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SUMMARY

We present a theoretical basis for testing related endpoints. Typically, it is known how to
construct tests of the individual hypotheses, but not how to combine them into a multiple test
procedure that controls the familywise error rate. Using the closure method, we emphasize the role
of consonant procedures, from an interpretive as well as a theoretical viewpoint. Surprisingly, even
if each intersection test has an optimality property, the overall procedure obtained by applying
closure to these tests may be inadmissible. We introduce a new procedure, which is consonant
and has a maximin property under the normal model. The results are then applied to PROactive, a
clinical trial designed to investigate the effectiveness of a glucose-lowering drug on macrovascular
outcomes among patients with type 2 diabetes.

Some key words: Closure method; Consonance; Familywise error rate; Multiple endpoints; Multiple testing; O’Brien’s
method.

1. INTRODUCTION

In research and experimentation it is common to specify several hypotheses. In clinical research,
these have been characterized as primary, usually one hypothesis or ‘endpoint’, and secondary,
one or more endpoints to be tested if the primary endpoint is significant. More frequently
now, clinical trials feature multiple, co-primary endpoints, the significance of any of which
forms the basis for a claim of efficacy. Therefore, for both scientific and regulatory reasons, the
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familywise error rate for the family of co-primary endpoints must be controlled. Furthermore, it
may be reasonable to expect that every co-primary endpoint will exhibit an effect of treatment,
possibly some to a greater degree than others. This is the common effect direction alluded to in
the title.

The desire to focus power on a common direction led O’Brien (1984) to combine multiple
test statistics into a single hypothesis test. Under a normal model assumption, O’Brien derived
an ordinary least-squares test statistic and a generalized least-squares test statistic that are more
powerful than Hotelling’s T 2 statistic in the case of related endpoints. Lehmacher et al. (1991)
apply O’Brien’s test in combination with the closure principle of Marcus et al. (1976). They
point out that the Bonferroni test, and by extension, stepdown tests based on the maximum test
statistic (Romano and Wolf, 2005), are useful for detecting one highly significant difference, or
treatment effect, among a group of otherwise barely significant or nonsignificant differences.
On the other hand, O’Brien’s tests, based on the unweighted or weighted sum of test statistics,
succeed in rejecting the global null against alternatives closer to the diagonal, by which is meant
a group of similar treatment effects. Pocock et al. (1987) extend this approach to a general
situation of asymptotically normal test statistics. Summing test statistics in the multivariate
survival analysis setting, as we do in the example later, became theoretically justified with the
method of Wei et al. (1989). The main problem we consider is how to combine tests of individual
hypotheses into a multiple testing procedure that is sensitive or powerful when the endpoints are
related.

Suppose that data X are available, whose distribution is given by a model P = {Pθ , θ ∈ �}. The
parameter space � can be parametric, semiparametric or nonparametric, since θ merely indexes
the parameter space. In order to devise a procedure which controls the familywise error rate, the
closure method reduces the problem to constructing tests that control the usual probability of type
1 error. To be specific, for a subset K ⊆ {1, . . . , s} and ωi ⊂ �, let HK denote the intersection
hypothesis defined by

HK = ωK ≡
⋂
i∈K

ωi ; (1)

that is, HK is true if and only if θ ∈ ⋂
i∈K ωi . Of course, Hi = H{i}. Suppose that φK is an α-level

test of HK , that is, supθ∈ωK
Eθ {φK (X )} � α. Then the decision rule that rejects Hi if HK is

rejected for all subsets K for which {i} ⊆ K strongly controls the familywise error rate.
Consider the choice of tests of HK . Even in the case s = 2, little formal theory exists in the de-

sign of tests of HK , but many ad hoc procedures have been developed; see Hochberg & Tamhane
(1987), Westfall & Young (1993), Romano & Wolf (2005) and references therein. These ap-
proaches incorporate the dependence structure of the data and improve on Holm’s (1979)
method.

Stepdown tests based on the maximum test statistic yield multiple test procedures which satisfy
a property called consonance; for a discussion of such tests see Remark 2 or Romano & Wolf
(2005). A testing method is consonant when the rejection of an intersection hypothesis implies the
rejection of at least one of its component hypotheses. An associated concept is that of coherence,
which states that the nonrejection of an intersection hypothesis implies the nonrejection of any
subset hypothesis it implies. Coherence is de facto true in any closed testing method. Consider
a randomized experiment for testing the efficacy of a drug versus a placebo with two primary
endpoints in a closed test setting: testing for reduction in headaches, H1, and testing for reduction
in muscle pain, H2. If the joint intersection hypothesis H{1,2} is rejected but neither individual
hypothesis is rejected, then one might conclude that the drug has some beneficial effect, but
compelling evidence has not been established to promote a particular drug indication. Lack of
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consonance, which is alternatively called dissonance, makes interpretation awkward. Moreover,
we will argue that, in the framework with which we are concerned here, dissonance is undesirable
in that it results in decreased ability to reject false null hypotheses.

Sonnemann & Finner (1988) showed that any incoherent procedure can be replaced by a
coherent one which is at least as good. Sonnemann (1982) also showed that all coherent procedures
that control the familywise error rate must be obtained by the closure method. Therefore, our
restriction to procedures based on the closure method is no restriction at all. Moreover, it has been
shown, in unpublished work by one of the authors, that any procedure that is not consonant can
be replaced by a consonant one which is at least as good, in the sense that the familywise error
rate is still controlled and there are at least as many rejections as the original procedure. This
paper provides an explicit construction that yields a strict improvement over existing methods in
the context of testing multiple endpoints with common effect direction.

2. RATIONALE FOR THE SUM TEST

In this section, we consider a stylized version of the problem. The parametric structure we now
assume is an asymptotic approximation to the more general nonparametric framework. Think of
Xi as denoting a test statistic for the i th hypothesis, and assume that (X1, . . . , Xs) is multivariate
normal with Xi ∼ N (θi , 1) and known covariance matrix �. Let θ = (θ1, . . . , θs). For testing
one-sided alternatives in this parametric model, the parameter space is given by

� =
{

θ :
s⋂

i=1

{θi : θi � 0}
}

. (2)

However, we will also consider two-sided alternatives, but with the restriction that alternatives
(θ1, . . . , θs) are such that all θi have the same sign, possibly negative; that is, we will also later
consider the larger parameter space

�′ =
{

θ :
s⋂

i=1

{θi : θi � 0}
} ⋃ {

θ :
s⋂

i=1

{θi : θi � 0}
}

. (3)

For testing Hi : θi = 0 against θi > 0, the test that rejects Hi if Xi > z1−α is uniformly most
powerful level α. In order to apply closure, we consider tests of the intersection hypothesis θi = 0
for all i . The general intersection hypothesis HK given in (1) can be handled in the same way by
just considering i ∈ K .

PROPOSITION 1. Consider the multivariate location model with mean vector θ ∈ � and known
nonsingular covariance matrix �, where the parameter space � is given by (2). Then
(i) for testing θi = 0 for all i against the fixed alternative (θ ′

1, . . . , θ
′
s), the most power-

ful test rejects for large values of (θ ′)T�−1 X, where X is a column vector with transpose
XT = (X1, . . . , Xs) and θ ′ is a column vector with transpose (θ ′)T = (θ ′

1, . . . , θ
′
s). In particular,

no uniformly most powerful test exists;
(ii) for testing θi = 0 for all i against alternatives (θ ′

1, . . . , θ
′
s) such that all θ ′

i are equal, a
uniformly most powerful test exists and rejects for large values of the sum of the components of
�−1 X; and
(iii) if, in addition, � has diagonal elements 1 and off-diagonal elements ρ, then a uniformly most
powerful level α test exists and rejects the hypothesis that all θi = 0 when

∑
i Xi > z1−α{s +

s(s − 1)ρ}1/2.
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All proofs are given in the Appendix. Thus, rejecting the intersection hypothesis for large values
of the sum

∑
i Xi is uniformly most powerful, but only for a restricted alternative parameter space,

and under a strong assumption on �. We now state a maximin result that applies to a much larger
alternative parameter space.

PROPOSITION 2. Assume that � has diagonal elements 1 and off-diagonal elements ρ, and
consider testing H0 : θ = (0, 0, . . . , 0) against θ ∈ ω1(ε), where

ω1(ε) =
{

θ :
⋂

i

{θi : θi � ε}
}

. (4)

Then the test that rejects when
∑

i Xi > z1−α{s + s(s − 1)ρ}1/2 is maximin; that is, it maximizes
inf{θ ∈ ω1(ε) : prθ (reject H0)}.

Remark 1. The covariance structure of Proposition 2, known as compound symmetry, is a
tractable correlation model that is used in a number of practical situations, such as repeated
measures analysis of variance. Unfortunately, if � has a different structure, the less tractable
linear combination 1′�−1 X is maximin. Note the similarity of this test statistic, derived here by
testing and maximizing power, to O’Brien’s (1984, p. 1082) best linear unbiased estimator of the
common mean of possibly correlated random variables.

Finally, for two-sided alternatives with parameter space �′ given in (3), an analogous maximin
result holds for the test that rejects for large values of | ∑ Xi |.

3. OPTIMAL CONSONANT TESTS

Formally, with consonant methods, if the intersection hypothesis HK defined in (1) is rejected,
then some Hi with i ∈ K is rejected. We concentrate now on how to choose consonant tests of
an intersection hypothesis. What follows is an example of a dissonant test.

Example 1. One-sided normal means. Recall the setup in § 2 and Proposition 2. If α = 0·05,
ρ = 0 and (X1, X2) = (1·4, 1·4), then no Hi can be rejected by closure, even though H{1,2} is
rejected because the sum test rejects if X1 + X2 > 2·326; see Fig. 1(a).

This procedure can be improved if the goal is to make correct decisions about H1 and H2.
There are points in the rejection region for testing the intersection hypothesis H{1,2} that do not
allow for rejection of either H1 or H2. By removing such points from the rejection region when
testing H{1,2}, we can instead include other points in the rejection region that satisfy the constraint
that the overall rule be consonant, while still maintaining error control. To achieve that for our
overall test of H{1,2}, we restrict attention to tests that have a rejection region in the plane which
lies entirely in {(X1, X2) : max(X1, X2) > z1−α}. Any intersection test satisfying this constraint
will result in a consonant procedure when applying the closure method.

To see a concrete way to improve upon the above procedure, consider a rejection region Sα for
H{1,2} of the form

Sα = {(X1, X2) : X1 + X2 > s(1 − α), max(Xi ) > z1−α}, (5)

where the constant s(1 − α) is determined so that, under (θ1, θ2) = (0, 0), the region Sα has
probability α. The rejection region has been obtained from Proposition 2 by removing points
that do not support consonance and including points that do. The chance of rejecting any false
individual null hypothesis now increases when the closure method is applied. Indeed, s(1 − α)
< 21/2z1−α. For an illustration with α = 0·05, see Fig. 1(a). It follows in general that, for
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Fig. 1. (a) The rejection regions for the test of Proposition 2 and its improvement of Proposition 3 with
nominal level α = 0·05 when the correlation is ρ = 0. The test of Proposition 2 rejects for points to the
right and above the dashed line with intercept 2·326 and slope −1. The improved test of Proposition 3
rejects for points to the right and above the solid curve defined by (5) with s(0·95) = 1·985 and
z1−α = 1·645. For example, the point A = (1·4, 1·4) leads to a rejection by the test of Proposition 2
but not by the improved test. On the other hand, the point B = (1·9, 0·25) leads to a rejection by the
improved test of Proposition 3 but not by the test of Proposition 2. The region which leads to at least one
individual rejection by the improved test but not by the standard test is shaded. (b) The rejection regions
for the test of the two-sided version of Proposition 2 based on the absolute sum, and its improvement of
Proposition 4 with nominal level α = 0·05 when the correlation is ρ = 0. The absolute sum test rejects
for points outside the dashed band. The improved test rejects for points outside the solid band. For
example, the point C = (1·6, 1·6) leads to a rejection by the absolute sum test (though no individual Hi

are rejected), but not by the improved test of Proposition 4. On the other hand, the point D = (2·3, 0·2)
leads to a rejection by the improved test but not by the absolute sum test. The region which leads to at

least one individual rejection by the improved test but not by the absolute test is shaded.

any i = 1, 2, with θi > 0,

prθ1,θ2
(reject Hi using Proposition 2) < prθ1,θ2

(reject Hi using Sα);

that is, the new consonant procedure has uniformly greater power for detecting a false null
hypothesis Hi than the dissonant procedure using the sum statistic for the intersection test.
Similarly, if both nulls are false, the new procedure has a uniformly greater chance of detecting
both hypotheses as false or at least one false hypothesis. In summary, imposing consonance makes
interpretation easier and provides better discrimination.

Thus, applying closure based on intersection tests which each have an optimality property need
not result in an overall optimal procedure for the multiple testing problem. We now pursue the con-
struction of an optimal choice of the intersection test, which will justify the use of (5). The follow-
ing is a modest generalization of the Neyman–Pearson lemma, where we now impose the
added consonance constraint that the rejection region be restricted to a region R of the sample
space.

LEMMA 1. Suppose that P0 and P1 are probability distributions with densities p0 and p1 with
respect to a dominating measure. Restrict attention to tests φ = φ(X ) that are level α, that is,
E0{φ(X )} � α, and such that φ(X ) = 0 if X ∈ A, for some fixed region A in the sample space.
Let R = Ac be the complement of A. Among such tests, a test that maximizes the power against
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P1 is given by

φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 L(x) > C, x ∈ R,

γ L(x) = C, x ∈ R,

0 L(x) < 0, x ∈ A,

where L(x) = p1(x)/p0(x) and C and γ are chosen to meet the level constraint.

Next, we construct a maximin test by generalizing Theorem 8.1.1 in Lehmann & Romano
(2005), except that now we have the added constraint that the rejection region must lie in some
fixed set R. Denote by ω the null hypothesis parameter space and by ω′ the alternative hypothesis
parameter space over which it is desired to maximize the minimum power. The goal is to determine
the test that maximizes inf θ∈ω′ Eθ {φ(X )} subject to supθ∈ω Eθ {φ(X )} � α and to the constraint
that the rejection region must lie entirely in a fixed subset R. Let {Pθ , θ ∈ ω ∪ ω′} be a family of
probability distributions over a sample space (X ,A) with densities pθ = d Pθ/dµ with respect
to a σ -finite measure µ, and suppose that the densities pθ (x) considered as functions of the two
variables (x, θ) are measurable with respect to A × B and A × B′, where B and B′ are given
σ -fields over ω and ω′.

THEOREM 1. For any distributions � and �′ over B and B′, for testing h(x) = ∫
ω pθ (x) d�(θ )

against h′(x) = ∫
ω′ pθ (x) d�′(θ ), let ϕ�,�′ be the most powerful among level α tests φ that also

satisfy φ(x) = 0 if x ∈ Rc. Also, let β�,�′ be its power against the alternative h′. If � and �′
satisfy supω Eθ {ϕ�,�′(X )} � α, infω′ Eθ {ϕ�,�′(X )} = β�,�′ , then ϕ�,�′ maximizes infω′ Eθϕ(X )
among all level-α tests φ(·) of the hypothesis H : θ ∈ ω which also satisfies φ(x) = 0 if x ∈ Rc,
and it is the unique test with this property if it is the unique most powerful level-α test among
tests that accept on Rc for testing h against h′.

Example 2. Continuation of Example 1. Recall that (X1, X2) is bivariate normal with unit
variances, E(Xi ) = θi , and known correlation coefficient ρ. We test the null hypotheses Hi : θi =
0 against the one-sided alternatives θi > 0. Theorem 1 implies the following.

PROPOSITION 3. Consider the above multiple testing problem. Apply the closure method using
the test that rejects Hi if Xi > z1−α. The test of H{1,2} which maximizes

inf
ω1(ε)

prθ1,θ2
(reject at least one Hi )

among procedures controlling the familywise error rate is given by (5), where ω1(ε) is given
by (4).

Remark 2. Test based on the maximum test statistic. In the above multiple testing problem, the
test based on the maximum test statistic works as follows. Denote the ordered test statistics by
T(1) � T(2) with corresponding hypotheses H(1) and H(2). Reject H(2) if T(2) > q(1 − α), where
the critical value q(1 − α) depends on ρ and satisfies

pr0,0{max(X1, X2) > q(1 − α)} = α.

If H(2) is not rejected, stop. Otherwise, further reject H(1) if T(1) > z1−α.

Example 3. Application to restricted two-sided testing. Consider the setup of § 2, except that
now we consider the two-sided case. The full parameter space is given by (3) and Hi specifies
θi = 0. Here, (X1, X2) is bivariate normal with unit variances, E(Xi ) = θi and known correlation
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Table 1. The critical values r (0·90), r (0·95) and r (0·99) as functions of the correlation
coefficient ρ. These values were obtained from B = 106 Monte Carlo simulations

ρ r (0·90) r (0·95) r (0·99) ρ r (0·90) r (0·95) r (0·99)

0·0 1·982 2·290 2·878
−0·1 1·804 2·075 2·596 0·1 2·152 2·498 3·153
−0·2 1·617 1·853 2·313 0·2 2·314 2·700 3·421
−0·3 1·423 1·622 2·031 0·3 2·467 2·892 3·687
−0·4 1·228 1·392 1·743 0·4 2·611 3·071 3·943
−0·5 1·024 1·160 1·452 0·5 2·746 3·240 4·194
−0·6 0·819 0·930 1·161 0·6 2·872 3·401 4·427
−0·7 0·614 0·696 0·866 0·7 2·988 3·548 4·634
−0·8 0·409 0·465 0·581 0·8 3·095 3·683 4·827
−0·9 0·205 0·231 0·291 0·9 3·197 3·807 5·003
−1·0 0·000 0·000 0·000 1·0 3·290 3·920 5·152

coefficient ρ. We now determine the consonant, maximin, level-α test against ω′
1(ε) defined by

ω′
1(ε) = {θ : θi � ε, i = 1, 2} ∪ {θ : θi � −ε, i = 1, 2}. (6)

PROPOSITION 4. Consider the above multiple testing problem. Apply the closure method using
the test that rejects Hi if |Xi | > z1−α/2. The test of H{1,2} which maximizes

inf
ω′

1(ε)
prθ1,θ2

(reject at least one Hi )

among procedures controlling the familywise error rate is given by

{(X1, X2) : |X1 + X2| > r (1 − α), max(|Xi |) > z1−α/2},
where r (1 − α) is determined so that the region has probability α under (θ1, θ2) = (0, 0).

Again, the optimal region takes the same form as the one without restricting to consonant tests,
but adds the necessary restriction on the rejection region. For an illustration, see Fig. 1(b). Table 1
shows the critical values r (0·90), r (0·95) and r (0·99) as functions of ρ. By symmetry, s(1 − α) =
r (1 − 2α), so some one-sided critical values can also be derived from the table. The critical values
r (1 − α) in Table 1 were obtained by simulation. To see how, fix α. Draw B random samples from
the bivariate normal distribution with means 0, unit variances and correlation coefficient ρ. Call
the bth such sample {X∗

1(b), X∗
2(b)}. If maxi∈{1,2}{|X∗

i (b)|} > z1−α/2, let Y (b) = | ∑2
i=1 X∗

i (b)|;
otherwise, let Y (b) = 0. Then r (1 − α) is obtained as the empirical 1 − α quantile of the B values
Y (1), . . . , Y (B).

Table 2 compares α̂, the empirical familywise error rate, and β̂, the empirical prθ1,θ2
(reject �

1 false Hi ), of the Holm and stepwise maximum test statistic tests to the standard and consonant
sum tests. Remark 2 provides a definition of the stepwise maximum test statistic test in this context;
the corresponding critical values q(1 − α) were also obtained by simulation. Each scenario is
based on 50 000 simulations from a bivariate normal distribution with mean vector (θ1, θ2), unit
variances and correlation coefficient ρ = 0 and 0·5, with one-sided α = 0·025. The maximum
test statistic is more powerful than the Holm one for nonzero ρ, and the consonant sum test is
always more powerful than the sum test. As expected, the maximum test statistic is most powerful
when there is only one nonzero mean, while the consonant sum test is most powerful when there
are two equal nonzero means. With two unequal nonzero means, one large and one medium-sized,
the consonant sum test is more powerful for ρ = 0, while the maximum test statistic is more
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Table 2. Comparison of empirical familywise error rate, denoted by α̂, and empirical
power, denoted by β̂, attained by different methods as functions of the correlation ρ

and the true means (θ1, θ2)
ρ (θ1, θ2) Holm maxT Sum ConS Holm maxT Sum ConS

α̂ β̂

0·0 (0·0, 0·0) 0·0249 0·0251 0·0159 0·0242 0 0 0 0
0·0 (3·0, 0·0) 0·0215 0·0215 0·0241 0·0242 0·778 0·779 0·549 0·660
0·0 (3·0, 1·5) 0 0 0 0 0·829 0·829 0·852 0·881
0·0 (3·0, 3·0) 0 0 0 0 0·951 0·951 0·976 0·978
0·5 (0·0, 0·0) 0·0235 0·0250 0·0218 0·0246 0 0 0 0
0·5 (3·0, 0·0) 0·0237 0·0237 0·0240 0·0240 0·778 0·787 0·411 0·446
0·5 (3·0, 1·5) 0 0 0 0 0·793 0·801 0·735 0·758
0·5 (3·0, 3·0) 0 0 0 0 0·898 0·904 0·925 0·931

Holm, classical Holm method; maxT, stepwise maximum test statistic; Sum, closure method using the
sum statistic; ConS, consonant version of the sum test.

powerful for ρ = 0·5. Due to its lack of consonance, the sum test’s empirical familywise error
rate sometimes falls quite short of 0·025.

Remark 3. Control of directional errors. Suppose that, if Hi is rejected by a given procedure,
such as that of Proposition 4, then we declare θi > 0 if Xi > 0 or θi < 0 if Xi < 0. A directional
error occurs if it is declared that θi < 0 when in fact θi > 0, or if it is declared that θi > 0 when
θi < 0. Control of the familywise error rate, i.e., Type 1 errors, and directional errors together
entails showing that, for any (θ1, θ2),

prθ1,θ2
(either reject at least one true Hi or make one or more directional errors) � α. (7)

Application of the closure method need not result in control of directional errors; see Shaffer
(1980). For some recent literature on directional errors, see Finner (1999) and Shaffer (2002).
In general, the value on the left-hand side of (7) will be no smaller than the probability of at
least one false rejection, the familywise error rate. Simulations over a wide range of (θ1, θ2) and
ρ support the validity of (7) for our procedure. However, we can only argue that the procedure
based on Proposition 4 satisfies (7) if α is replaced by 3α/2. If both Hi are true, there is nothing
to prove, since (7) is then covered by familywise error rate control. Next, suppose that both Hi

are false. If both θi are less than 0, then the left-hand side of (7) does not exceed

prθ1,θ2
(at least one Xi > z1−α/2),

which by Bonferroni’s inequality is no bigger than

prθ1
(X1 > z1−α/2) + prθ2

(X2 > z1−α/2).

However, each term is bounded above by the same expression with θi replaced by zero, since
θi < 0, leading to the upper bound α. A similar argument holds if one θi is positive and the
other negative, or if both are positive. The final case occurs if one Hi is true and the other false.
Assume without loss of generality that θ1 = 0 and θ2 < 0. Then the event that H1 is rejected or
θ2 is declared positive implies either |X1| > z1−α/2 or X2 > z1−α/2. By a Bonferroni argument,
the probability of the union of these events under (0, θ2) is bounded above by

pr0,θ2
(|X1| > z1−α/2) + pr0,θ2

(X2 > z1−α/2).

The first term equals α, and the second term is bounded above by the same expression with θ2

replaced by 0, yielding α/2. The sum 3α/2 is the bound.
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Remark 4. General s. The previous results generalize to s hypotheses. For example, consider
Example 3, but for general s. Let (X1, . . . , Xs) be multivariate normal with known covariance
matrix � and mean vector (θ1, . . . , θs). The parameter space consists of �′ given by (3). Assume
that � has all off-diagonal elements equal to ρ and diagonal elements equal to one. The test that
rejects for large values of | ∑ Xi | is maximin, but, if used for testing the intersection hypothesis
that all θi = 0, application of the closure method does not result in a consonant procedure. To
see how closure leads to an improved multiple testing procedure, first test individual hypotheses
Hi by rejecting Hi if |Xi | > z1−α/2. For testing the general intersection hypothesis HK , which
specifies θi = 0 for i ∈ K , consider the following test with rejection region:

Rα,K ≡
{

(X1, . . . , Xs) :

∣∣∣∣∣
∑
i∈K

Xi

∣∣∣∣∣ > r (1 − α, K ), and at least one Hi , i ∈ K,

is rejected when applying closure to the family {Hi , i ∈ K }
}

,

where the critical value r (1 − α, K ) is determined so that the above region has probability at most
α when θi = 0 for all i . Evidently, the critical values r (1 − α, K ) must be determined inductively,
so that, in order to determine r (1 − α, K ), we first determine r (1 − α, K ′) for all K ′ ⊂ K . The
test HK is maximin among level α tests which satisfy the consonant constraint that the rejection
region Rα,K must lie in

⋃
K ′⊂K Rα,K ′ . Critical values may be approximated by simulation similar

to the case s = 2. Note that r (1 − α, K ) does not depend on s and depends on K only through |K |.

4. APPLICATION TO THE PROACTIVE CLINICAL TRIAL

To illustrate the concepts developed here, we use data from PROactive, which stands for
PROspective pioglitAzone Clinical Trial In macroVascular Events, a randomized, double-blind
clinical trial designed to investigate prospectively the effect of an oral glucose-lowering drug
on macrovascular outcomes (Dormandy et al., 2005). The study enrolled 5238 patients with
type 2 diabetes and evidence of macrovascular disease from 19 European countries. Patients
were randomly assigned to either pioglitazone treatment or a placebo and were allowed to
remain on whatever other anti-diabetic medication they were taking at the start of the study,
except for other agents in pioglitazone’s class, as well as specific cardiovascular and lipid-
altering medications. The PROactive study aimed to achieve significance in a primary composite
endpoint, the time to first occurrence of any of seven events: death, non-fatal myocardial infarction,
including silent myocardial infarction, stroke, major leg amputation, acute coronary syndrome, leg
revascularization and cardiac intervention, including coronary artery bypass graft or percutaneous
coronary intervention. A second endpoint was also of interest, and consisted of a subset of the
primary events: time to first occurrence among death, non-fatal myocardial infarction, excluding
silent myocardial infarction, and stroke. More information on the PROactive trial can be found
on the website www.proactive-results.com/index.htm.

Two interim analyses were performed using an alpha spending function, which reduced the
nominal familywise error rate available at the end of the study to 0·044 from the original
0·05. After completion of the three-year study, the log-rank test (Lachin, 2000) of the primary
endpoint yielded a p-value of 0·095. The log-rank test of the principal secondary endpoint
yielded a corresponding p-value of 0·027. While Dormandy et al. (2005) claimed a signifi-
cant outcome, critics such as Freemantle (2005) countered that a secondary endpoint cannot be
deemed significant in the absence of a significant outcome in the primary endpoint, an assertion
supported by Chi (1998), among others. However, if we viewed both endpoints as correspond-
ing to hypotheses of equal interest, rather than tiered as primary and secondary, that is, if we
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consider the endpoints to be co-primary, significance of the second, rather than secondary, end-
point could be scientifically assessed through a testing strategy that controls the familywise error
rate. At the time of study design, the primary endpoint was defined and recognized as clinically
relevant, under the assumption that all vascular beds would be equally affected by the disease
state. However, the clinical relevance of the secondary endpoint was also apparent. Would the
second endpoint have attained significance had the testing methods set forth in this paper been
applied?

The closed family of tests for this example consists of the tests of hypotheses H1 and H2 of
the respective co-primary endpoints and the global null hypothesis H{1,2} that neither endpoint
exhibits a treatment effect. Results from tests of H1 and H2 are already available from the log-rank
tests, as outlined above. Thus, we proceed to test the intersection hypothesis H{1,2} by applying
the methods of this paper. If our test produces a p-value less than or equal to 0·044, the second
endpoint could have been declared significant, not by ignoring the multiplicity problem, but by
proper control of the familywise error rate.

The now-co-primary endpoints are clearly related and highly correlated, sharing the com-
mon components of death, non-fatal myocardial infarction and stroke. Even before results
were published, we would have expected a treatment effect, if there were one, to be appar-
ent in both endpoints. If we want a test of H{1,2} that directs power in the direction of our
alternative hypothesis of a common effect direction, in the region ω′

1(ε) of (6), the abso-
lute sum test or its modified consonant maximin sum test of Proposition 4 are the obvious
choices.

Since the log-rank test statistics are available, our first inclination might be to sum them.
However, in the case of no ties, Cox (1972) derived the log-rank test as an efficient score test in
a proportional hazards regression model with a single binary covariate for treatment group; see
Lachin (2000). This equivalence with the proportional hazards model, which holds approximately
if there are relatively few ties, allows us instead to sum the studentized parameter estimates in a
simple fit of the Wei et al. (1989) marginal model with two endpoints, a relatively simple task in
SAS. This sum can represent an overall treatment effect, as measured by the proportional hazards
model, and corresponds to the sum of the logs of the hazard ratios. Wei et al. (1989) showed that
these estimators, based on the endpoint-specific partial likelihoods, are approximately normal for
large sample sizes.

Let η be the vector of s = 2 parameters in the Wei et al. (1989) marginal model. From the robust
covariance matrix (Liang & Zeger, 1986) output by SAS, we estimate the standard errors as well as
the correlation between the parameter estimates, ρ̂ = 0·74. Studentizing the parameter estimates
as Xi = η̂i/SE(η̂i ) yields X1 = −1·667 and X2 = −2·202. We test the intersection hypothesis
H{1,2} : η1 = η2 = 0 by forming, as in Proposition 2, the test statistic (X1 + X2)/(2 + 2ρ̂)1/2 =
−2·073. The probability of a larger absolute value under the standard normal is 0·038. Since it is
below 0·044, the available α, we reject the intersection hypothesis and, by the closure principle,
claim that the second endpoint, indeed, had a significant treatment effect, even after accounting
for multiple testing.

What result would be obtained from the PROactive data if we applied the consonant maximin
sum test of Proposition 4? To calculate the critical value for this test, we drew B = 50 000 random
samples from the bivariate normal (0, 0, 1, 1) distribution with correlation coefficient 0·74, the
observed correlation between the Wei et al. (1989) parameter estimates. Following the approach of
Example 3, we generated the approximate quantile r (1 − 0·044) = 3·700; a linearly interpolated
value from Table 1, at ρ = 0·74, is roughly 3·768, somewhat far from the value generated through
simulation, as these critical values are quite nonlinear in the inputs, especially in the level. The
sum of the studentized parameter estimates has absolute value 3·869, corresponding to a p-value
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of 0·036. Hence, we can again reject H{1,2} and by consonance claim significance of the second
endpoint.
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APPENDIX

Proof of Proposition 1. The proof is an application of the Neyman–Pearson lemma. �

Proof of Proposition 2. The least favourable distribution concentrates on the single point (ε, . . . , ε).
Maximinity results because the resulting test against this fixed alternative has an increasing power function
in each of the components θi , and therefore the power is minimized over ω1(ε) at (ε, . . . , ε). �

Proof of Lemma 1. We maximize EP1{φ(X )I (X ∈ R)} subject to EP0{φ(X )I (X ∈ R)} � α. Let Qi

denote the conditional distribution of X given X ∈ R when X ∼ Pi . Also, let βi = Pi (R). Then, equiv-
alently, the problem is to maximize β1

−1 EQ1{φ(X )} subject to EQ0{φ(X )} � α/β0, or equivalently max-
imize EQ1{φ(X )} subject to EQ0{φ(X )} � α′ = α/β0. By the Neyman–Pearson lemma, the optimal test
rejects for large values of the likelihood ratio d Q1(X )/d Q0(X ), which is a constant multiple of L(X ).

�

Proof of Theorem 1. If ϕ∗ is any other level-α test of H satisfying ϕ∗(X ) = 0 if X ∈ Rc, it is also of
level α for testing the simple hypothesis that the density of X is h; therefore, the power of ϕ∗ against h′

cannot exceed β�,�′ . It follows that

inf
ω′ Eθ {ϕ∗(X )} �

∫
ω′

Eθ {ϕ∗(X )} d�′(θ ) � β�,�′ = inf
ω′ Eθ {ϕ��′(X )},

and the second inequality is strict if ϕ��′ is unique. �
Proof of Proposition 3. Consider any other method based on closure which rejects Hi if Xi > z1−α

and controls the familywise error rate. Let S′ denote its rejection region for H{1,2}. Furthermore, let
S′′ = S′ ∩ R, where R = {(X1, X2) : min(Xi ) > z1−α}. Then, using S′ or S′′ results in the same outcomes
for the individual tests of Hi as far as the closure method is concerned. In particular, the probability of
rejecting at least one Hi using S′, combined with closure, is the same as the probability of rejecting at least
one Hi using S′′. However, for S′′ ⊂ R, the procedure is now consonant and the probability of rejecting at
least one Hi is the same as the probability of just rejecting the intersection hypothesis based on S′′. The
optimal choice for S′′ is therefore given by Theorem 1. To apply the theorem, take �′ to be concentrated
on (ε, ε) and apply Lemma 1. The resulting test with rejection region Sα is then easily seen to be the
consonant sum test given by (5). �

Proof of Proposition 4. The proof is analogous to the proof of Proposition 3, except that �′ puts equal
mass at (ε, ε) and (−ε,−ε). �
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Ed. P. Bauer, G. Hommel and E. Sonnemann, pp. 121–35. Berlin: Springer.
WEI, L. J., LIN, D. Y. & WEISSFELD, L. (1989). Regression analysis of multivariate incomplete failure time data by

modeling marginal distributions. J. Am. Statist. Assoc. 84, 1065–73.
WESTFALL, P. & YOUNG, S. (1993). Resampling-Based Multiple Testing. New York: John Wiley.

[Received February 2007. Revised August 2008]


	Introduction
	Rationale for the Sum Test
	Optimal Consonant Tests
	Application to the PROactive Clinical Trial

