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Abstract This paper considers the problem of testing s null hypotheses simultane-
ously while controlling the false discovery rate (FDR). Benjamini and Hochberg
(J. R. Stat. Soc. Ser. B 57(1):289–300, 1995) provide a method for controlling the
FDR based on p-values for each of the null hypotheses under the assumption that
the p-values are independent. Subsequent research has since shown that this pro-
cedure is valid under weaker assumptions on the joint distribution of the p-values.
Related procedures that are valid under no assumptions on the joint distribution of
the p-values have also been developed. None of these procedures, however, incor-
porate information about the dependence structure of the test statistics. This paper
develops methods for control of the FDR under weak assumptions that incorporate
such information and, by doing so, are better able to detect false null hypotheses. We
illustrate this property via a simulation study and two empirical applications. In par-
ticular, the bootstrap method is competitive with methods that require independence
if independence holds, but it outperforms these methods under dependence.
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1 Introduction

Consider the problem of testing s null hypotheses simultaneously. A classical ap-
proach to dealing with the multiplicity problem is to restrict attention to procedures
that control the probability of one or more false rejections, which is called the fami-
lywise error rate (FWER). When s is large, however, the ability of such procedures
to detect false null hypotheses is limited. For this reason, it is often preferred in such
situations to relax control of the FWER in exchange for improved ability to detect
false null hypotheses.

To this end, several ways of relaxing the FWER have been proposed. Hommel and
Hoffman (1988) and Lehmann and Romano (2005a) consider control of the prob-
ability of k or more false rejections for some integer k ≥ 1, which is termed the
k-FWER. Obviously, controlling the 1-FWER is the same as controlling the usual
FWER. Lehmann and Romano (2005a) also consider control of the false discovery
proportion (FDP), defined to be the fraction of rejections that are false rejections
(with the fraction understood to be 0 in the case of no rejections). Given a user-
specified value of γ , control of the FDP means control of the probability that the
FDP is greater than γ . Note that when γ = 0, control of the FDP reduces to con-
trol of the usual FWER. Methods for control of the k-FWER and the FDP based on
p-values for each null hypothesis are discussed in Lehmann and Romano (2005a),
Romano and Shaikh (2006a), and Romano and Shaikh (2006b). These methods are
valid under weak or no assumptions on the dependence structure of the p-values, but
they do not attempt to incorporate information about the dependence structure of the
test statistics. Methods that incorporate such information and are thus better able to
detect false null hypotheses are described in Van der Laan et al. (2004), Romano and
Wolf (2007), and Romano et al. (2008).

A popular third alternative to control of the FWER is control of the false discov-
ery rate (FDR), defined to be the expected value of the FDP. Control of the FDR
has been suggested in a wide area of applications, such as educational evaluation
(Williams et al. 1999), clinical trials (Mehrotra and Heyse 2004), analysis of mi-
croarray data (Drigalenko and Elston 1997, and Reiner et al. 2003), model selection
(Abramovich and Benjamini 1996, and Abramovich et al. 2006), and plant breeding
(Basford and Tukey 1997). Benjamini and Hochberg (1995) provide a method for
controlling the FDR based on p-values for each null hypothesis under the assump-
tion that the p-values are independent. Subsequent research has since shown that this
procedure remains valid under weaker assumptions on the joint distribution of the
p-values. Related procedures that are valid under no assumptions on the joint distrib-
ution of the p-values have also been developed; see Benjamini and Yekutieli (2001).
Yet procedures for control of the FDR under weak assumptions that incorporate in-
formation about the dependence structure of the test statistics remain unavailable.
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This paper seeks to develop methods for control of the FDR that incorporate such
information and, by doing so, are better able to detect false null hypotheses.

The remainder of the paper is organized as follows. In Sect. 2 we describe our
notation and setup. Section 3 summarizes previous research on methods for control
of the FDR. In Sect. 4 we provide some motivation for our methods for control of the
FDR. A bootstrap-based method is then developed in Sect. 5. The asymptotic validity
of this approach relies upon an exchangeability assumption, but in Sect. 6 we develop
a subsampling-based approach whose asymptotic validity does not depend on such
an assumption. Section 7 sheds some light on the finite-sample performance of our
methods and some previous proposals via simulations. We also provide two empirical
applications in Sect. 8 to further compare the various methods. Section 9 concludes.

2 Setup and notation

A formal description of our setup is as follows. Suppose that data X = (X1, . . . ,Xn)
is available from some probability distribution P ∈ Ω . Note that we make no rigid re-
quirements for Ω ; it may be a parametric, semiparametric, or a nonparametric model.
A general hypothesis H may be viewed as a subset ω of Ω . In this paper we consider
the problem of simultaneously testing null hypotheses Hi : P ∈ ωi , i = 1, . . . , s, on
the basis of X. The alternative hypotheses are understood to be H ′

i : P $∈ ωi , i =
1, . . . , s.

We assume that test statistics Tn,i , i = 1, . . . , s, are available for testing Hi, i =
1, . . . , s. Large values of Tn,i are understood to indicate evidence against Hi . Note
that we may take Tn,i = −p̂n,i , where p̂n,i is a p-value for Hi . A p-value for Hi may
be exact, in which case p̂n,i satisfies

P {p̂n,i ≤ u} ≤ u for any u ∈ (0,1) and P ∈ ωi , (1)

or asymptotic, in which case

lim sup
n→∞

P {p̂n,i ≤ u} ≤ u for any u ∈ (0,1) and P ∈ ωi . (2)

In this article, we consider stepdown multiple testing procedures. Let

Tn,(1) ≤ · · · ≤ Tn,(s)

denote the ordered test statistics (from smallest to largest), and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Stepdown multiple testing procedures first
compare the most significant test statistic, Tn,(s), with a suitable critical value cs .
If Tn,(s) < cs , then the procedure rejects no null hypotheses; otherwise, the proce-
dure rejects H(s) and then ‘steps down’ to the second most significant null hypothe-
sis H(s−1). If Tn,(s−1) < cs−1, then the procedure rejects no further null hypotheses;
otherwise, the procedure rejects H(s−1) and then ‘steps down’ to the third most sig-
nificant null hypothesis H(s−2). The procedure continues in this fashion until either
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one rejects H(1) or one does not reject the null hypothesis under consideration. More
succinctly, a stepdown multiple testing procedure rejects

H(s), . . . ,H(s−j∗),

where j∗ is the largest integer j that satisfies

Tn,(s) ≥ cs, . . . , Tn,(s−j) ≥ cs−j ;

if no such j exits, the procedure does not reject any null hypotheses.
We will construct stepdown multiple testing procedures that control the false dis-

covery rate (FDR), which is defined to be the expected value of the false discovery
proportion (FDP). Denote by I (P ) the set of indices corresponding to true null hy-
potheses; that is,

I (P ) = {1 ≤ i ≤ s : P ∈ ωi}. (3)

For a given multiple testing procedure, let F denote the number of false rejections,
and let R denote the total number of rejections; that is,

F =
∣∣{1 ≤ i ≤ s : Hi rejected and i ∈ I (P )

}∣∣,

R =
∣∣{1 ≤ i ≤ s : Hi rejected}

∣∣.

Then, the false discovery proportion (FDP) is defined as follows:

FDP = F

max{R,1} .

Using this notation, the FDR is simply E[FDP]. A multiple testing procedure is said
to control the FDR at level α if

FDRP = EP [FDP] ≤ α for all P ∈ Ω.

A multiple testing procedure is said to control the FDR asymptotically at level α if

lim sup
n→∞

FDRP ≤ α for all P ∈ Ω. (4)

We will say that a procedure is asymptotically valid if it satisfies (4). Methods that
control the FDR can typically only be derived in special circumstances. In this paper,
we will instead pursue procedures that are asymptotically valid under weak assump-
tions.

3 Previous methods for control of the FDR

In this section, we summarize the existing literature on methods for control of the
FDR. The first known method proposed for control of the FDR is the stepwise proce-
dure of Benjamini and Hochberg (1995) based on p-values for each null hypothesis.
Let

p̂n,(1) ≤ · · · ≤ p̂n,(s)
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denote the ordered values of the p-values, and let

H(1), . . . ,H(s)

denote the corresponding null hypotheses. Note that in this case the null hypotheses
are ordered from most significant to least significant, since small values of p̂n,i are
taken to indicate evidence against Hi . For 1 ≤ j ≤ s, let

αj = j

s
α. (5)

Then, the method of Benjamini and Hochberg (1995) rejects null hypotheses
H(1), . . . ,H(j∗), where j∗ is the largest j such that

p̂n,(j) ≤ αj .

Of course, if no such j exists, then the procedure rejects no null hypotheses.
Benjamini and Hochberg (1995) prove that their method controls the FDR at level

α if the p-values satisfy (1) and are independent. Benjamini and Yekutieli (2001)
show that independence can be replaced by a weaker condition known as positive
regression dependency; see their paper for the exact definition. It can also be shown
that the method of Benjamini and Hochberg (1995) provides asymptotic control of the
FDR at level α if the p-values satisfy (2) instead of (1) and this weaker dependence
condition holds.

On the other hand, the method of Benjamini and Hochberg (1995) fails to control
the FDR at level α when the p-values only satisfy (1). Benjamini and Yekutieli (2001)
show that control of the FDR can be achieved under only (1) if αj defined in (5) are
replaced by

αj = j

s

α

Cs
,

where Ck = ∑k
r=1

1
r . Note that Cs ≈ log(s) + 0.5, so this method can have much

less power than the method of Benjamini and Hochberg (1995). For example, when
s = 1,000, then Cs = 7.49. As before, it can be shown that this procedure provides
asymptotic control of the FDR at level α if the p-values satisfy (2) instead of (1).

Even when sufficient conditions for the method of Benjamini and Hochberg (1995)
to control the FDR hold, it is conservative in the following sense. It can be shown that

FDRP ≤ s0

s
α,

where s0 = |I (P )|. So, unless s0 = s, the power of the procedure could be improved
by replacing the αj defined in (5) by

αj = j

s0
α.
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Of course, s0 is unknown in practice, but there exist several approaches in the litera-
ture to estimate s0. For example, Storey et al. (2004) suggest the following estimator:

ŝ0 = #{p̂n,j > λ} + 1
1 − λ

, (6)

where λ ∈ (0,1) is a user-specified parameter. The reasoning behind this estimator
is the following. As long as each test has reasonable power, then most of the “large”
p-values should correspond to true null hypotheses. Therefore, one would expect
about s0(1 − λ) of the p-values to lie in the interval (λ,1], assuming that the p-
values corresponding to the true null hypotheses have approximately a uniform [0,1]
distribution. Adding one in the numerator of (6) is a small-sample adjustment to
make the procedure slightly more conservative and to avoid an estimator of zero for
s0. Having estimated s0, one then applies the procedure of Benjamini and Hochberg
(1995) with the αj defined in (5) replaced by

α̂j = j

ŝ0
α.

Storey et al. (2004) prove that this adaptive procedure controls the FDR asymptoti-
cally whenever the p-values satisfy (2) and a weak dependence condition holds. This
condition includes independence, dependence within blocks, and mixing-type situ-
ations, but, unlike Benjamini and Yekutieli (2001), it does not allow for arbitrary
dependence among the p-values. It excludes, for example, the case in which there
is a constant correlation across all p-values. Related work is found in Genovese and
Wasserman (2004) and Benjamini and Hochberg (2000).

The adaptive procedure of Storey et al. (2004) can be quite liberal under positive
dependence, such as in a scenario with constant positive correlation. For this reason,
Benjamini et al. (2006) develop an alternative procedure, which works as follows:

Algorithm 3.1 (BKY Algorithm)

1. Apply the procedure of Benjamini and Hochberg (1995) at nominal level α∗ =
α/(1 +α). Let r be the number of rejected hypotheses. If r = 0, then do not reject
any hypothesis and stop; if r = s, then reject all s hypotheses and stop; otherwise
continue.

2. Apply the procedure of Benjamini and Hochberg (1995) with the αj defined in (5)
replaced by α̂j = j

ŝ0
α∗, where ŝ0 = s − r .

Benjamini et al. (2006) prove that this procedure controls the FDR whenever the
p-values satisfy (2) and are independent of each other. They also provide simula-
tions which suggest that this procedure continues to control the FDR under positive
dependence.

Benjamini and Liu (1999) provide a stepdown method for control of the FDR
based on p-values for each null hypothesis that satisfy (1) and are independent. Sarkar
(2002) extends the results of Benjamini and Hochberg (1995), Benjamini and Liu
(1999), and Benjamini and Yekutieli (2001) to generalized stepup–stepdown proce-
dures; yet the methods he considers, like those described above, do not incorporate



Control of the false discovery rate under dependence using 423

the information about the dependence structure of the test statistics. In the following
sections, we develop multiple testing procedures for asymptotic control of the FDR
under weak assumptions that incorporate such information, and, by doing so, are bet-
ter able to detect false hypotheses. Our procedures build upon the work of Troendle
(2000), who suggests a procedure for asymptotic control of the FDR that incorpo-
rates information about the dependence structure of the test statistics, but relies upon
the restrictive parametric assumption that the joint distribution of the test statistics
is given by a symmetric multivariate t-distribution. Yekutieli and Benjamini (1999)
also provide a method for asymptotic control of the FDR that exploits information
about the dependence structure of the test statistics to improve the ability to detect
false null hypotheses, but their analysis requires subset pivotality and that the test sta-
tistics corresponding to true null hypotheses are independent of those corresponding
to false null hypotheses. Although our analysis will require neither of these restrictive
assumptions, the asymptotic validity of our bootstrap approach will rely upon an ex-
changeability assumption. The subsampling approach we will develop subsequently,
however, will not even require this restriction.

4 Motivation for methods

In order to motivate our procedures, first note that for any stepdown procedure based
on critical values c1, . . . cs , we have that

FDRP = EP

[
F

max{R,1}

]
=

∑

1≤r≤s

1
r
EP [F |R = r]P {R = r}

=
∑

1≤r≤s

1
r
E[F |R = r]

× P {Tn,(s) ≥ cs, . . . , Tn,(s−r+1) ≥ cs−r+1, Tn,(s−r) < cs−r},

where the event Tn,s−r < cs−r is understood to be vacuously true when r = s. As
before, let s0 = |I (P )| and assume without loss of generality that I (P ) = {1, . . . , s0}.
Under weak assumptions, we will show that all false hypotheses will be rejected
with probability tending to one. For the time being, assume that this is the case. Let
Tn,r:t denote the r th largest of the t test statistics Tn,1, . . . , Tn,t ; in particular, when
t = s0, Tn,r:s0 denotes the r th largest of the test statistics corresponding to the true
hypotheses. Then, with probability approaching one, we have that

FDRP =
∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ cs0, . . . , Tn,s−r+1:s0 ≥ cs−r+1, Tn,s−r:s0 < cs−r}, (7)

where the event Tn,s−r:s0 < cs−r is again understood to be vacuously true when r = s.
Our goal is to ensure that (7) is bounded above by α for any P , at least asymp-

totically. To this end, first consider any P such that s0 = |I (P )| = 1. Then, (7) is
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simply

FDRP = 1
s
P {Tn,1:1 ≥ c1}. (8)

A suitable choice of c1 is thus the smallest value for which (8) is bounded above by
α; that is,

c1 = inf
{
x ∈ R : 1

s
P {Tn,1:1 ≥ x} ≤ α

}
.

Note that if sα ≥ 1, then c1 so defined is equal to −∞.
Having determined c1, now consider any P such that s0 = 2. Then, (7) is simply

1
s − 1

P {Tn,2:2 ≥ c2, Tn,1:2 < c1} + 2
s
P {Tn,2:2 ≥ c2, Tn,1:2 ≥ c1}. (9)

A suitable choice of c2 is therefore the smallest value for which (9) is bounded above
by α.

In general, having determined c1, . . . , cj−1, the j th critical value may be deter-
mined by considering P such that s0 = j . In this case, (7) is simply

FDRP =
∑

s−j+1≤r≤s

r − s + j

r

× P {Tn,j :j ≥ cj , . . . , Tn,s−r+1:j ≥ cs−r+1, Tn,s−r:j < cs−r}. (10)

An appropriate choice of cj is thus the smallest value for which (10) is bounded
above by α. Note that when j = s, (10) simplifies to

P {Tn,s:s ≥ cs},

so equivalently

cs = inf
{
x ∈ R : P {Tn,s:s ≥ x} ≤ α

}
.

Of course, the above choice of critical values is infeasible since it depends on
the unknown P through the distribution of the test statistics. We therefore focus on
feasible constructions of the critical values based on the bootstrap and subsampling.

5 A bootstrap approach

In this section, we specialize our framework to the case in which interest focuses on
a parameter vector

θ(P ) =
(
θ1(P ), . . . , θs(P )

)
.

The null hypotheses may be one-sided, in which case

Hj : θj ≤ θ0,j vs. H ′
j : θj > θ0,j , (11)
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or the null hypotheses may be two-sided, in which case

Hj : θj = θ0,j vs. H ′
j : θj $= θ0,j . (12)

In the next section, however, we will return to more general null hypotheses. Test
statistics will be based on an estimate θ̂n = (θ̂n,1, . . . , θ̂n,s) of θ(P ) computed using
the data X. We will consider the ‘studentized’ test statistics

Tn,j = √
n(θ̂n,j − θ0,j )/σ̂n,j (13)

for the one-sided case (11) or

Tn,j = √
n|θ̂n,j − θ0,j |/σ̂n,j (14)

for the two-sided case (12). Note that σ̂n,j may either be identically equal to 1 or
an estimate of the standard deviation of

√
n(θ̂n,j − θ0,j ). This is done to keep the

notation compact; the latter is preferable from our point of view but may not always
be available in practice.

Recall that the construction of critical values in the preceding section was infeasi-
ble because of its dependence on the unknown P . For the bootstrap construction, we
therefore simply replace the unknown P with a suitable estimate P̂n. To this end, let
X∗ = (X∗

1, . . . ,X∗
n) be distributed according to P̂n and denote by T ∗

n,j , j = 1, . . . , s,
test statistics computed from X∗. For example, if Tn,j is defined by (13) or (14), then

T ∗
n,j = √

n
(
θ̂∗
n,j − θj (P̂n)

)
/σ̂ ∗

n,j (15)

or
T ∗

n,j = √
n
∣∣θ̂∗

n,j − θj (P̂n)
∣∣/σ̂ ∗

n,j , (16)

respectively, where θ̂∗
n,j is an estimate of θj computed from X∗ and σ̂ ∗

n,j is either

identically equal to 1 or an estimate of the standard deviation of
√

n(θ̂∗
n,j − θj (P̂n))

computed from X∗. For the validity of this approach, we require that the distribution
of T ∗

n,j provides a good approximation to the distribution of Tn,j whenever the cor-
responding null hypothesis Hj is true, but, unlike Westfall and Young (1993), we do
not require subset pivotality. The exact choice of P̂n will, of course, depend on the
nature of the data. If the data X = (X1, . . . ,Xn) are i.i.d., then a suitable choice of P̂n

is the empirical distribution, as in Efron (1979). If, on the other hand, the data consti-
tute a time series, then P̂n should be estimated using a suitable time series bootstrap
method; see Lahiri (2003) for details.

Given a choice of P̂n, define the critical values recursively as follows: having
determined ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf
{
c ∈ R :

∑

s−j+1≤r≤s

r − s + j

r

× P̂n{T ∗
n,j :j ≥ c, . . . , T ∗

n,s−r+1:j ≥ ĉn,s−r+1, T
∗
n,s−r:j < ĉn,s−r} ≤ α

}
.

(17)
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Remark 1 It is important to be clear about the meaning of the notation T ∗
n,r:t , with

r ≤ t , in (17). By analogy to the “real” world, it should denote the r th smallest of the
observations corresponding to the first t true null hypotheses. However, the ordering
of the true null hypotheses in the bootstrap world is not 1,2, . . . , s, but it is instead
determined by the ordering H(1), . . . ,H(s) from the real world. So if the permutation
{k1, . . . , ks} of {1, . . . , s} is defined such that Hk1 = H(1), . . . ,Hks = H(s), then T ∗

n,r:t
is the r th smallest of the observations T ∗

n,k1
, . . . , T ∗

n,kt
.

Remark 2 Note that typically it will not be possible to compute closed form ex-
pressions for the probabilities under P̂n required in (17). In such cases, the required
probabilities may instead be computed using simulation to any desired degree of ac-
curacy.

We now provide conditions under which the stepdown procedure with critical val-
ues defined by (17) satisfies (4). The following result applies to the case of two-sided
null hypotheses, but the one-sided case can be handled using a similar argument. In
order to state the result, we will require some further notation. For K ⊆ {1, . . . , s}, let
Jn,K(P ) denote the joint distribution of

(√
n
(
θ̂n,j − θj (P )

)
/σ̂n,j : j ∈ K

)
.

It will also be useful to define the quantile function corresponding to a c.d.f. G(·) on
R as G−1(α) = inf{x ∈ R : G(x) ≥ α}.

Theorem 1 Consider the problem of testing the null hypotheses Hi, i = 1, . . . , s,
given by (12) using test statistics Tn,i , i = 1, . . . , s, defined by (14). Suppose that
Jn,{1,...,s}(P ) converges weakly to a limit law J{1,...,s}(P ), so that Jn,I (P )(P ) con-
verges weakly to a limit law JI (P )(P ). Suppose further that JI (P )(P )

(i) Has continuous one-dimensional marginal distributions
(ii) Has connected support, which is denoted by supp(JI (P )(P ))

(iii) Is exchangeable

Also, assume that

σ̂n,j
P→ σj (P ),

where σj (P ) > 0 is nonrandom. Let P̂n be an estimate of P such that

ρ
(
Jn,{1,...,s}(P ), Jn,{1,...,s}(P̂n)

) P→ 0, (18)

where ρ is any metric metrizing weak convergence in Rs .
Then, for the stepdown method with critical values defined by (17),

lim sup
n→∞

FDRP ≤ α.

We will make use of the following lemma in our proof of the preceding theorem:
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Lemma 1 Let X be a random vector on Rs with distribution P . Define f : Rs → R
by the rule f (x) = x(k) for some fixed 1 ≤ k ≤ s, where

x(1) ≤ · · · ≤ x(s).

Suppose that (i) the one-dimensional marginal distributions of P have continuous
c.d.f.s and (ii) supp(X) is connected. Then, f (X) has a continuous and strictly in-
creasing c.d.f.

Proof To see that the c.d.f. of f (X) is continuous, simply note that

P
{
f (X) = x

}
≤

∑

1≤i≤s

P {Xi = x} = 0,

where the final equality follows from assumption (i). To see that the c.d.f. of f (X) is
strictly increasing, suppose by way of contradiction that there exists a < b such that
P {f (X) ∈ (a, b)} = 0, but P {f (X) ≤ a} > 0 and P {f (X) ≥ b} > 0. Thus, there ex-
ists x ∈ supp(X) such that f (x) ≤ a and x′ ∈ supp(X) such that f (x′) ≥ b. Consider
the set

Aa,b =
{
x ∈ supp(X) : a < f (x) < b

}
.

By the continuity of f (x) and assumption (ii), Aa,b is nonempty. Moreover, again by
the continuity of f (x), Aa,b must contain an open subset of supp(X) (relative to the
topology on supp(X)). It therefore follows by the definition of supp(X) that

P {X ∈ Aa,b} = P
{
f (X) ∈ (a, b)

}
> 0,

which yields the desired contradiction. !

Remark 3 An important special case of Lemma 1 is the case in which X is distributed
as a multivariate normal random vector with mean µ and covariance matrix Σ . In this
case, assumptions (i)–(ii) of the lemma are implied by the very mild restriction that
Σi,i > 0 for 1 ≤ i ≤ s. In particular, it is not even necessary to assume that Σ is
nonsingular.

Remark 4 Note that even in the case in which s = 1, so f (x) = x, both assumptions
(i) and (ii) in Lemma 1 are necessary to conclude that the distribution of f (X) is
continuous and strictly increasing. Therefore, the assumptions used in Lemma 1 seem
as weak as possible.

Proof of Theorem 1 Without loss of generality, suppose that H1, . . . ,Hs0 are all true
and the remainder false.

In order to illustrate better the main ideas of the proof, we first consider the case
in which P is such that the number of true hypotheses is s0 = 1. The initial step in
our argument is to show that all false null hypotheses are rejected with probability
tending to 1. Since θj (P ) $= θ0,j for j ≥ 2, it follows that

Tn,j = n1/2|θ̂n,j − θ0,j |/σ̂n,j
P→ ∞
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for j ≥ 2. On the other hand, for j = 1, we have that

Tn,j = OP (1).

Therefore, to show that all false hypotheses are rejected with probability tending to
one, it suffices to show that the critical values ĉn,j are all uniformly bounded above
in probability for j ≥ 2.

Recall that ĉn,j is defined as follows: having determined ĉn,1, . . . , ĉn,j−1, ĉn,j is
the infimum over all c ∈ R for which

∑

s−j+1≤r≤s

r − s + j

r
P̂n{T ∗

n,j :j ≥ c, . . . , T ∗
n,s−r+1:j ≥ ĉn,s−r+1, T

∗
n,s−r:j < ĉn,s−r}

(19)
is bounded above by α. Note that (19) can be bounded above by

jP̂n{T ∗
n,j :j ≥ c},

which can in turn be bounded above by

sP̂n{T ∗
n,s:s ≥ c}. (20)

It follows that the set of c ∈ R for which (20) is bounded above by α is a subset of the
set of c ∈ R for which (19) is bounded above by α. Therefore, ĉn,j is bounded above
by the 1−α/s quantile of the (centered) bootstrap distribution of the maximum of all
s variables. In order to describe the asymptotic behavior of this bootstrap quantity, let

Mn(x,P ) = P
{

max
1≤j≤s

{
n1/2|θ̂n,j − θj |/σ̂n,j

}
≤ x

}
,

and let M̂n(x) denote the corresponding bootstrap c.d.f. given by

P̂n

{
max

1≤j≤s

{
n1/2∣∣θ̂∗

n,j − θj (P̂n)
∣∣/σ̂ ∗

n,j

}
≤ x

}
.

In this notation, the previously derived bound for ĉn,j may be restated as

ĉn,j ≤ M̂−1
n

(
1 − α

s

)
.

By the Continuous Mapping Theorem, Mn(·,P ) converges in distribution to a
limit distribution M(·,P ), and the assumptions imply that this limiting distribution
is continuous. Choose 0 < ε < α

s so that M(·,P ) is strictly increasing at
M−1(1 − α

s + ε,P ). For such an ε,

M̂−1
n

(
1 − α

s
+ ε

)
P→ M−1

(
1 − α

s
+ ε,P

)
.

Therefore, ĉn,j is with probability tending to one less than M−1(1 − α
s + ε,P ). The

claim that ĉn,j is bounded above in probability is thus verified.
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It now follows that, in the case s0 = 1,

FDRP = 1
s
P {Tn,1 ≥ ĉn,1} + oP (1).

The critical value ĉn,1 is the 1 − αs quantile of the distribution of T ∗
n,1 under P̂n. If

1 − αs ≤ 0, then ĉn,1 is defined to be −∞, in which case,

FDRP = 1
s

+ oP (1) ≤ α + oP (1).

The desired conclusion thus holds. If, on the other hand, 1 − αs > 0, then we argue
as follows. Note that by assumption (18) and the triangle inequality, we have that

ρ
(
J{1}(P ), Jn,{1}(P̂n)

) P→ 0.

Note further that by Lemma 1, J{1}(·,P ) is strictly increasing at J−1
{1} (1 − sα,P ).

Thus,

ĉn,1
P→ J−1

{1} (1 − sα,P ).

To establish the desired result, it now suffices to use Slutsky’s Theorem.
We now proceed to the general case. First, the same argument as in the case s0 = 1

shows that hypotheses Hs0+1, . . . ,Hs are rejected with probability tending to one. It
follows that with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ ĉn,s0, . . . , Tn,s−r+1:s0 ≥ ĉn,s−r+1, Tn,s−r:j < ĉn,s−r },

where the event Tn,s−r:j < ĉn,s−r is understood to be vacuously true when r = s.
In the definition of the critical values given by (17), recall that T ∗

n,r:t is defined to
be the r th smallest of the bootstrap test statistics among those corresponding to the
smallest t original test statistics. Define T ′

n,r:t to be the r th smallest of the bootstrap
test statistics among those corresponding to the first t original test statistics. Define
c′
n,j to be the critical values defined in the same way as ĉn,j except T ∗

n,r:t in (17) is
replaced with T ′

n,r:t . Recall that we have assumed that null hypotheses H1, . . . ,Hs0

are true and the remainder false. Since the indices of the set of s0 true hypotheses are
identical to the indices corresponding to the smallest s0 test statistics with probability
tending to one, ĉn,j equals c′

n,i with probability tending to 1 for j ≤ s0. It follows
that with probability tending to one, the FDRP is equal to

∑

s−s0+1≤r≤s

r − s + s0

r

× P {Tn,s0:s0 ≥ c′
n,s0

, . . . , Tn,s−r+1:s0 ≥ c′
n,s−r+1, Tn,s−r:j < c′

n,s−r },

where, as before, the event Tn,s−r:j < c′
n,s−r is understood to be vacuously true when

r = s.
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In order to describe the asymptotic behavior of these critical values, let
(T1, . . . , Ts0) be a random vector with distribution JI (P )(P ) and define Tr:t to be
the r th smallest of T1, . . . , Tt . Define c1, . . . , cs0 recursively as follows: having deter-
mined c1, . . . , cj−1, compute cj according to the rule

cj = inf
{
c ∈ R :

∑

1≤k≤j

k

s − j + k

× P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} ≤ α

}
,

where, as before, the event Tj−k:s0 < cj−k is understood to be vacuously true when
k = j . We claim for 1 ≤ j ≤ s0 that

c′
n,j

P→ cj . (21)

To see this, we argue inductively as follows. Suppose that the result is true for
c′
n,1, . . . , c

′
n,j−1. Using assumption (18) and the triangle inequality, we have that

ρ
(
J{1,...,j}(P ), Jn,{1,...,j}(P̂n)

) P→ 0.

Importantly, by the assumption of exchangeability, we have that J{1,...,j}(P ) = JK(P )
for any K ⊆ {1, . . . , s0} such that |K| = j . Next note that

∑

1≤k≤j

P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} = P {Tj :s0 ≥ c}. (22)

The right-hand side of (22) is strictly increasing in c by Lemma 1. As a result, at least
one of the terms on the left-hand side of (22) is strictly increasing at c = cj . It follows
that

∑

1≤k≤j

k

s − j + k
P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k}

is strictly increasing at c = cj . The conclusion (21) thus follows. To complete the
proof, it now suffices to use Slutsky’s Theorem. !

Remark 5 In the definitions of T ∗
n,j given by (15) or (16) used in our bootstrap method

to generate the critical values, one can typically replace θj (P̂n) by θ̂n,j . Of course,
the two are the same under the following conditions: (1) θ̂n,j is a linear statistic;
(2) θj (P ) = E(θ̂n,j ); and (3) P̂n is based on Efron’s bootstrap, the circular blocks
bootstrap, or the stationary bootstrap in Politis and Romano (1994). Even if condi-
tions (1) and (2) are met, the estimators θ̂n,j and θj (P̂n) are not the same if P̂n is
based on the moving blocks bootstrap due to “edge effects.” On the other hand, the
substitution of θ̂n,j for θj (P̂n) does not in general affect the asymptotic validity of
the bootstrap approximation, and Theorem 1 continues to hold. Lahiri (1992) dis-
cusses this point for the special case of time series data and the sample mean. Still
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another possible substitute is E[θ̂∗
n,j |P̂n], but generally these are all first-order as-

ymptotically equivalent. In the simulations of Sect. 7 and the empirical application
of Sect. 8, conditions (1)–(3) always hold, and so we can simply use θ̂n,j for the
centering throughout.

6 A subsampling approach

In this section, we describe a subsampling-based construction of critical values for
use in a stepdown procedure that provides asymptotic control of the FDR. Here, we
will no longer be assuming that interest focuses on null hypotheses about a parameter
vector θ(P ), but we will instead return to considering more general null hypotheses.
Moreover, we will no longer require that the limiting joint distribution of the test
statistics corresponding to true null hypotheses be exchangeable. Finally, as is usual
with arguments based on subsampling, we only require a limiting distribution under
the true distribution of the observed data, unlike the bootstrap, which requires (18).

In order to describe our approach, we will use the following notation. For b < n,
let Nn =

(n
b

)
, and let Tn,b,i,j denote the statistic Tn,j evaluated at the ith subset of

data of size b. Let Tn,b,i,r:t denote the t th largest of the test statistics

Tn,b,i,1, . . . , Tn,b,i,t .

Finally, define critical values ĉn,1, . . . , ĉn,s recursively as follows: having determined
ĉn,1, . . . , ĉn,j−1, compute ĉn,j according to the rule

ĉn,j = inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

∑

1≤k≤j

k

s − j + k

× I {Tn,b,i,j :s ≥ c, . . . , Tn,b,i,j−k+1:s

≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k} ≤ α

}
, (23)

where the event Tn,b,i,j−k:s < ĉn,j−k is understood to be vacuously true when k = j .
We now provide conditions under which the stepdown procedure with this choice of
critical values is asymptotically valid.

Theorem 2 Suppose that the data X = (X1, . . .Xn) is an i.i.d. sequence of random
variables with distribution P . Consider testing null hypotheses Hj : P ∈ ωj , j =
1, . . . , s, with test statistics Tn,j , j = 1, . . . , s. Suppose that Jn,I (P )(P ), the joint
distribution of (Tn,j : j ∈ I (P )), converges weakly to a limit law JI (P )(P ) for which

(i) The one-dimensional marginal distributions of JI (P )(P ) have continuous c.d.f.s
(ii) supp(JI (P )(P )) is connected

Suppose further that Tn,j = τntn,j and tn,j
P→ tj (P ), where tj (P ) > 0 if P ∈ ωj and

tj (P ) = 0 otherwise. Let b = bn < n be a nondecreasing sequence of positive integers
such that b/n → 0 and τb/τn → 0. Then, the stepdown procedure with critical values
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defined by (23) satisfies

lim sup
n→∞

FDRP ≤ α.

Proof We first argue that all false null hypotheses are rejected with probability tend-
ing to one. Let s0 = |I (P )| and, without loss of generality, order the test statistics so
that Tn,1, . . . , Tn,s0 correspond to the true null hypotheses. Suppose that there is at
least one false null hypothesis, for otherwise there is nothing to show, and note that

I {Tn,b,i,j :s ≥ c, . . . , Tn,b,i,j−k+1:s ≥ ĉn,j−k+1, Tn,b,i,j−k:s < ĉn,j−k}
≤ I {Tn,b,i,j :s ≥ c}.

Since k
s−j+k ≤ 1, it follows that

ĉn,j ≤ inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

jI {Tn,b,i,j :s ≥ c} ≤ α

}
,

which may in turn be bounded by

inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

sI {Tn,b,i,s:s ≥ c} ≤ α

}

= τb inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}
,

where tn,b,i,r:t is defined analogously to Tn,b,i,r:t . Following the proof of Theo-
rem 2.6.1 in Politis et al. (1999), we have that

inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}
P→ max

1≤j≤s
tj (P ) > 0,

where the final inequality follows from the assumption that there is at least one false
null hypothesis. Now, consider any Tn,j corresponding to a false null hypothesis.

Since tn,j
P→ tj (P ) > 0 and τb/τn → 0, it follows that

Tn,j = τntn,j > τb inf
{
c ∈ R : 1

Nn

∑

1≤i≤Nn

I {tn,b,i,s:s ≥ c} ≤ α

s

}
,

and thus exceeds all critical values, with probability approaching 1. The desired result
is therefore established.

It follows that with probability approaching 1, we have that

FDRP =
∑

1≤k≤s0

k

s − s0 + k

× P {Tn,s0:s0 ≥ ĉn,s0, . . . , Tn,s0−k+1:s0 ≥ ĉn,s0−k+1, Tn,s0−k:s0 < ĉn,s0−k},
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where the event Tn,s0−k:s0 < ĉn,s0−k is again understood to be vacuously true
when k = s0. In order to describe the asymptotic behavior of this expression, let
(T1, . . . , Ts0) be a random vector with distribution JI (P )(P ) and define Tr:t to be the
r th largest of T1, . . . , Tt . Define c1, . . . , cs0 recursively according to the rule

cj = inf
{
c ∈ R :

∑

1≤k≤j

k

s − j + k

× P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k} ≤ α

}
,

where, as before, the event Tj−k:s0 < cj−k is understood to be vacuously true when
k = j . By the same argument used in the proof of Theorem 1, we have by Lemma 1
that

∑

1≤k≤j

k

s − j + k
P {Tj :s0 ≥ c, . . . , Tj−k+1:s0 ≥ cj−k+1, Tj−k:s0 < cj−k}

is continuous and strictly increasing at c = cj . We may therefore argue inductively
that for 1 ≤ j ≤ s0, we have that

ĉn,j
P→ cj .

An appeal to Slutsky’s theorem completes the argument. !

Remark 6 At the expense of a much more involved argument, it is in fact possible to
remove the assumption that supp(JI (P )(P )) is connected. However, we know of no
example where this mild assumption fails.

Remark 7 The above approach can be extended to dependent data as well. For exam-
ple, if the data X = (X1, . . . ,Xn) form a stationary sequence, we would only consider
the n − b + 1 subsamples of the form (Xi,Xi+1, . . . ,Xi+b−1). Generalizations for
nonstationary time series, random fields, and point processes are further discussed in
Politis et al. (1999).

Remark 8 Interestingly, even under the exchangeability assumption and the setup of
Sect. 5, where both the bootstrap and subsampling are asymptotically valid, the two
procedures are not asymptotically equivalent. To see this, suppose that s = s0 = 2
and that the joint limiting distribution of the test statistics is (T1, T2), where Ti ∼
N(0,σ 2

i ), σ1 = σ2, and T1 is independent of T2. Then, the bootstrap critical value
ĉn,1 tends in probability to z1−α , while the corresponding subsampling critical value
tends in probability to the 1 − α quantile of min{T1, T2}, which will be strictly less
than z1−α .

If the exchangeability assumption fails, i.e., σ1 $= σ2, then the subsampling critical
value still tends in probability to the 1 − α quantile of min{T1, T2}. The bootstrap
critical value, however, does not even settle down asymptotically. Indeed, in this case,
it tends in probability to z1−ασ1 with probability P {T1 < T2} and to z1−ασ2 with
probability P {T1 ≥ T2}.
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7 Simulations

Since the proof of the validity of our stepdown procedure relies on asymptotic ar-
guments, it is important to shed some light on finite sample performance via some
simulations. Therefore, this section presents a small simulation study in the context
of testing population means.

7.1 Comparison of FDR control and power

We generate random vectors X1, . . . ,Xn from an s-dimensional multivariate normal
distribution with mean vector θ = (θ1, . . . , θs), where n = 100 and s = 50. The null
hypotheses are Hj : θj ≤ 0, and the alternative hypotheses are H ′

j : θj > 0. The test

statistics are Tn,j = √
nθ̂n,j /σ̂n,j , where

θ̂n,j = 1
n

n∑

i=1

Xi,j and σ̂ 2
n,j = 1

n − 1

n∑

i=1

(Xi,j − θ̂n,j )
2,

that is, we employ the usual t-statistics.
We consider three models for the covariance matrix Σ having (i, j) component

σi,j . The models share the feature σi,i = 1 for all i; so we are left to specify σi,j for
i $= j .

– Common correlation: σi,j = ρ, where ρ = 0,0.5, or 0.9.
– Power structure: σi,j = ρ|i−j |, where ρ = 0.95.
– Two-class structure: the variables are grouped in two classes of equal size s/2.

Within each class, there is a common correlation of ρ = 0.5; and across classes,
there is a common correlation of ρ = −0.5. Formulated mathematically, for i $= j ,

σi,j =
{

0.5 if both i, j ∈ {1, . . . , s/2} or both i, j ∈ {s/2 + 1, . . . , s},
−0.5 otherwise.

We consider four scenarios for the mean vector θ = (θ1, . . . , θs).

– All θj = 0.
– Every fifth θj = 0.2, and the remaining θj = 0, so there are ten θj = 0.2.
– Every other θj = 0.2, and the remaining θj = 0, so there are twenty five θj = 0.2.
– All θj = 0.2

We include the following FDR controlling procedures in the study.

– (BH) The procedure of Benjamini and Hochberg (1995).
– (STS) The adaptive BH procedure by Storey et al. (2004). Analogously to their

simulation study, we use λ = 0.5 for the estimation of s0.
– (BKY) The adaptive BH procedure of Benjamini et al. (2006) detailed in Algo-

rithm 3.1. Among all the adaptive procedures employed in the simulations of Ben-
jamini et al. (2006), this is the only one that controls the FDR under positive de-
pendence.
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Table 1 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 10.0 10.3 9.1 10.0 6.4 16.5 6.0 9.9 4.8 32.8 4.4 9.8

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 7.6 9.5 7.3 7.3 6.4 16.9 7.5 9.3 5.0 26.5 5.8 10.0

Rejected 3.4 3.8 3.4 3.4 3.5 4.2 3.5 4.1 3.7 4.5 3.7 6.0

Twenty five θj = 0.2

Control 5.0 9.5 6.2 6.7 4.3 13.9 7.4 8.9 3.9 18.3 7.1 9.5

Rejected 13.2 17.4 14.5 14.9 12.3 15.1 13.1 14.1 12.6 14.2 12.7 16.6

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 34.8 49.7 44.9 48.2 31.9 46.9 36.4 39.1 32.1 47.3 32.1 36.4

– (Boot) The bootstrap procedure of Sect. 5. Since the data are i.i.d., we use Efron’s
(1979) bootstrap with B = 500 resamples.

The p-values for use in BH, STS, and BKY are computed as p̂n,j = 1 − ,99(Tn,j ),
where ,k(·) denotes the c.d.f. of the t-distribution with k degrees of freedom.

We also experimented with the subsampling procedure of Section 6, but the results
were not very satisfactory. Apparently, sample sizes larger than n = 100 are needed
for the subsampling procedure to be employed.

The performance criteria are (1) the empirical FDR compared to the nominal level
α = 0.1; and (2) the empirical power (measured as the average number of false hy-
potheses rejected). The results are presented in Table 1 (for common correlation) and
Table 2 (for power structure and two-class structure). They can be summarized as
follows.

– BH, BKY, and Boot provide satisfactory control of the FDR in all scenarios. On
the other hand, STS is liberal under positive constant correlation and for the power
structure scenario.

– For the five scenarios with ten θj = 0.2, BKY is as powerful as BH, while in all
other scenarios it is more powerful. In return, for the single scenario with ten θj =
0.2 under independence, Boot is as powerful as BKY, while in all other scenarios
it is more powerful.

– In the majority of scenarios, the empirical FDR of Boot is closest to the nominal
level α = 0.1.

– STS is often more powerful than Boot, but some of those comparisons are not
meaningful, namely when Boot provides FDR control while STS does not.
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Table 2 Empirical FDRs
expressed as percentages (in the
rows “Control”) and average
number of false hypotheses
rejected (in the rows “Rejected”)
for various methods, with
n = 100 and s = 50. The
nominal level is α = 10%. The
number of repetitions is 5,000
per scenario and the number of
bootstrap resamples is B = 500

Power structure Two-class structure

BH STS BKY Boot BH STS BKY Boot

All θj = 0

Control 5.4 16.5 4.9 10.2 8.1 7.9 7.5 10.1

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 6.5 17.0 7.4 9.8 6.8 8.0 6.9 8.3

Rejected 3.5 4.2 3.5 4.7 3.2 3.7 3.2 3.6

Twenty five θj = 0.2

Control 4.3 13.9 7.4 9.1 5.0 9.3 6.3 7.4

Rejected 12.3 15.0 13.1 14.8 13.1 17.5 14.3 15.3

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 32.0 47.1 36.0 38.7 35.2 48.8 44.5 47.3

7.2 Robustness of FDR control against random correlations

In the previous subsection, we used three models for the covariance matrix: constant
correlation, power structure, and two-class structure. In all cases, BH, BKY, and Boot
provided satisfactory control of the FDR in finite samples.

The goal of this subsection is to study whether FDR control is maintained for
‘general’ covariance matrices. Since it is impossible to employ all possible covari-
ance matrices in a simulation study, our approach is to employ a large, albeit random,
‘representative’ subset of covariance matrices. To this end, we generate 1,000 random
correlation matrices uniformly from the space of positive definite correlation matri-
ces. Joe (2006) recently introduced a new method which accomplishes this. Compu-
tationally more efficient variants are provided by Lewandowski et al. (2007), and we
use their programming code which Prof. Joe has graciously shared with us.) We then
simulate the FDR for each resulting covariance matrix, taking all standard deviations
to be equal to one. However, we reduce the dimension from s = 50 to s = 4 to counter
the curse of dimensionality. Note that an s-dimensional correlation matrix lives in a
space of dimension (s −1)s/2. Since we can only consider a finite number of random
correlation matrices, we ‘cover’ this space more thoroughly when a smaller value of
s is chosen. As far as the mean vector is concerned, two scenarios are considered:
one θj = 0.2 and one θj = 20. The latter scenario results in perfect power for all four
methods.

The resulting 1,000 simulated FDRs for each method and each mean scenario
are displayed via boxplots in Fig. 1. Again, BH, BKY, and Boot provide satisfactory
control of the FDR throughout, while STS is generally liberal. In addition, Boot tends
to provide FDR control closest to the nominal level α = 0.1, followed by BKY and
BH.
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Fig. 1 Boxplots of the simulated FDRs described in Sect. 7.2. The horizontal dashed lines indicate the
nominal level α = 0.1

We also experimented with a larger value of s and different fractions of false null
hypotheses. The results (not reported) were qualitatively similar. In particular, we
could not find a constellation where any of BH, BKY, or Boot were liberal.



438 J.P. Romano et al.

Table 3 Number of
outperforming funds identified Procedure α = 0.05 α = 0.1

BH 58 101

STS 173 203

BKY 72 142

Boot 81 129

8 Empirical applications

8.1 Hedge fund evaluation

We revisit the data set of Romano et al. (2008) concerning the evaluation of hedge
funds. There are s = 209 hedge funds with a return history of n = 120 months com-
pared to the risk-free rate as a common benchmark. The parameters of interest are
θj = µj − µB , where µj is the expected return of the j th hedge fund, and µB is the
expected return of the benchmark. Since the goal is to identify the funds that outper-
form the benchmark, we are in the one-sided case (11) with θ0,j = 0, for j = 1, . . . , s.

Naturally, the estimator of θj is given by

θ̂n,j = 1
n

n∑

i=1

Xi,j − 1
n

n∑

i=1

Xi,B,

that is, by the difference of the corresponding sample averages. It is well known that
hedge fund returns, unlike mutual fund returns, tend to exhibit non-negligible serial
correlations; see, for example, Lo (2002) and Kat (2003). Accordingly, one has to ac-
count for this time series nature in order to obtain valid inference. The standard errors
for the original data, σ̂n,j , use a kernel variance estimator based on the prewhitened
QS kernel and the corresponding automatic choice of bandwidth of Andrews and
Monahan (1992). The bootstrap data are generated using the circular block bootstrap
of Politis and Romano (1992), based on B = 5,000 repetitions. The standard errors
in the bootstrap world, σ̂ ∗

n,j , use the corresponding ‘natural’ variance estimator; for
details, see Götze and Künsch (1996) or Romano and Wolf (2006). The choice of the
block sizes for the circular bootstrap is detailed in Romano et al. (2008).

The number of outperforming funds identified by various procedures and for two
nominal levels α are presented in Table 3. Both BKY and Boot results in more rejec-
tions than BH, with the comparison between BKY and Boot depending on the level.
The numbers for STS appear unreasonably high. Apparently, this is due to the fact
that the weak dependence (across test statistics) assumption for the application of this
method is clearly violated. The median absolute correlation across funds is 0.32; also
see Fig. 2.

8.2 Pairwise fitness correlations

We consider Example 6.5 of Westfall and Young (1993), where the pairwise corre-
lations of seven numeric ‘fitness’ variables, collected from n = 31 individuals, are
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Fig. 2 Histogram of the
208 · 209/2 = 21,736 cross
correlations between the excess
returns of the 209 hedge funds.
Since it is not true that the
majority of these correlations
are close to zero, the weak
dependence assumption of
Storey et al. (2004) is clearly
violated

analyzed. Denote the s =
(7

2

)
= 21 pairwise population correlations, ordered in any

fashion, by θj for j = 1, . . . , s, and let θ̂n,j , j = 1, . . . , s, denote the corresponding
Pearson’s sample correlations. Since the goal is to identify the nonzero population
correlations, we are in the two-sided case (12) with θ0,j = 0 for j = 1, . . . , s.

Westfall and Young (1993) provide two sets of individual p-values: asymptotic
p-values based on the assumption of a bivariate normal distribution and bootstrap
p-values. As can be seen from their Fig. 6.4, the two are always very close to each
other. However, as pointed out by Westfall and Young (1993, p. 194), both sets of
p-values are actually for the stronger null hypotheses of independence rather than
zero correlation. Obviously, independence and zero correlation are the same thing for
multivariate normal data, but we do not wish to make this parametric assumption.

Instead, we use Efron’s bootstrap to both compute individual p-values and to carry
out our bootstrap FDR procedure. (Of course, the same set of bootstrap resamples is
used for both purposes.) The details are as follows. The standard errors for the orig-
inal data, σ̂n,j , are obtained using the delta method because, again, we do not want
to assume multivariate normality; see Example 11.2.10 of Lehmann and Romano
(2005b). This results in test statistics Tn,j = |θ̂n,j |/σ̂n,j . The bootstrap data are gen-
erated using Efron’s (1979) bootstrap, based on B = 5,000 repetitions. The standard
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Table 4 Number of nonzero
correlations identified Procedure α = 0.05 α = 0.1

BH 2 4

STS 10 20

BYK 2 4

Boot 2 7

errors for the bootstrap data, σ̂ ∗
n,j , are computed in exactly the same fashion as for the

original data. This results in bootstrap statistics T ∗
n,j = |θ̂∗

n,j − θ̂n,j |/σ̂ ∗
n,j . The indi-

vidual p-values are then derived according to (4.11) of Davison and Hinkley (1997):

p̂n,j =
1 + #{T ∗

n,j ≥ Tn,j }
B + 1

. (24)

The number of nonzero correlations identified by various procedures and for two
nominal levels α are presented in Table 4. BKY results in the same number of rejec-
tions as BH for both nominal levels. Boot results in the same number of rejections
for α = 0.05 but yields three additional rejections for α = 0.1. The numbers for STS
again appear unreasonably high.

An alternative way of testing Hj : θj = 0 is to reparametrize θj by

ϑj = arctanh(θj ) = 1
2

log
(

1 + θj

1 − θj

)
.

This transformation is known as Fisher’s z-transformation, which under normal-
ity is variance stabilizing; see Example 11.2.10 of Lehmann and Romano (2005b).
Obviously, θj = 0 if and only if ϑj = 0. The natural estimator of ϑj is given by
ϑ̂n,j = arctanh(θ̂n,j ). Using the fact that arctanh′(x) = 1/(1 − x2), the delta method
implies the corresponding standard error σ̃n,j = σ̂n,j /(1 − θ̂2

n,j ). This results in test

statistics Tn,j = |ϑ̂n,j |/σ̃n,j . Some motivation for bootstrapping the z-transformed
sample correlation rather than the ‘raw’ sample correlation is given in Efron and
Tibshirani (1993, Sect. 12.6). Again, the bootstrap data are obtained using Efron’s
1979 bootstrap, based on B = 5,000 repetitions. The standard errors for the boot-
strap data, σ̃ ∗

n,j , are computed as σ̃ ∗
n,j = σ̂ ∗

n,j /(1 − θ̂∗
n,j )

2. This results in bootstrap

statistics T ∗
n,j = |ϑ̂∗

n,j − ϑ̂n,j |/σ̃ ∗
n,j . The individual p-values are derived as in (24)

again.
The number of nonzero correlations identified by various procedures and for two

nominal levels α are also presented in Table 4. While making inference for the ϑj

does not necessarily lead to the same results as making inference for the θj , in par-
ticular when the sample size n is not large, for this particular data set, none of the
numbers of rejections change.
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9 Conclusion

In this article, we have developed two methods which provide asymptotic control of
the false discovery rate. The first method is based on the bootstrap, and the second is
based on subsampling. Asymptotic validity of the bootstrap holds under fairly weak
assumptions, but we require an exchangeability assumption for the joint limiting dis-
tribution of the test statistics corresponding to true null hypotheses. The method based
on subsampling can be justified without such an assumption. However, simulations
support the use of the bootstrap method under a wide range of dependence. Even un-
der independence, our bootstrap method is competitive with that of Benjamini et al.
(2006) and outperforms it under dependence.

The bootstrap method succeeds in generalizing Troendle (2000) to allow for non-
normality. However, it would be useful to also consider an asymptotic framework
where the number of hypotheses is large relative to the sample size. Future work will
address this.

Acknowledgements We are grateful to Harry Joe for providing R routines to generate random correla-
tion matrices.
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We congratulate Romano, Shaikh, and Wolf for their interesting work. Our only crit-
icism to the presentation of the article, which is otherwise very readable, concerns
Remark 1 on p. 8. This is crucial to understanding the method, because it explains
that the estimates of the probabilities under the null are determined by the smaller
test statistics, so it should have been made explicit at an earlier stage in Sect. 5. Inci-
dentally, the use of ‘r th largest’ and ‘r th smallest’ to denote the r th order statistic on
pp. 6 and 8 is confusing.

The assumption that n is large and that the θj ’s are uniformly away from zero
ensures that few non-null statistics will be mixed with the null ones and hence that
the estimates of the probabilities in (10) are approximately correct. Since the models
used in the simulation study conform to this assumption, we guess that the bootstrap
method is shown here at its best. We wonder how it will perform under a sequence of
alternatives which approach the null in a more continuous fashion, a more plausible
scenario in real-life applications.

One interesting aspect of the simulation results presented in Tables 1 and 2 is
how well the ‘standard’ Benjamini–Hochberg method (BH) works in all scenarios
of dependence: the FDR is kept below the required 10%, while the power is on av-
erage 80% of that of the bootstrap method proposed by the authors. This suggests
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that adaptive versions (other than Storey’s 2002, referred to as STS) of the method
based on better estimates of the proportion of true null hypotheses γs := s0/s, like
the BKY method, might improve its performance. On the other hand, it also calls for
an explanation.

If Hs and Fs are the empirical distribution functions of the sample of p-values
(more generally: test statistics that tend to take smaller values away from the null)
and of the sample of p-values corresponding to the s0 true null hypotheses, then

FDP(xs) := γs
Fs(xs−)

Hs(xs−)
≤ q whenever xs := sup

{
x : Fs(x) ≤ qHs(x)

}

and Hs(xs−) > 0. Hence the procedure that rejects all hypotheses with p-values
strictly below the random threshold xs keeps the FDP below q and at the same time is
optimal among all procedures involving no estimates of γs , because taking the supre-
mum above implies that xs cannot be increased without running the risk of exceeding
the required bound on the FDP. Moreover, it is optimal among all procedures based
on the same upper bound γ̄s on γs , because if it is known that γs ≤ γ̄s , one can take
q = q ′/γ̄s and guarantee FDP(xs) ≤ q ′. But Fs is unobservable, so the optimal pro-
cedure cannot be realized; the BH method attempts to approximate it by replacing
xs by x′

s := sup{x : F(x) ≤ qHs(x)}, where F (typically the uniform distribution
function) is an approximation to Fs , the rationale being that if Fs ≈ F , then xs ≈ x′

s

and FDP(x′
s) ≈ FDP(xs) ≤ q . Since FDP(xs) is bounded, the last statement is even

stronger than FDR(x′
s) ≈ FDR(xs) ≤ q .

If s is not too small and the dependence between the p-values is weak (‘weak’
is a misnomer, since the dependence in question can actually be very strong; see
Ferreira and Zwinderman 2003), the approximation of Fs by F is typically good, and
the BH method works very well. This observation can of course be illustrated and
corroborated by simulation experiments (as, for instance, in Kim and van de Wiel
2008), and it provides us with a justification for using the BH method very generally.

In the situations considered by Romano, Shaikh, and Wolf, where s is relatively
small and/or the dependence structure can be as strong as one wishes, it is not so clear
how well Fs is approximated by F , and a fortiori how well FDP(x′

s) approximates
FDP(xs). If one wants to be completely general, there need not even be an obvi-
ous candidate for F , but in practice it is usually alright to assume—like the authors
do—that all the p-values or statistics generated under the null have (approximately)
the same distribution function F , in which case EFs = F is—irrespective of the de-
pendence structure of the data—really the only candidate to replace Fs . Under such
conditions, one would hope that the random variable Fs , despite not approaching a
constant limit, does not deviate that much from F , which would explain the success
of the BH method. Can the authors comment on how close the empirical distributions
of the p-values generated under the null typically are to the uniform distribution in
the simulation scenarios they consider?

We were surprised by how bad the STS version of the method does when the
data are dependent (as expected, it is close to being optimal under independence). If
Gs denotes the empirical distribution function of the p-values computed under the
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alternative hypotheses, we have Hs = γsFs + (1 − γs)Gs and

Hs(x) ≤ γsFs(x) + (1 − γs), whence γs ≤ 1 − Hs(x)

1 − Fs(x)
,

which suggests taking γ̄s(x) := (1−Hs(x))/(1−F(x)) as an overestimate of γs . The
larger x, the tighter the bound on the right is, which suggests taking x as large as pos-
sible; if F is uniform, (1 − Hs(x))/(1 − F(x)) is, for large x, like the left-derivative
of Hs at 1. This motivates the procedure of estimating γs by hs(1−), where hs is a
density estimate constructed from the sample of p-values. The authors used a variant
(Storey’s) of this overestimate with x = 0.5, and it appears (everything else being
equal in the case of the BH and BKY methods) from the results of the simulation that
γ̄s(0.5) is a serious underestimate of γs . Since γ̄s(x) ≥ γs(1 − Fs(x))/(1 − F(x)),
this could be explained by Fs being considerably bigger than F around 0.5. Do the
authors think that a different choice of x might improve γ̄s(x) and the performance
of the STS method? If not, would it be possible to incorporate—perhaps by means
of resampling methods—the dependence between variables into an estimate of γs?
Intuitively, the fact that “all false hypotheses will be rejected with probability tending
to one,” implied by the main assumptions, suggests that it should be easy to get a
good estimate of γs that works well in the scenarios considered by the authors.

The authors perform their simulations of Sect. 7.2 for s = 4 in order to cover the
space of random correlation matrices “more thoroughly.” While we understand that
a low-dimensional space is easier to ‘fill’ than a high-dimensional one, we fail to
see why this is relevant to the robustness of multiple testing methods based on the
control of the FDR (which are especially designed for testing a substantial number of
hypotheses) with respect to random correlations. We wonder whether the situation for
s = 4 can be extrapolated to the more relevant case of s ≥ 50, given that the number
of correlations increases quadratically in s. Do the authors have any results for larger
values of s?

In the Conclusion, the authors touch upon the case s & n, for which their current
asymptotic results are less relevant. Of course, applications in this case are extremely
relevant nowadays, and we encourage the authors to consider these. On the other
hand, asymptotic results in s by Storey (2003) indicate that under weak dependence
the FDR is asymptotically equal to the ratio of the marginal expectations, which obvi-
ously does not depend on the dependence structure (and in fact, as pointed out above,
even stronger dependencies will not affect this result). Such weak, often local, depen-
dencies are thought to be the most relevant ones in high-dimensional applications to
microarrays, mass-spectrometry (proteomics), and functional MRI, so the available
FDR algorithms may suffice for these.
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1 Introduction

In this enlightening and stimulating paper, Professors Romano, Shaikh, and Wolf con-
struct two novel resampling-based multiple testing methods using the bootstrap and
subsampling techniques and theoretically prove that these methods approximately
control the FDR under weak regularity conditions. The theoretical results provide
a satisfactory solution to an important and challenging problem in multiple testing
on developments of FDR controlling procedures by exploiting unknown dependence
among the test statistics using resampling techniques.

In my comments, I address the related statistical and computational issues when
applying their bootstrap method to analyze high-dimensional, low sample size data
such as microarray data and suggest several possible extensions.

2 High-dimensional, low sample size data analysis

The bootstrap method provides asymptotic control of the FDR when the sample size
approaches infinity. Its finite sample performance is evaluated through some simu-
lation studies and analysis of two real data. For the simulated data, the number of
hypotheses tested is s = 50, and the sample size is n = 100. For the real data, one is
with s = 209 and n = 120, and another is with s = 21 and n = 31. For such simu-
lated and real data, the bootstrap method is competitive with existing methods, such
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as Benjamini et al. (2006), under independence and outperforms them under depen-
dence. A common feature of the simulation settings and real data is that s is relatively
small and n is relatively large. However, in practice, there are a number of applica-
tions where the number of null hypotheses of interest is very large relative to the
sample size. For example, in microarray experiments, often there are thousands or
tens of thousands of genes, but the sample size is just less than a dozen. A natural
question is: Can the bootstrap method be used for analyzing such high-dimensional,
low sample size data?

It is often likely for microarray data to contain several extreme outliers. When
the bootstrap method is applied to such microarray data, the extreme outliers may
appear in some bootstrap samples due to small sample size, resulting in a very large
bootstrap statistic. To compute the largest critical value cs , we take the (1 − sα)
quantile of the maximal bootstrap statistics. But, if quite a large fraction of those
maximal bootstrap statistics is very large, then the largest critical value will also be
very large, which leads to a situation where no hypothesis can be rejected by the
stepdown method. Therefore, to make the bootstrap method work well, it is perhaps
necessary to perform a preprocessing step to remove these outliers or choose some
robust statistics such as the median.

It is also likely that the data sets corresponding to many of the genes in a microar-
ray experiment are skewed. In any bootstrap sample, the maximal bootstrap statistic
over a large number of hypotheses is then likely to be quite large, thus resulting in
a very large bootstrap critical value to which to compare the largest observed statis-
tic. Since the suggested bootstrap method is a stepdown procedure, it is possible that
no hypothesis can be finally rejected at all. Therefore, when applying the bootstrap
method to microarray data analysis, it might be necessary to do some transformation
to alleviate the skewness of the data or choose some more appropriate test statistics.

With the help of Professor Wolf, I directly applied the bootstrap method in the
context of a two-sample t test to a real microarray data (Hedenfalk et al. 2001). Per-
haps due to the presence of a few extreme outliers and a large number of skewed data,
the bootstrap method could not find any significant gene in this data set.

3 Computational problem

When the bootstrap method is applied to analyzing microarray data, it is a challenge
to compute all the critical values. For example, when Professor Wolf applied this
method, on my request, to a simulated data set with 4,000 variables, it took him
more than 70 hours to do the computations. In the following, we present a possible
improvement on the computational method of the critical values.

For a given estimate P̂ of the unknown joint distribution P of the underlying
test statistics, the critical values, ĉi , i = 1, . . . , s, are defined recursively as follows:
having determined ĉ1, . . . , ĉj−1, compute ĉj according to the rule

ĉj = inf
{
c ∈ R : FDRj,P̂ (c) ≤ α

}
,
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where

FDRj,P̂ (c) =
∑

s−j+1≤r≤s

r − s + j

r

× P̂ {Tj :j ≥ c, . . . , Ts−r+1:j ≥ ĉs−r+1, Ts−r:j < ĉs−r}

= 1
B

B∑

b=1

∑

s−j+1≤r≤s

r − s + j

r

× I
{
T ∗b

j :j ≥ c, . . . , T ∗b
s−r+1:j ≥ ĉs−r+1, T

∗b
s−r:j < ĉs−r

}

is the FDR of the bootstrap method when there are exactly j true null hypotheses
under P , and the unknown P is estimated using the empirical distribution P̂ of the
bootstrap test statistics generated by B bootstrap samples. That is, ĉj is the α-quantile
of FDRj,P̂ (c).

Note that in the above expression of FDRj,P̂ (c),

I
{
T ∗b

j :j ≥ c, . . . , T ∗b
s−r+1:j ≥ ĉs−r+1, T

∗b
s−r:j < ĉs−r

}

= I
{
T ∗b

j :j ≥ c
}
· · · I

{
T ∗b

s−r+1:j ≥ ĉs−r+1
}

· I
{
T ∗b

s−r:j < ĉs−r

}
. (1)

For every b = 1, . . . ,B , let r∗b
j denote the total number of rejections when apply-

ing a stepdown procedure with the critical constants ĉi , i = 1, . . . , j − 1, to the or-
dered test statistics T ∗b

i:j : i = 1, . . . , j − 1. Then, (1) can be simplified as I {T ∗b
j :j ≥ c,

r = s − r∗b
j }, and hence FDRj,P̂ (c) can be expressed as

FDRj,P̂ (c) = 1
B

B∑

b=1

j − r∗b
j

s − r∗b
j

I
{
T ∗b

j :j ≥ c
}
. (2)

The expression (2) might be able to greatly simplify computation of the critical val-
ues.

Another point we need to be careful about is how the computational precisions
of former critical values influence that of the latter. When s is large, the maximum
critical value is determined by a large number of former critical values. Even though
these former critical values are slightly imprecise, their total effect on the maximum
critical values might be huge and thereby greatly changes the final decisions on null
hypotheses.

4 Some possible extensions

As we pointed out in Sect. 2, the bootstrap method is sensitive to a few extreme out-
liers or a large number of skewed data. For such data, it may lead to a very large value
for the maximum critical value. Since the bootstrap method is a stepdown procedure,
we may fail to detect any false null hypothesis using this method. To overcome the



Comments on: Control of the false discovery rate under dependence 449

problems caused by the outliers or skewed data, a possible solution might be to de-
velop stepup procedures that are not sensitive to a few large maximum critical values.

As seen in Sect. 3, the computation of all critical values for the bootstrap method
is a challenging task. To apply the method, we need to go through two steps. We first
need to calculate all the critical values and then apply the corresponding stepdown
procedure to the observed test statistics. The reason is that the computation starts
from the minimum critical value and continues to the larger ones. In practice, it is
common that there are only a few false nulls in a large number of null hypotheses of
interest. Thus, one natural question is: Could we derive an algorithm which combines
computation of every critical value with the corresponding hypothesis testing? For
this algorithm, it starts by calculating the maximum critical value and continues up to
the critical value for which the corresponding hypothesis is not rejected. Therefore,
it is very likely that the whole test will stop in a few earlier steps, and thus we only
need to calculate a few of the larger critical values.

The asymptotic control of the suggested methods is proved when the sample size
approaches infinity, not the dimension of the data. However, in practice, the data sets
with high dimensions and low sample size are becoming more common due to the
developments of high throughput technologies. Therefore, it will be interesting and
important to develop similar resampling-based methods which can asymptotically
control the FDR in theory when the dimensions of the data approach infinity.
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1 Introduction

It is a pleasure to congratulate Professors Romano, Shaikh, and Wolf (to be referred
to as RSW hereafter) on an interesting and original paper. RSW address an impor-
tant and challenging issue in multiple testing, to directly incorporate the dependence
structure of the p-values while constructing a multiple testing method that provides
a control of the false discovery rate (FDR). The dependence among the p-values has
often been utilized in an indirect manner, to the extent of just validating that an FDR
controlling method developed under the assumption of independent p-values contin-
ues to work even when there is a certain form of dependence among the p-values.
A more explicit use of the dependence structure should result in a powerful method.
The problem is, however, that one has to know the exact distribution of the underly-
ing test statistics, or has to capture it from the data, at least approximately, by means
of methods like those relying on resampling techniques. RSW have decided to take
the latter approach by appealing to the bootstrap and subsampling methods.

We do like the main idea in the paper, it will provide an impetus for research
on developing bootstrap-based multiple testing methods. Nevertheless, we feel that a
number of points need to be made to provide a better understanding of the paper and
to fill up certain gaps.

This comment refers to the invited paper available at: http://dx.doi.org/10.1007/s11749-008-0126-6.
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Statistics Department, Temple University, Philadelphia, PA 19122, USA
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2 What is being controlled?

Roughly stated, the paper does the following. Given data (X1, . . . ,Xn) from a dis-
tribution P ∈ Ω , it considers testing of Hi : P ∈ ωi against H ′

i : P /∈ ωi , simulta-
neously for i = 1, . . . , s, based on test statistics Tn,i , i = 1, . . . , s, which are such
that large values of Tn,i indicate evidence against the corresponding Hi and all the
false null hypotheses are rejected with probability tending to one as n → ∞, and
provides both bootstrap and subsampling based algorithms to calculate the critical
values cn,1 ≤ · · · ≤ cn,s of a stepdown test that will guarantee a control of the FDR at
α asymptotically as n → ∞ under certain weak assumptions. Let us denote the FDR
of this stepdown procedure by FDRn to properly index it by n since the critical values
depend on n. The paper proves that, given s0, the number of true nulls,

FDRn ≈ EP

[
Rn,0

(s − s0 + Rn,0) ∨ 1

]
, (1)

with probability tending to one as n → ∞, where Rn,0 is the number of rejections in
the stepdown procedure based on any subset of the test statistics corresponding to the
s0 true nulls and the critical values cn,s−s0+1 ≤ · · · ≤ cn,s . So, the right-hand side in
(1) is what is being controlled in the paper, making the proposed stepdown method
an asymptotically valid FDR controlling method. For finite n, this equals the FDR
in the special case where the non-null test statistics are all larger than the null test
statistics. Moreover, it should be noted that by saying that the method in the paper
is an asymptotically valid FDR controlling method, in the above sense, it does not
necessarily mean that there exists a sufficiently large n0 ≡ n0(α) such that FDRn ≤ α

for all n ≥ n0.

3 Other relevant methods

RSW have decided to compare their proposed stepdown procedure with three other
procedures, the BH and its adaptive versions, the STS and BKY. These three proce-
dures differ from the proposed one in two aspects: (i) they are all stepup procedures,
and (ii) they are all marginal procedures (i.e., they do not exploit the joint distribution
of the p-values).

Recently, an adaptive stepdown procedure has been given in Gavrilov et al. (2008).
While its FDR control has been theoretically established for independent p-values,
like in the cases of the BKY and STS, simulations indicate that it can maintain its
control even under certain dependence situations. In terms of the p-values, it is based
on the following critical values:

αj = jα

s − j (1 − α) + 1
, j = 1, . . . , s. (2)

Although it is a special case of a multi-stage version of the BKY and has been referred
to as a multiple-stage stepdown method in Benjamini et al. (2006), it is actually an
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adaptive stepdown analog of the BH considered in Sarkar (2002). To see this, note
that with

F̂DRλ(t) = ŝ0(λ)t

R(t) ∨ 1
,

where

ŝ0(λ) = s − R(λ)

1 − λ
and R(t) = #{p̂n,j ≤ t},

the BH rejects H(1), . . . ,H(l̂SU), where

l̂SU = max
{
1 ≤ j ≤ s : F̂DRλ=0(p̂n,(j)) ≤ α

}
(3)

provides the stepup rejection threshold; whereas, the stepdown analog of the BH
method rejects H(1), . . . ,H(l̂SD), where

l̂SD = max
{
1 ≤ j ≤ s : F̂DRλ=0(p̂n,(i)) ≤ α ∀ i ≤ j

}

provides the stepdown rejection threshold. In STS, the FDR is estimated using

F̂DR∗
λ(t) = ŝ∗

0 (λ)t

R(t) ∨ 1
, (4)

that is based on the following slightly different estimate of s0:

ŝ∗
0 (λ) = s − R(λ) + 1

1 − λ

[(6) of the paper], and the stepup rejection threshold in (3) is modified accordingly as

l̂∗SU = max
{
1 ≤ j ≤ s : F̂DR∗

λ(p̂n,(j)) ≤ α
}

for a fixed λ -= 0. If we consider modifying the stepdown analog of the BH method
using the alternative estimate of the FDR, which is F̂DR∗

t (t) [with λ = t in (4)], and
determining the stepdown rejection threshold based on this estimate, that is,

l̂∗SD = max
{
1 ≤ j ≤ s : F̂DR∗

p̂n,(i)
(p̂n,(i)) ≤ α ∀ i ≤ j

}
,

we obtain the adaptive stepdown method with the critical values in (2).
A number of other adaptive procedures like the STS and BKY are given in Sarkar

(2008). Among these, the following is worth mentioning. Let RSU(λ1, . . . ,λs) denote
the number of rejections in a stepup procedure (in terms of p-values) with the critical
values λ1 ≤ · · · ≤ λs . As noted in Sarkar (2008), the BH procedure with its j th critical
value replaced by α̂j = jα/ŝ0, where

ŝ0 = s − RSU(λ1, . . . ,λs) + 1
1 − λs

(5)
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Fig. 1 Comparison of simulated FDR’s of the BKY and STS with λ = α/(1 + α), with α = 0.05. Each
simulated FDR was based on 20,000 replications, n0 is the number of true nulls

for any arbitrarily chosen set of critical values 0 < λ1 ≤ · · · ≤ λs < 1, controls the
FDR under the same condition as in the case of the STS or BKY. The STS belongs to
this class; it corresponds to the case where λj = λ for any arbitrary λ. Also, the one
with λj = jα/(1 + α)s is practically not much different from the BKY.

It should be noted that the rejection threshold chosen to estimate s0 is much wider
in the STS with λ = 0.5 than in the BKY. This, we suspect, contributes to large
variability of the FDR and loss of control over it under dependence of the p-values
for the STS with this λ. A smaller λ, we believe, would make the STS more stable
in terms of controlling the FDR. A simulation study was conducted to see how the
STS compares with the BKY if λ is chosen to be equal to α/(1 + α), the same value
the BKY chooses as the level of its first stage BH procedure. More specifically, we
considered testing whether each of the means of s = 500 dependent normal random
variables with the same variance 1 and a nonnegative common correlation ρ is 0 or 2
at α = 0.05 using both the BKY and STS with λ = .05/1.05. Figure 1 compares the
simulated FDR’s of these methods. The STS in this case is seen to have much more
favorable performance in terms of the FDR control, even under positive dependence
as long as it is not too high.
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There exist other procedures that control the FDR by exploiting the joint distri-
bution of the p-values. These procedures include the stepdown procedure of Troen-
dle (2000) under the setting of multivariate normal distribution with a common cor-
relation, as noted in the discussed paper, and the FWER-augmentation procedures
towards controlling the FDR suggested in van der Laan et al. (2004) and Pacifico
et al. (2004). The FWER-augmentation approach has two stages. At the first stage,
an FWER controlling procedure is applied at level α. At the second stage, more dis-
coveries are added to the first stage discoveries while maintaining control of the FDR
or of the probability that the FDR is greater than a user-specified value γ . The de-
pendence among the p-values is exploited at the first stage. In Dudoit et al. (2004)
the FWER-augmentation procedures of van der Laan et al. (2004) are compared to
marginal FDR controlling procedures. Their simulations suggest that there can be
substantial power gain in the FWER-augmentation approach due to the incorporation
of the joint distribution of the p-values into the procedure.

With a known joint probability distribution P0 of the test statistics under the null
hypotheses, the following stepdown procedure controls the FWER (Pacifico et al.
2004; Dudoit and van der Laan 2008, Chap. 5]):

1. With tn,(1) ≤ · · · ≤ tn,(s) being the observed ordered test statistics, let kj be the
hypothesis with the j th smallest test statistic tn,(j).

2. For r = 1, . . . , s, do the following:
(a) Compute p̂(r) = P0{maxj∈Vr Tn,j ≥ tn,(s−r+1)}.
(b) If p̂(r) > α, stop and reject the r − 1 hypotheses that correspond to the largest

test statistics; if p̂(r) ≤ α, increase r by 1 and go to Step 2(a).

This stepdown procedure is augmented as follows in Pacifico et al. (2004) to control
the FDR at level q (see Dudoit and van der Laan 2008, Chap. 6, for similar proce-
dures):

1. Let c ∈ (0, q), and let α = (q − c)/(1 − c).
2. Apply the above stepdown procedure at level α. Let R1 be the number of rejected

hypotheses.
3. Let R2 = inf{r : r

r+R1
≤ q}. Reject the R2 hypotheses corresponding to the largest

R2 test statistics.

Note that the above stepdown FWER controlling procedure is identical to the step-
down FDR procedure of RSW when r = 1 but becomes more conservative starting
from r = 2, and thus will typically reject less hypotheses. In other words, the method
suggested by RSW appears to be more powerful than the FWER-augmentation ap-
proach. However, the FWER-augmentation approach may control the FDR with finite
samples as well as asymptotically (as long as the FWER controlling procedure con-
trols the FWER in the finite sample case).

4 Final points

In sparse settings, where s0/s is close to 1, the BH procedure is very powerful. It
may be interesting to compare the power of the suggested procedure with the BH
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procedure in such settings. Example 8.1 in the discussed paper shows that estimating
the number of true null hypotheses s0 and then using this estimate in a marginal
procedure (like the BKY) that does not take the joint distribution of the p-values into
account may be more powerful than a procedure that takes the joint distribution of
the p-values into account without estimating s0. Maybe, the present method can be
improved by incorporating an estimate of s0?

Acknowledgements The work of Sanat K. Sarkar is supported by the NSF Grant DMS-0603868. We
thank Zijiang Yang for doing the numerical calculations.
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I would like to commend the authors on a really nice piece of work. It is well written
and gives a very general solution to the problem of bootstrap adjustment for multi-
plicity while controlling the false discovery rate (FDR). At the time that I was work-
ing on the normal-theory FDR controlling procedure (Troendle 2000), I had ideas
about resampling-based FDR control. However, I have reservations about using FDR-
controlling procedures in applications, which led me to discontinue my research on
them. The false discovery proportion (FDP) seems like the most natural thing to con-
trol when control of the familywise error rate is not needed. In applications there is
only one FDP generated, and the bottom line question is “what can you claim about
the likelihood of a large FDP with this set of rejected hypotheses?” Even with exact
(as opposed to asymptotic) FDR control, the answer is “not much.” That is because
the FDR is an expected value and says nothing about the tail behavior of the FDP.
A simple realistic example give in Korn et al. (2004) showed that a procedure con-
trolling the FDR at 0.1 has an actual FDP ≥ 0.29 with probability 0.1.

One exciting possibility to take from this paper is that the subsampling ideas given
in Sect. 6 might be extended to control of the FDP. The fact that the subsampling
procedure did not behave well in the simulations for fairly small sample sizes is
discouraging, but perhaps that can be overcome. It may take a lot of computation to
get satisfactory results because the sample size should be large (for approximately
asymptotic behavior to be expected), while the subsample size should also be large
yet small relative to the sample size. There are a tremendous number of such subsets

This comment refers to the invited paper available at: http://dx.doi.org/10.1007/s11749-008-0126-6.
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for even moderate sample size, although one would naturally use Monte Carlo here
to select only a few, as one does with the bootstrap.
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The paper introduces FDR controlling methods that incorporate information about
the dependence structure of the test statistics. I congratulate the authors on their fine
work—their methods are shown to offer more power than the Benjamini et al. (2006)
FDR controlling procedure and still control the FDR for dependent test statistics.
However I am bothered by the lack of a theoretical proof for finite sample FDR
control. I will comment on this and on two other related points: the Benjamini and
Hochberg (1995) procedure does not offer general FDR control yet it controlled the
FDR in all the simulations conducted by the authors; in the simulations displayed
in Fig. 1 the FDR of the Boot method was very close to α = 0.1 for the θ = 20
configuration and much closer to α · s0/s for θ = 0.2.

Liberalism of the BH procedure The simulations conducted in this paper included
studentized multivariate normal test statistics. Working experience and theoretical
results (Reiner 2007) suggest that the FDR of BH procedure for this type of test
statistics may slightly exceed α · s0/s but not exceed α. This explains why the BH
procedure controlled the FDR in the simulations. An interesting question is how to
construct a simulation in which the FDR of the BH procedure exceeds α while the
testing methods introduced in this paper control the FDR.

For example, Guo and Rao (2008) construct a joint p-value distribution in which
the FDR of the BH procedure reaches its upper bound (1 + 1/2 + · · · + 1/s) · α ·
s0/s. To achieve this FDR level the p-values in a random subset of j components
are set precisely in the interval [α · (j − 1)/s,α · j/s). It is trivial to transform this

This comment refers to the invited paper available at http://dx.doi.org/10.1007/s11749-008-0126-6.
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p-value distribution into a multivariate test statistic distribution. However, for the
methods described in this paper, each test statistic has to be computed using data
consisting of iid samples X = (X1, . . . ,Xn), and it seems to me very difficult to
construct a distribution for the data such that “reasonable” test statistics applied to X

will preserve this intricate dependence structure. Furthermore, the joint distribution
of “reasonable” test statistics applied to iid samples is asymptotically multivariate
normal, thus the FDR of the BH procedure would approach α · s0/s for sufficiently
large n, in any data distribution.

Conservatism of FDR controlling procedures when the non-null tested effects are
small In the extreme case that the p-value are marginally U [0,1], yet s − s0 hy-
potheses are labeled false null hypotheses, the only effect of increase in s0 is the
occurrence of more false rejections, thus increasing the FDR (and FWER) of any
testing procedure; and if the testing procedure is exchangeable, then it is easy to see
that the FDR for any value of s0 is

FDR = FDR0 · s0/s,

where FDR0 is the FDR under the complete null hypothesis, s0 = s. This implies that
multiple testing procedures that control the FDR at level α, for all test statistic dis-
tributions, will have FDR ≤ α · s0/s when the non-null tested effects are sufficiently
small.

Finite sample FDR control of the new methods Gavrilov et al. (2008) and Benjamini
et al. (2006) show that the FDR values of their multiple testing procedures are max-
imized when the p-values corresponding to false null hypotheses are set to 0; they
prove that their testing procedure controls the FDR under this configuration and use
this property to prove the validity of their testing approach. Similarly, the methods
introduced in this paper are constructed under the assumption that all false null hy-
potheses are rejected. The authors prove asymptotic FDR control by showing that, as
the sample size increases, this occurs with probability tending to one, yet resort to
simulations for finite sample FDR control.

Benjamini and Yekutieli (2001) show that the BH procedure is unique in that its
FDR level, for independently distributed p-values, is unaffected by the distribution
of the p-values corresponding to false null hypotheses: they prove that in step-up
multiple testing procedures with a series of constants α1 · · ·αs such that αj /j is in-
creasing in j , when the distribution of false null p-values stochastically decreases,
the FDR increases; while in step-up procedures that αj /j is decreasing in j , the FDR
decreases. I think that a similar result for step-down procedures and dependent test
statistics is by itself interesting and may also help proving finite sample FDR control
of the new methods.
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We are extremely appreciative of the insightful comments made by all the responders.
The goal of constructing useful multiple testing methods which control the false dis-
covery rate and other measures of error is currently a thriving and important area of
research. On the one hand, the bootstrap method presented in the present work seems
to work quite well and is supported by some theoretical analysis. On the other hand,
many more important practical, computational, and mathematical questions remain,
some of which are addressed by the responders and which we touch upon below.

We also appreciate the added references, which help to provide a more thorough
discussion of the available methods. Our paper was the development of a particular
methodology and was by no means a comprehensive account of the burgeoning FDR
literature.

This rejoinder is discussed in the comments available at:
http://dx.doi.org/10.1007/s11749-008-0127-5, http://dx.doi.org/10.1007/s11749-008-0128-4,
http://dx.doi.org/10.1007/s11749-008-0129-3, http://dx.doi.org/10.1007/s11749-008-0130-x,
http://dx.doi.org/10.1007/s11749-008-0131-9.
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1 Reply to José Ferreira and Mark A. van de Wiel

The non-null values θj = 0.2 were chosen as an intermediate case between two non-
interesting extremes: (i) if θj is very large, the corresponding Hj will be rejected with
probability (almost) equal to one for all methods, and so there is little distinction in
terms of power; (ii) if θj is very close to zero, Hj will be rejected with very small
probability for all methods, and so, again, there is little distinction in terms of power.
By trial and error, the value θj = 0.2 was found to be an interesting middle ground.
On the other hand, we understand the concern about the performance of our method
for a sequence of alternatives which approach the null in a continuous fashion. To
shed some light on this issue, we repeated the simulations, restricting attention to the
scenario of common correlation, for the values θj = 0.1 and 0.01. The results can be
found in Tables 1 and 2. The average number of rejections naturally declines with θj ,
but qualitatively the results do not really change very much.

Concerning the empirical distribution of the p-values generated under the null:
these p-values were computed using the tn−1 distribution for the studentized test
statistics. Since under the null, θj = 0, as opposed to θj < 0, in our simulation set-up,
the null test statistics have exactly this tn−1 distribution, and so the null p-values have
exactly a uniform [0, 1] distribution. We therefore did not feel the need to give some
information about the empirical distribution of the null p-values.

We were also quite surprised by how badly the STS version of the BH method
does when the data are dependent. The choice of λ = 0.5 (or what the discussants
call x = 0.5) may well be partly responsible. However, we would like to point out
that we simply used the “default” value of Storey et al. (2004) rather than deliber-
ately choosing a value of λ which makes the STS version look bad. The question of
whether a different choice of λ might lead to a better performance is a very good one.
This issue is also addressed by S. Sarkar and R. Heller who argue that the choice
λ = α/(1 + α) results in more reliable FDR control under dependence. We redid Ta-
ble 1 of the paper, replacing STS by STS∗, where the latter uses λ = 0.1/1.1; see

Table 1 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

Ten θj = 0.1

Control 8.1 9.7 7.4 7.5 5.6 15.8 5.7 7.7 4.8 27.3 5.3 9.7

Rejected 0.4 0.5 0.4 0.4 0.8 2.1 0.8 1.0 0.9 3.4 0.9 2.2

Twenty five θj = 0.1

Control 5.1 7.6 4.8 4.3 4.7 7.9 4.6 4.4 4.3 11.1 4.8 6.1

Rejected 1.6 2.8 1.5 1.5 1.7 3.5 1.7 1.7 2.6 6.3 2.8 3.5

All θj = 0.1

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 5.5 23.8 5.6 5.4 6.0 24.2 6.5 6.4 8.0 27.5 9.8 11.9
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Table 2 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS BKY Boot BH STS BKY Boot BH STS BKY Boot

Ten θj = 0.01

Control 8.1 8.3 7.3 8.1 5.3 13.4 4.9 7.8 4.0 26.6 3.6 7.8

Rejected 0.03 0.03 0.03 0.03 0.19 1.26 0.23 0.30 0.47 3.3 0.45 0.76

Twenty five θj = 0.01

Control 4.7 4.9 4.3 4.7 4.8 5.4 4.4 5.0 3.5 6.8 3.3 5.1

Rejected 0.08 0.09 0.08 0.08 0.10 0.14 0.09 0.10 0.37 1.88 0.39 0.54

All θj = 0.01

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 0.17 0.20 0.16 0.17 0.20 0.33 0.19 0.20 0.63 3.84 0.69 0.95

Table 3 Empirical FDRs expressed as percentages (in the rows “Control”) and average number of false
hypotheses rejected (in the rows “Rejected”) for various methods, with n = 100 and s = 50. The nominal
level is α = 10%. The number of repetitions is 5,000 per scenario, and the number of bootstrap resamples
is B = 500

σi,j = 0.0 σi,j = 0.5 σi,j = 0.9

BH STS∗ BKY Boot BH STS∗ BKY Boot BH STS∗ BKY Boot

All θj = 0

Control 10.0 10.0 9.1 10.0 6.4 8.3 6.0 9.9 4.8 8.5 4.4 9.8

Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ten θj = 0.2

Control 7.6 9.3 7.3 7.3 6.4 9.3 7.5 9.3 5.0 8.1 5.8 10.0

Rejected 3.4 3.7 3.4 3.4 3.5 3.7 3.5 4.1 3.7 3.8 3.7 6.0

Twenty five θj = 0.2

Control 5.0 7.8 6.2 6.7 4.3 8.6 7.4 8.9 3.9 8.0 7.1 9.5

Rejected 13.2 16.2 14.5 14.9 12.3 14.3 13.1 14.0 12.6 15.1 12.7 16.6

All θj = 0.2

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Rejected 34.8 46.2 44.9 48.2 31.9 39.9 36.4 39.1 32.1 37.9 32.1 36.4

Table 3. Similar to the simulations carried out by Sarkar and Heller, STS∗ success-
fully controls the FDR in all scenarios considered and dominates both BH and BKY
in terms of power. Compared to Boot, it is a bit more powerful for ρ = 0. Under
positive dependence, there is no clear ranking. Depending on the value of ρ > 0 and
the number of false hypotheses, either method can be more powerful than the other.
Of course, SKS∗ is computationally much less expensive than Boot, which is an im-



464 J.P. Romano et al.

Fig. 1 Boxplots of the simulated FDRs similar to those described in Sect. 7.2, except that we use s = 10
instead of s = 4 hypotheses now. The horizontal dashed lines indicate the nominal level α = 0.1

portant practical advantage, especially when s is very large. There may well be other
methods to come up with estimates of s0 that take the dependence structure into ac-
count, say via resampling, but this is beyond the scope of this reply.
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Fig. 2 Boxplots of the simulated FDRs similar to those described in Sect. 7.2, except that STS is replaced
by STS∗ now. The horizontal dashed lines indicate the nominal level α = 0.1

Concerning the simulations in Sect. 7.2, there were actually two reasons for the
choice s = 4. On the one hand, we wanted to cover the space of random correlation
matrices “more thoroughly.” On the other hand, something like s = 50 is computa-
tionally infeasible. Unfortunately, the computational burden of our method is a draw-
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back. While simulating a single scenario with s = 50 is no problem, doing it 1,000
times over (for 1,000 different correlation matrices) would take weeks. However, we
were able to at least redo the exercise for the larger value s = 10; see Fig. 1. In terms
of the FDR control of our bootstrap method, the results do not change qualitatively
compared to s = 4. So there is reason to hope that they would continue to hold for
s = 50, say. However, note that there is generally a reduced variation in the boxplots,
especially for STS. This indicates that indeed, we cover the space of random correla-
tion matrices “less thoroughly” for s = 10. For example, while all the realizations for
STS lie above 0.1, we know that for some correlation matrices, the FDR is actually
successfully controlled (e.g., for the identity matrix). On the other hand, while all
the realizations lie below 0.2, we know that for some correlation matrices, the FDR
is actually higher than that (e.g., for the constant correlation matrix with correlation
close to one). So in some sense the plot for s = 4 is indeed more informative.

In view of the above discussion, we repeated the exercise, keeping s = 4 but re-
placing STS by STS∗; see Fig. 2. It is seen that STS∗ is more conservative than STS
but still fails to generally control the FDR. Therefore, if one wishes to use a method
based on the marginal p-values and is ignorant about the underlying dependence
structure, it might be safer to use BKY rather than STS∗.

Finally, we agree with you that Remark 1 could be clearer, and we wish we had
the possibility of reviews before the final version. In any case, for the benefit of new
readers, the values of both Tn,r:t and T ∗

n,r:t are always meant to be ordered so that
they are nondecreasing as r increases.

2 Reply to Wenge Guo

2.1 High-dimensional, low sample size data analysis

We agree that for many applications, these days the number of hypotheses, s, is very
large, while the number of data points, n, is very small (at least in comparison).
Our bootstrap procedure was not designed for such applications. At this point, the
justification of our methods is based on the assumption that n → ∞ while s remains
fixed. Also, mild assumptions are imposed on the data generating mechanism P , from
which it follows that all false null hypotheses will be rejected with probability tending
to one. Arguably, such assumptions are problematic when s = 2,000 and n = 10, for
example, which might be considered a “typical” combination for microarray data.

Contamination with outliers, which is quite common for microarray data, is a se-
vere problem for our procedure, at least when non-robust test statistics are used, such
as the usual t-statistic. However, the problem lies more with these outliers not ap-
pearing in bootstrap resamples. Take the case of a single small sample that is “well
behaved,” apart from a solitary, very large outlier. The t-statistic, for testing the null
hypothesis that the population mean is zero, will be close to one in absolute value (as
the outlier gets larger and larger in absolute value). Whenever the outlier does not ap-
pear in the bootstrap sample, the bootstrap t-statistic—centered by the sample mean
of the original data rather than zero—will be large in absolute value, and this happens
with probability (1 − 1

n )n ≈ 1/e ≈ 0.38. So the bootstrap test, applied to this single
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sample, will not reject the null at any customary significance level, just like the usual
t-test. Now consider a multiple testing set-up. Our bootstrap method is a stepdown
procedure and the “first” critical value (that is, the critical value used to compare the
largest of the test statistics) is the 1 − α quantile of the sampling distribution of the
largest bootstrap t-statistic T ∗

n,(s). Even a single data set with a very large outlier, out
of all s individual data sets, can dominate the sampling distribution of this maximum,
leading to large critical value. As a result, not even a single hypothesis might get
rejected. It is plausible that stepup methods are more robust in this sense. Unfortu-
nately, no bootstrap stepup methods have been suggested in the literature at all so far,
not even for the more traditional FWER. This appears, therefore, an important topic
for future research.

On the other hand, the fact that stepup procedures based on individual p-values
are more robust, in their ability to make rejections at all, to very large outliers in
individual samples, does not necessarily mean that they will lead to reliable inference,
at least when based on non-robust individual test statistics such as the usual t-statistic.
It might be worthwhile to explore suitable robust test statistics as an alternative.

2.2 Computational problem

We agree that the main drawback of the bootstrap method is its computational burden.
We are grateful for the suggestions to improve matters. However, consider expres-
sion (2). As pointed out, for the bth bootstrap data set, one has basically to compute
the number of rejections determined by the critical constants ĉi , i = 1, . . . , j − 1, and
the ordered test statistics T ∗b

i:j , i = j − 1. For a given value of c, this number, denoted
by r∗b

j , together with T ∗b
j :j , determines the contribution of the bth bootstrap sample to

the expression FDRj,P̂ (c). Actually, our software implementation is really compara-
ble in computational complexity to this suggestion. So, unfortunately, things could
not be sped up significantly along these lines.

The number of bootstrap repetitions, B , is not all that crucial in successfully con-
trolling the FDR. Note that in our simulations we only used B = 200. On the other
hand, consider two researchers applying the method to the same data set, both using
the same value of B but a different random number generator (or a different seed
value). It may well happen that, due to the randomness of the critical values which
are computed sequentially, the two researchers might obtain quite different results in
terms of the rejected hypotheses. It is therefore indeed desirable to pick B as large as
possible, given the computational resources.

2.3 Some possible extensions

We agree that bootstrap stepup methods should be less sensitive to a few extreme
outliers or a large number of skewed data sets, as typical with microarray data. How-
ever, to the best of our knowledge, no such methods have been developed yet in the
multiple testing literature, even for the presumably simpler problem of controlling
the FWER (at least not in the nonparametric setting under weak conditions). This
remains an exciting field for future research.
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As pointed out, the computation of the critical values progresses from the “bottom
up” rather than “top down.” The latter would save much time in case the number of
false hypotheses is relatively small. Unfortunately, we have not yet been able to come
up with a “top down” method.

At this point, if the number of hypotheses is very large compared to the sample
size, we would not be comfortable with applying the bootstrap method. In such ap-
plications, it is probably safer to use methods based on the marginal p-values. But as
much effort as possible should be made to ensure that the distribution of the null p-
values is as close as possible to the uniform [0,1] distribution in finite samples. Using
the usual t-test to compute individual p-values in the presence of extreme outliers
or skewed data, combined with small sample sizes, does not appear prudent, yet it
seems quite common in practice.

It would be very desirable to develop bootstrap methods that provide error rate
control (whether FWER, FDP, or FDR) under more general asymptotics where the
number of hypotheses is allowed to tend to infinity together with the sample size.
This appears a very challenging task, but we hope to make some progress here in
future research.

3 Reply to James F. Troendle

We fully agree that for many, if not most, applications, it would be preferable to con-
trol the FDP rather than the FDR. As pointed out, by controlling an expected value,
one cannot really say anything of much use about the realized FDP for a given data
set. (Of course, one can apply Markov’s inequality to get some crude information;
see (34) of Lehmann and Romano (2005a). In this sense, it is indeed unfortunate to
see that many researches use FDR controlling methods and then interpret their results
as if they had actually controlled the FDP instead.

However, control of the FDR is widespread, while control of the FDP is still used
comparatively rarely. We hope that this will change over time. In the meantime, and
also for those applications where control of the FDR might actually be preferred,
we tried to develop a resampling method to account for the unknown dependence
structure in order to improve power or the ability to detect false null hypotheses.

Notably, in our own research, we have worked on resampling methods for FDP
control first; see Romano and Wolf (2007) and Romano et al. (2008). In the latter pa-
per, inspired by the example in Korn et al. (2004), we also addressed the tail behavior
of the realized FDP under FDR control. It was seen that, especially under strong de-
pendence, high values of the FDP can become very likely, even though the FDR is
perfectly controlled.

We also agree that there is potential for the subsampling method when the sample
size is much larger than one considered in our simulation study, that is, n = 100. It
is interesting that, even in testing problems involving mean-like parameters and sta-
tistics, the asymptotic behavior of the bootstrap and subsampling method are quite
distinct in the behavior of critical values. Usually, their first-order asymptotic behav-
ior is the same, but not in the setting of the present paper. It is also frustrating that we
could not justify the bootstrap without the exchangeability assumption, even though
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this assumption is not needed for subsampling. Future research will be dedicated to
these issues.

4 Reply to Sanat K. Sarkar and Ruth Heller

In the setting of our paper, weak assumptions are imposed on the mechanism gener-
ating the data, denoted by P , with the number of data points n asymptotically tending
to ∞ while the number of tests s remains fixed. It is a consequence of these assump-
tions (rather than a basic assumption) that all false null hypotheses are rejected with
probability tending to one. As Sarkar and Heller point out, the false discovery rate,
which is indeed both a function of n and P , now denoted FDRn,P , behaves asymp-
totically like their expression (1).

In order to interpret our asymptotic results, let us be clear. As pointed out, our
results do not imply that there exists a sufficiently large n0 = n0(α) such that
FDRn,P ≤ α for all n ≥ n0. The actual statement is that, for any ε > 0, there exists
a sufficiently large n0 = n0(α,P ) such that FDRn,P < α + ε for all n ≥ n0(α,P ).
Notice that n0(α,P ) depends on the unknown P ; that is, our asymptotic analysis is
pointwise in P . Uniform asymptotic convergence over a broad class P of P would
demand that n0 not depend on P ∈ P. The distinction between pointwise and uniform
convergence in the case of single testing is discussed in Sect. 11.1 of Lehmann and
Romano (2005b). Since P is unknown, the stronger uniform convergence results are
generally more desirable, though they require additional arguments and sometimes
do not hold (for example, as a consequence of the Bahadur–Savage result). Although
we did not prove the stronger uniform convergence result in this paper, for the spe-
cial case where the test statistics are studentized sample means like those considered
in the simulations, we expect our results to hold uniformly over a broad class P. In
the single testing case, one restriction is that the underlying family of distributions
have a uniformly bounded 2 + δ moment, and a weaker condition is given in (11.77)
in Theorem 11.4.4 of Lehmann and Romano (2005b). A multivariate extension of
that theorem that is relevant for the multiple testing situation studied here is given in
Lemma 3.1 of Romano and Shaikh (2008).

A certain limitation of our theoretical analysis is the assumption that n gets large
while s remains fixed. We should mention that some literature has considered the
large s situation; see, for example, Genovese and Wasserman (2004), Storey et al.
(2004), and Efron (2008). However, note that, in some ways, the problem of large s
is made easier by stronger assumptions and by the ability to average out errors over
many tests. For instance, with the commonly used mixture model, the tests cannot
be that different from one another in that their average behavior must settle down,
so that, for example, the density of the distribution of test statistics corresponding
to false null hypotheses is the same for all such test statistics and can therefore be
estimated by usual techniques. Our goal here was to see what can be accomplished
in a more general setting which allows for a great deal of heterogeneity (in the sense
that the limiting covariance matrix of the test statistics is quite general), but with s
fixed.

Sarkar and Heller present an interesting derivation of the stepdown procedure of
Gavrilov et al. (2008) as an adaptive stepdown analog of the Benjamini–Hochberg
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procedure. The procedure is adaptive in that it modifies the BH procedure by incorpo-
rating an estimate of the number of true null hypotheses s0. Interestingly, the resulting
stepdown critical constants, given by (2) in the discussion of Sarkar and Heller, are
nonrandom, even though the motivation was based on incorporating a data-dependent
estimate of s0.

We appreciate the discussion of the choice of λ = 0.5. We also redid some of our
simulations, using your suggestion of α/(1 + α); see our above rejoinder to Ferreira
and van de Wiel.

Sarkar and Heller summarize the use of augmentation methods suggested by Paci-
fico. et al. (2004) and Dudoit and van der Laan (2008). Our experience with these
methods is that they are not as powerful as other resampling methods we have con-
sidered, at least in the context of other error rates; see the comparisons in Romano
and Wolf (2007). While augmentation is a general approach that exploits the rela-
tionship between the familywise error rate and a given generally weaker measure of
error control, it appears that the idea behind augmentation is too crude in that the
construction does not really make full use of the given measure of error control de-
sired. Nor does it take into account the dependence structure in the problem, outside
the first stage where control of the familywise error rate is used. Indeed, after the first
stage, a given number of additional hypotheses are rejected at the second stage, and
this number only depends on the number of rejections at the first stage and not, for
example, on the dependence structure of the remaining test statistics to be tested.

Finally, it would be interesting to improve the procedure, perhaps by incorporating
an estimate of s0. An alternative but similar approach might first apply some kind
of thresholding (say by a familywise error rate controlling procedure) to reduce the
number of hypotheses under consideration.

5 Reply to Daniel Yekutieli

Of course, we wish we could propose a method with finite sample validity which
implicitly or explicitly accounts for the dependence structure in the problem. Unfor-
tunately, even in single testing, this is usually too much to hope for in nonparametric
problems, but we believe that resampling methods can still be quite useful and reli-
able with sufficiently informative data. Of course, we point out the obvious fact that,
in order for the BH procedure, or any other procedure which claims finite sample con-
trol based on marginal p-values, to truly exhibit finite sample control, the p-values
must be exact in the sense of (1) in the paper. Of course, this requirement is almost
never satisfied in practice, as p-values often rely on either asymptotic or resampling
approximations.

Apparently, it is indeed quite challenging to construct a reasonable scenario where
the Benjamini–Hochberg (BH) method fails to control the FDR. However, suppose
we are in a situation where the exact sampling distribution of the test statistics is
multivariate normal with a known covariance matrix Σ , which corresponds to an as-
ymptotic approximation of the problem studied here. In the case s = 2 with both null
hypotheses true and with negative correlation between the test statistics, control of
the BH method reduces to the validity of Simes inequality. In this case, it is known
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to fail; see, for example, Samuel-Cahn (1996) for a counterexample in the one-sided
case. To the best of our knowledge, it is not known in general whether the BH method
ever fails in the two-sided case, even if the covariance matrix exhibits extreme neg-
ative dependence. The statement that the FDR of the BH method approaches αs0/s

for large n and any P seems unsubstantiated, unless one has further knowledge of
the limiting covariance matrix Σ . The validity of the BH method for multivariate
normal test statistics in the two-sided case is interesting and deserves further thought.
Certainly, a highlight of our work is that no assumptions are required on the limiting
covariance matrix, in either the one- or two-sided cases.

Yekutieli’s argument for the conservatism of FDR controlling procedures when
the non-null tested effects are small is nice. The problem is essentially reduced to
the study of control of the FDR under the complete null hypothesis when all null hy-
potheses are true. However, the argument does assume exchangeability, and one must
know that the given method controls the FDR under the complete null. Of course, the
BH method may not do so in general, and one is left with deciding which method is
most appropriate.

To be clear, we do not assume that all false null hypotheses are rejected with prob-
ability tending to one; rather, it is a proven consequence of very basic assumptions
concerning the limiting behavior of the test statistics under the fixed known data
generating mechanism P . A more complete asymptotic framework would consider
uniformity with respect to P , as well as s getting large (as discussed above in the
response to Sarkar and Heller).
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