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Stock Returns and Dividend Yields Revisited: 
A New Way to Look at an Old Problem 

Michael WOLF 
Departamento de Estadistica y Econometria, Universidad Carlos Ill de Madrid, 28903 Getafe, Spain 
(mwolf@est-econ. uc3m. es) 

The problem of whether stock returns can be predicted from dividend yields is discussed. I apply 
a new statistical method for finding reliable confidence intervals for regression parameters in the 
context of dependent and possibly heteroscedastic data, called subsampling. The method works 
under very weak conditions and avoids the pitfalls of having to choose a structural model to fit to 
observed data. Appropriate simulation studies suggest that it has better small-sample properties than 
the generalized method of moments, which is also model free and works under weak conditions. 
Applying the subsampling method to three datasets, I do not find convincing evidence for the 
predictability of stock returns. 

KEY WORDS: Constant expected returns; Dividend yield regressions; Subsampling. 

There has been considerable debate in the recent finance some additional insight dealing with a reorganization of 
literature over the predictability of stock returns. Several long-horizon return regressions and a joint test for multiple 
studies appear to provide empirical support for the use horizons. The article ends with some concluding remarks 
of the current dividend-price ratio, or dividend yield, as in Section 7. 
a measure of expected stock returns. See, for example, 
Rozeff (1984), Campbell and Shiller (1988a), Fama and 1. BACKGROUND AND DEFINITIONS 

French (1988), Hodrick (1992), and Nelson and Kim (1993). I shall now describe the stock-return problem in a formal 
The problem with such studies is that stock-return regres- way and look at some of the previous studies in more detail. 
sions face several kinds of statistical problems, among them Most of the empirical studies use monthly data. Define the 
strong dependency structures and biases in the estimation of one-period real total return as 
regression coefficients. These problems tend to make find- 
ings against the no-predictability hypothesis appear more 
significant than they really are. where Pt is the end-of-month real stock price and dt is the 

Having recognized this, Goetzmann and Jorion (1993) ar- real dividends paid during month t. The total return can be 
gued that previous findings might be spurious and largely decomposed into capital and income return: 
due to the poor small-sample performance of commonly 
used inference methods. They employed a bootstrap ap- 
proach and concluded that there is no strong evidence in- In computing the dividend yield, I follow the approach of 
dicating that dividend yields can be used to forecast stock Hodrick (1992). Because dividend payments are highly sea-
returns. Note, however, that their special approach is not sonal, a monthly annualized dividend series Dt is computed 
shown to be backed up by theoretical properties. Moreover, from compounding 12 monthly dividends at the one-month 
it requires a lot of custom tailoring to the specific situation treasury-bill rate rt: 
at hand. For other scenarios, a different tailoring would be -
needed. 

I intend to help in resolving some of the disagreement by 
applying a new technique, called subsampling. It has been 
shown to give correct results under very weak conditions, Then, annual dividend yield is defined as Yt = Dt/Pt. The 
including dependency and heteroscedasticity. Moreover, it historic random-walk model specifies that the returns Rt 
makes use of the observed data in a very intuitive and sim- are iid (independent and identically distributed) according 
ple way and does not require any modifications to be ap- to some distribution. The distribution is often assumed to 
plicable in different scenarios. The article is organized as be lognormal, implying that log returns are normal. One 
follows. In Section 1, I give a brief description of the stock- implication of this particular model, but also of other mod- 
returns regression problem, as well as a summary of previ- els implying constant expected returns, is that future returns 
ously used approaches and corresponding findings. Section are unpredictable. Especially, a linear regression model like 
2 introduces the proposed subsampling method. Section 3 
contains some practical details concerning the actual im- 
plementation. I use a simulation study to evaluate small- 
sample properties concerning stock-return regressions in 
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would have a true ,Bk coefficient of 0. Here, ln(Rt+k,t) = 
ln(Rt+l)+ . . . + ln(Rt+k) is the continuously compounded 
k-period return. All of the aforementioned studies are con- 
cerned with testing the null hypothesis Ho: ,Bk = 0. Typi-
cally, several return horizons k are considered because for 
some theoretical reasons (e.g., present-value model), pre- 
dictability might be suspected to increase with the return 
horizon. Most studies are able to reject the null hypothesis 
at conventional significant levels for all horizons consid- 
ered, suggesting that future returns can be partially fore- 
casted using present dividend yields. The empirical evi- 
dence typically increases with the return horizon. 

It is clear that under the null hypothesis the stochastic be- 
havior of the error variables ~ ~ + k , kin (3) is completely de- 
termined by the stochastic behavior of the Rt  process. Even 
under the random-walk model-which is stronger than the 
null hypothesis of ,Bk = ~ ~ + k , k0-the are uncorrelated only 
for k = 1. For k > 1, the errors will always exhibit se-
rial correlation due to the resulting overlap. For example, 
under the random-walk model they follow an MA(k - 1) 
process. In case the log returns are correlated, or under the 
alternative hypothesis, the ct+k,k can be arbitrarily serially 
correlated for all values of k. The estimation of PI, can be 
easily done by ordinary least squares (OLS), but testing the 
null hypothesis is nontrivial for several reasons. 

First, in the case of correlated residuals, as in the case of 
long-horizon regressions, the usual OLS standard errors are 
not valid. Second, the independent variable in the regression 
(3) is predetermined but not exogenous. That is to say that 
Dt/Pt  is uncorrelated with the current error term ~ ~ + k , kbut 
generally not with past error terms ~ ~ + k - j , k ,j > 1. This 
is because & t + k - j , k  = ln(Rt+k-j,t) - a k  - Pk(Dt-j/Pt-,) 
and the dividend yield series Dt/Pt  is highly persistent at 
monthly intervals. It is well known that regressions with 
predetermined independent variables can lead to biased, al- 
though consistent, estimates; a standard reference is Stam- 
baugh (1986). In the case of stock-return horizons, the OLS 
estimator pk is typically upward biased. Third, there is ev- 
idence that the finite-sampling distribution of ,& is skewed 
to the right; see, for example, Goetzmann and Jorion (1993). 

In the remainder of the article, I shall discuss various 
inference methods for ,Bk according to two criteria, asymp- 
totic consistency and small-sample properties. 

1.1 The GMM Approach 

A very common approach for making inference on 
in the context of dependent and possibly heteroscedastic 
observations is to correct the standard errors of regres- 
sion coefficient estimates for serial correlation according 
to the generalized method of moments (GMM) of Hansen 
and Hodrick (1980) and Hansen (1982). Most of the lit- 
erature that follows this idea bases the correction on the 
additional hypothesis that log returns are uncorrelated, in 
which case the residuals of a k-horizon regression follow a 
simple MA(k - 1)process. The GMM fares well in terms 
of asymptotic consistency. It has been shown to converge 
to the right answer under weak and very general conditions 
(see the preceding references). 

Small-sample properties, on the other hand, might pose 
a problem. Because GMM uses asymptotic normality, cen- 
tered at the true pk, it accounts neither for the finite-sample 
bias of pr, nor for its skewness to the right. In addition, 
there is evidence that in the context of serial correlation 
the GMM corrections of the standard errors are often in- 
sufficient in finite samples. For example, see Richardson 
and Stock (1989), Ferson and Foerster (1994), and Politis, 
Romano, and Wolf (1997). I therefore expect the GMM ap- 
proximation to the true sampling distribution of ,& to be 
centered at too small a value and to have a right tail that is 
too short. The consequence is that observed (positive) val- 
ues of bk will be judged as overly significant, and hence 
tests for ,!?k will be biased toward false rejection of Ho. 

Two examples of studies employing the GMM were given 
by Fama and French (1988) and chapter 7 of Campbell, Lo, 
and MacKinlay (1997). Both studies reject the null hypoth- 
esis Pk = 0 at conventional significance levels, at least for 
return horizons of one year and beyond. 

1.2 The VAR Approach 

An alternative approach is to estimate the finite-sampling 
distribution of ,& under the null hypothesis and to use this 
estimated distribution to attach a P value to the observed 
value of fik. To this end, some data-generating mechanism 
that imposes the null has to be specified. 

Campbell and Shiller (1988b), Hodrick (1992), Nelson 
and Kim (1993), and Goetzmann and Jorion (1995), among 
others, considered a first-order vector autoregression (VAR) 
in at least two variables, log return and dividend yield. 
Sometimes, additional variables are included. For example, 
Campbell and Shiller (1988b) included a term correspond- 
ing to earnings price ratio. Hodrick (1992) included the 
one-month treasury-bill return relative to its previous 12- 
month moving average, which is denoted rbt. To describe 
his model, say, let 

Zt = [ln(Rt)-E(ln(Rt); DtlPt)  -E(Dt/Pt) ;  rbt -E(rbt)ll. 

Then a first-order VAR, or VAR(l), is given by 

where A is a 3 x 3 matrix and ut is a three-dimensional 
white-noise innovation sequence. 

Hodrick (1992) fitted this model to the observed data and 
then set the first row of the estimated VAR(1) matrix equal 
to 0 and the constant term corresponding to log returns 
equal to the unconditional mean implied by the original 
VAR. Of course, specifying the VAR parameters is not suf- 
ficient because an innovation sequence ut has to be fed to 
the VAR model. Because there is strong empirical evidence 
for return data to exhibit (conditional) heteroscedasticity, 
Hodrick fitted a generalized autoregressive conditionally 
heteroscedastic (GARCH) model to the fitted innovations. 
He then generated artificial innovation sequences according 
to the estimated GARCH process, in which the innovations 
have a conditional normal distribution. Using this approach, 
Hodrick also found evidence of predictability in stock re- 
turns, both for short and long horizons. 
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Nelson and Kim (1993) employed a similar method, sim- 
ulating from a VAR model under the null hypothesis. They 
randomized fitted innovations for the artificial innovation 
sequences, however, to better match the dispersion of true 
marginal distribution of the innovations. The disadvantage 
of this method is that it destroys any potential dependence 
in the innovation sequence. The study reports that the sim- 
ulated distributions of the regular t statistics are upward 
biased and that these biases should be taken into account 
when making inference. Even after a bias correction, how- 
ever, the authors found some evidence for predictability, 
especially when looking at postwar data. 

Unlike the GMM, the VAR ap~roach tries to capture the 
finite-sampling distribution of Pk by generating artificial 
data having the sample size as the observed data. It suc- 
ceeds in correcting for both upward biases and skewness 
to some extent, as demonstrated by Nelson and Kim (1993) 
and Goetzmann and Jorion (1993). For many financial data, 
however, using GARCH innovations with a conditional nor- 
mal distribution tends to underestimate the tails of the true 
sampling distribution; see also Remark 4.1. Underestimat- 
ing the tails will result in overstating the significance of ob- 
served ,!?k values again. This might explain why the findings 
of Nelson and Kim (1993), who randomized fitted innova- 
tions, are not as significant as those of Hodrick (1992). On 
the other hand, the small-sample effect of destroying the 
correlation in the second moments of the innovations is not 
clear. 

The obvious shortcoming of the VAR approach is the use 
of a structural model. Asymptotic consistency will only be 
assured if VAR(1) is the true model. This is doubtful. Of 
course, how big the asymptotic mistake is depends on how 
far the true mechanism is away from VAR(1). The problem 
is magnified if a parametric model for the innovations, such 
as GARCH(1, I), is used. In addition, it is noteworthy that 
the VAR model is estimated from monthly, nonoverlapping 
data. Small mistakes for k = 1 will therefore be magni- 
fied for long horizons, such as k = 48, via adding up k 
one-month returns to construct a k-month return. Another 
shortcoming of the VAR approach, as pointed out by Goetz- 
mann and Jorion (1993), for example, is that it only indi- 
rectly models the serial dependenck from the lagged price 
effect in dividend yield regressions: The variable Pt appears 
both on the right side and on the left side of Equation (3). 
This motivated Goetzmann and Jorion (1993) to develop 
a bootstrap approach, designed to fix this shortcoming, as 
will be discussed later. 

Note that it is very awkward to judge the small-sample 
properties of the VAR method via simulation studies. Hod- 
rick (1992) presented a simulation study that paints a very 
favorable picture. The problem is that he used VAR(1) with 
GARCH(1, 1) innovations as the data-generating mecha- 
nism in the study; that is, he pretended to know what the 
true mechanism is. Such a study is bound to be overly op- 
timistic. 

1.3 A Bootstrap Approach 

As an alternative to the VAR method, Goetzmann and 
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Jorion (1993) used a bootstrap approach to generate arti- 
ficial data sequences under the null hypothesis. The moti- 
vation is that a model-free method such as the bootstrap 
should avoid any mistakes due to a potentially misspeci- 
fied structural model. Their particular bootstrap works as 
follows: 

1. Form the empirical distribution of monthly total stock 
returns Rt and their associated income returns R:, as de- 
fined in (2), from the observed data. 

2. Generate a pseudo return sequence R,' iid according 
to the empirical distribution of the observed total returns 
R l . . .  R,. 

3. Subtract the contemporaneous income returns R,'>*to 
create a pseudo capital-return series R:'*: R:'* = R,' -
R,'>*.Compound these to create a pseudo price series P;. 

4. Create a pseudo dividend yield sequence D,/P;, in 
which the Dt are the actual annual dividend flows. 

It is obvious that some custom tailoring is employed here in 
the attempt to capture the relationship between price levels 
and dividends. The key problem with this approach is seen 
in the fact that total returns are resampled at random, imply- 
ing that returns are iid according to some unknown distribu- 
tion, while dividend flows remain fixed, implying that divi- 
dend payments are completely nonstochastic. By implicitly 
imposing these two assumptions this bootstrap is not re- 
ally model free anymore. Although the first assumption is 
slightly troublesome-the null hypothesis of a random walk 
is stronger than the null hypothesis of no predictability- 
the second one seems unrealistic. For example, in the boot- 
strap world, dividend payments are completely independent 
of prices. For this reason, the asymptotic consistency of 
this bootstrap approach is doubtful. Goetzmann and Jorion 
(1993) did not discuss the asymptotic properties of their 
method. 

Note that Goetzmann and Jorion came to basically the 
opposite conclusion of all previous studies. They did not 
find strong statistical evidence in favor of predictability of 
stock returns. P values of the observed b k  values are typi- 
cally slightly above 1096, even for long-term horizons. 

2. THE SUBSAMPLING APPROACH 

Politis and Romano (1994) introduced the subsampling 
approach as a new, general-inference method. The idea is 
to recompute an estimator on all subseries or blocks of the 
observed sequence, where the block size is smaller than the 
original sample size. The motivation is as follows. Each 
block, as a part of the original series, was generated by 
the true underlying probability mechanism. It then seems 
reasonable to hope that one can gain information about 
the sampling distribution of a statistic-such as the least 
squares estimator ,&--by evaluating it on all subseries, or 
"subsamples." Note that this approach is completely model 
free but computer intensive. An attractive feature of the 
subsampling method is that it has been shown to be asymp- 
totically consistent under weaker assumptions than boot- 
strap methods. 
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I shall proceed to give a brief description of the subsam-
pling method applied to simple (or straight-line) linear re-
gression here to make this article self-contained. For a gen-
eral theory of subsampling and many other applications, the 
reader is referred to Politis and Romano (1994) and Politis 
et al. (1997). The latter will be abbreviated by PRW (1997) 
in the remainder of this article. 

Consider the simple linear model y = X ( a ,P)'+E,where 
y and E are n x 1 vectors, ( a ;,!?)Iis a 2 x 1vector, and X 
is an n x 2 matrix, with the first column being equal to a 
vector of ones and the second column being equai to a vec-
tor x = ( X I ,  . . . ,x,)'. In my application, y corresponds to 
log returns and x corresponds to dividend yields. The goal 
is to draw inference on p. To be able to apply the subsam-
pling method, I need to define subvectors and submatrices: 
Yb,a -- (Ya,.. . ;~a+b-l) ' ,Eb,a ( & a ; .  . . ,€a+b-1)' and 

Here, b denotes the block size and a the starting index of the 
block. The estimator of @ based on the entire sample is the 
OLS estimator, denoted by p. The idea of the subsampling 
method is to approximate the unknown sampling distribu-
tion of an estimator by recomputing it on subsamples of 
size b < n of the data and using the empirical distribution 
of those subsample estimates, after an appropriate normal-
ization. The estimator of @ based on Xb,aand then is 
given by the OLS estimator f ib , ,  -- (X i , aXb ,a ) - lX i , ayb ,a .  
The subsampling approximation of 

is defined by 

which is simply the empirical distribution of the normal-
ized subsample statistics. Note the use of the normalizing 
constants n112 and b112 in Equations (5) and (6), respec-
tively. These are necessary because the subsample statistics 
are computed on blocks of size b < n and therefore exhibit 
a greater variation than the estimator based on the entire 
sample. In general, the normalizing constants are chosen 
to ensure a proper limiting distribution of the normalized 
estimators. In regular cases, this is just the square root of 
the respective sample size (in irregular cases, the normaliz-
ing constant could be another power of the sample size, for 
example). 

Using the approximation (6) to the unknown sampling 
distribution (5) allows me to construct one-sided confi-
dence intervals for @ in the obvious way. For example, 
a one-sided lower (1 - a )  interval is given by ILoW= 

[b- n-l/'c,(l - a ) ,oo),where c,(l - a )  denotes a 1 - a 
quantile of the subsampling distribution L,  defined in (6). 
Two-sided confidence intervals can be constructed as the 
intersection of two one-sided intervals. Such intervals are 

called equal-tailed because they have approximately equal 
probability in each tail. As an alternative approach, two-
sided symmetric confidence intervals can be constructed. 
Their name stems from the fact that they extend equally 
far to the left as to the right of the estimate b,, just as nor-
mal intervals do. The common way to construct symmetric 
confidence intervals is to estimate the two-sided cumulative 
distribution function 

The corresponding subsampling approximation is defined 
as 

A two-sided symmetric (1  - a )  confidence interval is then 
given by I s y ~= [ f i - n - 1 / 2 ~ n , l . l ( 1-a) ,$+n-1/2c , , l . l ( l  -
a ) ] ,where c,,i.l(l- a )  denotes a 1 - a quantile of the sub-
sampling distribution L,,l., defined in (8).Why is it useful to 
distinguish between equal-tailed and symmetric intervals? 
It is known that symmetric intervals often enjoy enhanced 
coverage properties and, even in asymmetric circumstances, 
can be shorter than equal-tailed intervals (e.g., Hall 1988). 
I shall use symmetric subsampling intervals for the remain-
der of this article. 

It can be shown that, under weak conditions, the sub-
sampling method will yield confidence intervals for /? with 
asymptotically correct coverage probability. The following 
is a set of sufficient conditions, allowing for dependence 
and considerable local heteroscedasticity. Assume b + m 
and bln -+0 as n + CG. In addition assume that, for some 
6 > 0, 

E(ytet)  = 0 for all t ,  
~ l ~ t / ~ + ~5 A1 'for all t ,  
E I E , I ~ + *  < A2 for all t ,  
E J ~ ~ E ~ ~ ~ + ~<_ A3 for all t ,  

a+b-1C O V ( ~ - ' I 2  CtZl (1:yt)'&,) + V > 0 as b -+ m uni-
formly in a, 

E(X;,,Xb,,/b) + M > 0 as b + m uniformly in a, 
and 

In the last line, the a ( k )  are the strong mixing coefficients 
corresponding to the process {(y , ,E,) ') .  The Ai are finite 
constants. For a formal proof in the more general setup of 
multivariate OLS regression, see PRW (1997). 

Remark 2.1. An important advantage of the subsampling 
method is that it is enough to know about the existence of a 
limiting distribution. It does not have to be known exactly 
or estimated in practice. Numerous examples exist in which 
the limiting distribution depends in a complicated way on 
the underlying data-generating mechanism, making infer-
ence very difficult or even impossible if explicit estimation 
of this distribution is necessary. One example is the area-of-
variance ratio tests, in which the estimation of the limiting 
variance of the test statistic is usually done under simpli-
fying assumptions (e.g., Lo and MacKinlay 1988). Another 
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example is given in Subsection 6.2, in which the goal is to 
make joint inference for several return horizons. 

Remark 2.2. Another feature of the subsampling method 
is that it can be used as a simple and model-free tool to 
describe the sampling distribution of an estimator. In my 
application, the sampling distribution (5) is approximated 
by the subsampling distribution (6). Therefore, the distri- 
bution of B - ,8 is approximated by the empirical distribu- 
tion of the scaled subsample values (b /n) ' / ' (bb , ,  - B ) ,a = 
1 , .  . . .n -b+ 1. Plotting these values as a histogram, I get a 
visual picture of the approximating distribution. In partic- 
ular, the histogram allows one to judge properties such as 
bias, skewness, departure from normality, and so on. Previ- 
ous studies have reported that the sampling distribution of 
f i k  is upward biased and skewed to the right. These stud- 
ies, however, rely on some parametric model such as the 
VAR(1) model (e.g., Hodrick 1992; Nelson and Kim 1993) 
or on some custom-tailored bootstrap (Goetzmann and Jo- 
rion 1993). Because all subsample values come from the 
true probability mechanism, the corresponding histograms 
provide a truly model-free alternative. Some results are 
shown in Section 5. Note that subsample histograms could 
be smoothed by any of the conventional techniques to get 
a smoother estimate of the sampling distribution. The use 
of subsampling for the description of a sampling distribu- 
tion, although not its use for the construction of confidence 
intervals, was also recognized by Shermann and Carlstein 
(1996). 

Remark 2.3. A frequent concern in stock-return regres- 
sions is the high persistence of dividend yield, at least when 
sampled at monthly intervals. From a statistical viewpoint 
and the given sample sizes, a unit-root process often cannot 
be discarded. It has been noted in the literature that standard 
asymptotical methods based on mean-reverting regressors, 
such as GMM, can give poor small-sample approximations 
when a regressor is nearly integrated; for example, see Elliot 
and Stock (1994) and Cavanagh, Elliot, and Stock (1995). 

An alternative approach, designed to yield improved 
small-sample performance, makes use of local-to-unity 
asymptotics; see, for example, again the two preceding ref- 
erences. Roughly speaking, this assumes that the largest 
root of the regressor process is in a l ln  neighborhood of 1, 
allowing for a nearly integrated process. Viceira (1997) de- 
rived the asymptotic distribution for b1under local-to-unity 
assumptions. Applying his method to four datasets, he did 
not find evidence for predictability at the one-month hori- 
zon. Note that his particular method could not be applied 
to long-horizon regression because the theory requires the 
regression residuals to be a martingale difference sequence. 
Even if this is true for k = 1, it cannot be true for bigger 
k due to moving-average-like behavior of the residuals. It 
seems possible, however, to extend the theory to serially 
correlated error terms. 

The subsampling theory presented in this article also al- 
lows for nearly integrated regressors-in the sense of hav- 
ing a f ied  root near 1-and is intended to be an improve- 
ment over standard methods in terms of small-sample per- 
formance. It would not work, on the other hand, for exactly 
integrated regressors. I do not feel that this is a very seri- 
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ous restriction because economic theory speaks against this 
case. Moreover, if dividend yield were an integrated pro- 
cess, the same would have to be true for log returns in case 
Pk differs from 0, by cointegration theory. Because there 
is strong evidence against a unit root in log returns, this 
implies that either P k  equals 0 or that dividend yield is 
not exactly integrated. Because this article will not make 
a case for predictability, I feel justified in focusing on the 
latter scenario. 

3. CALIBRATION 

A practical problem in applying the subsampling method 
lies in choosing the block size b. To ensure the asymptotic 
properties of the method it is only necessary that the block 
size b tend to infinity with the sample size n,but at a smaller 
rate: b -+ cc and b l n  -+ 0, as n -+ cc.Of course, this 
rule gives us very little practical guidance. To deal with the 
problem of choosing the block size b for the subsampling 
method, I suggest a calibration technique that in a sense 
avoids having to find the "best" block size. 

One can think of the accuracy of an approximate or 
asymptotic confidence procedure-such as normal, boot- 
strap, or subsampling methods-in terms of its calibration 
(Loh 1987). Suppose I use the procedure to construct a con- 
fidence interval with nominal confidence level 1 - A. I can 
denote the actual confidence level by 1 - a. A is known to 
us, cr typically is not. An asymptotic method only ensures 
that 1-X will tend to 1- cr as the sample size tends to infin- 
ity. For a finite sample size, the two levels might not be the 
same. If I knew the calibration function h :  1 -X + 1 -a ,  I 
could construct a confidence region with exactly the de- 
sired coverage by selecting the value of X that satisfies 
h ( l  - A )  = 1 - a. For example, if h( .98)  = .95, then a 
confidence interval with nominal level 98% would be an 
actual 95% confidence interval. 

Fortunately, the calibration function h ( . )  can be esti- 
mated using bootstrap methods. This is achieved by gener- 
ating artificial sequences from a bootstrap distribution P,", 
then constructing a confidence interval from each gener- 
ated pseudo sequence and observing how frequently the 
parameter ,8 is contained in those intervals. In the con- 
text of dependent data, I need to employ a bootstrap suit- 
able for time series. The moving-blocks bootstrap (Kiinsch 
1989) lends itself to the task. It generates pseudo sequences 
X; ,  . . . ,XA by resampling entire blocks from the original 
data and joining these together rather than using single data 
points. Formally, let Yb,,be the block of size b of the data 
{ X , ,  . . . ,Xa+b- l ) .  For simplicity, I assume that n = Lb, for 
some integer 1. Moreover, let P,* denote the empirical distri- 
bution of the blocks Yb,', Yb,', . . . ,Yb,n-b+l.Then a pseudo 
sequence is constructed by choosing Y<,, . . . , Y;, iid from 
P," and concatenating them. In case n is not a multiple of 
b, I use the same algorithm with the smallest 1 for which 
n < lb and truncate the so-obtained sequence at n. 

In case I want to apply the calibration scheme to the 
subsampling method, I can do it conditional on a reason- 
able block size. This means that I fix a sensible block size 
and calibrate the subsampling intervals using that particu- 



23 Wolf: Stock Returns and Dividend Yields Revisited 

lar block size. This eliminates the problem of finding the 
"best" block size. In some scenarios, I will have a pretty 
good idea what a reasonable block size will be, either from 
prior experience or related simulation studies. Otherwise, 
see Remark 3.1. To describe the calibration technique more 
formally, I can use the following algorithm. 

Algorithm 3.1 (Calibration by Adjusting the Confidence 
Level). 

1. Generate K pseudo sequences X T ~ ,  ,. . . ,X;tk, accord- 
ing to a moving-blocks bootstrap distribution P,'. 

a. For each sequence, k = 1 , .  . . ,K,  compute a 1 -
X level confidence interval CIF-,, for a grid of 
values of X in the neighborhood of a .  

2. For each A, compute k ( l  - A) = #{bE CI!-,)/K. 
3. Interpolate h(.)between the grid values. 
4. Find the value of X satisfying k ( l  - A)  = 1 - a .  
5. Construct a confidence interval with nominal level 1 

- A. 

Remark 3.1. 

1. The moving-blocks bootstrap in Step 1 of the preced- 
ing algorithm requires its own block size bMB.  The choice 
of this block size has a second-order effect and is there- 
fore not very important. If an automatic selection method is 
preferred, however, a "nested bootstrap" can be used. That 
means that I would use the moving-blocks bootstrap in both 
Steps 1 and l a  of the preceding algorithm with the same 
block size b M B ,limiting the grid of X values to X = a .  Re- 

2. If I use the calibration scheme to calibrate the subsam- 
pling method, I need to start out with a reasonable block 
size b. In situations in which I do not know what a rea- 
sonable block size is, I can use the following idea. In the 
same way as the actual confidence level can be regarded 
as function of the nominal confidence level (conditional on 
a fixed block size), it can be considered as a function of 
the block size (conditional on a fixed nominal level). Fix- 
ing the nominal level at the desired level-that is, choosing 
X = a-I can therefore estimate the block calibration func- 
tion g: b + 1 -a, using an analogous calibration algorithm: 

Algorithm 3.2 (Calibration by Adjusting the Block Size). 

1. Generate K pseudo sequences X;" . .. . .X A ~ ,accord-
ing to a moving-blocks bootstrap distribution P,*. 

a. For each sequence, k = 1 , . . . ,K ,  compute a 1 -a-
level confidence interval CI!, for a selection of 
block sizes b. 

2. For each b, compute g ( b )  = #{b E CI;}/K. A rea- 
sonable block size will then satisfy g ( b )  - l - a .  

3. Two-sided equal-tailed intervals should always be 
computed as the intersection of two separately calibrated 
one-sided intervals. Particularly if the sampling distribu- 

8, tion of is asymmetric, the amount of calibration needed 
in the lower tail can be different from the one needed in 
the upper tail. Of course, for symmetric intervals only one 
calibration is necessary. 

As an illustration of how I would use the calibration 
peating this algorithm for several ~ M Bvalues, I then would 
select the value bMB that yields estimated coverage closest 
to 1 - a .  

Estimated calibration function h(.) 

Figure 1. An Artificial Example: Estimates of h(l -A) for a grid of 
X Values {.Of, .02, . . . , .I). For a confidence interval with desired con- 
fidence level .95,one should construct an interval with nominal level 
,978. 

method, see Figure 1 for an artificial example. Suppose I 
want to construct a 95% confidence interval, which corre- 
sponds to a = .05. I estimate the calibration function h( . )at 
the discrete points .90, .91,. . . , .99 and linearly interpolate 
in between. My estimate tells me that I should construct a 
confidence region using a nominal level around .978. 

To be fair, calibration techniques can potentially be used 
to enhance any asymptotic method. An obvious idea in the 
context of stock-return regressions would be to use a similar 
calibration method as the preceding algorithm for GMM 
confidence intervals. It is one of the purposes of this article, 
however, to compare my new results with previous results in 
the literature. Therefore, I use the use the "simple" GMM, 
as employed by Fama and French (1988) and Campbell et 
al. (1997) in my simulation studies. 

4. TWO SMALL-SAMPLE COMPARISONS 

As noted before, I use two criteria to judge inference 
methods for Pk,asymptotic consistency and small-sample 
properties. I have already mentioned that both GMM and 
subsampling give asymptotically correct results under rea- 
sonable assumptions, whereas VAR and the Goetzmann and 
Jorion (1993) bootstrap only work under restrictive condi- 
tions. In this section, I compare the small-sample properties 
of the GMM and subsampling via simulation studies. 

For my simulations, I need a data-generating mechanism 
that jointly models log returns and dividend yields. Al- 
though the true mechanism that yielded the observed data 
will always be unknown, I aim for a reasonable approxima- 
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tion that includes at least two important features-on the 
one hand, the bias of bk due to the predetermined predic- 
tor, and on the other hand, the increasing autocorrelation 
of the residuals with the return horizon k. Both features 
are captured by the VAR model and the Goetzmann and 
Jorion (1993) bootstrap. Note that it is not a contradiction 
to employ models for a simulation study, which I criticized 
earlier when used for making inference. By definition, I 
need some model to generate data in a simulation study. It 
does not have to be the true model; it only has to capture its 
important features to be useful for comparing model-free 
inference methods, such as GMM and subsampling. On the 
other hand, if used for making inference, I need to be sure 
that I approximate the true model with a high degree of ac- 
curacy. For example, getting the marginal distributions right 
is crucial for making inference, although it is of relatively 
minor importance for a simulation study. 

4.1 Simulating VAR Data 

I use a first-order VAR model as my data-generating 
mechanism, jointly modeling log return and dividend yield 
as the vector Xt E ( ln(Rt) ,Dt/Pt) .Let Zt = [ln(Rt)-
E(ln(Rt)) ,Dt/Pt - E(Dt/Pt)l l .Then, the VAR(1) is given 
by 

where A is a 2 x 2 matrix and ut is a white-noise innova- 
tion process. I fit this model to the observed data by least 
squares. The null hypothesis can be enforced by setting the 
first row of A equal to 0. 

Because I am concerned with a simulation study only, 
I do not have to worry about the overall mean and can 
set it equal to 0 without loss of generality. I look at three 
different datasets, the New York Stock Exchange (NYSE) 
equal-weighted and value-weighted indexes and the Stan- 
dard & Poor (S&P) 500 index, all starting in December 
1947. Both of the NYSE datasets consist of 480 basic ob- 
servations (12/1947 to 12/1986), and the S&P 500 dataset 
consists of 577 observations (12/1947 to 01/1995). The 

Table 1 .  Parameter Estimates for VAR Matrix 

Coefficients on 
regressors 

Dependent variable In(R;) D;/P; 

NYSE equal-weighted, 12/1947 to 12/1986 

NYSE value-weighted, 12/1947 to 12/1986 
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fitted VAR parameters for the datasets under consideration 
are presented in Table 1. 

To generate artificial X ;  sequences, I use GARCH(1, 1) 
vector innovation sequences u;. Let Ht = beE t ( ~ t + ~ u : + , )  
the conditional covariance matrix of the first-order VAR in 
(9) with typical element hij.t.The conditional variances and 
covariance follow ARMA(1, 1) processes: 

Equation (10) is known as the diagonal vech model pro- 
posed by Bollerslev, Engle, and Wooldridge (1988); of 
course, w12 = wzl and so on. It is not the most general 
multivariate GARCH(1, 1) model because it assumes that 
the conditional covariance of variables u1 and u2 depends 
on past realizations of the product u1u2only. Nonetheless, 
it is popular because it is a reasonable way to reduce the 
number of free parameters to a manageable size. In particu- 
lar, note that it is more general than the constant correlation 
model by Bollerslev (1990), which assumes that the condi- 
tional correlation is constant over time; this model was used 
by Hodrick (1992), for example. 

The nine parameters of my Model (10) are estimated 
by maximum likelihood, assuming conditional normality. 
The parameter estimates for my three different datasets 
are reported in Table 2. To judge the size of the w pa-
rameters, it should be mentioned that the models were fit- 
ted on the percentage scale; that is, a typical monthly re- 
turn was on the order of .5 to .8 rather than .005 to .008. 
Of course, the cu and p parameters do not depend on the 
choice of scale. Artificial innovation sequences u; as in- 
put to the VAR model (9) are generated by computing the 
Cholesky decomposition of the conditional covariance ma- 
trix, C,'Ct = Ht, and setting u h l  where E~= C ; E ~ + ~ ,  is 
a sequence of independent bivariate standard normal ran- 
dom variables. When actually generating those sequences, 
I discard the first 100 observations to avoid start-up effects. 
Long-horizon return data X,* can be created by feeding the 
artificial innovation sequences u; into the fitted VAR mod- 
els, after imposing the null hypothesis by setting the first 

Table 2. Parameter Estimates for GARCH Model 

Element W i i  0ii P i i  

NYSE equal-weighted, 12/1947 to 12/1986 

hrr t ,398 ,084 ,894 

NYSE value-weighted, 12/1947 to 12/1986 

NOTE: Th~s  table presents least squares estimates for the VAR matrix A of the following first- NOTE: This table presents parameter estimates for the GARCH(1, 1) model for the white-noise 
order VAR model: Z r+ l  = AZr + ur+ l .  Here, Zt is the joint vector of log return and dividend yield innovation sequence ut of the VAR. Let Hr = Er(ur+l u;,,) be the condit~onal covariance matrix 
having their respective means subtracted: that is, Zr = [In(Rt) - E(ln(Ri)), DtIPt - E(D~IP~)]'. of the VAR(1) in (9) wlth typical element h,,i. The conditional variances and covariance follow 
and ut is white noise. To simplify the notation wlthin the table, I denote the mean zero variables ARMA(1, I )  processes: h,,! = w, + '3,h,,,t-l + c~,,u,,ru,,~, i = 1, 2. All parameters are 
by In($) and DPIPP, respectively. estimated simultaneously via maximum likelihood, assumlng conditional normality. 



Wolf: Stock Returns and Dividend Yields Revisited 

row of the VAR matrix equal to 0. I also discard the first 
100 observations in this step. Finally, the artificial long- 
horizons returns are compounded according to the formula 
ln(R;+!,,) = ln(R,"+,) + . . . + ln(RT+k). When generating 
the artificial data, I obviously need to match the original 
sample sizes, which are bigger for the S&P 500 data. 

For every scenario, I generate 1,000 artificial sequences 
and compute a 95% calibrated subsampling interval for PI,  
for each sequence. For comparison, I also compute confi- 
dence intervals using the GMM employing the quadratic 
spectral (QS) kernel. This kernel was found to have some 
optimality properties by Andrews (1991). The bandwidth 
for the kernel was chosen according to the automatic selec- 
tion procedure of Andrews (1991). I report the percentage 
of intervals that contain the true parameter 0 in Table 3. 
Note that I carried out the same simulations using condi- 
tional innovations having a (scaled) t distribution with 4 df. 
The results were essentially the same and are therefore not 
reported. 

One can see that the GMM intervals undercover consis- 
tently. In other words, the GMM is biased toward falsely 
rejecting the null hypothesis. The undercoverage is already 
around 5% at the one-month horizon, and it increases in 
roughly linear fashion to about 30% to 35% at the 48-month 
horizon! The subsampling intervals perform much better, al- 
though they too undercover significantly at long horizons. 
The improvement of subsampling over GMM intervals is 
around 5% at the one-month horizon, and it increases to 
about 20% at the 48-month horizon. 

Remark 4.1. In Section 1, I commented on the danger 
of simulating from a VAR model using GARCH innovation 
sequences to compute a P value for an observed statistic 
such as &. Even in case the fitted VAR model is a good ap- 
proximation, if the tails of the artificial GARCH sequences 

Table 3. Estimated Coverage Probabilities Under VAR Model 

Horizon GMM Subsampling Target 

NYSE equal-weighted, 12/1947 to 12/1986 

.90 .95 


.83 .93 


.75 .91 


.69 .86 


.64 .81 


NYSE value-weighted, 12/1947 to 12/1986 

.90 .97 


.El .93 


.72 .90 


.66 .85 


.59 .80 


NOTE: This table presents estlmated coverage probab~lithes of nominal 95% confidence inter- 
vals. The data-generating process is a VAR(1) w~thGARCH(1. 1) innovatlons. The null hypothesis 
of no predictability is enforced by senlng the first row of the VAR matrix equal to 0. Two types of 
confidence Intervals are considered. GMM Intervals and calhbrated symmetric subsampling inter- 
vals. The GMM uses the QS kernel with the automatic bandwidth selection procedure of Andrews 
(1991). Estimated coverage probabilities are based on 1,000 simulations for each scenario. 
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are too light, then one overestimates the significance of ob- 
served statistics. It is therefore of interest to test whether the 
estimated innovations are consistent with the corresponding 
fitted GARCH distribution. My test statistic is the empiri- 
cal .95 quantile of the estimated innovations. To compute 
the P value, I generate 1,000 innovation sequences of the 
corresponding GARCH(1, 1) model and compute the em- 
pirical .95 quantile for each of them. I then calculate the 
percentage of GARCH quantiles greater than or equal to 
the test statistic and the percentage of GARCH quantiles 
less than or equal to the test statistic. The P value is two 
times the smaller of these two percentages. To provide some 
additional information, I also characterize the sampling dis- 
tribution of the GARCH quantiles by computing the mean, 
the median, the .O1 quantile, and the .99 quantile of the 
1,000 numbers. The results are presented in Table 4. Ex-
cept for the log return innovations of the model for the 
equal-weighted NYSE data, all empirical .95 quantiles of 
the fitted innovations are too big to be compatible with the 
corresponding GARCH distribution. Four of the two-sided 
P values are equal to 0; the other one is around .05. 

4.2 Simulating Bootstrap Data 

Although the VAR model captures some of the bias of 
Pli due to the predetermined predictor, it fails to directly 
model the lagged priced effect in dividend yield regressions: 
The variable Pt appears both on the right side and on the 
left side of Equation (3). The Goetzmann and Jorion (1993) 
bootstrap, on the other hand, explicitly models this effect. 
Therefore, I use it as a second data-generating mechanism 
for my simulation studies. By design, it imposes the null 
hypothesis. This approach requires more knowledge than 
just the two-dimensional series of log returns and dividend 
yields-namely, also the split of total returns in capital re- 
turns and income returns; see Subsection 1.3. This infor- 
mation I only have for the S&P 500 data, so I restrict the 
bootstrap simulations to this dataset. Given the reasonably 
high correlation between S&P 500 and NYSE data, this 
does not seem a very serious restriction. 

Table 4. VAR Innovation .95 Quantile: GARCH Model 

Versus Observed Quantile 


.O1 .99 P 
quantile Mean Median quantile Empirical value 

NYSE equal-weighted, 1211 947 to 12/1986 

Log return 4.909 6.751 6.628 10.1 56 5.554 ,179 
Dividend yield .I 76 ,211 ,211 ,252 ,339 0 

NYSE value-weighted, 12/1947 to 12/1986 

Log return 4.279 5.211 5.1 79 6.356 7.764 0 
Dividend yield .I70 ,209 ,208 ,255 ,355 0 

Log return 4.073 5.033 5.010 6.324 5.982 ,054 
Dividend yield ,155 ,193 ,191 ,247 ,333 0 

NOTE: This table compares the empirical .95 quantile of the estimated VAR innovations with 
the sampling dlstr~but~on of the empirical .95 quantile from the corresponding GARCH(1, 1) 
model [based on 1,000 simulated GARCH(1, 1) innovation sequences]. The GARCH(1, 1) model 
was obtained via maximum lhkelihood from the estlmated ~nnovations. The sampling distribution 
IS characterized by the .O1 quantile, the mean, the median, and the .99 quantlle The two- 
slded P value tests the null hypothesis that the GARCH(1, 1) model gave rlse to the esthrnated 
innovatlons. 
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The method is analogous to the previous one. I generate 
1,000 sequences for each return horizon, compute a sub- 
sampling and a GMM 95% confidence interval for each 
sequence, and check how frequently the true parameter 0 is 
contained in the intervals. The results are reported in Table 
5 and are very different from the ones of the VAR simula- 
tions. GMM intervals exhibit horrendous coverage, as high 
as .77 for k = 1and as low as .46 for k = 48. Subsampling 
intervals, on the contrary, have almost constant coverage 
between .97 and .98. These numbers are very surprising 
indeed and do not conform with my intuition that, as the 
return horizon increases, due to the increasing correlation 
of the residuals the performance of both GMM and sub- 
sampling should get worse. This behavior was noticed in 
the VAR simulations and also in some related simulations 
of PRW (1997). It may be that the unrealistic relationship 
of prices and dividend payments in the bootstrap world is 
the underlying cause. 

5. A NEW LOOK AT RETURN REGRESSIONS 

In this section, I apply the subsampling methodology to 
real-life stock-return regression data. There is strong con- 
sensus in the literature that the time series properties of 
stock data differ significantly in the prewar and postwar 
periods. In particular, predictability seems to be mostly a 
postwar phenomenon (e.g., Hodrick 1992; Nelson and Kim 
1993). I therefore only provide postwar results. Another 
reason to focus on subperiods is that recent work in finance 
suggests that conditioning on samples from surviving mar- 
kets renders the ex post observed process nonergodic. For 
example, Goetzmann and Jorion (1995) showed how this 
problem can bias stock-return regressions toward false re- 
jection of the null hypothesis. 

I use three different datasets that have been previously 
analyzed in the literature. Fama and French (1988) and 
Nelson and Kim (1993) reported regressions of log returns 
for value-weighted and equally weighted stock portfolios 
based on the Center for Research in Security Prices files for 
NYSE stocks. Goetzmann and Jorion (1993) used monthly 
data on the S&P 500 index. In accordance with the majority 
of the literature, I consider return horizons of 1, 12, 24, 36, 
and 48 months. Both of the NYSE postwar datasets con- 
sist of 480 basic observations (12/1947 to 12/1986), the 
S&P 500 dataset consists of 577 observations (12/1947 to 
01/1995). 

Table 5. Estimated Coverage Probabilities Under Bootstrap Model 

Horizon GMM Subsampling Target 

Our strategy is to construct 95% confidence intervals for 
the regression parameter Pk and to check whether 0 is con- 
tained in the intervals or not. I use two-sided symmetric 
confidence intervals (see end of Sec. 2) in conjunction with 
the calibration technique described in Section 3. For the 
reader interested in the details of the implementation, some 
remarks are in order. They refer to Algorithm 3.1. 

1. I used the moving-blocks bootstrap with block size 
bMB = 100 to generate the pseudo sequences in Step 1. 

2. To find reasonable block sizes for the subsampling 
method, I used Algorithm 3.2. The so-chosen block sizes 
were between b = 40 and b = 120, with the great majority 
of them between b = 60 and b = 100. 

3. A practical issue is the number K of bootstrap samples 
that I generate to estimate the calibration function h( . ) .I 
chose K = 1,000. 

The resulting confidence intervals are listed in Table 6. 
There is no evidence for predictability for horizons of 1, 12, 
and 24 months because 0 is contained in all corresponding 
confidence intervals. For the horizon of 36 and 48 months, 
the findings are inconclusive. The equal-weighted NYSE 
index intervals contain 0, but the other two do not. For 
comparison, I also compute GMM intervals, using the QS 
kernel; again see Table 6. Note that they are much shorter 
and that only three of them contain 0. Employing GMM 
would suggest a strong case for predictability. 

At this point, it is natural to ask two questions. First, 
the simulation study in Subsection 4.1 suggests some un- 
dercoverage of subsampling intervals at long horizons due 
to the very strong correlation of the residuals. How much 
does this evidence take away from the (weak) case for pre- 
dictability that could be made at the three- and four-year 
horizons? Second, I always look at five return horizons si- 
multaneously; namely, k = 1,12 ,24,36, and 48. If I am 

Table 6. 95% Confidence Intervals for Pk 

Horizon B k  GMM Subsampling 

NYSE equal-weighted, 12/1947 to 12/1986 

NYSE value-weighted, 12/1947 to 12/1986 

NOTE: This table presents estimated coverage probablltties of nomtnal 95% confidence inter- NOTE: This table presents 95% confidence intervals for the return regression coefficient B k ,  
vals. The data-generating process IS the Goetzmann and Jorion (1993) bootstrap, as described together wtth the estimated coefficient &. I use monthly data, and vartous return horizons k 

in Subsection 1.3. Estimated coverage probabilities are based on 1.000 stmulations for each are considered. The confidence intervals are GMM intervals using the OS kernel and calibrated 

scenarto. symmetric subsampling intervals. 
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more interested in the overall null hypothesis of no pre- 
dictability than in individual hypotheses concerning partic- 
ular horizons, it seems preferable to derive a test for the 
joint null hypothesis of P1 = p12 = P24 = P36 = Pd8 = 0. 
This avoids the usual pitfalls of multiple testing. I shall deal 
with both questions in Section 6. 

In Remark 2.2, I discussed how to use subsampling to 
describe the sampling distribution of bk-Pk.  Figure 2 dis- 
plays the corresponding histograms for the return horizons 
k = 1 and k = 24 and all three datasets. Note that the his- 
tograms are somewhat ragged because the approximations 
are based on n - b + 1 values, which is on the order of 500 
here. Two well-known features of the sampling distribution 
of bk;namely, an upward bias and skewness to the right are 
clearly visible. I also indicate the corresponding point esti- 
mates bkby vertical lines. Because the lines are well within 
the histograms for all six scenarios, Pk = 0 is a reasonable 
value. This is in accordance with the confidence intervals 
of Table 6. 

6. ADDITIONAL LOOKS AT RETURN REGRESSIONS 

6.1 A Reorganization of Long-Horizon Regressions 

Because the compound k-period return is simply the sum 
of k one-period returns, the numerator of the regression 
coefficient pk in Equation (3) is the same as 

Under the assumption of stationarity, the covariance (1 1) is 
identical to 

which is the numerator of Pi in the following, reorganized 
regression: 

ln(Rt+l)= 4 + P,*[(Dt/Pt) 

+ . . .+ (Dt-k+l/Pt-k+l)]+ ut+,. (13) 

The test Ho: P k  = 0 is therefore equivalent to the test Ho: 
= 0. This fact was recognized by Hodrick (1992), among 

others. The advantage of the latter test is that, under the 
null hypothesis, the stochastic behavior of the error terms 
ut+l in (12) is determined by the behavior of the one-period 
returns ln(Rt+l)only, regardless of the horizon k. Hence, 
the problem of increasing correlation in the error terms due 
to an increasing return horizon is eliminated. 

Hodrick (1992) carried out this alternative test, using crit- 
ical values obtained by simulating from a VAR model that 
imposes the null hypothesis. He still found evidence for pre- 
dictability at horizons of one year and beyond. The prob- 
lem is that the critical values might be too small because 
the conditionally normal GARCH innovations of the VAR 
model tend to underestimate the tails of the true sampling 
distribution. 

To provide an alternative viewpoint, I apply the subsam- 
pling method. The method of inference about P,* is analo- 
gous to the method of inference about Pk.  The results are 
reported in Table 7. Notice that all subsampling confidence 
intervals contain 0, and therefore not even at the four-year 
horizon could a case for predictability be made. On the 
other hand, all but two of the GMM intervals exclude 0. 

Remark 6.1. An alternative approach to dealing with 
long return horizons was developed by Richardson and 
Stock (1989). Instead of thinking of the return horizon k 
fixed while the sample size n tends to infinity, they derived 
asymptotic theory under the assumption of k/n tending to 
a positive constant less than 1. The idea is to get a bet- 
ter small-sample approximation when the return horizon is 
large compared to the sample size. Their theory only ap- 
plies to autocorrelations, however, not to regressions of log 
returns on another variable such as dividend yield. 

6.2 A Joint Test for Multiple Return Horizons 

I now turn to the problem of making joint inference 

NYSE-EW. k - 1 NYSE-VW. k - 1 SBP 500,k - 1 

NYSE-EW, k - 24 NYSE-VW, k = 24 SBP 500,k - 24 

Figure 2. Histograms of the Scaled Subsampling Values (b/n)"2(fik;b,a - bk), Approximating the Sampling Distribution of ,& - pk. The block 
sizes b were chosen by Algorithm 3.2. The corresponding point estimates bk are indicated by vertical lines. 
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Table 7. 95% Confidence Intervals for P; 

Horizon /% GMM Subsampling 

NYSE equal-weighted, 12/1947 to 12/1986 

,281 [- ,052, ,6141 [-1.109, 1.6711 
,035 1.006, ,0641 [-,195, ,2661 
,019 1.004, ,0351 [-,237, ,2761 
,011 [.001, ,0221 [-,125, ,1471 
,007 [-,002, ,0161 [-,065, ,0781 

NYSE value-weighted, 12/1947 to 12/1986 

,412 [.107, ,7181 [-,453, 1.2781 

,043 1.01 7, .069] [-.I 50, ,2351 

,022 [.008, ,0361 [-,104, ,1471 

,013 [.003,,0231 [-,134, ,1601 

,009 I.001, ,0171 [-,036, ,0541 


NOTE: This table presents 95% confidence intervals for the return regression coefficient 0; 
of the reorganized regression (13), which avoids addit~onal correlation In the residuals for long 
return horizons. The estimated coefficient 6; is also presented. I use monthly data, and various 
return horizons k are considered. The confidence intervals are GMM intervals using the QS 
kernel and calibrated symmetric subsampling intervals. 

for the collection of all Pk considered; that is, the vector 
0 ,= ( P I ,P l 2 ,  b 2 4 ,  b36 ,  P48) ' .  The null hypothesis of interest 
is that ,!3 = 0 = (0 ,0 ,O,  0,O)'. The joint estimation is eas- 
ily done by combining the individual estimates for each 
horizon into a vector. The joint inference is more com-
plicated, however. Under reasonable conditions, the vector 
f i  = ( P I ,P12,h4,p 3 6 ,  fi48)' will have a limiting normal dis- 
tribution, centered at p. Obviously, the limiting covariance 
matrix is not diagonal and therefore cannot be estimated 
by simply combining the individual variance estimates. To 
make matters worse, the explicit estimation of the 5 x 5 co-
variance matrix of b requires along the way the estimation 
of the 10 x 10 covariance matrix of (61,bl,. . . , 6 4 8 ,  f i48)' .  

This does not appear to be a promising endeavor with sam- 
ple sizes on the order of 500. Hodrick (1992) ran into this 
problem when he tried to estimate the limiting covariance 
matrix by GMM but found that "simultaneous estimation of 
the five equations . . . results in failure of the GMM matrix 
to be positive definite" (p. 374). Because, in this instance, 
the limiting covariance matrix cannot be estimated, Hodrick 
was unable to test the null hypothesis of P = 0. 

Fortunately, the subsampling methodology can handle 
multivariate parameters without much difficulty and avoids 
the problem of explicit estimation of the limiting distribu- 
tion; for a general theorem, see PRW (1997). Here, I shall 
briefly outline how to handle the case b. The unknown 
(multivariate) sampling distribution of n1I2(D- P )  is es- 
timated by the empirical distribution of the n - b + 1 sub-
sample statistics b112(fJb,,- ,@,a = 1 , . . . , n - b + 1. With 
the help of a norm 1 ) .  / I  on RP, a confidence region for P can 
be found quite easily. Suppose a (1-a) confidence region 
for p is desired. An asymptotically correct region is given 

by the collection of all vectors pt that satisfy 

Here, cn,b,li.l1(l- a )  denotes a ( 1- a) quantile of the uni- 
variate "normed" subsampling distribution Ln,b,ll.llhaving 
distribution function 

Although it would be cumbersome to explicitly exhibit such 
a confidence region, it is trivial to check whether a specific 
vector pt is contained in the region via examining condi- 
tion (14). 

The problem of choosing the block size b is analogous to 
the univariate case. I can use the same remedy, the calibra- 
tion technique described in Section 3. The modifications of 
the algorithm outlined there should be obvious. Note that to 
do Step 2 the explicit computation of the confidence region 
in Step l a  is not really needed. It is only necessary to check 
whether is contained in the region. 

When applying this method to three datasets under con- 
sideration, one has to be concerned with the magnitudes of 
the individual coefficients. Note that f ik  naturally will in- 
crease with the return horizon k because a k-horizon com- 
pounded return is predicted. It therefore seems sensible to 
standardize by dividing each estimated regression coeffi- 
cient by its respective return horizon. Thus, the following 
modified Euclidean norm is employed: 

The results are reported in Table 8. For all three datasets, 
a block size of b = 80 was used. Because the reader might 
wish to know some more details rather than simply whether 
the vector (0 ,0 ,0 ,0 ,0) '  is contained in the corresponding 
confidence region, I provide the following information. The 
observed norm gives the numerical value of 1 l ( f i 1  - 0,  

Table 8. Joint Test for p, = P,, = . . . = P4, = 0 

Observed norm Observed P value Cut-off point for .05 test 

NYSE equal-weighted, 12/1947 to 12/1986 

,727 ,5518 ,027 


NYSE value-weighted, 12/1947 to 12/1986 

,927 ,385 ,060 

S&P 500, 12/1947 to 01/1995 

,850 ,268 ,081 

NOTE: This table presents results for the ]olnt test of all individual regresslon coefficients being 
equal to O.The observed norm gives the numerical value of l/(jl- 0,jl2- 0,. , . , Pd8 

- O)llmad, with 1 1  . ilmod as defined in (16). The observed P value reports the percentage 

of subsample statistics bl"(l b b , a  - b l l m o d  exceeding the scaled observed norm n 1 " I I i  -
0 l l r n o d  Finally, the cut-off point says how small the observed P value has to be to be deemed 
significant at the 5% level by the calibration technique of Section 3. In other words, if the observed 
P value is bigger than the cut-off point, then the vector (0, 0. 0, 0, 0)' is contained in the 95% 
confidence region. 
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PI2- 0 , .  . . ,fi48-O)'llmod, with 1 1  . l l m o d  as defined in (16). 
The observed P value reports the percentage of subsample 
statistics b1/2/jfib,, - fillmodexceeding the scaled observed 
norm n1/21/fi - Ol/mod. Finally, the cut-off point says how 
small the observed P value has to be to be deemed signifi- 
cant at the 5% level by the calibration technique of Section 
3. In other words, if the observed P value is bigger than 
the cut-off point, then the vector (O,0, 0,0,O)' is contained 
in the 95% confidence region. 

For all three datasets, the observed P value is substan- 
tially bigger than the cut-off point at the 5% level. There- 
fore, in none of the three cases can the null hypothesis be 
rejected. 

Remark 6.2. A related usage of a multiple-horizon test 
was discussed by Richardson (1993). Instead of regressing 
stock returns on dividend yields, he considered autocorre- 
lations of stock returns. Note that autocorrelations can be 
thought of regressing stock returns on past stock returns. 
Similarly to our findings, when Richardson compared the 
evidence for individual return horizons to the joint evi-
dence for all horizons together, the latter turned out to be 
weaker. To carry out his test, Richardson used a Wald test 
statistic with which he was able to compute the limiting 
covariance matrix theoretically under the null hypothesis. 
Thereby he avoided the problem of having to explicitly es- 
timate the matrix. Note that this approach would not work 
for regressions involving other variables such as dividend 
yield. 

Remark 6.3. In my analysis, I have used U.S. postwar 
data. Goetzmann and Jorion (1995) demonstrated that re- 
gression statistics based on a sample drawn solely from 
surviving markets can bias the results toward finding pre- 
dictability. My subsampling approach, since conditioning 
on samples from a surviving market, cannot address the 
size of this bias; see Goetzmann and Jorion (1995) for some 
simulations that allow markets to disappear with positive 
probability. This bias does not, however, weaken my results 
because they do not point toward predictability. 

7. CONCLUSIONS 

In this article, I presented a new statistical tool to make 
inference in the context of dependent and possibly nonsta- 
tionary observations, as needed when examining the pre- 
dictability of stock returns from dividend yields. The gist 
of the new method, called subsampling, is to recompute 
the statistic of interest on smaller blocks of the entire data 
sequence to approximate the sampling distribution of the 
estimator based on the complete data. This enables me to 
construct asymptotically correct confidence regions for un- 
known parameters under very weak conditions. 

When comparing the subsampling method with previ- 
ous approaches for testing the predictability of stock re- 
turns, I found it more trustworthy than the VAR approach 
and Goetzmann and Jorion's (1993) bootstrap on grounds 
of asymptotic consistency. A simulation study suggested 
that subsampling has better small-sample properties than 
GMM, which is a valid competitor in terms of asymptotic 
properties. 

I applied the subsampling method to three different post- 
war datasets, the NYSE equal- and value-weighted indexes 
and the S&P 500 index, and included five return horizons 
ranging between one month and four years. I did not find 
any evidence for predictability for short and medium hori- 
zons, but findings at the long horizons appeared significant. 
Some potential undercoverage of subsampling confidence 
intervals for long horizons due to very strong dependencies 
in the residuals, as well as the issue of multiple testing, cast 
some doubt on this evidence. 

A reorganization of long-horizon returns, avoiding in- 
creasing correlation in the residuals by means of summing 
dividend yields rather than returns, resulted in insignificant 
outcomes for all horizons. Moreover, a joint test for all five 
return horizons also failed to find any evidence. I therefore 
conclude that no convincing case for the predictability of 
stock returns from dividend yields can be made. 
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