
Exact and Approximate Stepdown Methods for
Multiple Hypothesis Testing

Joseph P. ROMANO and Michael WOLF

Consider the problem of testing k hypotheses simultaneously. In this article we discuss finite- and large-sample theory of stepdown methods
that provide control of the familywise error rate (FWE). To improve on the Bonferroni method or on Holm’s stepdown method, Westfall
and Young made effective use of resampling to construct stepdown methods that implicitly estimate the dependence structure of the test
statistics. However, their methods depend on an assumption known as “subset pivotality.” Our goal here is to construct general stepdown
methods that do not require such an assumption. To accomplish this, we take a close look at what makes stepdown procedures work;
a key component is a monotonicity requirement of critical values. By imposing monotonicity on estimated critical values (which is not an
assumption on the model but rather is an assumption on the method), we show how to construct stepdown tests that can be applied in a
stagewise fashion so that at most k tests need to be computed. Moreover, at each stage, an intersection test that controls the usual probability
of a type 1 error is calculated, which allows us to draw on an enormous resampling literature as a general means of test construction. In
addition, it is possible to carry out this method using the same set of resamples (or subsamples) for each of the intersection tests.

KEY WORDS: Bootstrap; Familywise error rate; Multiple testing; Permutation test; Randomization test; Stepdown procedure;
Subsampling.

1. INTRODUCTION

The main point of this article is to show how computer-
intensive methods can be used to construct asymptotically valid
tests of multiple hypotheses under very weak conditions. As in
the case of single testing, bootstrap and other resampling meth-
ods offer viable nonparametric alternatives to constructing tests
that require normality or other parametric assumptions. The
treatise by Westfall and Young (1993) takes good advantage of
resampling to estimate the joint distributions of multiple test
statistics to construct valid and more efficient multiple-testing
methods. However, their methods rely heavily on the assump-
tion of subset pivotality. Thus the main goal of the present arti-
cle is to show how to construct valid stepdown methods that do
not require this assumption, while remaining computationally
feasible.

Consider the problem of testing hypotheses H1, . . . ,Hk.
Suppose that corresponding p-values p̂1, . . . , p̂k are available.
A starting point for a general method that controls the family-
wise error rate (FWE) is the Bonferroni method, which rejects
any Hj for which p̂j ≤ α/k. Holm (1979) improved this single-
stage procedure by the following stepdown method: Order the
p-values as

p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(k),

and let H(1), . . . ,H(k) denote the corresponding hypotheses. If
p̂(1) ≤ α/k, then reject H(1); otherwise, accept all hypotheses
and stop. If continuing, reject H(2) if p̂(2) ≤ α/(k − 1); oth-
erwise, stop testing and accept all remaining hypotheses; and
so on. Then hypotheses H(1), . . . ,H(r) are rejected if p̂( j) ≤
α/(k − j + 1) for j = 1, . . . , r, and the remaining are accepted
if p̂(r+1) > α/(k − r). This procedure holds under arbitrary de-
pendence on the joint distribution of p-values. As was shown

Joseph P. Romano is Professor, Department of Statistics, Stanford Univer-
sity, Stanford, CA 94305 (E-mail: romano@stat.stanford.edu). Michael Wolf
is Assistant Professor, Department of Economics and Business, University of
Pompeau Fabra, E-08005, Barcelona, Spain (E-mail: michael.wolf@upf.edu).
This research was supported by National Science Foundation grant DMS-
01-0392, Spanish Ministry of Science and Technology and FEDER grant
BMF2003-03324, and the Barcelona Economics Program of CREA. The au-
thors thank an associate editor for helpful comments that have led to an im-
proved presentation of the article.

by Westfall and Young (1993), the Holm procedure can be im-
proved by incorporating or estimating the dependence structure
into the algorithm.

In Section 2 we discuss stepdown methods that control the
FWE in finite samples. Such methods proceed stagewise by
testing an intersection hypothesis at each stage. That is, like
the Holm method, once a hypothesis is rejected, testing of the
remaining hypotheses is accomplished as if the remaining hy-
potheses were a new family of joint hypotheses to be tested.
Moreover, the decision to reject an hypothesis at a given stage
depends only on the outcome of the intersection test for that
stage.

But one cannot always achieve strong control in such a sim-
ple manner. By understanding the limitations of this approach
in finite samples, we can then see why an asymptotic approach
will be valid under fairly weak assumptions. It turns out that
a simple monotonicity condition for theoretical critical values
allows for some immediate results.

For any K ⊂ {1, . . . , k}, let HK denote the hypothesis that all
Hj with j ∈ K are true. The closure method of Marcus, Peritz,
and Gabriel (1976) allows us to construct methods that control
the FWE if we know how to test each intersection hypothe-
sis HK . However, in general, this might require the construc-
tion of 2k − 1 tests. The constructions studied here require only
an order-k number of tests. In fact, the monotonicity assump-
tions that we invoke can be viewed as justification of an order-k
stagewise application of closure. [In some cases, shortcuts for
applying the closure method are known. For example, Westfall,
Zaykin, and Young (2001) showed how to apply closure to
Fisher combination tests with only k2 evaluations.] A further
advantage of our constructions is that they lead to consonant
multiple-testing procedures in the sense of Hommel (1986); if
the intersection hypothesis HK is rejected, then necessarily at
least one of the hypotheses Hj with j ∈ K will be rejected. This
property is appealing but does not always hold for the closure
method of Marcus et al. (1976).

In general, we suppose that rejection of a test of Hj is based
on large values of a test statistic Tn,j. (To be consistent with later
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notation, we use n for asymptotic purposes and typically to refer
to sample size.) Of course, if a p-value p̂j is available for test-
ing Hj, one possibility is to take Tn,j = 1 − p̂j. Then we restrict
attention to tests that reject an intersection hypothesis HK when
max{Tn,j : j ∈ K} is large. In some problems where a monotonic-
ity condition holds (distinct from the monotonicity assumption
here), Lehmann, Romano, and Shaffer (2003) showed that such
stepwise procedures are optimal in a maximin sense. In other
situations, it may be better to consider other test statistics that
combine the individual test statistics in a more powerful way.
A related issue is one of balance; see Remark 8 in Section 4.2.
At this time, our primary goal is to show how stepdown pro-
cedures can be constructed quite generally without having to
assume subset pivotality, but while still controlling the FWE.

In Section 3 we show that if we estimate critical values that
have a monotonicity property, then the basic problem of con-
structing a valid multiple-test procedure can be reduced to the
problem of sequentially constructing critical values for (at most
order k) single tests. This then allows us to directly apply what
we know about tests based on permutation and randomization
distributions. Similarly, we can apply bootstrap and subsam-
pling methods as well, as we discuss in Section 4.

In Sections 5 and 6 we present two small simulation studies
and an empirical application. We collect all proofs in an Appen-
dix.

As noted previously, the closure method of Marcus et al.
(1976) in principle allows us to reduce the problem of con-
structing a valid multiple-test procedure that controls the FWE
to the problem of constructing a single test that controls the
usual probability of a type 1 error; however, the number of tests
that must be calculated increases exponentially with k. In gen-
eral, if we wish to calculate a bootstrap test for each intersection
hypothesis, then there is not only the computational issue of
constructing a large number of tests, but also the question of an
appropriate resampling mechanism that obeys the null hypoth-
esis for each intersection hypothesis (unless there is a strong
assumption, such as subset pivotality). Our methods are compu-
tationally feasible and avoid the need for a distinct resampling
mechanism for each hypothesis. Thus this work is a sustained
essay designed to produce computationally feasible general test
constructions that control the FWE by effective reduction to the
problem of construction of single tests that control the usual
probability of a type 1 error. This then allows us to draw on an
enormous resampling literature.

2. NONASYMPTOTIC RESULTS

Suppose that data X are generated from some unknown prob-
ability distribution P. In anticipation of asymptotic results, we
may write X = X(n), where n typically refers to the sample size.
A model assumes that P belongs to a certain family of proba-
bility distributions �, although we make no rigid requirements
for �. Indeed, � may be a nonparametric model, a parametric
model, or a semiparametric model.

Consider the problem of simultaneously testing a hypothesis
Hj against H′

j for j = 1, . . . , k. Of course, a hypothesis Hj can
be viewed as a subset ωj of �, in which case the hypothesis Hj

is equivalent to P ∈ ωj and H′
j is equivalent to P /∈ ωj. For any

subset K ⊂ {1, . . . , k}, let HK = ⋂
j∈K Hj be the hypothesis that

P ∈ ⋂
j∈K ωj.

Suppose that a test of the individual hypothesis Hj is based
on a test statistic Tn,j, with large values indicating evidence
against the Hj. For an individual hypothesis, numerous ap-
proaches to approximating a critical value exist, including those
based on classical likelihood theory, bootstrap tests, Edgeworth
expansions, permutation tests, and so on. The main problem
addressed in the present work is to construct a procedure that
controls the FWE. Recall that the FWE is the probability of
rejecting at least one true null hypothesis. More specifically,
if P is the true probability mechanism, then let I = I(P) ⊂
{1, . . . , k} denote the indices of the set of true hypotheses; that
is, j ∈ I if and only P ∈ ωj. The FWE is the probability under P
that any Hj with j ∈ I is rejected. To show its dependence on P,
we may write FWE = FWEP. We require that any procedure
satisfy that the FWE be no bigger than α (at least asymptoti-
cally). Furthermore, this constraint must hold for all possible
configurations of true and null hypotheses; that is, we demand
strong control of the FWE. A procedure that controls the FWE
only when all k null hypotheses are true is said to have weak
control of the FWE. As noted by Dudoit, Shaffer, and Boldrick
(2003), this distinction is often ignored.

For any subset K of {1, . . . , k}, let cn,K(α,P) denote an
α-quantile of the distribution of maxj∈K Tn,j under P. Con-
cretely,

cn,K(α,P) = inf
{

x : P
{

max
j∈K

Tn,j ≤ x
}

≥ α
}
. (1)

For testing the intersection hypothesis HK , we need only ap-
proximate a critical value for P ∈ ⋂

j∈K ωj. Because there may
be many such P, we define

cn,K(1 − α) = sup

{

cn,K(1 − α,P) : P ∈
⋂

j∈K

ωj

}

. (2)

To define cn,K(α,P), we implicitly assumed that
⋂k

j=1 ωj is not
empty. At this point, we acknowledge that calculating these
constants may be formidable in some problems (which is why
we later turn to approximate or asymptotic methods).

Let

Tn,r1 ≥ Tn,r2 ≥ · · · ≥ Tn,rk (3)

denote the observed ordered test statistics, and let Hr1 , Hr2,

. . . ,Hrk be the corresponding hypotheses.
Stepdown procedures begin by testing the joint null hypoth-

esis H{1,...,k} that all hypotheses are true. This hypothesis is
rejected if Tn,r1 is large. If it is not large, then accept all hy-
potheses; otherwise, reject the hypothesis corresponding to the
largest test statistic. Once a hypothesis is rejected, remove it and
test the remaining hypotheses by rejecting for large values of
the maximum of the remaining test statistics, and so on. Thus
at any step, one tests an intersection hypothesis, and an ideal
situation would be to proceed at any step without regard to pre-
vious rejections, in the sense that once a hypothesis is rejected,
the remaining hypotheses are treated as a new family, and test-
ing for this new family proceeds independent of past decisions
in such a way that rejecting one of the remaining hypotheses is
based solely on the rejection of the next intersection test calcu-
lated. Because the Holm procedure (discussed later in Exam-
ple 4) works in this way, one might hope that the intersection
hypothesis can be generally tested at any step by treating only
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those hypotheses that remain. Forgetting about whether or not
such an approach generally yields strong control for the time
being, we consider the following conceptual algorithm, which
proceeds in stages by testing intersection hypotheses.

Algorithm 1 (Idealized stepdown method).

1. Let K1 = {1, . . . , k}. If Tn,r1 ≤ cn,K1(1 − α), then accept
all hypotheses and stop; otherwise, reject Hr1 and con-
tinue.

2. Let K2 be the indices of the hypotheses not previously
rejected. If Tn,r2 ≤ cn,K2(1−α), then accept all remaining
hypotheses and stop; otherwise, reject Hr2 and continue.

...

j. Let Kj be the indices of the hypotheses not previously re-
jected. If Tn,rj ≤ cn,Kj(1 − α), then accept all remaining
hypotheses and stop; otherwise, reject Hrj and continue.

...

k. If Tn,k ≤ cn,Kk(1 − α), then accept Hrk ; otherwise, reject
Hrk .

Algorithm 1 is an idealization for two reasons: (1) The
critical values may be impossible to compute and (2) without
restriction, there is no general reason why such a stepwise ap-
proach strongly controls the FWE. The determination of con-
ditions where the algorithm leads to strong control will help
us understand the limitations of a stepdown approach, as well
as understand how such a general approach can work at least
approximately in large samples. First, we present an example
showing that some condition is required to exhibit strong con-
trol.

Example 1. Suppose that Tn,1 and Tn,2 are independent and
normally distributed, with Tn,1 ∼ N(θ1, (1 + θ2)

2q) and Tn,2 ∼
N(θ2, (1+θ2)

−2q), where θ1 ≥ 0 and θ2 ≥ 0. (The index n plays
no role here, but we retain it for consistent notation.) Here q is a
suitable positive constant, chosen to be large. Also, let �(·) de-
note the standard normal cumulative distribution function. The
hypothesis Hj specifies θj = 0, whereas H′

j specifies θj > 0.
Therefore, the first step of Algorithm 1 is to reject the overall
joint hypothesis θ1 = θ2 = 0 for large values of max(Tn,1,Tn,2)

when Tn,1 and Tn,2 are iid N(0,1). Specifically, accept both hy-
potheses if

max(Tn,1,Tn,2) ≤ c(1 − α) ≡ �−1(
√

1 − α );
otherwise, reject the hypothesis corresponding to the larger Tn,j.
Such a procedure exhibits weak control but not strong control.
For example, the probability of rejecting the H1 at the first step
when θ1 = 0 and θ2 = c(1 − α)/2 satisfies

P0,θ2{Tn,1 > c(1 − α), Tn,1 > Tn,2} → 1/2

as q → ∞. So if α < 1/2, for some sufficiently large but fixed
q, then the probability of incorrectly declaring H1 to be false is
greater than α. Incidentally, this also provides an example of a
single-step procedure that exhibits weak control but not strong
control. (Single-step procedures are those in which hypotheses
are rejected on the basis of a single critical value; see Westfall
and Young 1993.)

Therefore, to prove strong control, some condition is re-
quired. Consider the following monotonicity assumption: For
I ⊂ K,

cn,K(1 − α) ≥ cn,I(1 − α). (4)

The condition (4) can be expected to hold in many situations,
because the left side is based on computing the 1−α quantile of
the maximum of |K| variables, whereas the right side is based
on the maximum of |I| ≤ |K| variables (although one must be
careful and realize that the quantiles are computed under possi-
bly different P, which is why some conditioning is required).

Theorem 1. Let P denote the true distribution generating the
data. Assume that

⋂k
j=1 ωj is not empty.

(a) Assume that for any K containing I(P),

cn,K(1 − α) ≥ cn,I(P)(1 − α). (5)

Then the probability that Algorithm 1 rejects any j ∈ I(P)

is ≤α; that is, FWEP ≤ α.
(b) Strong control persists if, in Algorithm 1, the critical

constants cn,Kj(1 − α) are replaced by dn,Kj(1 − α), which sat-
isfy

dn,Kj(1 − α) ≥ cn,Kj(1 − α). (6)

(c) Moreover, condition (5) may be removed if the
dn,Kj(1 − α) satisfy

dn,K(1 − α) ≥ dn,I(P)(1 − α) (7)

for any K ⊃ I(P).

Remark 1. Under weak assumptions, we can show the sup
over P of the probability (under P) that Algorithm 1 rejects
any j ∈ I(P) is equal to α. It then follows that the critical val-
ues cannot be made smaller in a hope of increasing the ability
to detect false hypotheses without violating the strong control
of the FWE. (However, this does not negate the possibility of
smaller random critical values, as long as they are not smaller
with probability 1.)

Example 2 (Assumption of subset pivotality). Assumptions
stronger than (5) have been used. Suppose, for example, that for
every subset K ⊂ {1, . . . , k} there exists a distribution PK that
satisfies

cn,K(1 − α,P) ≤ cn,K(1 − α,PK) (8)

for all P such that I(P) ⊃ K. Such a PK may be viewed as being
least favorable among distributions P such that P ∈ ⋂

j∈K ωj.
(For example, if Hj corresponds to a parameter θj ≤ 0, then in-
tuition suggests that a least-favorable configuration should cor-
respond to θj = 0.)

In addition, assume the subset pivotality condition of Westfall
and Young (1993); that is, assume that there exists a P0 with
I(P0) = {1, . . . , k} such that the joint distribution of {Tn,j : j ∈
I(PK)} under PK is the same as the distribution of {Tn,j : j ∈
I(PK)} under P0. This condition says the ( joint) distribution of
the test statistics used for testing the hypotheses Hj, j ∈ I(PK),
that is unaffected by the truth or falsehood of the remaining hy-
potheses (and therefore we assume that all hypotheses are true
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by calculating the distribution of the maximum under P0). It
follows that in step j of Algorithm 1,

cn,Kj(1 − α) = cn,Kj

(
1 − α,PKj

)

= cn,Kj(1 − α,P0) = cn,Kj(1 − α). (9)

The outer equalities in (9) follow by the assumption (8), and
the middle equality follows by the subset pivotality condition.
Therefore, in Algorithm 1, we can replace cn,Kj(1 − α) by
cn,Kj(1 − α,P0), which in principle is known because it is the
1 − α quantile of the distribution of max(Tn,j : j ∈ Kj) under P0,
and P0 is some fixed (least favorable) distribution. At the very
least, this quantile may be simulated.

The asymptotic behavior of stepwise procedures was consid-
ered by Finner and Roters (1998), who recognized the impor-
tance of monotonicity for the validity of stepwise procedures.
But they also supposed the existence of a single least-favorable
P0 for all configurations of true hypotheses, which then guar-
antees monotonicity of critical values for stepdown procedures.
As seen previously, such assumptions do not hold generally.

Example 3. To exhibit an example in which condition (5)
holds but subset pivotality does not, suppose that Tn,1 and Tn,2

are independent and normally distributed, with Tn,1 ∼ N(θ1,1/

(1+θ2
2 )) and Tn,2 ∼ N(θ2,1/(1+θ2

1 )). The hypothesis Hj spec-
ifies θj = 0, whereas the alternative H′

j specifies θj > 0. Then it
is easy to check that, with K1 = {1,2},
cn,K1(1 − α) = �−1(

√
1 − α ) > �−1(1 − α) = cn,{ j}(1 − α).

Therefore, (5) holds, but subset pivotality fails.

Example 4 (The Holm procedure). Suppose that −Tn,j ≡ p̂n,j

is a p-value for testing Hj; that is, assume that the distribution of
p̂n,j is uniform on (0,1) when Hj is true. Note that this assump-
tion is much weaker than subset pivotality (if k > 1), because
we are making an assumption only about the one-dimensional
marginal distribution of the p-value statistic. Furthermore, we
may assume the weaker condition

P{ p̂n, j ≤ x} ≤ x

for any x ∈ (0,1) and any P ∈ ωj. If I(P) ⊃ K, then the usual
argument using the Bonferroni inequality yields

cn,K(1 − α,P) ≤ −α/|K|,
which is independent of P, and so

cn,K(1 − α) ≤ −α/|K|. (10)

It is easy to construct joint distributions for which this is at-
tained, and so we have equality here if the family � is so large
that it includes all possible joint distributions for the p-values.
In such a case, we have equality in (10), and so the condition (5)
is satisfied. Of course, even if the model is not so large, this pro-
cedure has strong control. Simply, let dn,K(1 − α) = −α/|K|,
and strong control follows by Theorem 1, part (c).

Part (c) of Theorem 1 points toward a more general method
that has strong control even when (5) is violated and can be
much less conservative than the Holm procedure.

Corollary 1. Assume that
⋂k

j=1 ωj is not empty. Let

c∗
n,Kj

(1 − α) = max{cn,K(1 − α) : K ⊂ Kj}. (11)

Then, if we replace cn,Kj(1−α) by c∗
n,Kj

(1−α) in Algorithm 1,
strong control holds.

Corollary 1 is simply the closure principle of Marcus et al.
(1976) (also see Hommel 1986 and thm. 4.1 of Hochberg and
Tamhane 1987). Thus, to have a valid stepdown procedure, one
not only must consider the critical value cn,K(1 −α) when test-
ing an intersection hypothesis HK , but also must compute all
cn,I(1 − α) for I ⊂ K.

Finally, we can remove the assumption that
⋂k

j=1 ωj is not
empty, as follows.

Theorem 2. Let

c̃n,Kj(1 − α) = max

{

cn,K(1 − α) : K ⊂ Kj and
⋂

j∈K

ωj 
= ∅
}

.

(12)

(a) If cn,Kj(1 − α) are replaced by c̃n,Kj(1 − α) in Algo-
rithm 1, then strong control holds.

(b) Strong control persists if, in Algorithm 1, the critical
constants cn,Kj(1 − α) are replaced by d̃n,Kj(1 − α), which sat-
isfy

d̃n,Kj(1 − α) ≥ c̃n,Kj(1 − α). (13)

Theorem 2 shows that the Holm method applies with no as-
sumptions; that is, the assumption that all hypotheses can be
true need not hold.

3. RANDOM CRITICAL VALUES AND
RANDOMIZATION TESTS

3.1 Preliminaries and a Basic Inequality

In general, the critical values used in Algorithm 1 are the
smallest constants possible without violating the FWE. As a
simple example, suppose that Xj, j = 1, . . . , k, are independent
N(θj,1), with the θj varying freely. The null hypothesis Hj spec-
ifies θj ≤ 0. Then

cn,K(1 − α) = �−1[(1 − α)(1/|K|)].

Suppose that c is a constant and that c < cn,K(1 − α) for some
subset K. As θj → ∞ for j /∈ K and θj = 0 for j ∈ K, the proba-
bility of a type 1 error tends to

P
{

max
j∈K

Xj > c
}

> P
{

max
j∈K

Xj > cn,K(1 − α)
}

= α.

Of course, if the θj are bounded, then the argument fails, but
typically such assumptions are not made.

However, the foregoing applies only to nonrandom critical
values and leaves open the possibility that critical values can
be estimated and thus can be random. That is, if we replace
cn,K(1 − α) by some estimate ĉn,K(1 − α), then it sometimes
can be smaller than cn,K(1 − α) as long as it is not with prob-
ability 1. Of course, this is the typical case in which critical
values must be estimated, such as by the bootstrap in the next
section. In this section we focus on the use of permutation and
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randomization tests that replace the idealized critical values by
estimated ones, while still retaining finite-sample control of the
FWE.

One simple way to deal with permutation and randomization
tests is to define critical values conditional on an appropriate
σ -field; then the monotonicity assumptions of the previous sec-
tion will turn into monotonicity assumptions for the conditional
critical values. (For example, in the context of comparing two
samples, everything would be conditional on the values of the
combined sample, and this would lead directly to permutation
tests.)

For the sake of increased generality, we instead proceed as
follows. Suppose that the cn,K(1 − α) in Algorithm 1 are re-
placed by estimates ĉn,K(1 − α). These could be obtained by a
permutation test if it applies, but for the moment their construc-
tion is left unspecified. However, we assume two things. First,
we replace the monotonicity assumption (5) by monotonicity of
the estimated critical values; that is, for any K ⊃ I(P),

ĉn,K(1 − α) ≥ ĉn,I(P)(1 − α). (14)

We then also require that if ĉn,K(1 − α) is used to test the
intersection hypothesis HK , then it is level α when K = I(P);
that is,

P
{
max

(
Tn,j : j ∈ I(P)

)
> ĉn,I(P)(1 − α)

} ≤ α. (15)

We show the basic inequality that the FWEP is bounded above
by the left side of (15). This will then show that, if we can
construct monotone critical values such that each intersection
test is level α, then the stepdown procedure controls the FWE.
Thus construction of a stepdown procedure is effectively re-
duced to construction of single tests, as long as the monotonic-
ity assumption holds. (Also note the monotonicity assumption
for the critical values, which is something that we can essen-
tially enforce because they depend only on the data, can hold
even if the corresponding nonrandom ones are not monotone.)
Note that here (and in the rest of the article), we no longer need
to assume

⋂k
j=1 ωj is not empty.

Theorem 3. Let P denote the true distribution generating the
data. Consider Algorithm 1 with cn,K(1 − α) replaced by esti-
mates ĉn,K(1 − α) satisfying (14).

(a) Then

FWEP ≤ P
{
max

(
Tn,j : j ∈ I(P)

)
> ĉn,I(P)(1 − α)

}
. (16)

(b) Therefore, if the critical values also satisfy (15), then
FWEP ≤ α.

3.2 Permutation and Randomization Tests

Before applying Theorem 3, we first review a general con-
struction of a randomization test in the context of a single test.
Our setup is framed in terms of a population model, but similar
results are possible in terms of a randomization model (as in
sec. 3.1.7 of Westfall and Young 1993).

Based on data X taking values in a sample space X , it is
desired to test the null hypothesis H that the underlying proba-
bility law P generating X belongs to a certain family ω of distri-
butions. Let G be a finite group of transformations g of X onto
itself. The following assumption, which we call the randomiza-
tion hypothesis, allows for a general test construction.

The Randomization Hypothesis. The null hypothesis implies
that the distribution of X is invariant under the transformations
in G; that is, for every g in G, gX and X have the same distrib-
ution whenever X has distribution P in ω.

As an example, consider testing the equality of distribu-
tions based on two independent samples (Y1, . . . ,Ym) and
(Z1, . . . ,Zn). Under the null hypothesis that the samples are
generated from the same probability law, the observations can
be permuted or assigned at random to either of the two groups,
and the distribution of the permuted samples is the same as the
distribution of the original samples. In this example, and more
generally when the randomization hypothesis holds, the follow-
ing construction of a randomization test applies.

Let T(X) be any real-valued test statistic for testing H. Sup-
pose that the group G has M elements. Given X = x, let

T(1)(x) ≤ T(2)(x) ≤ · · · ≤ T(M)(x)

be the values of T(gx) as g varies in G, ordered from smallest to
largest. Fix a nominal level α, 0 < α < 1, and let m be defined
by

m = M − [Mα], (17)

where [Mα] denotes the largest integer less than or equal to Mα.
Let M+(x) and M0(x) be the number of values T( j)(x) ( j =
1, . . . ,M) that are greater than T(m)(x) and equal to T(m)(x).
Set

a(x) = Mα − M+(x)

M0(x)
.

Define the randomization test function φ(X) to be equal to 1,
a(X), or 0 according to whether T(X) > T(m)(X), T(X) =
T(m)(X), or T(X) < T(m)(X).

Under the randomization hypothesis, Hoeffding (1952)
showed that this construction produces a test that is exact
level α, and this result is true for any choice of test statistic T .
Note that this test is possibly a randomized test if Mα is not an
integer of there are ties in the ordered values. Alternatively, if
one prefers not to randomize, then the slightly conservative but
nonrandomized test that rejects if T(X) > Tm(X) is level α.

For any x ∈X , let Gx denote the G-orbit of x, that is,

Gx = {gx : g ∈ G}.
These orbits partition the sample space. Then, under the ran-
domization hypothesis, it can be shown that the conditional dis-
tribution of X given X ∈ Gx is uniform on Gx.

In general, a p-value, p̂, of a randomization test can be de-
fined by

p̂ = 1

M

∑

g

I{T(gX) ≥ T(X)}. (18)

It is easily shown that under the null hypothesis, p̂ satisfies

P{ p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1. (19)

Therefore, the nonrandomized test that rejects when p̂ ≤ α is
level α.

Because G may be large, we may resort to a stochastic ap-
proximation to construct the randomization test by, for exam-
ple, by randomly sampling transformations g from G with or
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without replacement. In the former case, for example, suppose
that g1, . . . ,gB−1 are iid and uniformly distributed on G. Let

p̃ = 1

B

[

1 +
B−1∑

i=1

I{T(giX) ≥ T(X)}
]

. (20)

Then it can be shown that under the randomization hypothesis,

P{ p̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1, (21)

where this probability reflects variation in both X and the sam-
pling of the gi. Note that (21) holds for any B, and so the test
that rejects when p̃ ≤ α is level α even when a stochastic ap-
proximation is used. Of course, the larger the value of B, the
closer p̂ and p̃ are to each other; in fact, p̂ − p̃ → 0 in probabil-
ity as B → ∞. The argument for (20) is based on the following
simple fact.

Lemma 1. Suppose that Y1, . . . ,YB are exchangeable real-
valued random variables; that is, their joint distribution is in-
variant under permutations. Let q̃ be defined by

q̃ = 1

B

[

1 +
B−1∑

i=1

I{Yi ≥ YB}
]

.

Then P{q̃ ≤ u} ≤ u for all 0 ≤ u ≤ 1.

We now return to the multiple testing problem. Assume that
GK is a group of transformations for which the randomization
hypothesis holds for HK . Then we can apply the foregoing con-
struction to test the single-intersection hypothesis HK based on
the test statistic

Tn,K = max(Tn,j : j ∈ K), (22)

and reject HK when

Tn,K(X) > T(|GK |−[|GK |α])
n,K (X).

If we further specialize to the case where GK = G, so that
the same G applies to all intersection hypotheses, then we can
verify the monotonicity assumption for the critical values. Set
mα = |G| − [|G|α]. Then, for any g ∈ G and I ⊂ K,

max
(
Tn,j(gX) : j ∈ K

) ≥ max
(
Tn,j(gX) : j ∈ I

)
, (23)

and so as g varies, the mα th-largest value of the left side of (23)
is at least as large as the mα th-largest value of the right side.

Consequently, the critical values

ĉn,K(1 − α) = T(mα)
n,K (24)

satisfy the monotonicity requirement of Theorem 3. Moreover,
by the general randomization construction of a single test, the
test that rejects HK when TK ≥ T(mα)

n,K is level α. Therefore, the
following result is true.

Corollary 2. Suppose that the randomization hypothesis
holds for a group G when testing any intersection hypothe-
sis HK . Then the stepdown method with critical values given
by (24) controls the FWE.

Equivalently, in analogy with (18), we can compute p-values
for testing HK via

p̂n,K = 1

M

∑

g

I{Tn,K(gX) ≥ Tn,K(X)}, (25)

and at stage j where we are testing an intersection hypothesis,
say HK , reject if p̂n,K ≤ α. Alternatively, we can approximate
these p-values and still retain the level of the test. In analogy
with (20), randomly sample g1, . . . ,gB−1 from G and let

p̃n,K = 1

B

[

1 +
B−1∑

i=1

I{Tn,K(giX) ≥ Tn,K(X)}
]

. (26)

By an almost identical argument, we have the following result.

Corollary 3. Suppose that the randomization hypothesis
holds for a group G when testing any intersection hypothe-
sis HK . Consider the stepdown method that rejects Kj at stage j
if p̃n,Kj ≤ α. Then FWEP ≤ α.

Remark 2. In the foregoing corollaries, we have worked with
the randomization construction using nonrandomized tests.
A similar result would hold if we would permit randomization.

Example 5 (Two-sample problem with k variables). Sup-
pose that Y1, . . . ,YnY is a sample of nY independent observa-
tions from a probability distribution PY and that Z1, . . . ,ZnZ

is a sample of nZ observations from PZ. Here PY and PZ
are probability distributions on R

k, with the jth components
denoted by PY, j and PZ, j. The hypothesis Hj asserts that
PY, j = PZ, j, and we wish to test these k hypotheses based
on X = (Y1, . . . ,YnY,Z1, . . . ,ZnZ). Also, let Yi, j denote the
jth component of Yi and let Zi,j denote the jth component
of Zi. Following Troendle (1995), we assume a semiparamet-
ric model. In particular, assume that PY and PZ are governed
by a family of probability distributions Qθ indexed by θ =
(θ1, . . . , θk) ∈ R

k (and assumed identifiable), so that PY has law
Q(θY) and PZ has law Q(θZ). For concreteness, we may think
of θ as being the mean vector, although this assumption is not
necessary. Now Hj can be viewed as testing θY, j = θZ, j. Note
that the randomization construction does not need to assume
knowledge of the form of Q ( just as a single two-sample per-
mutation test in a shift model does not need to know the form
of the underlying distribution under the null hypothesis).

Let n = nY + nZ, and for x = (x1, . . . , xn) ∈ R
n, let gx ∈ R

N

be defined by (xπ(1), . . . , xπ(n)), where (π(1), . . . , π(n)) is a
permutation of (1,2, . . . ,n). Let G be the collection of all
such g so that M = n!. Under the hypothesis PY = PZ, gX and
X have the same distribution for any g in G.

Unfortunately, this G does not apply to any subset of the
hypotheses, because gX and X need not have the same dis-
tribution if only a subcollection of the hypotheses are true.
However, we just need a slight generalization to cover the ex-
ample. Suppose that the test statistic Tn,j used to test Hj depends
only on the jth components of the observations, namely Yi,j,
i = 1, . . . ,nY and Zi,j, i = 1, . . . ,nZ; this is a weak assumption
indeed. In fact, let XK be the dataset consisting of the compo-
nents Yi,j and Zi,j as j varies only in K. The simple but impor-
tant point here is that for this reduced dataset, the randomiza-
tion hypothesis holds. Specifically, under the null hypothesis



100 Journal of the American Statistical Association, March 2005

θY,j = θZ,j for j ∈ K, XK and gXK have the same distribution
(although X and gX need not). Also, for any g ∈ G, Tn,j(gX)

and Tn,j(X) have the same distribution under Hj, and similarly
for any K ⊂ {1, . . . , k}, Tn,K(gX) and Tn,K(X) have the same
distribution under HK .

Then, because the same G applies in this manner for all K,
the critical values from the randomization test are monotone,
just as in (23). Moreover, each intersection hypothesis can be
tested by an exact level-α randomization test (because infer-
ence for HK is based only on XK ). Therefore, essentially the
same argument leading to Corollaries 2 and 3 applies. In par-
ticular, even if we need to resort to approximate randomization
tests at each stage, as long as we sample the same set of gi
from G, the resulting procedure retains its finite-sample prop-
erty of controlling the FWE. In contrast, Troendle (1995) con-
cluded asymptotic control.

Remark 3. It is interesting to study the behavior of random-
ization procedures if the model is such that the randomization
hypothesis does not hold. For example, in Example 5, sup-
pose that we are interested just in testing the hypothesis H′

j
that the mean of PY,j is the mean of PZ,j (assumed to exist).
Then the randomization test construction of this section fails,
because the randomization hypothesis need not hold. Howe-
ver, because the randomization procedure has monotone crit-
ical values (because this is a property only of how the data
are used), Theorem 3(a) applies. Therefore, one can again re-
duce the problem of studying control of the FWE to that of
controlling the level of a single-intersection hypothesis. But the
problem of controlling the level of a single test when the ran-
domization hypothesis fails was studied by Romano (1990), and
so similar methods can be used here, with the hope of at least
proving asymptotic control. Alternatively, the more general re-
sampling approaches of Section 4 can be used; the comparison
of randomization and bootstrap tests was studied by Romano
(1989), who showed they are often quite close, at least when
the randomization hypothesis holds.

Example 6 (Problem of multiple treatments). Consider the
one-way ANOVA model. We are given k + 1 independent sam-
ples, with the jth sample having nj iid observations Xi,j, i =
1, . . . ,nj. Suppose that Xi,j has distribution Pj. The problem is
to test the hypotheses of k treatments with a control; that is,
Hj : Pj = Pk+1. (Alternatively, we can test all pairs of distribu-
tions, but the issues are much the same, so we illustrate them
with the slightly easier setup.) Under the joint null hypothesis,
we can randomly assign all n = ∑

j nj observations to any of
the groups; that is, the group G consists of all permutations of
the data. However, if only a subset of the hypotheses are true,
then this group is not valid. A simple remedy is to permute only
within subsets; that is, to test any subset hypothesis HK , con-
sider only those permutations that permute observations within
the sample Xi,k+1 and the samples Xi,j with j ∈ K. Therefore,
we compute a critical value by ĉn,K(1−α) by the randomization
test with the group GK of permutations within samples j ∈ K
and j = k + 1. Unfortunately, this does not lead to monotonicity
of critical values, and the previous results do not apply. But
there is an analog of Corollary 1, if we are willing to com-
pute critical values for all subset hypotheses; that is, replace
ĉn,Kj(1 − α) by

ĉ∗
n,Kj

(1 − α) = max{ĉn,K(1 − α) : K ⊂ Kj}.

But this approach can be computationally prohibitive. Such
issues have been raised by Petrondas and Gabriel (1983)
(although they did not frame the problem in terms of a
monotonicity requirement). However, we shortly see that the
lack of monotonicity of critical values is only a finite-sample
concern; see Example 8.

4. ASYMPTOTIC RESULTS

The main goal of this section is to construct asymptotically
valid stepdown procedures that hold under very weak assump-
tions, even when the monotonicity condition of Theorem 1 fails.
The assumptions are identical to the weakest assumptions avail-
able for the construction of asymptotically valid tests of a single
hypothesis, which are used in many resampling schemes, and so
we cannot expect to improve them without improving the now
well-developed theory of resampling methods for testing a sin-
gle hypothesis.

Of course, Corollary 1 reminds us that it may be possible
to construct a test that controls the FWE if we are willing and
able to compute critical values for all possible 2k − 1 nontriv-
ial intersection hypotheses. If each such test were computed by
a bootstrap or resampling method, then the number of compu-
tations could get quite large for even moderate k. We not only
provide weak conditions, but also consider a method that re-
quires only one set of bootstrap resamples, as well as a method
based on one set of subsamples.

To accomplish this without having to invoke an assumption
like subset pivotality, we consider resampling schemes that do
not obey the constraints of the null hypothesis. Schemes that
do obey the constraints of the null hypothesis, as discussed by
Beran (1986) and Romano (1988), are based on the idea that
the critical value should be obtained under the null hypothesis,
and so the resampling scheme should reflect the constraints of
the null hypothesis. This idea was even advocated as a princi-
ple by Hall and Wilson (1991), and it was enforced by Westfall
and Young (1993). Although appealing, it is by no means the
only approach toward inference in hypothesis testing. Indeed,
the well-known explicit duality between tests and confidence
intervals means that if we can construct good or valid confi-
dence intervals, then we can construct good or valid tests, and
conversely. But resampling the empirical distribution to con-
struct a confidence interval for a single parameter can produce
very desirable intervals, which would then translate into desir-
able tests. The same holds for simultaneous confidence sets and
multiple tests.

That is not to say that the approach of obeying the null con-
straints is less appealing. It is, however, often more difficult to
apply, and it is unlikely that one resampling scheme obeying
the constraints of all hypotheses would work in general in the
multiple-testing framework. An alternative approach would be
to resample from a different distribution at each step, obeying
the constraints of the null hypotheses imposed at each step. This
approach would probably succeed in a fair amount of gener-
ality, but even so, two problems would remain. First, it may
be difficult to determine the appropriate resampling scheme for
testing each subset hypothesis. Second, even if we knew how to
resample at each stage, increased computation is involved. Our
approach avoids these complications.

Before embarking on the general theory, we present a moti-
vating example to fix ideas.
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Example 7 (Testing correlations). Suppose that X1, . . . ,Xn
are iid random vectors in R

s, so that Xi = (Xi,1, . . . ,Xi,s). As-
sume that E|Xi,j|2 < ∞ and Var(Xi,j) > 0, so that the correlation
between X1,i and X1,j, namely ρi,j, is well defined. Let Hi,j de-
note the hypothesis that ρi,j = 0, so that the multiple-testing
problem consists in testing all k = (s

2

)
pairwise correlations.

Also let Tn,i,j denote the ordinary sample correlation between
variables i and j. (Note that we are indexing hypotheses and
test statistics by two indices, i and j.) As noted by Westfall and
Young (1993), example 2.2, p. (43), subset pivotality fails here.
For example, using results of Aitken (1969, 1971), if s = 3,
H1,2 and H1,3 are true but H2,3 is false, then the joint limit-
ing distribution of n1/2(Tn,1,2,Tn,1,3) is bivariate normal with
mean 0, variance 1, and correlation ρ2,3. As Westfall and Young
(1993) acknowledged, their methods fail to address this prob-
lem (even asymptotically).

4.1 General Results

We now develop some asymptotic theory. For any K ⊂
{1, . . . , k}, let Gn,K(P) be the joint distribution of Tn,j, j ∈ K un-
der P, with corresponding joint cdf Gn,K(x,P), x ∈ R

|K|. Also,
let Hn,K(P) denote the distribution of max{Tn,j : j ∈ K} under P.
As in the previous section, cn,K(1−α,P) denotes a 1−α quan-
tile of Hn,K(P). Also, the symbols

L→ and
P→ denote conver-

gence in law (or distribution) and convergence in probability.
Typically, the asymptotic behavior of Gn,I(P)(P) is governed

by one of the following two possibilities: It either it has a nonde-
generate limiting distribution or converges weakly to a non-
degenerate constant vector (possibly with some components
−∞). Actually, this has nothing to do with the fact that we
are studying joint distributions of multiple test statistics. For
example, suppose that we are testing whether a population
mean µ(P) is ≤0 versus >0 based on an iid sample X1, . . . ,Xn
from P, assumed to have a finite nonzero variance σ 2(P). Con-
sider the test statistic Tn = n−1/2 ∑

i Xi. If µ(P) = 0, then Tn
L→

N(0, σ 2(P)). On the other hand, if µ(P) < 0, then, Tn con-
verges in probability to −∞. Alternatively, if the test statistic
is T ′

n = max(0,Tn), then, if µ(P) = 0, T ′
n converges in distribu-

tion to max(0, σ (P)Z), where Z ∼ N(0,1). But under µ(P) < 0,
T ′

n converges in probability to 0. Note that the two cases exhaust
all possibilities under the null hypothesis. On the other hand,
for the two-sided problem of testing µ(P) = 0 versus µ(P) 
= 0
based on |n−1/2 ∑

i Xi|, a nondegenerate limit law exists under
the null hypothesis, and this exhausts all possibilities under the
null hypothesis (under the assumption of a finite positive vari-
ance).

Formally, we distinguish between the following assumptions,
which are imposed only when K = I(P) is the set of true hy-
potheses.

Assumption A1. Under P, the joint distribution of the test
statistics Tn,j, j ∈ I(P), has a limiting distribution, that is,

Gn,I(P)(P)
L→ GI(P)(P). (27)

This implies that under P, max{Tn,j : j ∈ I(P)} has a limiting dis-
tribution, say HI(P)(P), with limiting cdf HI(P)(x,P). We further
assume that

HI(P)(x,P) is continuous and strictly

increasing at x = cI(P)(1 − α,P). (28)

Note that the continuity condition in (28) is satisfied if the
|I(P)| univariate marginal distributions of GI(P)(P) are contin-
uous. Also, the strictly increasing assumption can be weakened
as well, but it holds in all known examples where the conti-
nuity assumption holds, because typical limit distributions are
Gaussian, chi-squared, and so on. Actually, the strictly increas-
ing assumption can be removed entirely (see remark 1.2.1 of
Politis, Romano, and Wolf 1999).

Assumption A2. Under P, Gn,I(P)(P) converges weakly to a
point mass at d = d(P), where d = (d1(P), . . . ,d|I(P)|(P)) is a
vector of |I(P)| components. [In the case where dj(P) = −∞,
we mean that Tn,j converges in probability under P to −∞.]

Now we prove a basic result that can be applied to several
resampling or asymptotic methods to approximate critical val-
ues. Consider the stepdown method presented in Algorithm 1,
with cn,K(1 − α) replaced by some estimates ĉn,K(1 − α). We
consider some concrete choices later.

Theorem 4. (a) Fix P and suppose that Assumption A1 holds,
so that (27) and (28) hold. Assume that the estimated criti-
cal values ĉn,K(1 − α) satisfy for any K ⊃ I(P), the estimates
ĉn,K(1 − α) are bounded below by cI(P)(1 − α); by this we
mean, for any ε > 0, that

ĉn,K(1 − α) ≥ cI(P)(1 − α) − ε with probability → 1. (29)

Then, lim supn FWEP ≤ α.
(b) Fix P and suppose that Assumption A1 holds. Assume that
the estimated critical values are monotone in the sense that

ĉn,K(1 − α) ≥ ĉn,I(1 − α) whenever I ⊂ K. (30)

Then (29) holds for all K ⊃ I(P) if it holds in the special
case where K = I(P). Therefore, if Assumption A1 and the
monotonicity condition (30) hold, and for any ε > 0,

ĉn,I(P)(1−α) ≥ cI(P)(1−α)−ε with probability → 1, (31)

then lim supn FWEP ≤ α.
(c) Fix P and suppose that Assumption A2 holds. Also assume
the monotonicity condition (30). If, for some ε > 0,

ĉn,I(P)(1 − α) > max{dj(P) : j ∈ I(P)} + ε

with probability → 1, (32)

then lim supn FWEP = 0.

Note that Assumption A1 implies that

cn,I(P)(1 − α) → cI(P)(1 − α) as n → ∞.

In part (a) of Theorem 4, we replace the monotonicity require-
ment of Theorem 3 by a weak asymptotic monotonicity require-
ment (29).

In general, the point of Theorem 4 is that lim supn FWEP ≤ α

regardless of whether the convergence of the null hypotheses
satisfies Assumption A1 or Assumption A2, at least under rea-
sonable behavior of the estimated critical values. Moreover, we
show that the monotonicity condition (30) assumed in parts
(b) and (c) hold generally for some construction based on
the bootstrap and subsampling. Therefore, the crux of proving
strong control requires that the estimated critical values sat-
isfy (31); that is, the critical value for testing the intersection
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hypothesis HI(P) is consistent in that it leads to a test that as-
ymptotically controls the probability of a type 1 error. In other
words, the problem is essentially reduced to the problem of es-
timating the critical value for a single (intersection) test without
having to worry about the multiple-testing issue of controlling
the FWE. Thus the problem of controlling the FWE is reduced
to the problem of controlling the type 1 error of a single test.
We clarify this further for specific choices of estimates of the
critical values.

Before applying Theorem 4(b) and 4(c), which assumes
monotonicity of critical values, we demonstrate consistency
without the assumption of monotonicity. In this regard, a simple
alternative to Theorem 4(a) is the following.

Theorem 5. Fix P and suppose that Assumption A1 holds.
Suppose that (29) holds for K = I(P); that is, for any ε > 0,

ĉn,I(P)(1 − α) ≥ cI(P)(1 − α) − ε with probability → 1.

(33)

Further, suppose that the test is consistent in the sense that for
any hypothesis Hj with j /∈ I(P), the probability of rejecting Hj
by the stepdown procedure tends to 1. This happens, for exam-
ple, if the critical values ĉn,K are bounded in probability while
Tn,j → ∞ if j /∈ I(P). Then lim supn FWEP ≤ α.

Example 8 (Example 6, revisited). In the setup of Example 6,
suppose that the observations are real valued, and consider a test
of Hj based on

Tn,j = n1/2|X̄j − X̄k+1|,
where X̄j = n−1

j

∑
i Xi,j. Suppose that we use the permutation

test where at stage j for testing HKj , only permutations of ob-
servations Xi,j with j ∈ K and Xi,k+1 are used. Assume that
nj/n → λj ∈ (0,1). Let µ(Pj) denote the true mean of Pj, as-
sumed to exist; also assume the variance of Pi is finite. Then
Theorem 5 applies to any P for which if j /∈ I(P), then µ(Pj) 
=
µ(Pk+1) (which, of course, is not the same as Pj 
= Pk+1).
Indeed, Tn,j → ∞ in probability then. Also, using arguments
similar to those of Romano (1990), ĉn,K(1 − α) is bounded in
probability for any K, because asymptotically it behaves like
the 1 − α quantile of the maximum of |K| normal variables.
Therefore, asymptotic control of the FWE persists. However, if
the distributions differ but the means are the same, then the test
statistic should be designed to capture arbitrary differences in
distribution, such as a two-sample Kolmogorov–Smirnov test
statistic (unless one really wants to pick up just differences in
the mean, but then the null hypothesis should reflect this.)

4.2 A Bootstrap Construction

We now specialize a bit and develop a concrete construction
based on the bootstrap. For now, we suppose that hypothesis Hj
is specified by {P : θj(P) ≤ 0} for some real-valued parameter θj.
Suppose that θ̂n,j is an estimate of θj. Also, let Tn,j = τnθ̂n,j
for some nonnegative (nonrandom) sequence τn → ∞. The se-
quence τn is introduced for asymptotic purposes so that a limit-
ing distribution for τnθ̂n,j exists when θj(P) = 0.

Remark 4. Typically, τn = n1/2. Also, it is possible to let
τn vary with the hypothesis j. Extensions to cases where τn de-
pends on P are also possible, using ideas of Bertail, Politis, and
Romano (1999).

The bootstrap method relies on its ability to approximate the
joint distribution of {τn[θ̂n,j − θj(P)] : j ∈ K}, whose distribution
we denote by Jn,K(P). We assume that the normalized estimates
satisfy the following:

Assumption B1(a). Jn,I(P)(P)
L→ JI(P)(P), a nondegenerate

limit law.

Let Ln,K(P) denote the distribution under P of max{τn[θ̂n,j −
θj(P)] : j ∈ K}, with corresponding distribution function
Ln,K(x,P) and α-quantile

bn,K(α,P) = inf{x : Ln,K(x,P) ≥ α}.
Assumption B1 implies that Ln,I(P)(P) has a limiting distribu-
tion LI(P)(P).

We further assume the following.

Assumption B1(b). LJ(P)(P) is continuous and strictly in-
creasing on its support.

Under Assumption B1, it follows that when K = J(P),

bn,K(1 − α,P) → bK(1 − α,P), (34)

where bK(α,P) is the α-quantile of the limiting distribu-
tion LK(P).

Assume that Assumption B1 holds. If P satisfies at least one
θj(P) is exactly 0, then Assumption A1 holds. On the other
hand, if P satisfies all θj(P) < 0 among the θj(P) that are ≤0,
then Assumption A2 holds. Indeed, if τn(θ̂n,j −θj(P)) converges
to a limit law and τnθj(P) → −∞, then τnθ̂n,j → −∞ in prob-
ability.

Let Q̂n be some estimate of P. For iid data, Q̂n is typically
taken to be the empirical distribution, or possibly a smoothed
version. For time series or dependent-data situations, block
bootstrap methods should be used (see Lahiri 2003). Then a
nominal (1 − α)-level bootstrap confidence region for the sub-
set of parameters {θj(P) : j ∈ K} is given by
{
(θj : j ∈ K) : max

j∈K
τn[θ̂n,j − θj] ≤ bn,K(1 − α, Q̂n)

}

= {
(θj : j ∈ K) : θj ≥ θ̂n,j − τ−1

n bn,K(1 − α, Q̂n)
}
.

So a value of 0 for θj(P) falls outside the region iff τnθ̂n,j >

bn,K(1 − α, Q̂n). By the usual duality of confidence sets and
hypothesis tests, this suggests the use of the critical value

ĉn,K(1 − α) = bn,K(1 − α, Q̂n), (35)

at least if the bootstrap is a valid asymptotic approach for con-
fidence region construction.

Note that, regardless of asymptotic behavior, the monotonic-
ity assumption (30) is always satisfied for the choice (35). In-
deed, for any Q and if I ⊂ K, bn,I(1 − α,Q) is the 1 − α

quantile under Q of the maximum of |I| variables, whereas
bn,K(1 − α,Q) is the 1 − α quantile of these same |I| variables
together with |K| − |I| variables.

Therefore, to apply Theorem 4 to conclude lim supn FWEP ≤
α, it is now only necessary to study the asymptotic behavior of
bn,K(1−α, Q̂n) in the case where K = J(P). For this, we further
assume the usual conditions for bootstrap consistency when
testing the single hypothesis that θj(P) ≤ 0 for all j ∈ J(P); that
is, we assume that the bootstrap consistently estimates the joint
distribution of τn[θ̂n,j − θj(P)] for j ∈ I(P). Specifically, con-
sider the following.
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Assumption B2. For any metric ρ metrizing weak conver-
gence on R

|J(P)|,

ρ
(
Jn,I(P)(P), Jn,I(P)(Q̂n)

) P→ 0.

Theorem 6. Fix P satisfying Assumption B1. Let Q̂n be an
estimate of P satisfying Assumption B2. Consider the stepdown
method in Algorithm 1 with cn,K(1 − α) replaced by bn,K(1 −
α, Q̂n).

(a) Then lim supn FWEP ≤ α.
(b) Suppose that Assumptions B1 and B2 hold when I(P) is

replaced by any subset K. If P is such that j /∈ I(P), [i.e., Hj is
false and θj(P) > 0], then the probability that the stepdown
method rejects Hj tends to 1.

Example 9 (Continuation of Example 7). The analysis of
sample correlations is a special case of the smooth function
model studied by Hall (1992), and the bootstrap approach is
valid for such models.

Remark 5. The main reason why the bootstrap works here
can be traced to the simple result of Theorem 3. By resam-
pling from a fixed distribution, the bootstrap approach, gener-
ates monotone critical values. Therefore, because we know how
to construct valid bootstrap tests for each intersection hypothe-
sis, this leads to valid multiple tests. But we learn more. If we
use a bootstrap approach such that each intersection test has a
rejection probability equal to α + O(εn), then we can also de-
duce lim supn FWEP ≤ α+O(εn). In other words, if a bootstrap
method has good performance for the construction of single
tests, then this translates into good performance of the bootstrap
for constructing stepdown multiple tests.

Remark 6. The bootstrap can also give dramatic finite-
sample gains by accommodating nonnormalities, even when
the test statistics are independent (see, e.g., Westfall and Young
1993, p. 162; Westfall and Wolfinger 1997).

Remark 7. Typically, the asymptotic behavior of a test pro-
cedure when P is true will satisfy that it is consistent in the
sense that all false hypotheses will be rejected with probabil-
ity tending to 1 (as is the case under Thm. 6). However, we
can also study the behavior of procedures against contiguous
alternatives so that not all false hypotheses are rejected with
probability tending to 1 under such sequences. But of course,
if alternative hypotheses are in some sense close to their re-
spective null hypotheses, then the procedures will typically re-
ject even fewer hypotheses, and so the limiting probability of
any false rejection under a sequence of contiguous alternatives
should then be bounded by α.

Remark 8. In addition to constructing tests that control the
FWE, we typically would like to choose test statistics that lead
to procedures that are balanced in the sense that all tests have
about the same power. As argued by Beran (1988a), Tu and
Zhou (2000), and Rogers and Hsu (2001), balance can be desir-
able. Alternatively, lack of balance may be desirable so that cer-
tain tests are given more weight (see Westfall and Young 1993,
p. 162; Westfall and Wolfinger 1997). Although the goal of this
article has been the evaluation of significance while maintain-
ing strong control based on given test statistics, achieving bal-
ance is best handled by an appropriate choice of test statistics.

For example, transforming test statistics to p-values and then
using the negative p-values as the basic statistics will lead to
better balance. Quite generally, Beran’s prepivoting transforma-
tion can lead to balance (see Beran 1988a,b). The assumptions
of our theorem must then hold for the transformed test statis-
tics. Alternatively, balance sometimes can be achieved by stu-
dentization. The construction developed in this section can be
extended to the case of studentized test statistics. The details
are straightforward and left to the reader.

We now briefly consider the two-sided case. Suppose that
Hj specifies θj(P) = 0 against the alternative θj(P) 
= 0.
Let L′

n,K(P) denote the distribution under P of max{τn|θ̂n,j

− θj(P)| : j ∈ K} with corresponding distribution function
L′

n,K(x,P) and α-quantile

b′
n,K(α,P) = inf{x : L′

n,K(x,P) ≥ α}.
Accordingly, L′

K(P) denotes the limiting distribution of L′
n,K(P).

Finally, let T ′
n,j = τn|θ̂n,j|.

Theorem 7. Fix P satisfying Assumption B1, but with
LI(P)(P) in Assumption B1(b) replaced by L′

I(P)(P). Let Q̂n be
an estimate of P satisfying Assumption B2. Consider the step-
down method in Algorithm 1 using the test statistics T ′

n,j and
with cn,K(1 − α) replaced by b′

n,K(1 − α, Q̂n).

(a) Then lim supn FWEP ≤ α.
(b) Suppose that Assumptions B1 and B2 hold when I(P) is

replaced by any subset K (and L is replaced by L′). If P is such
that j /∈ I(P) [i.e., Hj is false and θj(P) 
= 0] then the probability
that the stepdown method rejects Hj tends to 1.

(c) Moreover, if the foregoing algorithm rejects Hj and it is
declared that θj > 0 when θ̂n,j > 0, then the probability of mak-
ing a type 3 error [i.e., of declaring that θj(P) is positive when
it is negative or declaring it negative when it is positive] tends
to 0.

An alternative approach to the two-sided case is to balance
the tails of the bootstrap distribution of the original estimates
(without the absolute values) separately. An analogous result
would hold. The comparison of these approaches in the case of
a single test was made by Hall (1992).

Theorem 7(c) shows that the directional error is asymptoti-
cally negligible. It would be more interesting to obtain finite-
sample results and to study the behavior of the directional
error under contiguous alternatives so that the problem is no
longer asymptotically degenerate; future work will consider
these problems. (For references to the literature on controlling
the directional error as well as some finite-sample results, see
Finner 1999.)

4.3 A Subsampling Construction

In this section we present an alternative construction that ap-
plies under weaker conditions than the bootstrap. We now as-
sume that we have available an iid sample X1, . . . ,Xn from P,
and that Tn,j = Tn,j(X1, . . . ,Xn) is the test statistic that we wish
to use for testing Hj. To describe the test construction, fix a pos-
itive integer b ≤ n and let Y1, . . . ,YNn be equal to the Nn = (n

b

)

subsets of {X1, . . . ,Xn}, ordered in any fashion. Let T(i)
b,j be

equal to the statistic Tb,j evaluated at the dataset Yi. Then, for
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any subset K ⊂ {1, . . . , k}, the joint distribution of (Tn,j : j ∈ K)

can be approximated by the empirical distribution of the
(n

b

)
val-

ues (T(i)
b,j : j ∈ K). In other words, for x ∈ R

k, the true joint cdf
of the test statistics evaluated at x,

Gn,{1,...,k}(x,P) = P{Tn,1 ≤ x1, . . . ,Tn,k ≤ xk},
is estimated by the subsampling distribution

Ĝn,{1,...,k}(x) =
(

n

b

)−1 ∑

i

I
{
T(i)

b,1 ≤ x1, . . . ,T(i)
b,k ≤ xk

}
. (36)

Note that the marginal distribution of any subset K ⊂ {1, . . . , k},
Gn,K(P), is then approximated by the marginal distribution in-
duced by (36) on that subset of variables. So, Ĝn,K refers to the
empirical distribution of the values (T(i)

n,j : j ∈ K). (In essence,
one need only estimate one joint sampling distribution for all
the test statistics, because this then induces that of any subset,
even though we are not assuming anything like subset pivotal-
ity.)

Similarly, the estimate of the whole joint distribution of test
statistics induces an estimate for the distribution of the maxi-
mum of test statistics. Specifically, Hn,K(P) is estimated by the
empirical distribution Ĥn,K(x) of the values max(T(i)

n,j : j ∈ K),
that is,

Ĥn,K(x) =
(

n

b

)−1 ∑

i

I
{
max

(
T(i)

b,j : j ∈ K
) ≤ x

}
.

Also, let

ĉn,K(1 − α) = inf{x : Ĥn,K(x) ≥ 1 − α}
denote the estimated 1 − α quantile of the maximum of test
statistics Tn,j with j ∈ K.

Note the monotonicity of the critical values; for I ⊂ K,

ĉn,K(1 − α) ≥ ĉn,I(1 − α), (37)

and so the monotonicity assumption in Theorem 4 holds [also
compare with (4)].

This leads us to consider the idealized stepdown algorithm
with cn,K(1 − α,P) replaced by the estimates ĉn,K(1 − α). The
following result proves consistency and strong control of this
subsampling approach. Note in particular that Assumption B2
is not needed here at all, a reflection of the fact that the bootstrap
requires much stronger conditions for consistency (see Politis
et al. 1999). Also notice that we do not even need to assume
that there exists a P for which all hypotheses are true.

Theorem 8. Suppose that Assumption A1 holds. Let
b/n → 0, τb/τn → 0, and b → ∞.

(a) The subsampling approximation satisfies

ρ
(
Ĝn,I(P),Gn,I(P)(P)

) P→ 0, (38)

for any metric ρ metrizing weak convergence on R
|I(P)|.

(b) The subsampling critical values satisfy

ĉn,I(P)(1 − α)
P→ cI(P)(1 − α). (39)

(c) Therefore, using Algorithm 1 with cn,K(1 − α,P) repla-
ced by the estimates ĉn,K(1 − α) results in lim supn FWEP ≤ α.

Example 10 (Cube root asymptotics). Kim and Pollard
(1990) showed that a general class of M-estimators con-
verge at rate τn = n1/3 to a nonnormal limiting distribution.
As a result, inconsistency of the bootstrap typically follows.
Rodríguez-Poo, Delgado, and Wolf (2001) demonstrated the
consistency of the subsampling method for constructing hy-
pothesis tests for a single null hypothesis. By similar arguments,
the validity of the subsampling construction of Theorem 8 in the
context of cube root asymptotics can be established.

The foregoing approach can be extended to dependent data.
For example, if the data form a stationary sequence, then we
would consider only the n − b + 1 subsamples of the form
(Xi,Xi+1, . . . ,Xi+b−1). Generalizations for nonstationary time
series, random fields, and point processes were further treated
by Politis et al. (1999).

5. TWO SIMULATION STUDIES

5.1 Testing Means

This section presents a small simulation study in the con-
text of testing population means. We generate random vectors
X1, . . . ,X100 from a k-dimensional multivariate normal distrib-
ution with mean vector θ = (θ1, . . . , θk)

′. The values of k are
k = 10 and k = 40. Each null hypothesis is Hj : θj ≤ 0, and
each alternative hypothesis is one-sided. We apply the stepdown
bootstrap construction of Section 4.2, resampling from the em-
pirical distribution. In the spirit of Remark 8, we use the studen-
tized test statistics Tn,j = √

nX̄j/sj, where X̄j and sj are the usual
sample average and sample standard deviation of jth sample. In
addition, we also include the Holm method in the study. The
nominal FWE levels are α = .05 and α = .1. Performance cri-
teria are the empirical FWE and the (average) number of false
hypotheses that are rejected.

We consider three scenarios for the mean vector of the multi-
variate normal distribution. In the first scenario, all means θj are
equal to 0. In the second scenario, half of the means are equal
to 0 and the other half are equal to .25. In the third scenario, all
means are equal to .25.

We consider three scenarios for the covariance matrix of the
multivariate normal distribution. In the first scenario, the covari-
ance matrix is the identity matrix. In the second scenario, all of
the variances are equal to 1 and all of the correlations are equal
to ρ = .5. In the third scenario, all of the variances are equal to
1 and all of the correlations are equal to ρ = .9. We would ex-
pect our stepwise method to perform similarly to that of Holm
in the first scenario but to reject more false null hypotheses in
the latter two scenarios.

Tables 1 and 2 report the results based on 10,000 repetitions.
The number of bootstrap resamples is B = 1,000. The results
demonstrate the good control of the FWE in finite samples and
increased power of the stepdown method compared with the
Holm method in cases of a positive common correlation ρ.

Note that the FWE control of the Holm method for the case
where ρ = 0 deteriorates somewhat when the number of hy-
potheses tested increases from k = 10 to k = 40, but that this
does not happen with the stepdown method. The reason for this
behavior of the Holm method is that individual p-values are
computed using the asymptotic standard normal distribution of
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Table 1. Empirical FWEs and Average Number of False Hypotheses
Rejected for Both the Holm Method and the General Stepdown

Construction of Section 4.2

FWE FWE Rejected Rejected
Level α (Holm) (stepdown) (Holm) (stepdown)

All θ j = 0, all ρ = 0
5 5.8 5.1 .0 .0

10 10.5 9.8 .0 .0

All θ j = 0, all ρ = .5
5 3.9 5.2 .0 .0

10 7.2 10.3 .0 .0

All θ j = 0, all ρ = .9
5 1.9 5.2 .0 .0

10 3.3 10.1 .0 .0

Half of the θ j = .25, all ρ = 0
5 4.1 3.6 2.5 2.5

10 8.2 7.9 3.0 3.1

Half of the θ j = .25, all ρ = .5
5 3.8 5.1 2.5 2.7

10 7.4 10.0 3.1 3.3

Half of the θ j = .25, all ρ = .9
5 2.5 5.0 2.5 3.4

10 4.5 10.0 3.0 3.9

All θ j = .25, all ρ = 0
5 .0 .0 5.8 5.8

10 .0 .0 7.3 7.3

All θ j = .25, all ρ = .5
5 .0 .0 5.8 6.1

10 .0 .0 7.0 7.5

All θ j = .25, all ρ = .9
5 .0 .0 5.7 7.1

10 .0 .0 6.8 8.2

NOTE: The nominal levels are α = 5% and α = 10%. Observations are iid multivariate normal,
the dimension is k = 10, and the number of observations is n = 100. The number of repetitions
is 10,000 per scenario, and the number of bootstrap resamples is B = 1,000.

the t-statistic under the null. Because the true distribution un-
der the null is t99, the p-values are somewhat anticonservative
in finite samples, and when k increases from 10 to 40, this ef-
fect is apparently magnified. (Of course, using the t99 distribu-
tion instead to compute individual p-values would correspond
to knowing the parametric nature of the underlying probability
mechanism, which is not realistic.)

Further note that relative advantage in terms of power of the
stepdown method does not seem to diminish when the number
of hypotheses tested increases from k = 10 to k = 40. For exam-
ple, consider the case where α = .1 and ρ = .9. When k = 10,
the stepdown method on average rejects about 20% more false
hypotheses compared with the Holm method. When k = 40, the
improvement is about 50%. Of course, this is an observation re-
stricted to the particular data-generating mechanism used in our
simulation study and should not be interpreted as a general the-
oretical statement.

5.2 Testing Correlations

This section presents a small simulation study in the con-
text of Example 7. We generate random vectors X1, . . . ,Xn

from a 10-dimensional multivariate normal distribution. Hence
there are a total of k = (10

2

) = 45 pairwise correlations to test.
The values for the sample size are n = 50 and n = 100. Each
null hypothesis is Hi,j :ρi,j = 0 and each alternative hypothe-
sis is two-sided. We apply the stepdown bootstrap construction
of Section 4.2, resampling from the empirical distribution. The

Table 2. Empirical FWEs and Average Number of False Hypotheses
Rejected for Both the Holm Method and the General Stepdown

Construction of Section 4.2

FWE FWE Rejected Rejected
Level α (Holm) (stepdown) (Holm) (stepdown)

All θ j = 0, all ρ = 0
5 6.1 4.8 .0 .0

10 11.6 10.0 .0 .0

All θ j = 0, all ρ = .5
5 3.8 4.9 .0 .0

10 6.4 10.0 .0 .0

All θ j = 0, all ρ = .9
5 1.0 5.0 .0 .0

10 1.6 9.9 .0 .0

Half of the θ j = .25, all ρ = 0
5 3.4 3.2 6.4 6.3

10 6.9 6.7 8.2 8.1

Half of the θ j = .25, all ρ = .5
5 3.5 4.6 6.6 7.6

10 6.3 9.4 8.3 10.0

Half of the θ j = .25, all ρ = .9
5 1.1 5.3 6.7 12.0

10 2.2 10.1 8.4 14.6

All θ j = .25, all ρ = 0
5 .0 .0 14.1 13.5

10 .0 .0 18.4 18.1

All θ j = .25, all ρ = .5
5 .0 .0 15.3 17.5

10 .0 .0 19.6 23.2

All θ j = .25, all ρ =.9
5 .0 .0 15.6 25.1

10 .0 .0 19.2 30.3

NOTE: The nominal levels are α = 5% and α = 10%. Observations are iid multivariate normal,
the dimension is k = 40, and the number of observations is n = 100. The number of repetitions
is 10,000 per scenario and the number of bootstrap resamples is B = 1,000.

test statistics are given by Tn,i,j = √
nρ̂i,j, where ρ̂i,j is the usual

sample correlation between the ith sample and the jth sample.
As a special case, we also look at the corresponding single-
step method. The nominal FWE levels are α = .05 and α = .1;
performance criteria are the empirical FWE and the (average)
number of false hypotheses that are rejected.

We consider three scenarios. In the first scenario, all corre-
lations are equal to 0. In the second scenario, all ρ1,j are equal
to .3, for j = 2, . . . ,10, and the remaining correlations are equal
to 0. In the third scenario, all correlations are equal to .3.

Table 3 reports the results based on 10,000 repetitions.
The number of bootstrap resamples is B = 1,000. The results
demonstrate the good control of the FWE in finite samples and
the increased power of the stepdown method compared with the
single-step method.

6. EMPIRICAL APPLICATION

Westfall and Young (1993, example 6.4) applied a multiple-
testing method for 10 pairwise correlations. Each null hypoth-
esis is that corresponding pairwise population correlation is
equal to 0; and each alternative hypothesis is two-sided. (See
their example 6.4 for the details of the rea dataset.) Westfall
and Young (1993) carried out a bootstrap multiple test under
the assumption of complete independence. As they admitted,
this is a conservative approach in general. Instead, we apply
the stepdown bootstrap construction of Section 4.2, resampling
from the empirical distribution. For each null hypothesis, the
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Table 3. Empirical FWEs and Average Number of False Hypotheses
Rejected for Both the Single-Step Construction and the General

Stepdown Construction of Section 4.2

FWE FWE Rejected Rejected
Level α (single-step) (stepdown) (single-step) (stepdown)

All ρ i, j = 0, n = 50
5 3.5 3.5 .0 .0

10 8.2 8.2 .0 .0

All ρ1, j = .3 and remaining ρ i, j = 0, n = 50
5 3.0 3.0 .96 .97

10 7.6 7.6 1.5 1.6

All ρ i, j = .3, n = 50
5 .0 .0 6.6 7.1

10 .0 .0 10.2 11.2

All ρ i, j = 0, n = 100
5 4.4 4.4 .0 .0

10 9.7 9.7 .0 .0

All ρ1, j = .3 and remaining ρ i, j = 0, n = 100
5 3.9 4.0 3.7 3.8

10 8.7 9.0 4.5 4.6

All ρ i, j = .3, n = 100
5 .0 .0 21.9 25.4

10 .0 .0 26.5 30.9

NOTE: The nominal levels are α = 5% and α = 10%. Observations are iid multivariate normal,
the number of observations is n = 50 and n = 100, and the number of pairwise correlations
is k = 45. The number of repetitions is 10,000 per scenario, and the number of bootstrap
resamples is B = 1,000.

stepdown construction yields an adjusted p-value; it is given by
the smallest FWE level α at which the construction rejects this
particular hypothesis.

Table 4 compares the adjusted p-values of Westfall and
Young (1993) to ours. The conservativeness of Westfall and
Young’s method can be clearly appreciated.

7. CONCLUDING REMARKS

We have shown how computationally feasible stepdown
methods can be constructed to control the FWE in a fair amount
of generality. Further study is needed to study the control of
directional errors, and future work will focus on a similar treat-
ment for stepup procedures. We also would like to extend our
results to show how resampling can be used to estimate the
dependence structure of the test statistics to obtain improved
methods that control the false discovery rate of Benjamini and
Hochberg (1995). Some results were obtained by Benjamini
and Yekutieli (2001), but these authors also assumed the subset

Table 4. Sample Correlations and p-Values for the Data of Example 6.4
of Westfall and Young (1993)

Sample Raw W–Y Step
Variables correlation p-value p-value p-value

(SATdev, % Black) −.5089 .0002 .0019 .0016
(Salary, Crime) .4902 .0003 .0030 .0028
(% Black, Crime) .4844 .0004 .0036 .0034
(SATdev, S/T Ratio) −.3864 .0061 .0404 .0346
(SATdev, Crime) −.3033 .0341 .1843 .1483
(S/T Ratio, Crime) .2290 .1135 .4485 .3921
(S/T Ratio, % Black) .1732 .2341 .6474 .5986
(SATdev, Salary) .0980 .5030 .8753 .8572
(Salary, % Black) −.0354 .8090 .9641 .9645
(S/T Ratio, Salary) .0045 .9754 .9759 .9761

NOTE: “W–Y p-value” denotes the adjusted p-value of Westfall and Young; “Step p-value” de-
notes the adjusted bootstrap p-value obtained from the stepdown construction of Section 4.2
(based on B = 5,000 bootstrap resamples).

pivotality condition. By extending our work, we hope to avoid
such conditions.

APPENDIX: PROOFS

Proof of Theorem 1

Consider the event where a true hypothesis is rejected, so that for
some j ∈ I(P), hypothesis Hj is rejected. Let ĵ be the (random) smallest
index j in the algorithm where this occurs, so that

Tn,rĵ
> cn,Kĵ

(1 − α). (A.1)

Because Kĵ ⊃ I(P), assumption (5) implies that

cn,Kĵ
(1 − α) ≥ cn,I(P)(1 − α) ≥ cn,I(P)(1 − α,P),

and so

Tn,rĵ
> cn,I(P)(1 − α,P).

Furthermore, by definition of ĵ,

Tn,rĵ
= max(Tn,j, j ∈ Kĵ) = max

(
Tn,j, j ∈ I(P)

)
,

and so the event that a false rejection occurs under P implies that

max
(
Tn,j, j ∈ I(P)

)
> cn,I(P)(1 − α,P). (A.2)

Therefore, the probability of a type 1 error is bounded above by the
probability of the event (A.2), which by definition has probability
bounded above by α. The proof of part (b) is obvious, because the
procedure becomes more conservative. The proof of (c) holds by the
proof of (a) on replacing the constants cn,Kĵ

(1 − α) by dn,Kĵ
(1 − α).

Proof of Corollary 1

We verify the conditions for dn,Kj(1 − α) when dn,Kj(1 − α) =
c∗

n,Kj
(1 − α) in Theorem 1(b) and 1(c). Clearly,

c∗
n,K(1 − α) ≥ cn,I(1 − α).

Also, for K ⊃ I(P),

c∗
n,K(1 − α) = max{cn,J(1 − α) : J ⊂ K}

≥ max{cn,J(1 − α) : J ⊂ I(P)}
= c∗

n,I(P)(1 − α),

and so (7) holds.

Proof of Theorem 2

To prove (a), let ĵ be the smallest (random) index j such that Tn,rĵ
>

c̃n,Kĵ
(1 − α). But Kĵ ⊃ I(P), and so

c̃n,Kĵ
(1 − α) ≥ c̃n,I(P)(1 − α) ≥ cn,I(P)(1 − α,P).

Thus the event that a false rejection occurs under P implies that

max
(
Tn,j, j ∈ I(P)

)
> cn,I(P)(1 − α,P), (A.3)

which has probability bounded by α. The proof of (b) is obvious, be-
cause the procedure becomes more conservative.

Proof of Theorem 3

As in the argument of Theorem 1, the event a false rejection occurs
is the event

max{Tn,j : j ∈ I(P)} > ĉn,Kĵ
(1 − α), (A.4)

where ĵ is the smallest (random) index where a false rejection occurs.
Because Kĵ ⊃ I(P),

ĉn,Kĵ
(1 − α) ≥ ĉn,I(P)(1 − α), (A.5)

and so (a) follows. Part (b) follows immediately from (a).
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Proof of Theorem 4

As in the proofs of Theorems 1 and 3, namely (A.4), it suffices to
show that

lim sup
n

P
{
max{Tn,j : j ∈ I(P)} > ĉn,Kĵ

(1 − α)
} ≤ α.

But assumption (29) implies that

ĉn,Kĵ
(1 − α) ≥ cI(P)(1 − α) − ε with probability → 1.

Therefore, using Assumption A1, the limit superior of the probability
of a false rejection is bounded above by

lim sup
n

FWEP ≤ P
{
max

(
Tj, j ∈ I(P)

)
> cI(P)(1 − α) − ε

}
,

where (Tj, j ∈ I(P)) denote variables whose joint distribution is
GI(P)(P). But letting ε → 0, the right side of the last expression be-
comes

1 − HI(P)

(
cI(P)(1 − α),P

) = 1 − (1 − α) = α.

To prove (b), because (29) holds when K = I(P), then it must hold
for any K containing I(P), by assumption (30).

To prove (c), the probability of false rejection [i.e., the event (A.4)],
is again bounded by the probability of the event

max{Tn,j : j ∈ I(P)} > ĉn,I(P)(1 − α),

which converges to 0 by Assumption A2 and (32).

Proof of Theorem 5

Following the proof of Theorem 4(a), the random index ĵ is equal
to k − |I(P)| + 1 with probability tending to 1, and this index is no
longer random. That is, with probability tending to 1, we first reject
all false hypotheses and then commit a false rejection when we get to
the stage at which we are testing the |I(P)| true hypotheses. But then
Assumption A1 and (33) allow us to conclude control of the FWE.

Proof of Theorem 6

To prove (a), fix P and assume that θj(P) = 0 for at least one
j ∈ I(P). Then, by the comments leading up to the statement of the
theorem, the conditions of Theorem 4(b) are satisfied if we can verify
that

bn,I(P)(1 − α, Q̂n)
P→ cI(P)(1 − α).

But by the continuous mapping theorem, Assumption B2 implies that

ρ1
(
Ln,I(P)(P),Ln,I(P)(Q̂n)

) P→ 0,

where ρ1 is any metric metrizing weak convergence on R. Further-
more, Ln,I(P)(P) converges weakly to a continuous limit law by As-
sumption B1, and so

bn,I(P)(1 − α, Q̂n)
P→bI(P)(1 − α,P)

and

bn,I(P)(1 − α,P) → bI(P)(1 − α,P).

Thus it suffices to show that

lim inf bn,I(P)(1 − α,P) → cI(P)(1 − α,P). (A.6)

But for θj(P) ≤ 0,

τn[θ̂n,j − θj(P)] ≥ τnθ̂n,j = Tn,

which implies that

bn,I(P)(1 − α,P) ≥ cn,I(P)(1 − α,P).

But the right term converges to cI(P)(1 − α,P), and so (A.6) follows.

Next, assume that P has θj(P) < 0 for all j ∈ I(P). Then we just need
to verify the conditions of Theorem 4(c). All that remains to verify is,
for some ε > 0,

bn,I(P)(1 − α, Q̂n) > max{dj(P) : j ∈ I(P)} + ε,

with probability tending to 1. But the right side here is −∞ (for any
finite ε), so it just suffices to verify that the left side is OP(1). But by
Assumption B2, it suffices to show that bn,I(P)(1 − α,P) is bounded
away from −∞, which follows by (34).

To prove (b), the assumptions imply that, for any K ⊃ I(P),

bn,K(1 − α, Q̂n)
P→ bK (1 − α,P) < ∞.

But

max(Tn,j : j ∈ K) ≥ Tn,j = τnθ̂n,j
P→ ∞,

because θ̂n,j
P→ θj(P) > 0 and τn → ∞. Therefore, with probability

tending to 1, for any K ⊃ I(P),

max(Tn,j : j ∈ K) ≥ bn,K(1 − α, Q̂n),

and the result follows.

Proof of Theorem 7

The proof is completely analogous to the proof of Theorem 6.
The only additional fact needed to prove (c) is that when θj(P) > 0,

τnθ̂n,j > 0 with probability tending to 1, and similarly for θj(P) < 0.

Indeed, Assumption B1(a) implies that τn(θ̂n,j − θj(P)) has a limiting

distribution, which implies that τnθ̂n,j
P→ ∞ if θj(P) > 0.

Proof of Theorem 8

The proof of (a) is the essential subsampling argument, which de-
rives from (36) being a U-statistic (see Politis et al. 1999, thm. 2.6.1)
where one statistic is treated, but the argument is extendable to the si-
multaneous estimation of the joint distribution. The result (b) follows
as well. To verify (c), apply Theorem 4(b). The monotonicity require-
ment follows by (37), and (31) follows by (b).

[Received December 2003. Revised March 2004.]
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