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APPENDIX A: SUPPLEMENTARY MATERIAL

Remark A.1 (Fourth-moment condition). Some of the technical results used in the proofs

also require that the real i.i.d. random variables of Assumption (A2) in Section 2.1 have a finite

fourth moment in addition to mean zero and unit variance. We apologize for not mentioning

this additional requirement explicitly in Assumption (A2).

On the other hand, it appears that in practice a finite fourth moment is not needed for the

nonlinear shrinkage methodology to still work; see Section 6.4.

Before proving Proposition 4.1, it is instructive to first state and prove a simpler result
only claiming pointwise convergence of the estimated solutions. We will then see that this
simpler proof can be extended relatively easily to also cover the more general claim of uniform
convergence.

Proposition A.1. Let {Ĥn} be a sequence of probability measures with Ĥn ⇒ H. Let

{ĉn} be a sequence of positive real numbers with ĉn → c. Let K ⊆ (0,∞) be a compact interval

satisfying yx ∈ K. Let ŷn,x ≡ miny∈K gĤn,ĉn
(y, x). It then holds that ŷn,x → yx.

Proof. Assume K = [k1, k2]. Define B ≡ {x + i y : x ∈ [u1, u2], y ∈ K}, which implies
B ⊆ C+.

We first claim that

(A.1) mLĤn
(z) → mLH(z) uniformly in z ∈ B .

Recalling that for any c.d.f. G, we have mLG(z) = 1+ z mG(z) and by the compactness of the
set B, this results will follow from

(A.2) mĤn
(z) → mH(z) uniformly in z ∈ B ,

which we establish now.
For fixed z ∈ B, consider the function

hz(τ) ≡
τ

τ − z
.

Then it is easy to see that there exist two finite constants d1, d2, depending only on k1 > 0 but
not on z, such that

(A.3) |hz(τ1)− hz(τ2)| ≤ d1|τ1 − τ2| and sup
τ

|hz(τ)| ≤ d2 .

The fact that convergence in distribution of Ĥn to H is equivalent to convergence to zero of
the bounded-Lipschitz metric between Ĥn and H then implies (A.2); for example, see Pollard
(1984, Chapter IV, Example 22). In turn, we have thus established (A.1) as well. But (A.1)
immediately implies

(A.4) gĤn,ĉn
(y, x) → gH,c(y, x) uniformly in y ∈ K .
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2 LEDOIT AND WOLF

We note the following two facts:

(A.5) ∀ε > 0 ∃ δ > 0 such that inf
y∈K,|y−yx|≥ε

gH,c(y, x) ≥ δ

and

(A.6) gĤn,ĉn
(ŷn,x, x) = o(1) ,

where (A.6) follows from gĤn,ĉn
(ŷn,x, x) ≤ gĤn,ĉn

(yx, x), (A.4), and gH,c(yx, x) = 0.
By the triangular inequality,

gH,c(ŷn,x, x) ≤ |gH,c(ŷn,x)− gĤn,ĉn
(ŷn,x)|+ |gĤn,ĉn

(ŷn,x)|

= |gH,c(ŷn,x)− gĤn,ĉn
(ŷn,x)|+ o(1) by (A.6)

= o(1) + o(1) by (A.4)

= o(1) .

This last result together with (A.5) now implies ŷn,x → yx.

Proof of Proposition 4.1. We start with part (i). Assume K = [k1, k2]. Define B ≡
{x+ i y : x ∈ [u1, u2], y ∈ K}, which implies B ⊆ C+.

By the same arguments leading up to (A.4) we can more generally establish that

(A.7) gĤn,ĉn
(z) → gH,c(z) uniformly in z ∈ B .

We note the following two facts:

(A.8) ∀ε > 0 ∃ δ > 0 such that inf
x∈[u1+η,u2−η]

{
inf

y∈K,|y−yx|≥ε
gH,c(y, x)

}
≥ δ

and

(A.9) sup
x∈[u1+η,u2−η]

gĤn,ĉn
(ŷn,x, x) = o(1) ,

where (A.9) follows from gĤn,ĉn
(ŷn,x, x) ≤ gĤn,ĉn

(yx, x), (A.7), and gH,c(yx, x) = 0.

To simplify the notation, let I ≡ [u1 + η, u2 − η]. By the triangular inequality,

sup
x∈I

gH,c(ŷn,x, x) ≤ sup
x∈I

|gH,c(ŷn,x)− gĤn,ĉn
(ŷn,x)|+ sup

x∈I
|gĤn,ĉn

(ŷn,x)|

= sup
x∈I

|gH,c(ŷn,x)− gĤn,ĉn
(ŷn,x)|+ o(1) by (A.9)

= o(1) + o(1) by (A.7)

= o(1) .

This last result together with (A.9) now implies ŷn,x → yx uniformly in x ∈ I = [u1+η, u2−η].

Part (ii) is proven analogously to part (i) by restricting attention to the set of probability
one on which Ĥn ⇒ H happens.

Proof of Proposition 4.2. The proof is similar to the proof of Proposition 4.1. The
details are left to the reader.
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NONLINEAR SHRINKAGE ESTIMATION 3

Proof of Proposition 4.3. We start with part (i)(a). Fix λ ∈ [z̃1 + δ̃, z̃2 − δ̃]. Consider

∣∣m̆F
Ĥn,ĉn

(λ)− m̆F (λ)
∣∣ =

∣∣∣∣
1− ĉn
ĉn λ

−
1

ĉn

1

v̂n,λ
−

(
1− c

c λx
−

1

c

1

vλ

)∣∣∣∣ .

The function mapping λ onto vλ is continuous, and therefore uniformly continuous, in λ ∈
[z̃1, z̃2]. As λ varies in [z̃1 + δ̃, z̃2 − δ̃], the resulting vλ varies in a compact region in C+.
Therefore, for any ξ > 0, there exists κ > 0 such that

∣∣m̆F
Ĥn

,ĉn(λ)− m̆F (λ)
∣∣ < ξ as long as max

{
|ĉn − c|, |v̂n,λ − vλ|

}
< κ .

First, we can find N1 such that |ĉn − c| < κ for all n ≥ N1. Second, by part (i) of Proposi-
tion 4.2, we can find N2 such that |v̂n,λ−vλ| < κ for all n ≥ N2, uniformly in λ ∈ [z̃1+ δ̃, z̃2− δ̃].
Define N ≡ max{N1, N2}. Then for all n ≥ N , it holds that

∣∣m̆F
Ĥn,ĉn

(λ)− m̆F (λ)
∣∣ < ξ, uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] .

Since ξ can be chosen arbitrarily small, part (i)(a) obtains.

We now turn to part (i)(b). For any δ̃ > 0, it holds

||Ŝn − Sor
n ||2 =

1

p

p∑

i=1

(
λi∣∣1− ĉn − ĉn λi m̆F

Ĥn,ĉn
(λi)

∣∣2
−

λi∣∣1− c− c λi m̆F (λi)
∣∣2

)2

=
1

p

∑

λi∈[z̃1+δ̃,z̃2−δ̃]

(
λi∣∣1− ĉn − ĉn λi m̆F

Ĥn,ĉn
(λi)

∣∣2
−

λi∣∣1− c− c λi m̆F (λi)
∣∣2

)2

+
1

p

∑

λi /∈[z̃1+δ̃,z̃2−δ̃]

(
λi∣∣1− ĉn − ĉn λi m̆F

Ĥn,ĉn
(λi)

∣∣2
−

λi∣∣1− c− c λi m̆F (λi)
∣∣2

)2

≡ A+B .

By our general set of assumptions, in particular Assumption (A4), combined with the results
of Bai and Silverstein (1998) and Mestre (2008, Section II), there exist two finite, non-zero
constants κ1 < κ2 such that κ1 ≤ λi ≤ κ2 for all i = 1, . . . , p and for all n large enough.

Fix ε > 0. First, we can pick δ̃ small enough to achieve B ≤ ε/2 eventually. To appreciate
why, denote be µ(δ̃) the mass that F assigns to the set [z̃1, z̃1 + δ̃] ∪ [z̃2 − δ̃, z̃2], satisfying
µ(δ̃) → 0 as δ̃ → 0. Then it is not too difficult to see that there exists a finite constant ∆,
possibly depending on H and c, such that B ≤ ∆µ(δ̃), for n sufficiently large. The reason, in

addition to κ1 ≤ λi ≤ κ2, is that also the correction factors
∣∣1 − ĉn − ĉn λi m̆F

Ĥn,ĉn
(λi)

∣∣2 and

1/|1− c− c λi m̆F (λi)
∣∣2 are bounded away from infinity. Then, choose δ̃ small enough so that

µ(δ̃) ≤ (2/ε)∆.
Having chosen and fixed δ̃, the first half of the assertion ensures that A ≤ ε/2 eventually.

Again, we use here that κ1 ≤ λi ≤ κ2 and that also also the correction factors 1/|1 − c −

c λi m̆F (λi)
∣∣2 are bounded away from infinity. This demonstrates part (i)(b).

Part(i)(c) can be handled in a very similar fashion.

Part (ii) is proven analogously to part (i) by focusing on the set of probability one on which
Ĥn ⇒ H happens.
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4 LEDOIT AND WOLF

Before proving Theorem 5.1, we need to establish some auxiliary results.
Recall the following notation. For a grid Q on the real line and for two c.d.f.s G1 and G2,

define
||G1 −G2||Q ≡ sup

t∈Q
|G1(t)−G2(t)| .

Lemma A.1. Let {Gn} and G be c.d.f.s on the real line, with the support of G being

compact. Let {Qn} be a sequence of grids on the real line, asymptotically covering the support

of G, with grid sizes {γn} satisfying γn → 0. Further, assume that ||Gn −G||Qn → 0.

If G is continuous, then Gn ⇒ G. In particular, supt|Gn(t)−G(t)| → 0.

Proof. Denote the compact support of G by [a, b]. To prove the first part of the assertion,
let ε > 0. Fix δ > 0 such that for all t < t′ with t′ − t < δ, it holds G(t′) − G(t) < ε/4. Also
fix φ > 0. First, there exists N1 such that γn < δ for all n ≥ N1. Second, there exists N2 such
that supt∈Qn

|Gn(t) − G(t)| < ε/4 for all n ≥ N2. Third, there exists N3 such that Qn covers
[a + φ, b − φ] for all n ≥ N3. Set N ≡ max{N1, N2, N3}. For an arbitrary t ∈ [a + φ, b − φ]
and for n ≥ N , let tn ≡ max{t̃ : t̃ ∈ Qn, t̃ ≤ t} and t′n ≡ min{t̃ : t̃ ∈ Qn, t̃ ≥ t}, which implies
tn − t′n < δ. Then, for all n ≥ N ,

|Gn(t)−G(t)| ≤ |Gn(tn)−G(t′n)|+ |Gn(t
′
n)−G(tn)|

≤ |Gn(tn)−G(tn)|+ |Gn(t
′
n)−G(t′n)|+

ε

4
+

ε

4

≤
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε .

Therefore, Gn(t) converges to G(t) for all t ∈ [a+φ, b−φ]; and since φ can be chosen arbitrarily,
Gn(t) converges to G(t) for all t ∈ (a, b). By picking φ sufficiently small such that |G(a+φ)| ≤ ε
and |G(b− ε)| ≥ 1− ε, and by the monotonicity of c.d.f.s, it also follows that |Gn(t)| ≤ 2ε for
all t ≤ a as well as |Gn(t)| ≥ 1−2ε for all t ≥ b as long as n ≥ N (where N of course is allowed
to depend on φ.) Therefore, Gn(t) converges to G(t) for all t, which establishes Gn ⇒ G. The
second part of the assertion follows immediately from the first part and Polya’s Theorem.

Lemma A.2. Let G be a probability measure with compact support contained in (0,+∞)

and let d > 0. Let {Ĝn} be a sequence of probability measures on the nonnegative real line with

Ĝn ⇒ G and let {d̂n} be a sequence of positive real numbers with d̂n → d. Also assume that

there exists an interval [a, b] contained in (0,+∞) such that Supp(Ĝn) ⊆ [a, b] for all n large

enough.

Then FĜn,d̂n
⇒ FG,d.

Proof. Let zj ≡ i · (1 + 1/j), for j = 1, 2, . . . Then {zj} is an infinite sequence in C+ with
limit point z0 ≡ i ∈ C+. By Theorem 2 of Geronimo and Hill (2003), it is sufficient to show
that, for all zj ,

(A.10) mF
Ĝn,d̂n

(zj) → mFG,d
(zj) .

Recall the notation mF
H̃,c̃

for the solution of the Marčenko-Pastur equation, for any proba-

bility measure H̃ and for any c̃ > 0. Namely, for each z ∈ C+, mF
H̃,c̃

(z) is the unique solution

imsart-aos ver. 2010/09/07 file: aos989.tex date: July 26, 2012



NONLINEAR SHRINKAGE ESTIMATION 5

for m ∈ C+ to the equation

m =

∫ +∞

−∞

1

τ [1− c̃− c̃ z m]− z
dH̃(τ) .

Also, define the function

∀m, z ∈ C fH̃,c̃(m, z) ≡

∣∣∣∣m−

∫ +∞

−∞

1

τ [1− c̃− c̃ z m]− z
dH̃(τ)

∣∣∣∣ .

In this notation, for a given z ∈ C+, mF
H̃,c̃

(z) is the unique solution for m ∈ C+ to the equation

fH̃,c̃(m, z) = 0. Alternatively, mF
H̃,c̃

(z) is the unique minimizer over m ∈ C+ of the function

fH̃,c̃(· , z). Note that the Stieltjes transform of any probability measure maps C+ onto C+. So if

z ∈ C+, then mF
H̃,c̃

(z) is actually the unique minimizer over m ∈ C of the function fH̃,c̃(· , z).

Fix zj and use the following abbreviations: m̂n,zj ≡ mF
Ĝn,d̂n

(zj) and mzj ≡ mFG,d
(zj). The

goal then is to show that m̂n,zj → mzj .
We claim that there exists a compact set S ⊆ C such that m̂n,zj ∈ S for all n. The proof is by

means of contradiction. Assume the claim does not hold. Then there exists a subsequence {nk}
such that |m̂nk,zj | → ∞. By the combined assumptions, we can then find ∆ > 0 such that, for
all nk large enough and for all τ ∈ [a, b],

1
∣∣τ [1− d̂nk

− d̂nk
zj m̂nk,zj ]− zj

∣∣ ≤ ∆

implying that for all nk large enough,

|m̂nk,zj | =

∣∣∣∣∣

∫ +∞

−∞

1

τ [1− d̂n,k − d̂n,k zj m̂nk,zj ]− zj
dĜnk

(τ)

∣∣∣∣∣

=

∣∣∣∣∣

∫ b

a

1

τ [1− d̂n,k − d̂n,k zj m̂nk,zj ]− zj
dĜnk

(τ)

∣∣∣∣∣

≤

∫ b

a

1
∣∣τ [1− d̂n,k − d̂n,k zj m̂nk,zj ]− zj

∣∣ dĜnk
(τ)

≤ (b− a)∆ .

But this is in contradiction to |m̂nk,zj | → ∞. We may assume w.l.o.g. that mzj ∈ S as well;
otherwise sufficiently enlarge S.

We may further assume that S is ‘doubly nonnegative’, that is, for all m ∈ S, it holds that
Re(m) ≥ 0 as well as Im(m) ≥ 0. The reason is as follows. On the one hand, Re(m̂n,zj ) ≥ 0 for
all n as well as Re(mzj ) ≥ 0. For example, recalling that Re(zj) = 0,

Re(mzj ) = Re(mFG,d
(zj)) =

∫ ∞

−∞
Re

(
1

λ− zj

)
dFG,d(λ) =

∫ ∞

−∞

λ

|λ− zj |2
dFG,d(λ) ,

where FG,d places all its mass on [0,+∞). On the other hand, since zj ∈ C+, also Im(m̂n,zj ) > 0
for all n as well as Im(mzj ) > 0.

We next claim that

(A.11) fĜn,d
(m, zj) → fG,d(m, zj) uniformly in m ∈ S.
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6 LEDOIT AND WOLF

To see why, for m ∈ S, consider the function

hm,zj (τ) ≡
1

τ [1− d− d zj m]− zj
.

Since S is compact, min{Re(m), Im(m)} ≥ 0 for all m ∈ S, Re(zj) = 0, and Im(zj) ≥ 1, there
exist two finite constants d1 and d2, allowed to depend on S, such that

(A.12) |hm,zj (τ1)− hm,zj (τ2)| ≤ d1|τ1 − τ2| for τ1, τ2 ∈ [0,+∞)

and

(A.13) sup
τ∈[0,+∞)

|hm,zj (τ)| ≤ d2 .

To see why, start with (A.13). It holds that

Im(τ [1− d− d zj m]− zj) = −(τ d [Re(zj) Im(m) + Im(zj)Re(m)] + Im(zj)) .

Under the stated conditions, Re(zj) Im(m) + Im(zj)Re(m) ≥ 0 and Im(zj) ≥ 1. Therefore, as
long as τ ≥ 0, it follows that

|τ [1− d− d zj m]− zj | ≥ |Im(τ [1− d− d zj m]− zj)| ≥ 1 ,

implying that we may choose d2 ≡ 1.
Moving on to (A.12), let ∆ ≡ maxm∈S |m| and note that |zj | ≤ 2. Therefore, for any

τ1, τ2 ∈ [0,+∞),

|hm,zj (τ1)− hm,zj (τ2)| = |τ1 − τ2|

∣∣∣∣
1− d− d zj m

(τ1 [1− d− d zj m]− zj) (τ2 [1− d− d zj m]− zj)

∣∣∣∣

= |τ1 − τ2|
|1− d− d zj m|

|τ1 [1− d− d zj m]− zj | |τ2 [1− d− d zj m]− zj |

= |τ1 − τ2|
|1− d− d zj m|

|τ1 [1− d− d zj m]− zj | |τ2 [1− d− d zj m]− zj |

≤ |τ1 − τ2| (1 + d+ 2 d∆) ,

implying that we may choose d1 ≡ (1 + d+ 2 d∆).
Recall that convergence in distribution of Ĝn to G is equivalent to convergence to zero of

the bounded-Lipschitz metric between Ĝn and G; for example, see Pollard (1984, Chapter IV,
Example 22). Furthermore, since Ĝn and G put all their mass on [0,∞), it is sufficient to start
all integrals at τ = 0 rather than at τ = −∞. Therefore,

∫ +∞

−∞

dĜn(τ)

τ [1− d− d zj m]− zj
=

∫ +∞

0

1

τ [1− d− d zj m]− zj
dĜn(τ)

=

∫ ∞

0
hm,zj (τ) dĜn(τ)

→

∫ ∞

0
hm,zj (τ) dG(τ)

=

∫ +∞

0

1

τ [1− d− d zj m]− zj
dG(τ)

=

∫ +∞

−∞

1

τ [1− d− d zj m]− zj
dG(τ) uniformly in m ∈ S ,
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which establishes (A.11). But (A.11), combined with the compactness of S, further implies
that also

(A.14) fĜn,d̂n
(m, zj) → fG,d(m, zj) uniformly in m ∈ S.

Summing up, we have the following facts: First, there exists a compact set S ⊆ C such that
m̂n,zj is the unique minimizer of fĜn,d̂n

(· , zj) over m ∈ S and mzj is the unique minimizer of

fG,d(· , zj) over m ∈ S. Second, the function fG,d(· , zj) is continuous in m. Third, the uniform
convergence (A.14).

With these facts, m̂n,zj → mzj follows from arguments very similar to those used in the
proof of Proposition A.1.

Proof of Theorem 5.1. We start with the proof of part (i). Since c < 1, it follows
from Silverstein and Choi (1995) that F is continuously differentiable on all of R. By Polya’s
Theorem it then follows that supt |Fn(t)− F (t)| → 0 a.s., implying that ||Fn − F ||Qn → 0 a.s.
Also, by construction, ||FĤn,ĉn

− Fn||Qn ≤ ||FH,ĉn − Fn||Qn . Therefore,

||FĤn,ĉn
− F ||Qn ≤ ||FĤn,ĉn

− Fn||Qn + ||Fn − F ||Qn

≤ ||FH,ĉn − Fn||Qn + ||Fn − F ||Qn

≤ ||FH,ĉn − FH,c ||Qn + ||FH,c − Fn||Qn + ||Fn − F ||Qn

= ||FH,ĉn − F ||Qn + 2 ||Fn − F ||Qn → 0 a.s. ,

where Lemma A.2 in conjunction with Polya’s Theorem is used to show that ||FH,ĉn−F ||Qn → 0.
The desired result now follows from Lemma A.1.

We now turn to proving part (ii). By Theorem 2 of Geronimo and Hill (2003), it is sufficient
to show that there exists an infinite sequence {vj} in C+ with a limit point v0 ∈ C+ such that

(A.15) mĤn
(vj) → mH(vj) a.s. ∀j .

Recall the notation mF
H̃,c̃

for the solution of the Marčenko-Pastur equation, for any proba-

bility measure H̃ and for any c̃ > 0. Namely, for each z ∈ C+, mF
H̃,c̃

(z) is the unique solution

for m ∈ C+ to the equation

m =

∫ +∞

−∞

1

τ [1− c̃− c̃ z m]− z
dH̃(τ) .

Analogously, to Subsection 2.2, also let

∀x ∈ R F H̃,c̃(x) ≡ (1− c̃) [0,+∞)(x) + c̃ FH̃,c̃(x)

and

∀z ∈ C
+ mF

H̃,c̃
(z) ≡

c̃− 1

z
+ c̃ mF

H̃,c̃
(z) .

Hence, for each z ∈ C+, mF
H̃,c̃

(z) is the unique solution for m ∈ C+ to the equation

m = −

[
z − c̃

∫ +∞

−∞

τ

1 + τ m
dH̃(τ)

]−1

.
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8 LEDOIT AND WOLF

On C+, mF
H̃,c̃

(z) has a unique inverse, given by

∀m ∈ mF
H̃,c̃

(C+) zF
H̃,c̃

(m) ≡ −
1

m
+ c̃

∫ +∞

−∞

τ

1 + τ m
dH̃(τ) .

Note that both mF
H̃,c̃

and zF
H̃,c̃

are continuous functions. Also in this notation, we have
F = FH,c, mF = mFH,c

, and zF = zFH,c
then.

As Silverstein and Choi (1995) show,

∀m ∈ mF
H̃,c̃

(C+) zF
H̃,c̃

(m) = −
1

m
+

c̃

m
−

c̃

m2
mH̃

(
−

1

m

)
,

which, letting v ≡ −1/m, is equivalent to

(A.16) ∀v ∈ C
+ such that −

1

v
∈ mF

H̃,c̃
(C+) mH̃(v) = −

1

c̃ v2

[
zF

H̃,c̃

(
−
1

v

)
− v + c̃ v

]
.

For the special case of H̃ ≡ H and c̃ ≡ c, this simplifies to

(A.17) ∀v ∈ C
+ such that −

1

v
∈ mF (C

+) mH(v) = −
1

c v2

[
zF

(
−
1

v

)
− v + c v

]
.

Let M ⊆ C+ be a compact set contained in mF (C+) and also contained in mF
Ĥn,ĉn

(C+),

at least for n large enough. Let {mj} ⊆ M be an infinite sequence with limit point m0 ∈ M .
Let vj ≡ −1/mj and v0 ≡ −1/m0. Then {vj} ⊆ C+ with limit point v0 ∈ C+. Finally, let
zj ≡ zF (mj) and z0 ≡ zF (m0).

Part (i) of the theorem implies that F Ĥn,ĉn
⇒ F a.s. It then follows from Corollary 1 of

Geronimo and Hill (2003) that

mF
Ĥn,ĉn

(zj) → mF (zj) a.s. ∀j .

In particular, the proof of Corollary 1 of Geronimo and Hill (2003) uses that convergence in
distribution of probability measures implies convergence of integrals of bounded and continuous
functions. A completely analogous argument can therefore be invoked to show that also

zF
Ĥn,ĉn

(mj) → zF (mj) a.s. ∀j

or, equivalently, that

zF
Ĥn,ĉn

(
−

1

vj

)
→ zF

(
−

1

vj

)
a.s. ∀j .

Using relation (A.16), with H̃ ≡ Ĥn and c̃ ≡ c̃n, and relation (A.17), this implies that

mĤn
(vj) = −

1

ĉn v2j

[
zF

Ĥn,ĉn

(
−

1

vj

)
− vj + ĉn vj

]

→ −
1

c v2j

[
zF

(
−

1

vj

)
− vj + c vj

]
= mH(vj) a.s. ∀j ,

which completes the proof of part (ii) the theorem.

Proof of Corollary 5.1. We start with the proof of part (i). Following El Karoui (2008),
we call HTn a discretization of H on the grid {Jn/Tn, (Jn + 1)/Tn, . . . ,Kn/Tn}. For instance,
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NONLINEAR SHRINKAGE ESTIMATION 9

we can choose HTn to be a step function with HTn(x) ≡ H(x) if x = l/Tn, l ∈ N, and HTn is
constant on [l/Tn, (l + 1)/Tn). If the support of H is given by [h1, h2], say, then the support
of HTn is contained in [h1−1/Tn, h2+1/Tn]. It is easy to see that for such a discretization HTn ,
it holds that HTn ⇒ H, as long as

(A.18) ∃ b > 0 such that λp ≤ b for all n sufficiently large and

(A.19) ∃ γ > 0 such that Jn/Tn ≤ h1 − γ and Kn/Tn ≥ h2 + γ for all n sufficiently large .

First, (A.18) holds a.s. as shown by Bai and Silverstein (1998) and Mestre (2008, Section II),
given our set of assumptions, in particular Assumption (A4). Second, the support of F is
denoted by [z̃1, z̃2]. On the one hand, it follows from Lemma 1.4 of Bai and Silverstein (1999)
that z̃1 < h1 and z̃2 > h2. Therefore, it holds that z1 = h1 − δ1 and z2 = h2 + δ2 for some
δ1, δ2 > 0. On the other hand, Fn ⇒ F a.s., implying that λ1 ≤ z̃1 + δ1/2 and λp ≥ z̃2 − δ2/2
for n sufficiently large a.s. So, letting γ ≡ min{δ1/2, δ2/2}, condition (A.19) holds a.s. as well.
Taken together, it follows that HTn ⇒ H a.s.

By construction,

||FĤn,ĉn
− Fn||Qn ≤ ||FHTn ,ĉn

− Fn||Qn ≤ ||FHTn ,ĉn
− F ||Qn + ||F − Fn||Qn .

We know that ||F − Fn||Qn → 0 a.s. So to establish part (i), it is sufficient to show that
||FHTn ,ĉn

− F ||Qn → 0 a.s. Since HTn ⇒ H a.s. and ĉn → c, it follows from Lemma A.2 and
Polya’s Theorem that supt |FHTn ,ĉn

(t)−F (t)| → 0 a.s., implying that ||FHTn ,ĉn
−F ||Qn → 0 a.s.

But, having established part (i), part (ii) follows in exactly the same fashion as in the proof
of Theorem 5.1.

Proof of Corollary 5.2. We start with some preliminary results, leading up to the
proof of part (ii). Let G be a c.d.f. with continuous density g and compact support [a, b].
For a grid Q ≡ {. . . , t−1, t0, t1, . . .} covering the support of G, the approximation to G via
trapezoidal integration is defined as in (5.3). Since g is Lipschitz-continuous on [a, b], there
exists a (smallest) finite ε > 0 such that |g(t1) − g(t2)| ≤ ε as long as t1 − t2| ≤ γ. Denote
by ĝQ the density corresponding to ĜQ. By definition of the trapezoidal rule, ĝQ is piecewise
linear and agrees with g at all points tk ∈ Q. Since the grid size of Q is given by γ, we may
infer that

(A.20) sup
t

|g(t)− ĝQ(t)| ≤ 2 ε and thus sup
t

|G(t)− ĜQ(t)| ≤ 2 ε (b− a+ 2 γ) .

We have assumed from the outset that c < 1. By construction,

||F̂Ĥn,ĉn;Qn
−Fn||Qn ≤ ||F̂HTn ,ĉn;Qn

−Fn||Qn ≤ ||F̂HTn ,ĉn;Qn
−FHTn ,ĉn

||Qn + ||FHTn ,ĉn
−Fn||Qn .

It follows from the proof of Corollary 5.1 that ||FHTn ,ĉn
− Fn||Qn → 0 a.s. So if we can show

that ||F̂HTn ,ĉn;Qn
− FHTn ,ĉn

||Qn → 0, it follows that ||F̂Ĥn,ĉn;Qn
− Fn||Qn → 0 a.s.

For any probability measure H̃, any c̃ > 0, and any λ ∈ (0,+∞), let

m̆F
H̃
,c̃(λ) = lim

z∈C+→λ
mF

H̃,c̃
(z) .
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10 LEDOIT AND WOLF

Also let fH̃,c̃(λ) ≡ π−1Im[m̆F
H̃,c̃

(λ)] and define fH̃,c̃(0) ≡ 0. Then

∫ t

−∞
fH̃,c̃(λ) dλ =

{
FH̃,c̃(t) if c̃ < 1
c̃ F H̃,c̃(t) if c̃ > 1 .

We know that f ≡ fH,c is continuous, and therefore Lipschitz-continuous, on [z̃1, z̃2] and con-
stantly equal to zero outside [z̃1, z̃2]. Denote by fmax the maximum value of f . Since HTn ⇒ H,
it follows from part (i) of Proposition 4.2 that, for every δ̃ > 0,

(A.21) fHTn ,ĉn
(λ) → f(λ) uniformly in λ ∈ [z̃1 + δ̃, z̃2 − δ̃] .

In particular, for every ε > 0, we can find N such that, for all n ≥ N ,

|fHTn ,ĉn
(λ)− f(λ)| < ε for all λ ∈ [z̃1 + δ̃, z̃2 − δ̃] .

For every n, the function fHTn ,ĉn
is monotonically increasing near the left boundary of its sup-

port and monotonically decreasing near the right boundary of its support; see Silverstein and Choi
(1995, Section 5). The compact support of F is given by [z̃1, z̃2]. Lemma A.2 then implies that
the support of FHTn ,ĉn

is contained in [z̃1 − ηn, z̃2 + ηn] for some positive sequence ηn → 0, so

(A.22) fHTn ,ĉn
(λ) = 0 for λ /∈ [z̃1 − ηn, z̃2 + ηn] .

And further, for ηn and δ̃ sufficiently small and for n sufficiently large, we may assume that

(A.23) fHTn ,ĉn
(λ) ≤ 2 fmax for all λ ∈ [z̃1 − ηn, z̃1 + γ̃n] ∪ [z̃2 − γ̃n, z̃2 + ηn] .

Since f is Lipschitz-continuous on [z̃1, z̃2], for ε > 0, there exists δ > 0 such that |f(λ1) −
f(λ2)| ≤ ε/2 for all λ1, λ2 ∈ [z̃1, z̃2] with |λ1 − λ2| < δ. From (A.21) it then follows that for n
large enough,

|fHTn ,ĉn
(λ1)− fHTn ,ĉn

(λ2)| ≤ ε for all λ1, λ2 ∈ [z̃1 + δ̃, z̃2 − δ̃] with |λ1 − λ2| ≤ δ .

Applying the previous discussion for a general c.d.f. G and a general grid Q leading to (A.20)
to the special cases of FHTn ,ĉn

and Qn, respectively, we thus obtain that, for n large enough
(in particular, satisfying γn ≤ δ),

(A.24) sup
λ∈[z̃1+δ̃,z̃2−δ̃]

|fHTn ,ĉn
(λ)− f̂HTn ,ĉn;Qn

(λ)| ≤ 2 ε .

Combining (A.22)–(A.24) yields, for ε and δ̃ small enough and for n large enough,

(A.25) sup
λ∈R

|FHTn ,ĉn
(λ)− F̂HTn ,ĉn;Qn

(λ)| ≤ 2 ε (z̃2 − z̃1 + 2 δ) + 4 fmax (ηn + δ̃) .

Since the right hand side of (A.25) can be made arbitrarily small, we have established that
||F̂HTn ,ĉn;Qn

−FHTn ,ĉn
||Qn → 0, which implies that ||F̂Ĥn,ĉn;Qn

−Fn||Qn → 0 a.s., which in turn
implies that

(A.26) ||F̂Ĥn,ĉn;Qn
− F ||Qn ≤ ||F̂Ĥn,ĉn;Qn

− Fn||Qn + ||Fn − F ||Qn → 0 a.s. .

Lemma A.1 then tells us that F̂Ĥn,ĉn;Qn
⇒ F a.s.
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We now show that this implies part (ii) of the corollary, namely that Ĥn ⇒ H a.s. by means
of contradiction. To this end, assume that Ĥn ⇒ H a.s. is not the case. The sequence {Ĥn}
is tight a.s. This is because the upper bound of the support of Hn is given by Kn/Tn which,
by definition of Kn satisfies Kn/Tn ≤ λp+1/Tn; and we know from Bai and Silverstein (1998)
that for any ε > 0, λp ≤ z̃2 + ε for n large enough a.s. Similar for the lower bound, or simply

use zero as very crude lower bound. Therefore, if Ĥn ⇒ H a.s. is not the case, there then
exists a probability measure H ′ -= H and a subsequence {nk} such that on a set with positive
probability, we have Ĥnk

⇒ H ′.

Similarly to an argument used in the proof of part (i) of Corollary 5.1 — with Ĥnk
and H ′ now

playing the roles of HTn and H, respectively — it then follows that ||FĤnk
,ĉnk

−FH′,c||Qnk
→ 0

on a set with positive probability. But it also holds that ||F̂Ĥnk
,ĉnk

;Qnk
− FĤnk

,ĉnk
||Qnk

→ 0

similarly to an argument used above — with FĤnk
,ĉnk

now playing the role of FHTn ,ĉn
. Together,

we obtain that ||F̂Ĥnk
,ĉnk

;Qnk
− FH′,c||Qnk

→ 0 on a set with positive probability. Since we are

working under the assumption that c < 1, both FH and FH′ are continuous. Lemma A.1 then
tells us that supt |F̂Ĥnk

ĉnk
;Qnk

(t)−FH′,c(t)| → 0 on a set with positive probability. But this in

contradiction to supt |F̂Ĥn,ĉn;Qn
− F (t)| → 0 a.s. So the proof of part (ii) is accomplished.

We now can establish that ||F̂Ĥn,ĉn;Qn
− FĤn,ĉn

||Qn → 0 a.s., knowing that Ĥn ⇒ H a.s.,

very much in the same way as we established before that ||F̂HTn ,ĉn;Qn
− FHTn ,ĉn

||Qn , knowing
that HTn ⇒ H. As a result, we obtain that ||FĤn,ĉn

− F ||Qn → 0 a.s. Invoking Lemma A.1

establishes part (i) then.

Parts (iii)–(iv) follow immediately from parts (i)–(ii) and Proposition 4.3, part (ii).
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