that were presented in Pinheiro and Bates (2000). The data were col-
lected to study the variability in the manufacturing of analogue metal oxide semiconductor
circuits and consist of 40 observations on each of 10 wafers; the response variable is the inten-
sity of current and the predictor variable is voltage. Given that there are 10 wafers, there are
S = 45 possible pairwise comparisons. If we simply examine the test statistics for the pairwise
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Table 1. Number of rejected hypotheses for various applica-
tions and methods

Method Number of
rejected

hypotheses

Local education authority data, absolute
comparisons, S = 65

StepM 17
FDP–StepM 27
FDR 27
Naïve 28

National Educational Longitudinal Study data,
absolute comparisons, S = 981

StepM 38
FDP–StepM 249
FDR 244
Naïve 289

Wafer data, pairwise comparisons, S = 45
StepM 26
FDP–StepM 30
FDR 32
Naïve 30

Local education authority data, pairwise
comparisons, S =2080

StepM 348
FDP–StepM 966
FDR 1026
Naïve 1027

differences of random effects and their corresponding p-values, 30 hypotheses are rejected. The
application of the StepM, FDP–StepM and FDR methods yield 26, 30 and 32 rejections respec-
tively. In this application, the FDR method rejects more hypotheses than the naïve method that
does not account for data snooping. This can indeed happen when the γ-parameter of the FDR
method is greater than the individual critical value α for the naïve method, as is the case here
with γ = 0:1 and α = 0:05. For the reader who wants to check: the ordered p-value numbers
30–33 are given by 0.0185, 0.0623, 0.0661 and 0.0856 respectively.

The graphical method of Goldstein and Healy (1995) can be interpreted as a ‘visual short cut’
to an analysis that is based on individual p-values, ignoring the effects of data snooping. For a
given pair of level 2 residuals, uj and uk, the null hypothesis H0 :uj =uk is rejected if the intervals
for uj and uk do not overlap. Crucially, the method of Goldstein and Healy (1995) assumes inde-
pendence of the level 2 residuals estimates. In large sample applications this may not be unrealis-
tic since it is tantamount to assuming that the fixed effects in the model are known or estimated
precisely (see Goldstein (2003), appendix 2.2). However, for many applications this assumption is
violated because these estimates share common estimated parameters (in particular the estimates
of the variances and covariances of residuals). Falsely assuming independence can therefore lead
to misleading analyses. If the method of Goldstein and Healy (1995) is applied to the wafer data
of Pinheiro and Bates (2000), a total of 24 rejections are obtained. Obviously, it is counterintui-
tive that a method which does not account for data snooping should reject fewer hypotheses than
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Fig. 2. Graphical method of Goldstein and Healy (1995) applied to the wafer data of Pinheiro and Bates
(45 pairs of 95% intervals): j, accounting for the covariances of the level 2 residual estimates (in this case,
30 of the 45 pairs do not overlap); , falsely assuming independence (in this case, 24 of the 45 pairs do not
overlap)

even the StepM method! But this riddle is solved by incorporating the estimated covariances of
the level 2 residual estimates in a modified Goldstein and Healy (1995) plot; see Appendix C. Now
the lengths of the intervals are reduced and a total of 30 rejections are obtained, the same number
as for the above analysis based on individual p-values. This difference is illustrated in Fig. 2.

To be sure, we do not say that the method of Goldstein and Healy (1995) is incorrect. We
only say that it can lead to misleading results when it is applied to situations for which it was
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Fig. 3. Graphical method of Goldstein and Healy (1995) applied to the local education authority data of
Rasbash et al. (2004) (2080 pairs of 95% invervals): j, accounting for the covariances of the level 2 residual
estimates (in this case, 1031 of the 2080 pairs do not overlap); , falsely assuming independence (in this case,
977 of the 2080 pairs do not overlap; unfortunately, the differences are rather small and hardly show up on
this plot)

not designed. We also should add that, by applying the method of Goldstein and Healy (1995)
to situations for which it was not designed, the inference becomes typically conservative (i.e.
too few rejections), as in the example here. Of course, this is preferable to the analysis becoming
liberal (i.e. too many rejections).

We also investigate all pairwise comparisons for the data set of Rasbash et al. (2004). Given
that there are 65 schools, there are a total of S = 2080 possible pairwise comparisons. If we
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Table 2. Number of rejected hypotheses for various applica-
tions and methods

Method Number of
rejected

hypotheses

Local education authority data, absolute
comparisons, S =65

StepM with α=0:05 17
StepM with α=0:1 17
FDP–StepM with α=0:05 and γ =0:1 27

National Educational Longitudinal Study data,
absolute comparisons, S =981

StepM with α=0:05 38
StepM with α=0:1 42
FDP–StepM with α=0:05 and γ =0:1 249

Wafer data, pairwise comparisons, S =45
StepM with α=0:05 26
StepM with α=0:1 27
FDP–StepM with α=0:05 and γ =0:1 30

Local education authority data, pairwise
comparisons, S =2080

StepM with α=0:05 348
StepM with α=0:1 411
FDP–StepM with α=0:05 and γ =0:1 966

examine only the individual p-values, a total of 1027 hypotheses are rejected. The application
of the StepM, FDP–StepM and FDR methods yield 348, 966 and 1026 rejections respectively.
For the Goldstein and Healy (1995) approximate method not using the covariance terms for
residual estimates there are 977 rejections. If we account for the covariances, as described in
Appendix C, there are 1031 rejections. This difference is illustrated in Fig. 3.

As expected, with the covariances accounted for, the visual short cut number 1031 is now
very close to the number of 1027 rejections for the exact analysis based on individual p-values.

In view of the discussion at the beginning of Section 3.3, we now also apply the StepM method
with nominal level α= 0:1 to all four applications. The numbers of rejections are displayed in
Table 2. It can be seen that applying the FDP–StepM method using α=0:05 and γ =0:1 typically
rejects many more hypotheses.

4.3. Extension to random slopes
We may extend the methods that are proposed in this paper to random-slope models. Under
such a scenario, the hypothesis testing problems for comparing schools (among each other or
with a bench-mark) would be fundamentally different. Specifically, there would exist u0j and
u1j corresponding to the intercept and slope respectively for each group. In the context of the
examples that we considered the slope coefficient of the prior ability covariate instead of being
fixed may be considered to vary across schools and u1j is then the random departure of school
j from the average slope. In much educational effectiveness research this has been shown to be
a more promising and realistic type of model. Since there are now two random effects summa-
rizing the school’s position no single ranking applies. Indeed it may be that the values of u0j
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and u1j are such that summary lines for different schools may cross. In this case, for example,
a school which had a lower estimated outcome than another for one particular value of the
covariate may be higher for another value.

This situation is rather more complex than the one that was directly considered in this paper
since inferences about which schools could be said to differ from average or between themselves
would now involve joint testing of the intercept and slope effects, but still within the multiple-
testing framework across all schools. Extensions may, however, be possible in principle though
they may be more difficult in implementation.

However, a referee of an earlier version of this paper has suggested a relatively simple solu-
tion to this situation which enables the methods that are considered in this paper to be applied
directly as follows. We might think it sufficient in practice to consider school rankings at a few
specific values across the range of the covariate x, say a low ranking, a middle ranking and a
high ranking. In each case we centre the data at that value of x = xspec say, by defining a new
covariate xnew =x−xspec. We then fit the model with both random intercepts and slopes. Since
the centred data now have the value xnew = 0 for x = xspec the school effects at that value are
summarized by the intercept residual alone and the methods of our paper apply. We can repeat
the exercise by fitting models with data centred at the different values of x. A range of con-
clusions may be reached which then enable us to address the real phenomenon of differential
school effectiveness, which possibly different slopes as well as intercepts imply.

5. Conclusion

Level 2 residuals, which are also known as random effects, are of both substantive and diag-
nostic interest for multilevel and mixed effects models. A common example is the interpretation
of level 2 residuals as school performance. For some of the associated inference problems there
may be a temptation to ignore the pitfall of data snooping. Data snooping occurs when mul-
tiple hypothesis tests are carried out at the same time and inference is based on the individual
p-values or the individual confidence intervals, without taking the multitude of tests into
account. As a consequence, often too many findings are declared significant. This can have
undesirable consequences, in particular if such analyses constitute the basis for policy making.
Take the example when a particular school is unjustly declared an ‘underperformer’ with respect
to the main body of schools.

In this paper, we have presented two novel multiple-testing methods which account for data
snooping. Our general framework encompasses both of the following inference problems:

(a) inference on the ‘absolute’ level 2 residuals to determine which are significantly different
from 0 and

(b) inference on pairwise comparisons of level 2 residuals.

Our first method controls the familywise error rate FWE which is defined as the probability
of making even one false rejection. If FWE is controlled at level 5%, say, then we can be 95%
confident that all rejected hypotheses are indeed false. The advantage of the method that we pro-
pose over traditional methods controlling FWE, such as the methods of Bonferroni and Holm
(1979), is an increase in power. This is because our method takes advantage of the dependence
structure of the individual test statistics, whereas the methods of Bonferroni and Holm assume
a worst case scenario.

When the number of hypotheses that are under test is very large—which can happen, for
example, when all pairwise comparisons are of interest—then controlling FWE may be too
strict. In such cases, we propose to control the false discovery proportion FDP instead, which is
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defined as the proportion of false rejections divided by the total number of rejections. By allow-
ing a small proportion of the ‘discoveries’ to be false discoveries, often a much larger number
of hypotheses can be rejected. Our second method is related to the procedure of Benjamini and
Hochberg (1995) that controls the false discovery rate FDR, which is defined as the expected
value of the false discovery proportion, i.e. FDR=E(FDP). However, their method has the
drawback that it does not allow for any probability statements concerning the realized FDP in a
given application. This can be a problem if the analysis constitutes the basis for policy making.

The practical application of our methods is based on the bootstrap and so it is computation-
ally expensive. However, given the fast computers of today, this no longer is a serious drawback.
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Appendix A: Control of k-FWE

Some notation is required. Suppose that {ys : s∈K} is a collection of real numbers which are indexed by
a finite set K having |K| elements. Then, for k � |K|, k-maxs∈K.ys/ is used to denote the kth largest value
of the ys with s∈K. So, if the elements ys, s∈K, are ordered in ascending order as y.1/ � . . . �y.|K|/, then
k-maxs∈K.ys/=y.|K|−k+1/.

Further, for any subset K ⊂{1, . . . , S}, define

dK.1−α, k, P/= inf{x : P{k- max
s∈K

.|wrs −θrs |=σ̂rs /�x}�1−α}, .12/

i.e. dK.1−α, k, P/ is the smallest .1−α/-quantile of the sampling distribution under P of k-maxs∈K.|wrs −
θrs |=σ̂rs /. Here, the random variable k-maxs∈K.|wrs −θrs |=σ̂rs / is given by the kth largest centred test statistic
where the maximization is taken over the specified index set K.

These quantiles would yield finite sample control of k-FWE. But, since the true probability distribution
P is unknown, these choices are not feasible. Analogously to the StepM method for control of FWE, a boot-
strap approach yields feasible constants: P is replaced by an estimator P̂ . The ideal constant dK.1−α, k, P/
is then estimated as d̂K.1 −α, k, P/ = dK.1 −α, k, P̂/: For details on how to compute such constants via
the bootstrap in examples 1 and 2, see Appendix B.

A.1. Algorithm 3 (k-StepM method)

Step 1: relabel the strategies in descending order of the test statistics |zs|: strategy r1 corresponds to the
largest test statistic and strategy rS to the smallest.
Step 2: for 1� s�S, if 0 �∈ [wrs ± σ̂rs d̂1], reject the null hypothesis Hrs . Here

d̂1 =d{1,:::,S}.1−α, k, P̂/:

Step 3: denote by R1 the number of hypotheses rejected. If R1 <k, stop; otherwise let j =2.
Step 4: for Rj−1 +1� s�S, if 0 �∈ [wrs ± σ̂rs d̂j ], reject the null hypothesis Hrs . Here

d̂j =max
K

[dK.1−α, k, P̂/ : K ={k −1 elements of {1, . . . , Rj−1}}∪{Rj−1 +1, . . . , S}] .13/

Step 5:

(a) if no further hypotheses are rejected, stop;
(b) otherwise, denote by Rj the number of all hypotheses that have been rejected so far and, after-

wards, let j = j +1. Then return to step 4.
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The intuitive reason for the complicated expression (13) is the following. To achieve control of k-FWE,
in any given step, hypotheses that have been rejected previously cannot be simply ignored or ‘forgotten
about’. Instead, we must acknowledge that, when we consider a set of remaining hypotheses, we may have
reached that stage by rejecting true null hypotheses, but presumably at most k −1 of them. Since we do not
know which of the hypotheses that have been rejected thus far are true or false, we must maximize over
all subsets K that include k −1 of the previously rejected hypotheses and all the hypotheses that have not
been rejected so far. Note that a slightly more concise definition of d̂j , which is used later in Appendix B,
is given as

d̂j = max
I⊂{1,:::,Rj−1},|I|=k−1

[d̂K.1−α, k, P̂/ : K = I ∪{Rj−1 +1, . . . , S}]:

The computation of the constants d̂j may be very expensive if the number of choices is very large. In such
cases, we suggest the following short cut, which has been coined the operative method. Pick a user-defined
number Nmax, say Nmax =50, and let NÅ be the largest integer for which

(
NÅ

k−1

)
�Nmax. In finding d̂j in each

step, we now restrict maximization to the set of choices involving only the NÅ least significant of hypoth-
eses rejected so far instead of all Rj−1 of them. Note that this short cut does not affect the asymptotic
control. The reason is that, with probability tending to 1, the false hypotheses will be rejected first and so
we can restrict attention to the less significant hypotheses that have been rejected so far. Nevertheless, in
the interest of better k-FWE control in finite samples, we suggest choosing Nmax as large as possible.

Appendix B: Use of the bootstrap

B.1. Use of the bootstrap for the StepM method
We now detail how to compute the constants d̂j in examples 1 and 2 via the bootstrap for use in algorithm
1. Again, the bootstrap method that is employed is the cases bootstrap resampling the level 1 units only;
see van der Leeden et al. (2007), section 3.3. Denote the observed data by V . From V we compute the
individual level 2 residual estimates û1, . . . , ûJ . The application of the cases bootstrap results in a (generic)
bootstrap data set VÅ by sampling from the estimated distribution P̂ .

Recall that S =J in example 1 and that we can therefore ‘rewrite’ the level 2 residuals as u1, . . . , uS for
this example.

B.1.1. Algorithm 4 (computation of the d̂j for example 1)

Step 1: the labels r1, . . . , rS and the numerical values of R0, R1 . . . are given in algorithm 1.
Step 2: generate B bootstrap data sets VÅ,1, . . . , VÅ,B. (One should use B�1000 in practice.)
Step 3: from each bootstrap data set VÅ,b, 1 �b�B, compute the individual level 2 residual estimates
û
Å,b
1 , . . . , û

Å,b
S . Also, compute the corresponding estimated standard errors σ̂.û

Å,b
1 /, . . . , σ̂.û

Å,b
S /.

Step 4:

(a) for 1�b�B, compute maxÅ,b
j =maxRj−1+1�s�S{|ûÅ,b

rs
− ûrs |=σ̂.ûb,Å

rs
/}.

(b) compute d̂j as the 1−α empirical quantile of the B values maxÅ,1
j , . . . , maxÅ,B

j .

B.1.2. Algorithm 5 (computation of the d̂j for example 2)

Step 1: the labels r1, . . . , rS and the numerical values of R0, R1 . . . are given in algorithm 1.
Step 2: generate B bootstrap data sets VÅ,1, . . . , VÅ,B. (One should use B�1000 in practice.)
Step 3: from each bootstrap data set VÅ,b, 1 �b�B, compute the individual level 2 residual estimates
û
Å,b
1 , . . . , û

Å,b
J . Also, for a particular difference wÅ

s = û
b,Å
j − û

b,Å
k compute the corresponding estimated

standard error σ̂Å,b
s = σ̂.û

b,Å
j − û

b,Å
k /:

Step 4:

(a) for 1�b�B, compute maxÅ,b
j =maxRj−1+1�s�S.|wÅ

rs
−wrs |=σ̂Å,b

s /;
(b) compute d̂j as the 1−α empirical quantile of the B values maxÅ,1

j , . . . , maxÅ,B
j :

B.2. Use of the bootstrap for the k-StepM method
We next detail how to compute the constants d̂j in examples 1 and 2 via the bootstrap for use in algorithm
3, resampling from P̂ .
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B.2.1. Algorithm 6 (computation of the d̂j for example 1)

Step 1: the labels r1, . . . , rS and the numerical values of R0, R1 . . . are given in algorithm 3.
Step 2: generate B bootstrap data sets VÅ,1, . . . , VÅ,B. (One should use B�1000 in practice.)
Step 3: from each bootstrap data set VÅ,b, 1 � b � B, compute the individual level 2 residual esti-
mates û

Å,b
1 , . . . , û

Å,b
S . Also, compute the corresponding estimated standard errors σ̂.û

Å,b
1 /, . . . , σ̂.û

Å,b
S /:

Step 4:

(a) for 1�b�B, and any needed K, compute kmaxÅ,b
K =k-maxs∈K.|ûÅ,b

rs
− ûrs |=σ̂Å,b

rs
/;

(b) compute dK.1−α, k, P̂/ as the 1−α empirical quantile of the B values k maxÅ,1
K , . . . , k maxÅ,B

K :

Step 5:

(a) if j =1, d̂1 =d{1,:::,S}.1−α, k, P̂/;
(b) if j> 1, d̂j =maxI⊂{1,:::,Rj−1},|I|=k−1[dK.1−α, k, P̂/ : K = I ∪{Rj−1 +1, . . . , S}]:

B.2.2. Algorithm 7 (computation of the d̂j for example 2)

Step 1: the labels r1, . . . , rS and the numerical values of R0, R1. . . are given in algorithm 3.
Step 2: generate B bootstrap data sets VÅ,1, . . . , VÅ,B. (One should use B�1000 in practice.)
Step 3: from each bootstrap data set VÅ,b, 1 � b � B, compute the individual level 2 residual esti-
mates û

Å,b
1 , . . . , û

Å,b
J . Also, for a particular difference wÅ

s = ûb,Å
as,1

− ûb,Å
as,2

compute the corresponding esti-
mated standard error σ̂Å,b

s = σ̂.ûb,Å
as,1

− ûb,Å
as,2

/.
Step 4:

(a) for 1�b�B, and any needed K, compute kmaxÅ,b
K =k-maxs∈K.|wÅ,b

rs
−wrs |=σ̂Å,b

rs
/;

(b) compute dK.1−α, k, P̂T / as the 1−α empirical quantile of the B values kmaxÅ,1
K , . . . , kmaxÅ,B

K .

Step 5:

(a) if j =1, d̂1 =d{1,:::,S}.1−α, k, P̂T /;
(b) if j> 1, d̂j =maxI⊂{1,:::,Rj−1},|I|=k−1[dK.1−α, k, P̂T / : K = I ∪{Rj−1 +1, . . . , S}]:

When applying one of these stepwise methods in practice, one first computes d̂1, then d̂2, and so on.
It is important that for the computation of the various d̂j , j = 1, 2, . . . , only a unique set of bootstrap
data sets VÅ,1, . . . , VÅ,B be used, i.e. the bootstrap data sets are generated ‘once and for all’ at the outset
rather than anew in each step. Only in this way is the monotonicity condition d̂j+1 � d̂j guaranteed. (This
condition holds if P was known and so the ideal constants could be computed; so the condition should
also hold for the feasible constants computed from the bootstrap.) Of course, this way also speeds up the
computations.

Appendix C: Modified Goldstein and Healy plot

We briefly describe how to modify the graphical method of Goldstein and Healy (1995), to incorporate
the covariances between estimates. In doing so, we adopt their notation (page 176). Let φij denote the
covariance between mi and mj . Then var.mi −mj/ is generalized to

var.mi −mj/=σ2
i +σ2

j −2φij =σ2
ij :

Equation (2) of Goldstein and Healy (1995) and the subsequent procedure remain unchanged, with the
understanding that the generalized definition for σij is used.

Of course, for our applications, mi is replaced by ûi, mj is replaced by ûj , σi is replaced by σ̂.ûi), σj is
replaced by σ̂.ûj) and φij is replaced by ĉov.ûi, ûj).
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