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It is common in econometric applications that several hypothesis tests are carried
out simultaneously. The problem then becomes how to decide which hypotheses
to reject, accounting for the multitude of tests. The classical approach is to con-
trol the familywise error rate (FWE), which is the probability of one or more
false rejections. But when the number of hypotheses under consideration is large,
control of the FWE can become too demanding. As a result, the number of false
hypotheses rejected may be small or even zero. This suggests replacing control of
the FWE by a more liberal measure. To this end, we review a number of recent
proposals from the statistical literature. We briefly discuss how these procedures
apply to the general problem of model selection. A simulation study and two empir-
ical applications illustrate the methods.

1. INTRODUCTION

Much empirical research in economics and finance inevitably involves data
snooping. The problem arises when several hypothesis tests are carried out simul-
taneously and one has to decide which hypotheses to reject. One common sce-
nario is the comparison of many strategies (such as investment strategies) to a
common benchmark (such as a market index); here, a particular hypothesis test
specifies whether a particular strategy outperforms the benchmark or not.
Another common scenario is multiple regression models; here, a particular
hypothesis test specifies whether a particular regression coefficient is equal to
a prespecified value or not.

Economists have long been aware of the dangers resulting from data snoop-
ing; see, for example, White (2000), Hansen (2005), Romano and Wolf (2005b),
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and the references therein. The standard approach to account for data snooping
is to control (asymptotically) the familywise error rate (FWE), which is the
probability of making one or more false rejections; see, for example, Westfall
and Young (1993).! However, this criterion can be too strict when the number
of hypotheses under consideration is very large. As a result, it can be become
very difficult (or impossible) to make true rejections. In other words, control-
ling the FWE can be playing it too safe.

When the number of hypotheses is very large and the ability to make true
rejections is a main concern, it has been suggested that the researcher relax
control of the FWE. In this paper, we discuss and review three proposals to this
end. The first proposal is to control the probability of making k or more false
rejections, for some integer k greater than or equal to one, which is called the
k-FWE.? The remaining proposals are based on the false discovery proportion
(FDP), defined as the number of false rejections divided by the total number of
rejections (and defined to be O if there are no rejections at all). The second
proposal is to control E(FDP), the expected value of the FDP, which is called
the false discovery rate (FDR). The third proposal is to control P{FDP > y},
where vy is a small, user-defined number. In particular, the goal is to construct
methods that satisfy P{FDP > y} < «. Usually @ = 0.05 or @ = 0.1; the spe-
cial case @ = 0.5 yields control of the median FDP. Although the three propos-
als are different, they share a common philosophy: by allowing a small number
or a small (expected) proportion of false rejections one can improve one’s
chances of making true rejections and perhaps greatly so. In other words, the
price to pay can be small compared to the benefits to reap.

This paper reviews various methods that have been suggested for control of
the three criteria previously mentioned, including some very recent multiple
testing procedures that account for the dependence structure of the individual
test statistics. Part of our contribution is to present the methods in a unified
context, allowing an applied researcher to grasp the concepts quickly, rather
than having to read and digest the numerous underlying original papers. We
also demonstrate, by means of some simulations and two empirical applica-
tions, how competing multiple testing procedures compare when applied to data.
A previous review paper discussing multiple testing methods is Dudoit, Shaf-
fer, and Boldrick (2003). However, our paper emphasizes more recent method-
ology and focuses on applications in econometrics and finance rather than
microarray experiments.

The remainder of the paper is organized as follows. Section 2 describes the
model and the formal inference problem. Section 3 reviews various methods to
control the FWE. Section 4 presents various methods to control the k-FWE.
Section 5 reviews the method of Benjamini and Hochberg (1995) for control of
the FDR. Section 6 presents various methods to control P{FDP > y}. Sec-
tion 7 discusses applications of generalized error rates to the problem of model
selection. Section 8 sheds some light on finite-sample performance of the dis-
cussed methods via a simulation study. Section 9 provides two empirical appli-
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cations. Finally, Section 10 concludes. An Appendix contains some details
concerning bootstrap implementation.

2. NOTATION AND PROBLEM FORMULATION

One observes a data matrix x,; with 1 =¢= T and 1 = [ = L. The data are gen-
erated from some underlying probability mechanism P, which is unknown. The
row index ¢ corresponds to distinct observations, and there are 7 of them. In our
asymptotic framework, 7 will tend to infinity. The number of columns L is fixed.
For compactness, we introduce the following notation: X denotes the complete
T X L data matrix, X,(,,T) is the L X 1 vector that corresponds to the ¢th row of
Xr, and X (T,) is the 7" X 1 vector that corresponds to the /th column of X;.

Interest focuses on a parameter vector # = 6(P) of dimension S, that is, 6 =
(61,...,65)". The individual hypotheses concern the elements of # and can be
all one-sided of the form

H:0,=6,, vs.H{:0,>06,,, (§))
or they can be all two-sided of the form

H:60,=0,, vs.H:0,#80,,. )

, S

For each hypothesis H;, 1 = s = S, one computes a test statistic wy,; from
the data matrix X;. In some instances, we will also consider studentized test
statistics zr,; = wr, /07,5, where the standard error J, estimates the standard
deviation of wr ; and is also computed from X. In what follows, we often call
wr s a “basic” test statistic to distinguish it from the studentized statistic z7 .
We now introduce some compact notation: the S X 1 vector Wy collects the
individual basic test statistics wy,; the S X 1 vector Z; collects the individual
studentized test statistics z7,.

A multiple testing method yields a decision concerning each individual test-
ing problem by either rejecting H or not. In an ideal world, one would like to
reject all those hypotheses that are false. In a realistic world, and given a finite
amount of data, this cannot be achieved with certainty. At this point, we vaguely
define our goal as making as many true rejections as possible while not making
“too many” false rejections. Different notions of accounting for data snooping
entertain different views of what constitutes too many false rejections.

We next describe two broad examples where data snooping arises naturally
by putting them into the preceding framework.

Example 2.1 (Comparing several strategies to a common benchmark)

Consider § strategies (such as investment strategies) that are compared to
a common benchmark (such as a market index). The data matrix X; has L =
S + 1 columns: the first S columns record the individual strategies, and the last
column records the benchmark. The goal is to decide which strategies out-
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perform the benchmark. Here the individual parameters are defined so that
0, = 0 if and only if the sth strategy does not outperform the benchmark. One
then is in the one-sided setup (1) with 6, =0 fors =1,...,S.

Example 2.1(a) (Absolute performance of investment strategies)

Historical returns of investment strategy s, such as a particular mutual fund
or a particular trading strategy, are recorded in X (TS) Historical returns of a
benchmark, such as a stock index or a buy-and-hold strategy, are recorded in
x7) “s+1- Depending on preference, these can be “real” returns or log returns;
also, returns may be recorded in excess of the risk-free rate if desired. Let
denote the population mean of the return for strategy s. Based on an absolute
criterion, strategy s beats the benchmark if w, > wgi;. Therefore, we define
0, = uy — ms+i. Using the notation

xT,s = 'xl,s

|\M~,

1
T ;
a natural basic test statistic is

Wy = Xps — Xps41- 3)

Often, a studentized statistic is preferable and is given by

fT,s - XT,S-H
s T T 4)

71 s

where 7, is an estimator of the standard deviation of X7, — X7,5+.
Example 2.1(b) (Relative performance of investment strategies)

The basic setup is as in the previous example, but now consider a risk-adjusted
comparison of the investment strategies, based on the respective Sharpe ratios.
With u, again denoting the mean of the return of strategy s and with o denot-
ing its standard deviation, the corresponding Sharpe ratio is defined as SR, =
w,/o,2 An investment strategy is now said to outperform the benchmark if
its Sharpe ratio is higher than the one of the benchmark. Therefore, we define
0, = SRy — SRg.,. Let

ST, = \/ E(XTA xTa

—1 =1
Then, a natural basic test statistic is

Xrs  Xrs+1

€))

WT,S = .
ST,s ST,5+1
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Again, a preferred statistic might be obtained by dividing by an estimate of the
standard deviation of this difference.

Example 2.1(c) (CAPM alpha)

Historical returns of investment strategy s, in excess of the risk-free rate, are
recorded in X (];) Historical returns of a market proxy, in excess of the risk-free

. T . . . .
rate, are recorded in X ( SL 1. For each strategy s, a simple time series regression

'xt,x = a,\‘ + Bx'xt,S+l + 6[,.\' (6)

is estimated by ordinary least squares (OLS). If the capital asset pricing model
(CAPM) holds, all intercepts a; are equal to zero.* So, the parameter of inter-
est here is 6; = a,. Because the CAPM may be violated in practice, a financial
adviser might want to identify investment strategies that have a positive a.
Hence, a basic test statistic would be

Wrs = &T,s' 7
Again, it can be advantageous to studentize.

Example 2.2 (Multiple regression)

Consider the multiple regression model

Ve =0,x,,+ - +O0yx,, te t=1,...,T.

The data matrix X has L = H + 1 columns: the first H columns record the
explanatory variables, whereas the last column records the response variable,
letting x4+, , = y,. Of interest are S = H of the regression coefficients. Without
loss of generality, assume that the explanatory variables are ordered in such a
way that the coefficients of interest correspond to the first S coefficients, and
so 6 = (6y,...,05)". One typically is in the two-sided setup (2) where the pre-
specified values 6, , depend on the context, but at times the one-sided setup (1)
can be more appropriate.

In much applied research, all the regression coefficients are of interest—
except possibly an intercept if it is included in the regression—and one would
like to decide which of them are different from zero. This corresponds to the
two-sided setup (2) where S = H—or § = H — 1 in the case of an included
intercept whose coefficient is not of interest—and 6, ; = 0 for s =1,...,S.

Let 6; denote an estimator of @ computed from the data matrix X, using
OLS or feasible generalized least squares (FGLS), say. Then the “basic™ test
statistic for H; is simply wz, = GAT, s- The proper choice of the standard error
o7 s for studentization depends on the context. In the simplest case, it can be
the usual OLS standard error. More generally, a standard error that is robust
against heteroskedasticity and/or autocorrelation might be required; for exam-
ple, see White (2001).
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For testing an individual hypothesis H, based on a studentized test statistic
Zr,5, one can typically compute an approximate p-value by invoking asymp-
totic standard normality. For example, for testing a two-sided hypothesis H,: 6, =
6o, s, one might compute pr, =2 X (1 — ®(|zy,|)), where ®(-) is the standard
normal cumulative distribution function (cdf). Of course, one may also appeal
to other techniques that rely on approximating the null distribution of |z |,
such as bootstrapping, subsampling, permutation tests, empirical likelihood, or
Edgeworth approximations. In any case, pr is a marginal p-value in the sense
that the test that rejects H, if pr; = a has asymptotic rejection probability « if
H; is true. It follows that if all S null hypotheses are true, and we reject H;
whenever p;; = a, the expected number of false rejections is § X « (asymp-
totically). For example, if § = 1,000 and @ = 0.05, the expected number of
false rejections is 50 (asymptotically) when all null hypotheses are true. Such
an approach is too liberal and does not account for the multitude of tests under
study. In the remainder of the paper, we consider various measures of error
control that attempt to control false rejections by accounting for the fact that S
tests are being carried out simultaneously.

3. METHODS CONTROLLING THE FWE

The usual approach to dealing with data snooping is to try to avoid any false
rejections. That is, one seeks to control the FWE. The FWE is defined as the
probability of rejecting at least one of the true null hypotheses. More specifi-
cally, if P is the true probability mechanism, let I, = I,(P) C {l,...,S} denote
the indices of the set of true hypotheses, that is,

0,=6,, insetup (1)
s €1, if and only if .
0, =6, insetup (2).

The FWE is the probability under P that any H, with s € I, is rejected:’

FWE, = P{Reject at least one H,:s € [,(P)}.

If all the individual null hypotheses are false, the FWE is equal to zero by
definition.

Control of the FWE requires that, for any P, the FWE be no bigger than «, at
least asymptotically. Because this must hold for any P, it must hold not just
when all null hypotheses are true (which is called weak control) but also when
some are true and some are false (which is called strong control). As remarked
by Dudoit et al. (2003), this distinction is often ignored. The remainder of the
paper equates control of the FWE with strong control and similarly for the con-
trol of the k-FWE and FDP discussed in later sections. A multiple testing method
is said to control the FWE at level « if FWE, = « for any sample size 7 and
any P. A multiple testing method is said to control the FWE asymptotically at
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level « if lim sup;_,., FWEp = « for any P. Methods that control the FWE in
finite samples typically can only be derived in special circumstances; see Hoch-
berg and Tamhane (1987) in the context of parametric models and Romano and
Wolf (2005a) in the context of semiparametric models and permutation setups.

3.1. The Bonferroni Method

The most familiar multiple testing method for controlling the FWE is the Bon-
ferroni method. For each null hypothesis H,, one computes an individual p-value
Dr.s- The Bonferroni method at level a rejects H; if pr., = «/S and therefore is
very simple to apply. Because all p-values are compared to a single critical
value, the Bonferroni method is an example of a single-step procedure. The
disadvantage of the Bonferroni method is that it is in general conservative, result-
ing in a loss of power.

The Bonferroni method controls the FWE if the distribution of each p-value
corresponding to a true null hypothesis is stochastically dominated by the uni-
form (0, 1) distribution, that is,

H true = P{p,,=u}=u foranyu € (0,1). 3)

The Bonferroni method asymptotically controls the FWE if the distribution of
each p-value corresponding to a true null hypothesis is stochastically domi-
nated by the uniform (0, 1) distribution asymptotically, that is,

H, true = limsup P{p, = u} =u forany u € (0,1). )

T—o0

3.2. The Holm Method

An improvement over Bonferroni is due to Holm (1979), and it works in a
stepwise fashion as follows. The individual p-values are ordered from smallest
to largest: pr. (1) = pr,p) = -+ = Pr,(s) With their corresponding null hypotheses
labeled accordingly: Hy), H), . .., Hs). Then, H, is rejected at level a if pr, ;) =
a/(§—j+ 1) forj=1,...,s. In comparison with the Bonferroni method, the
criterion for the smallest p-value is equally strict, /S, but it becomes less and
less strict for the larger p-values. Hence, the Holm method will typically reject
more hypotheses and is more powerful than the Bonferroni method. On the
other hand, the Holm method (asymptotically) controls the FWE under exactly
the same condition as the Bonferroni method.

The Holm method starts with examining the most significant hypothesis, cor-
responding to the smallest p-value, and then moves “down” to the less signifi-
cant hypotheses. Such stepwise methods are called stepdown methods. Different
in nature are stepup methods, which start by examining the least significant
hypothesis, corresponding to the largest p-value, and then move “up” to the
more significant hypotheses. An example is the stepwise method of Benjamini
and Hochberg (1995); see Section 5.
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Although its improvement over Bonferroni can be substantial, the Holm
method can also be very conservative. The reason for the conservativeness of
the Bonferroni and the Holm methods is that they do not take into account the
dependence structure of the individual p-values. Loosely speaking, they achieve
control of the FWE by assuming a worst-case dependence structure. If the true
dependence structure could (asymptotically) be accounted for, one should be
able to (asymptotically) control the FWE but at the same time increase power.®
In many economic or financial applications, the individual test statistics are
jointly dependent. It is therefore important to account for the underlying depen-
dence structure to avoid being overly conservative.

3.3. The Bootstrap Reality Check and the StepM Method

White (2000), in the context of Example 2.1, proposes the bootstrap reality
check (BRC). The BRC estimates the sampling distribution of max;<,<g(wy, —
0,), implicitly taking into account the dependence structure of the individual
test statistics. Let s,,,, denote the index of the strategy with the largest statistic
wr,s. The BRC decides whether or not to reject H,  at level «, asymptotically
controlling the FWE. It therefore addresses the question of whether the strat-
egy that appears “best” in the observed data really beats the benchmark.” On
the other hand, it does not attempt to identify as many outperforming strategies
as possible.

Hansen (2005) offers some improvements over the BRC. First, his method
reduces the influence of “irrelevant” strategies, meaning strategies that “signif-
icantly” underperform the benchmark. Second, he proposes the use of studen-
tized test statistics z7,, instead of basic test statistics wy, ;. However, the method
of Hansen (2005) also only addresses the question of whether the strategy that
appears best in the observed data really beats the benchmark.

Romano and Wolf (2005b), also in the context of Example 2.1, address the
problem of detecting as many outperforming strategies as possible. Often, this
will be the relevant problem. For example, if a bank wants to invest money in
trading strategies that outperform a benchmark, it is preferable to build a port-
folio of several strategies rather than fully invest in the best strategy only. Hence,
the goal is to identify the universe of all outperforming strategies for maximum
diversification. The stepwise multiple testing (StepM) method of Romano and
Wolf (2005b) improves upon the single-step BRC of White (2000) very much
in the way that the stepwise Holm method improves upon the single-step Bon-
ferroni method: in terms of being able to detect more outperforming strategies,
one is afforded a free lunch. Like the Holm method, the StepM method is of
the stepdown nature; that is, it starts by examining the most significant hypoth-
esis. Although Romano and Wolf (2005b) develop their StepM method in the
context of Example 2.1, it is straightforward to adapt it to the generic multiple
testing problems (1) and (2). For details, see Section 4.3.3.
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3.4. Use of the Bootstrap

The StepM method and its extensions discussed subsequently are based on the
inversion of multiple confidence regions. This can be considered an “indirect”
testing method. In the special case of testing a single hypothesis, it corresponds
to constructing a confidence interval for the parameter under test and rejecting
the null hypothesis if the null value is not contained in the interval. A “direct”
testing method, on the other hand, rejects the null hypothesis if a test statistic
exceeds a suitable critical value.

Because the StepM method is based on the bootstrap, the indirect testing
approach has several advantages. First, in the independent and identically dis-
tributed (i.i.d.) case, one can simply resample from the observed data rather
than from a distribution that obeys null hypothesis constraints. More generally,
one can resample from an estimated model that mimics the underlying proba-
bility mechanism, without imposing any null constraints. Second, one can dis-
pense with the technical condition of subset pivotality that is assumed in Westfall
and Young (1993) but that is quite restrictive.

Resampling the data was previously suggested by Pollard and van der Laan
(2003a) and then generalized by Dudoit, van der Laan, and Pollard (2004a). By
recomputing the test statistics from the resampled data and subtracting the val-
ues of the original test statistics, they arrive at what they term the null-value
shifted distribution of the test statistics. It turns out that this is actually equiv-
alent to inverting bootstrap multiple confidence regions. A quite general theory
of stepdown methods based on the bootstrap is given in Romano and Wolf
(2005a) and is powerful enough to supply both finite-sample and asymptotic
results.

A modification to the null-value shifted distribution of Pollard and van der
Laan (2003b) and Dudoit et al. (2004a) is proposed by van der Laan and Hub-
bard (2005). Here, the marginal null distribution of any test statistic can be
transformed from the bootstrap distribution to a known marginal null distribu-
tion, such as N(0, 1) in the context of testing univariate means, while maintain-
ing the multivariate dependence structure.

4. METHODS CONTROLLING THE k-FWE

By relaxing the strict FWE criterion one will be able to reject more false hypoth-
eses. This section presents the alternative criterion of controlling the k-FWE.
The k-FWE is defined as the probability of rejecting at least k of the true null
hypotheses. As before, if P is the true probability mechanism, let I, = I,(P) C
{1,...,8} denote the indices of the set of true hypotheses. The k-FWE is the
probability under P that any k or more of the H, with s € I are rejected:

k-FWE, = P{Reject at least k of the H_: s € I,}.

In the case where at least S — k + 1 of the individual null hypotheses are false,
the k-FWE is equal to zero by definition.
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A multiple testing method is said to control the k-FWE at level « if k-FWEp =
a for any sample size T and for any P. A multiple testing method is said to
control the FWE asymptotically at level « if lim sup;_,., &-FWEp = « for any
P. Methods that control the &-FWE in finite samples typically can only be derived
in special circumstances; see Romano and Wolf (2007).

We now describe how the various methods of Section 3 can be generalized
to achieve (asymptotic) control of the k-FWE. Of course, because our goal is to
reject as many false hypotheses as possible, attention will focus on the gener-
alization of the StepM method.

4.1. Generalization of the Bonferroni Method

The generalized Bonferroni method is due to Hommel and Hoffman (1988) and
Lehmann and Romano (2005) and is based on the individual p-values. The
method rejects H if pr, = ka/S. It is easy to see that potentially many more
hypotheses will be rejected compared to the original Bonferroni method. Indeed,
the cutoff value for the individual p-values is k times as large.

If condition (8) holds, then this method controls the k-FWE. If condition (9)
holds, then this method asymptotically controls the k-FWE.

4.2. Generalization of the Holm Method

The individual p-values are ordered from smallest to largest, pr.) = pr) =

- = Pr.(s), with their corresponding null hypotheses labeled accordingly,
Huy,Hq), ..., Hg). Then H, is rejected at level a if py, ;) = a; forj=1,...,s,
where?®

ko
— forj=k
S

a; =

/ ko
—— forj >k
S+k—j

This modification is also due to Hommel and Hoffman (1988) and Lehmann
and Romano (2005). It is easy to see that this stepwise method is more power-
ful than the single-step generalized Bonferroni method. On the other hand, the
sufficient conditions for control and asymptotic control, respectively, of the
k-FWE are identical.

4.3. Generalization of the StepM Method

We now describe how to generalize the StepM method of Romano and Wolf
(2005b) to achieve asymptotic control of the k-FWE. We begin by discussing
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the one-sided setup (1) and then describe the necessary modifications for the
two-sided setup (2).

4.3.1. Basic Method. We detail the method in the context of using basic
test statistics wy; and discuss the extension to the studentized case later on.
Begin by relabeling the strategies according to the size of the individual test
statistics, from largest to smallest. Label r; corresponds to the largest test sta-
tistic and label rg to the smallest one, so that wr, = wr,, = -+ = wg,..

Some further notation is required. Suppose that { y,: s € K} is a collection of
real numbers indexed by a finite set K having | K| elements. Then, for k < | K|,
k-max ek (y,) is used to denote the kth largest value of the y, with s € K. So, if
the elements y,, s € K, are ordered as

Yay = =Yk
then
k-max,ex(y,) = V(K|—k+1)-
Further, for any K C {l1,...,S}, define

cx(1 = a,k, P) = inf{x: P{k-max,cx (W, —6,) =x} =1 — a}; (10)

that is, cx(1 — a, k, P) is the smallest 1 — « quantile of the sampling distribu-
tion under P of k-max,cx (w7, — 6, ).

In the first step of the procedure, we construct a rectangular joint region® for
the vector (6, ,...,6,.)" of the form

[WT,rl_C]’OO)X X[WT,rS_Cl,OO)~ 11)

Individual decision are then carried out in the following manner: reject H, if
0o, & [wr,, — c1,00), for s =1,...,S. Equivalently, reject H, if wy,, — 6, , >
¢, fors=1,...,8. ‘

How should the value ¢, in the construction of the joint region (11) be cho-
sen? Let K denote the index set that corresponds to the relabeled true hypoth-
eses, that is,

sEKer €,

Ideally, one would take ¢; = cg(l — a,k, P), because this choice yields con-
trol of the k-FWE. To see why, assume without loss of generality that at
least k hypotheses are true; otherwise, there is nothing to show. Then, with ¢, =
cg(l — a, k, P),
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k-FWE, = P{Reject at least k of the H,:s € I,}
= P{Reject at least k of the H, :s € K}
= P{k-max,cg(ws, —0,) > cg(l —a,k,P)}
= a (by definition of cg(1 — a, k, P)).

Unfortunately, the ideal choice ¢; = cg(l — a,k, P) is not available for two
reasons. First, the set K is unknown. Second, the probability mechanism P is
unknown. The solution to the first problem is to replace K by {1,...,S}. Because
K C{l,...,S}, it follows that cg(1 — a,k,P) = cq1.... sy(1 — a,k, P), and so
the k-FWE is still controlled. The solution to the second problem is to replace
P by an estimate Py, that is, to apply the bootstrap. The choice of P, depends
on context; see Appendix B of Romano and Wolf (2005b) for details. The cost
of replacing P by Py is that control of the k&-FWE is weakened to asymptotic
control of the k-FWE. Combining the two solutions yields the choice ¢; =
cu,. sl —ak, P;). And then any hypothesis H, for which wy, —6,, > ¢,
is rejected. '

By continuing after the first step, more hypotheses can be rejected. Romano
and Wolf (2007) show that this increase in power does not come at the expense
of sacrificing asymptotic control of the k.-FWE. Denote by R; the number of
rejections in the first step. If R; < k, stop, because it is plausible that all rejected
hypotheses are true. On the other hand, by controlling the k-FWE, if R| = &,
we can be confident that some of the rejected hypotheses are false. This knowl-
edge will now lead to smaller joint regions in subsequent steps and hence to
potentially further rejections, without sacrificing control of the k-FWE. So if
R = k, continue with the second step and construct a rectangular joint region
for the vector (6 ..,0,)" of the form

TRy+17 "

(Wi 0y = €2500) X oo X [wy, = ¢5,00). 12)

Individual decisions are carried out analogously to before: reject H,_if 0, , &
[wr, —¢,00), fors =R, +1,...,8.

How should the value ¢, in the joint region construction (12) be chosen?
Again, the ideal choice ¢, = cg(l — a, k, P) is not available because K and P
are unknown. Crucially, instead of replacing K by {1,...,S}, we can use infor-
mation from the first step to arrive at a smaller value. Namely, if P were known,
this value would be given by

¢, =max{cy(1—a,k,P):K=1TU{R,+1,....SLIC{L,...,R,},|I| =k — 1},

which is the maximum of a set of ( k’ill) quantiles. The index set of any given
quantile corresponds to all the hypotheses not rejected plus £ — 1 out of the R,
hypotheses that were rejected in the first step, and then one takes the largest
such quantile for ¢,. The intuition here is as follows. To ensure control of the
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k-FWE in the second step, ¢, must satisfy ¢, = cg(1 — a, k, P). Assuming that
k-FWE control was achieved in the first step, it is conceivable that up to k — 1
true hypotheses have been rejected so far. But, of course, we cannot know which
of the rejected hypotheses might be true. So, to play it safe, one must look at
all possible combinations of k — 1 rejected hypotheses, always together with
the not rejected hypotheses, and then take the largest of the resulting quantiles.
Again, P is unknown, and so ¢, is not available in practice. Replacing P by Py
yields the estimate

é = max{cy(1—a,k,Py):K=1U{R, +1,...,5},

IC{l,...,RLIl=k—1}.

If no further hypotheses are rejected in the second step, stop. Otherwise, con-
tinue in this stepwise fashion until no more rejections occur. The following
algorithm summarizes the procedure.

ALGORITHM 4.1 (Basic k-StepM method for one-sided setup).

1. Relabel the strategies in descending order of the test statistics wr, ;. strat-
egy ry corresponds to the largest test statistic and strategy rg to the

smallest.

2. For |l =s =8, if6,, & [wg, — ¢,0), reject the null hypothesis H, .
Here
G = C{I ..... S}(l - avk’ﬁT)'

3. Denote by R, the number of hypotheses rejected. If Ry < k, stop, other-
wise let j = 2.

4. ForR; | +1=s=S,if6,, &[wr, — ¢;,0), reject the null hypothesis
H, . Here

¢; = max{cg(1 — a,k,P):K=1U R +1,...,8},
IC{L,...R_ LI =k—1}. (13)

5. (a) If no further hypotheses are rejected, stop.
(b) Otherwise, denote by R; the number of all hypotheses rejected so far
and, afterward, let j = j + 1. Then return to step 4.

The computation of the constants ¢; via the bootstrap is detailed in Algo-
rithm A.1 in the Appendix. Let J-(P) denote the sampling distribution under P
of \/_ T (W, — 6) and let J;(P;) denote the sampling distribution under P, of
\/7" Wy — 67) Here, HT is an estimate of 6 based on P;."° Romano and Wolf
(2007) show that a sufficient condition for the basic k-StepM method to control
the k-FWE asymptotically is the following.
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Assumption 4.1. Let P denote the true probability mechanism and let Py
denote an estimate of P based on the data X;. Assume that J-(P) converges in
distribution to a limit distribution J(P), which is continuous. Further assume
that J,(P;) consistently estimates this limit distribution: p(JT(ﬁT),J(P)) -0
in probability for any metric p metrizing weak convergence.

We now describe how the basic StepM method is modified for the two-sided
setup (2). The crux is that the multivariate rectangular joint regions are now the
Cartesian products of two-sided intervals rather than one-sided intervals.

To this end, for any K C {1,...,S}, define

ck..|(1 = a,k, P) = inf{x: P{k-max,cx|ws, — 6, | =x}=1— a}. (14)

That is, cx . /(1 — a,k, P) is the smallest 1 — & quantile of the two-sided sam-
pling distribution under P of k-max,cx|wyz, — 6, |.
The following algorithm describes the stepwise method in the two-sided setup.

ALGORITHM 4.2 (Basic k-StepM method for two-sided setup).

1. Relabel the strategies in descending order of the absolute test statistics
|wy o strategy ry corresponds to the largest absolute test statistic and
strategy rs to the smallest.

2. For 1l =s =S, if6,, &[wg, = ¢, ] reject the null hypothesis H, .
Here

Crp=cqu,.. . sh (1 —a,k Pr).

3. Denote by R, the number of hypotheses rejected. If Ry < k, stop, other-
wise let j = 2.

4. ForR;  + 1 =s=S,if0,, &[wys, * .l reject the null hypothesis
H, . Here

¢ = max{eg . (1 —a,k,Pr):K=TU{R,_, +1,...,5},
I1C{l,...,R, LI =k—1} (15)

5. (a) If no further hypotheses are rejected, stop.
(b) Otherwise, denote by R; the number of all hypotheses rejected so far
and, afterward, let j = j + 1. Then return to step 4.

The computation of the constants ¢; |.| via the bootstrap is detailed in Algo-
rithm A.2 in the Appendix. A sufficient condition for the basic k-StepM method
to asymptotically control the k-FWE in the two-sided setup is also given by
Assumption 4.1.

4.3.2. Studentized Method. We now describe how to modify the k-StepM
method when studentized test statistics are used instead. Ample motivation for
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the desirability of studentization in the context of FWE control is provided by
Hansen (2005) and Romano and Wolf (2005b). Their reasons carry over to
k-FWE control.

Again, begin with the one-sided setup (1). Analogously to (10), define

dg(1 — a,k, P) = inf{x: P{k-max([w;, — 0, 1/6;,:s EK) =x}=1—al.
(16)

Our stepwise method is then summarized by the following algorithm.

ALGORITHM 4.3 (Studentized k-StepM method for one-sided setup).

1. Relabel the strategies in descending order of the studentized test statistics
275 Strategy ry corresponds to the largest test statistic and strategy rg to
the smallest.

2. For1l=s5=S,if6,, &l[wr, — é'T,,Xc?,,oo), reject the null hypothesis
H, . Here

S}(l - a, k’ IST)

3. Denote by R, the number of hypotheses rejected. If Ry < k, stop, other-
wise let j = 2.

4. For R,y + 1 =s=38,if6,, & [wg, — &zrsc?j,oo), reject the null
hypothesis H, . Here

d; = max{dg(1 — a,k, P;): K =TU{R, | +1,...,S},
IC{l,...,R,_ LI =k—1} (17)

5. (a) If no further hypotheses are rejected, stop.
(b) Otherwise, denote by R; the number of all hypotheses rejected so far
and, afterward, let j = j + 1. Then return to step 4.

The computation of the constants 31- via the bootstrap is detailed in Algo-
rithm A.3 in the Appendix.
The modification to the two-sided setup (2) is now quite obvious. Analo-
gously to (16), define
dg (1 = a,k,P) = inf{x: P{k-max(|w;, — 0, |/67, s EK)=x}=1—a}.
(18)

The algorithm can then be summarized as follows.
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ALGORITHM 4.4. (Studentized k-StepM method for two-sided setup).

1. Relabel the strategies in descending order of the absolute studentized test
statistics |zr|: strategy ry corresponds to the largest absolute studen-
tized test statistic and strategy rg to the smallest.

2. For1=s=S,if6,, &[wg, * (?T,,‘\c?u%], reject the null hypothesis
H,. Here

s (1 —a, k, Pr).

,,,,,

3. Denote by R, the number of hypotheses rejected. If Ry < k, stop, other-
wise let j = 2.

4. ForR,  +1=s5s=S,if6,, &[wg, * aA'T,,jc?“,‘], reject the null hy-
pothesis H, . Here

A

d

AR

= max{dg . (1 - a,k,Pr): K=TU{R,, +1,...,S},
IC{l,...,R_ || = k—1}. (19)

5. (a) If no further hypotheses are rejected, stop.
(b) Otherwise, denote by R; the number of all hypotheses rejected so far
and, afterward, let j = j + 1. Then return to step 4.

The computation of the constants &j,\-l via the bootstrap is detailed in Algo-
rithm A.4 in the Appendix.

A slightly stronger version of Assumption 4.1 is needed to prove the validity
of the studentized method. Again, let X; denote a data matrix generated from
probability mechanism Py. The basic test statistics computed from X are de-
noted by wy .. Their corresponding standard errors, also computed from X7, are
denoted by & .. Romano and Wolf (2007) do not explicitly discuss the case of
studentized statistics. However, it is straightforward to show that a sufficient
condition for the studentized k-StepM method to control the k~-FWE asymptot-
ically, both in the one-sided and the two-sided setup, is the following.

Assumption 4.2. In addition to Assumption 4.1, assume the following con-
dition. For each 1 = s = S, both \/T 0y, and \T 07, converge to a (common)
positive constant o, = o(P) in probability under P.

_ Remark 4.1 (Operative method). The computation of the constants ¢;, ¢; .|,
d;, and d; ). in (13), (15), (17), and (19), respectively, may be very expensive if
(1:':1‘) is large. In such cases, we suggest the following shortcut. Pick a user-
defined number N,,,,, say, N,... = 50, and let N* be the largest integer for which

( k]{ *1) = N, The constant ¢;, say, is then computed as
¢ = max{¢x(l — a,k,Pr): K=TU{R, | +1,...,S},

IC{R,—N*+1,...,R} || =k—1}
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and similarly for the constants ¢; .|, dj, and ‘%}H- That is, we maximize over
subsets I not necessarily of the entlre index set of previously rejected hypoth-
eses but only of the index set corresponding to the N* least significant hypoth-
eses rejected so far. Note that this shortcut does not affect the asymptotic control
of the &-FWE even if N,,,, = 1 is chosen, resulting in N* = k — 1 and

C; = CR,_—k, ..., s}(l a’k’PT)'

Nevertheless, in the interest of better k-FWE control in finite samples, we sug-
gest choosing N, as large as possible, subject to computational feasibility.

Remark 4.2. All methods presented in this section can be modified in the
following sense while still preserving (asymptotic) control of the k--FWE: reject
the £ — 1 most significant hypotheses no matter what. This means sort the
hypotheses in the order of either ascending p-values or descending test statis-
tics to get H, , ..., H, ; then reject H, ,...,H, | irrespective of the data. Let R
denote the number of rejections made by the multiple testing method (before
modification). If R < k, then the modified method will reject kK — 1 hypotheses,
which is a potentially greater number. If R = k, then the modified method will
reject R hypotheses, that is, the same number. However, it is counterintuitive to
reject hypotheses irrespective of the data, and certainly we would also impose
the minimal requirement to not reject any hypothesis when the corresponding
marginal p-value exceeds a.

Remark 4.3. The use of the k-max statistic was already suggested by Dudoit
et al. (2004a) in the construction of a single-step procedure. Our methods here
can be seen as stepdown improvements over such single-step procedures.

4.3.3. The StepM Method. Naturally, the StepM method of Romano and
Wolf (2005b) can be considered a special case of the k-StepM method by choos-
ing k = 1. However, it should be pointed out that the computations are much
simplified compared to the case k > 1. The reason is that if some hypotheses
are rejected in the first step of the StepM method, then for the computation of
the values ¢; and ﬁj,j = 2,3,..., one may assume that all hypotheses rejected
so far are false.!! As a result, in the jth step, one does not have to compute the
maximum of a set of ( i ‘) estimated quantiles but rather only a single esti-
mated quantile.

The following algorithm is the simplified version of Algorithm 4.1 for the
special case k = 1. The simplified versions of Algorithms 4.2—4.4 are analogous.

ALGORITHM 4.5 (Basic StepM method for one-sided setup).

1. Relabel the strategies in descending order of the test statistics wy ;. strat-
egy r, corresponds to the largest test statistic and strategy rg to the
smallest.
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2. For 1 =s =8, if0,, & [wg, — ¢,), reject the null hypothesis H, .
Here

c = C{]

.....

3. Denote by R, the number of hypotheses rejected. If R, = 0, stop, other-
wise let j = 2.
4. ForR; | +1=5=S,if6,, &[wy, — ¢;,), reject the null hypothesis

H, . Here
éj = C{Rj,1+l ..... S}(l—a,l,PT).

5. (a) If no further hypotheses are rejected, stop.
(b) Otherwise, denote by R; the number of all hypotheses rejected so far
and, afterward, let j = j + 1. Then return to step 4.

4.4. Further Methods

An alternative approach to control the k--FWE is proposed by van der Laan,
Dudoit, and Pollard (2004). It begins with an initial procedure that controls the
1-FWE (i.e., the usual FWE) and then rejects in addition the k — 1 most signif-
icant hypotheses not rejected so far. They term this an augmentation proce-
dure, because the 1-FWE rejection set is augmented by the £ — 1 next most
significant hypotheses to arrive at the k-FWER rejection set. However, this pro-
cedure is generally less powerful than the k-StepM method we propose, because
it does not take full advantage of the generalized error measure as it relies too
heavily on FWE control; for some simulation evidence see Romano and Wolf
(2007).

5. METHODS CONTROLLING THE FDR

In many applications, one might be willing to tolerate a larger number of false
rejections if there are a larger number of total rejections. In other words, one
might be willing to tolerate a certain (small) proportion of false rejections out
of the total rejections. This suggests basing error control on the false discovery
proportion (FDP). Let F be the number of false rejections made by a multiple
testing method and let R be the total number of rejections. Then the FDP is
defined as follows:

F

— ifR>0
FDP = | R

0 ifR=0.

Benjamini and Hochberg (1995) propose controlling E»(FDP), the expected
value under P of the FDP, which they termed the false discovery rate (FDR). A
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multiple testing method is said to control the FDR at level y if FDR, =
Ep(FDP) =< vy for any sample size T and for any P. A multiple testing method is
said to control the FDR asymptotically at level vy if lim sup;_,,, FDRp» = vy for
any P. Methods that control the FDR in finite samples typically can only be
derived in special circumstances.

The stepwise method of Benjamini and Hochberg (1995) is based on individ-
ual p-values. The p-values are ordered from smallest to largest, pr. () = pr, o) =

- = Pr.(s), with their corresponding null hypotheses labeled accordingly,
H(l),H(z), e ,H(s)- Then define

*

. A J
j* =max{j:pr ;) =7v;} wherey,= 57 (20)

and reject Hy), ..., H ;. If no such j exists, reject no hypotheses. This is an
example of a stepup method. It starts with examining the least significant hypoth-
esis, Hs), and then moves “up” to the more significant hypotheses if pz,s) > .

Benjamini and Hochberg (1995) prove that their method controls the FDR if
condition (8) holds and, in addition, the p-values are mutually independent.
Benjamini and Yekutieli (2001) show that independence can be replaced by a
more general “positive regression dependency”’; see their paper for the exact
definition. As a result, it can be proved that, under the dependence condition of
Benjamini and Yekutieli (2001), the method of Benjamini and Hochberg (1995)
asymptotically controls the FDR if condition (9) holds. On the other hand,
(asymptotic) control of the Benjamini and Hochberg (1995) method under an
arbitrary dependence structure of the p-values does not hold in general. Ben-
jamini and Yekutieli (2001) show that this more general control can be achieved
if the constants vy; in (20) are replaced by

ko1
where C, = >, —.

s=1 95

U |~
I

Y =

Note that Cg =~ log(S) + 0.5 and so this method can have much less power
than the original Benjamini and Hochberg (1995) method. For example, when
S = 1,000, then Cs = 7.49.

Even when the sufficient condition of Benjamini and Yekutieli (2001) holds,
which includes independence as a special case, the method of Benjamini and
Hochberg (1995) is conservative in the following sense. Let S, denote the num-
ber of true null hypotheses, that is, S, = |I(P,)|. Then it can be shown that
FDRp = (Sy/S)a. So unless S, = S, power could be improved by replacing the
critical constants 7y; in (20) by

J

VJ_S_07’~



DATA SNOOPING BASED ON GENERALIZED ERROR RATES 423

Of course, S, is unknown in practice. But there exist several approaches in
the literature for estimating S,. For example, Storey (2002) suggests the follow-
ing estimator:

. Hpr; > A
So = BT 21

where A € (0,1) is a user-specified parameter. The reasoning behind this esti-
mator is as follows. As long as each test has reasonable power, then most of the
large p-values should correspond to true null hypotheses. Therefore, one would
expect about Sy(1 — A) of the p-values to lie in the interval (A, 1], assuming
that the p-values corresponding to the true null hypotheses have approximately
a uniform [0, 1] distribution. Having estimated S, one then applies the Ben-
jamini and Hochberg (1995) procedure with the critical constants y; in (20)
replaced by

L
YiT
0

Y- (22)

Storey, Taylor, and Siegmund (2004) study the validity of this “power-improved”
FDR procedure when the estimator of S is given by (21). They prove strong
control under a weak dependence condition on the individual p-values. This
condition includes independence, dependence within blocks, and mixing-type
situations. It is, however, stronger than the dependence condition of Benjamini
and Yekutieli (2001); for example, it does not allow for a constant correlation
across all p-values. Related work is given in Genovese and Wasserman (2004).
For another approach to estimating S,, see Benjamini and Hochberg (2000);
however, they do not prove asymptotic strong control of the resulting power-
improved FDR procedure.

Finally, there exists a feature with this particular generalized error rate that
is often ignored. The FDR is the mean of the FDP, that is, a central tendency of
the sampling distribution of the FDP. Therefore, even if the FDR is controlled
at level vy, in a given application, the realized FDP could be quite far away
from y. How likely this is depends on the sampling variability of the FDP,
which is unknown in practice.!?> Korn, Troendle, McShane, and Simon (2004)
provide simulations to shed some light on this issue; also see Section 8.

Remark 5.1 (Positive false discovery rate). The false discovery rate can be
rewritten as

F F
FDRP=E[E1{R>O}] =E[E|R>O}P(R>0).

In words, it can be expressed as the expectation of the ratio /R conditional on
the fact that there is at least one rejection times the probability of at least one



424 JOSEPH P. ROMANO ET AL.

rejection. As an alternative, Storey (2002, 2003) suggests replacement of the
FDR by only the first factor in this product, which he terms the positive false
discovery rate (pFDP):

F
pFDszE[E|R>0].

The pFDR enjoys a number of attractive properties. For example, when the test
statistics come from a random mixture of the null distribution and the alterna-
tive distribution, the pFDR can be expressed as a simple Bayesian posterior
probability. Also, it has a natural connection to classification theory. However,
it is not possible to control the pFDR strongly, that is, to achieve (even asymp-
totically) pFDR < « for all P. The reason is that pFDR, = 1 for all P such
that all null hypotheses are true. An application of the pFDR criterion instead
involves estimating pFDR for the P at hand, say, with the end of improving
multiple testing procedures; see Storey (2002). We will not focus further on
this alternative error rate in the remainder of the paper.

6. METHODS CONTROLLING THE FDP

Often, one would like to be able to make a statement concerning the realized
FDP in a given application. Concretely, one would like to control the FDP in
the sense that P{FDP > y} < « where y € [0,1) is a user-defined number.
Typical values are y = 0.05 and y = 0.1; the choice v = 0 corresponds to
control of the FWE.

A multiple testing method is said to control the FDP at level « if
P{FDP > vy} < « for any sample size T and for any P. A multiple testing method
is said to control the FDP asymptotically at level « if lim sup;_,., P{FDP > y} =
a for any P. Methods that control the FDP in finite samples typically can only
be derived in special circumstances.

We now describe how some of the methods of Section 3 can be generalized
to achieve (asymptotic) control of the FDP. Of course, because our goal is to
reject as many false hypotheses as possible, in the end we shall recommend the
generalization of the StepM method.

6.1. Generalization of the Holm Method

Lehmann and Romano (2005) develop a stepdown method based on individual
p-values. The p-values are ordered from smallest to largest, pr.) = pro) =

- = Pr.s), with their corresponding null hypotheses labeled accordingly,
Huy,Hq, ..., Hg). Then H, is rejected at level v if py, ;) = a; forj=1,...,s,
where
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" (lyj |+ Da
TS+l

Here, for a real number x, | x| denotes the greatest integer that is smaller than
or equal to x.

It can be proved that this method provides asymptotic control of the FDP if
condition (9) holds. Moreover, this method provides finite-sample control of
the FDP if condition (8) holds and the p-values are independent, or at least
positively dependent in a certain sense; see Lehmann and Romano (2005). Leh-
mann and Romano (2005) also show that if one modifies this method by replac-
ing a; by

' % |
a = where C, = >, —
Clyst+i =18

then the resulting stepdown procedure controls the FDP under no dependence
assumptions on the p-values. This method has since been improved by Romano
and Shaikh (2006a) in that the constant C|,s+1 has been replaced by a smaller
one, while still maintaining finite-sample control under assumption (8) and
asymptotic control under assumption (9). A similar stepup procedure is derived
in Romano and Shaikh (2006b).

6.2. Generalization of the StepM Method

The crux of our procedure is to sequentially apply the k-StepM method, employ-
ing k = 1,2,3,..., until a stopping rule indicates termination. The appropriate
variant of the k-StepM method is dictated by the nature of the multiple testing
problem, one-sided versus two-sided, and the choice of test statistics, basic ver-
sus studentized. For example, the one-sided setup (1) in combination with stu-
dentized test statistics calls for Algorithm 4.3.

To develop the idea, consider controlling P{FDP > 0.1}. We start out by
applying the 1-StepM method, that is, by controlling the FWE. Denote by N,
the number of hypotheses rejected. Because of the FWE control, one can be
confident that no false rejection has occurred and that, in return, the FDP
has been controlled. Consider now rejecting Hy, 1), the next most significant
hypothesis. Of course, if Hy, 4 is false, there is nothing to worry about, and
so suppose that Hy, .y is true. Assuming FWE control in the first step, the
FDP upon rejection of Hy, ., then becomes 1/(N; + 1), which is greater than
0.1 if and only if Ny < 9. So if N; = 9 we can reject one true hypothesis and
still avoid FDP > 0.1. This suggests stopping if N; < 9 and otherwise applying
the 2-StepM method, which, by design, should not reject more than one true
hypothesis. Denote the total number of hypotheses rejected by the 2-StepM
method by N,. Reasoning similarly to before, if N, < 19, we stop, and other-
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wise we apply the 3-StepM method. This procedure is continued until N; <
10j — 1 at some point.
The following algorithm describes the method for arbitrary vy.

ALGORITHM 6.1 (FDP-StepM method).

1. Let j =1 and let k; = 1.
2. Apply the k;-StepM method and denote by N; the number of hypotheses
rejected.
3. (a) IfN; <k;/y —1, stop.
(b) Otherwise, letj = j + 1 and, afterward, let k; = k;_, + 1. Then return
to step 2.

Romano and Wolf (2007) show that a sufficient condition for the FDP-
StepM method to provide asymptotic control of the FDP is Assumption 4.1 in
the case where the underlying k-StepM method uses basic test statistics. Simi-
larly, it can be proved that a sufficient condition for the FDP-StepM method to
provide asymptotic control of the FDP is Assumption 4.2 in the case where the
underlying k-StepM method uses studentized test statistics.

6.3. Further Methods

An alternative approach to controlling the FDP is proposed by van der Laan
et al. (2004) and Dudoit, van der Laan, and Pollard (2004b). It begins with an
initial procedure that controls the 1-FWE (i.e., the usual FWE). Let R denote
the number of rejections by the 1-FWE procedure. Then the proposal rejects in
addition the D next most significant hypotheses where D is the largest integer
that satisfies

D
=.
D+R 4

This is also an augmentation procedure because the 1-FWE rejection set is suit-
ably augmented by the next most significant hypotheses to arrive at the FDP
rejection set. However, this procedure is generally less powerful than the FDP-
StepM method we propose; for some simulation evidence see Romano and Wolf
(2007). A further new method based on an empirical Bayes approach is given
in van der Laan, Birkner, and Hubbard (2005).

6.4. Controlling the Median FDP

As an alternative to controlling the FDR, which is the expected value of the
FDP, we propose controlling the median of the FDP. Obviously, if one achieves
P{FDP > v} = 0.5, then the median FDP is bounded above by 7y. So choosing
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a = 0.5 for the methods in this section asymptotically controls the median FDP
under an arbitrary dependence structure of the p-values (or test statistics).

Although, in this sense, controlling the median FDP is more generally valid
than controlling the FDR by the method of Benjamini and Hochberg (1995), it
should be pointed out that it is a less stringent measure and, therefore, poten-
tially less useful in applications.

First, if all hypotheses are true, controlling the FDR also controls the FWE
in the sense that FWE, = . On the other hand, assuming that y > 0, control-
ling the median FDP only achieves FWE, = 0.5.

Second, if the FDR is controlled at level y = 0.1, say, then the sampling
distribution of the FDP must necessarily be quite concentrated around 0.1, given
the lower bound of zero for the FDP. In particular, there cannot be a lot of mass
at values very much greater than 0.1. On the other hand, control of the median
FDP is achieved as long as there is at least probability mass 0.5 below 0.1 for
the sampling distribution of the FDP. In particular, this allows for a lot of mass
at values very much greater than 0.1 (in principle, up to mass 0.5 at the point 1).
As a result, the chance of the realized FDP greatly exceeding 0.1 can be much
bigger when controlling the median FDP compared to controlling the FDR. We
will examine this issue to some extent in Section 8.

7. APPLICATIONS TO MODEL SELECTION

This section briefly discusses how control of generalized error rates can apply
to the problem of model selection. In fact, the term model selection is rather
vague and can mean different things depending on context. Therefore, we con-
sider various notions.

White (2000) studies the problem of comparing a large number of (forecast)
models to a common (forecast) benchmark. In this context, model selection is
the challenge of deciding which models are superior to the benchmark. There-
fore, in this context, model selection becomes a special case of Example 2.1 by
interpreting (forecast) models as strategies. White (2000) proposes control of
the FWE, but when the number of strategies is very large this criterion can be
too strict and a generalized error rate may be more appropriate. Some empiri-
cal applications based on the FWE when the number of strategies is very large
are as follows. Sullivan, Timmermann, and White (1999), White (2000), and
Sullivan, White, and Golomb (2001) all fail to find any outperforming strat-
egies when comparing a large number, S, of trading strategies against the bench-
mark of “buy and hold.” The numbers of trading strategies considered are S =
7,846, S = 3,654, and S = 9,452, respectively. Hansen (2005) fails to find any
outperforming strategies when comparing S = 3,304 strategies to forecast infla-
tion against the benchmark of “last period’s inflation.” On the other hand, when
he restricts attention to a smaller universe of S = 352 strategies, some outper-
formers are detected. It appears that when the number of strategies is in the
thousands, controlling the FWE becomes too stringent.
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The task of constructing an optimal forecast provides another notion. Imag-
ine that several forecasting strategies are available to forecast a quantity of inter-
est. As described in Timmermann (2006, Sect. 6): (i) choosing the lone strategy
with the best track record is often a bad idea; (ii) simple forecasting schemes,
such as equal-weighting various strategies, are hard to beat; and (iii) trimming
off the worst strategies is often required. In this context, model selection is the
challenge of identifying the worst strategies. A sensible approach is as follows.
First, one labels those strategies as the worst strategies that underperform a
suitable benchmark.!® Second, one is now back again in Example 2.1 except
that the individual parameters need to be defined in such a way that §; = 0 if
and only if the sth strategy does not underperform the benchmark. Typically,
this can be achieved by defining the parameters according to Example 2.1 and
then reversing their signs.

In many empirical applications, a large-dimensional regression model is esti-
mated, and the question becomes which explanatory variables are the impor-
tant ones. In this context, model selection is the challenge of identifying the
nonzero regression coefficients; see Example 2.2. An unfortunate common prac-
tice is identification based on individual p-values, ignoring the multiple testing
problem altogether.'* As a result, one typically identifies too many variables
as important. For example, if there are 100 variables under test, all of which
are unimportant, then, based on comparing individual p-values to the level
a = 5%, one would expect to falsely identify five variables as important. On
the other hand, dealing with the multitude of tests by applying the FWE can be
too strict, especially when the number of explanatory variables is very large.
As a result, one may easily overlook important variables. A sensible solution is
therefore to employ a suitable generalized error rate, such as controlling the
(median) FDP. Note that the estimated regression coefficients may depend on
each other in a way that violates the positive regression dependency assump-
tion and so the validity of the FDR procedure of Benjamini and Hochberg (1995)
is not guaranteed.

Related to the model selection notion of the previous paragraph, though more
complex, is the problem of determining which explanatory variables to keep in
a final model, say, for prediction purposes. This problem is commonly known
as “subset selection,” and many popular techniques exist, such as pretesting
methods, stepwise selection (forward or backward), the application of informa-
tion criteria such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC), and principal components regression. See Draper
and Smith (1998) and Hastie, Tibshirani, and Friedman (2001) for details. An
explicit use of tests of multivariate parameters as a means of consistent vari-
able selection can be found in Potscher (1983) and Bauer, Potscher, and Hackl
(1988). Another popular technique for subset selection is general-to-specific
modeling; see Campos, Ericsson, and Hendry (2005) for an introduction. As a
part of the procedure, individual variables are kept in the model based on
so-called simplification tests where individual p-values are compared to a (com-
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mon) significance level a. The choice of this level appears as much of an art as
a science. For example, Krolzig and Hendry (2001) discuss how it is advanta-
geous to choose a small level & when there are many irrelevant explanatory vari-
ables. However, they do not address the question of how one is to know whether
this is the case in practice. The optimal level « for the individual tests depends
not only on the number of explanatory variables, which is known, but also on
the number of them that are irrelevant and the dependence structure of the regres-
sion coefficient estimates, both of which are unknown. Therefore, a viable alter-
native may be to consider the simplification tests as a multiple testing problem
in conjunction with a generalized error rate such as controlling the (median) FDP.
Such an approach can implicitly account both for the number of irrelevant vari-
ables and the dependence structure of the regression coefficient estimates.

Jensen and Cohen (2000) discuss multiple comparisons in induction algo-
rithms. In this context, model selection is the challenge of deciding which vari-
ables to include in an artificial intelligence (AI) model for prediction and
classification purposes. They describe how a procedure ignoring the multiple
testing problem leads to undesirable effects such as overfitting, that is, the inclu-
sion of too many variables in the model. Control of a generalized error rate
may therefore be desirable. Moreover, Jensen and Cohen (2000) show in some
simulations that multiple testing procedures that do not account for the depen-
dence structure of the test statistics, such as Bonferroni, can work well when
the dependence structure is absent or weak but work poorly when the depen-
dence structure is noticeable. Hence, it is desirable to employ a procedure that
accounts for the dependence structure.

Abramovich and Benjamini (1996) and Abramovich, Benjamini, Donoho, and
Johnstone (2005) study the problem of recovering an S-dimensional vector
observed in white noise, where S is large and the vector is known to be sparse.
Abramovich et al. (2005) discuss various definitions of sparseness, the most
intuitive being the proportion of the nonzero entries of the vector. In this con-
text, model selection is the challenge of deciding which entries are nonzero to
optimally estimate the vector.!> A suggested solution is to consider the problem
as a suitable multiple testing problem where the individual hypotheses test
whether the entries of the vector are zero or nonzero (and so the hypotheses are
two-sided). Then the FDR criterion is employed to account for the multitude of
tests. Abramovich et al. (2005) show that this approach based on the FDR enjoys
optimality properties, but their asymptotic framework is somewhat restric-
tive.'® In addition, the error terms are assumed independent of each other. As
an alternative, one might control the (median) FDP instead.

Recently, Buena, Wegkamp, and Auguste (2006) show how testing using FDR
control can be used to produce consistent variable selection even in high-
dimensional models. Of course, other measures of error control can similarly
be exploited.

We also mention a notion of model selection that does not fit into our frame-
work. Again, imagine that several forecasting strategies are available to fore-
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cast a quantity of interest. Now, the question is which of those strategies is the
“best.” In this context, model selection is the challenge of identifying the best
model out of a universe of candidate models. Needless to say, given a finite
amount of data, the best model cannot determined with certainty. Therefore,
the suggested solution consists of constructing a model confidence set, that is,
a data-dependent collection of models that will contain the best model with a
prespecified probability, at least asymptotically. For related work see Shimo-
daira (1998), Hansen, Lunde, and Nason (2003), Hansen, Lunde, and Nason
(2005), and the references therein.

Although the preceding discussion reveals that multiple hypothesis testing
methods may be useful in the model building process, the problem of inference
for parameters of a data-based model is crucial and challenging. For recent
entries to the literature on inference after model selection, see Shen, Huang,
and Ye (2004) and Kabaila and Leeb (2006) and the references in these works.

8. SIMULATION STUDY

This section presents a small simulation study in the context of testing pop-
ulation means. We generate independent random vectors X,..., Xy from an
S-dimensional multivariate normal distribution with mean vector 6 =
(61,...,65)", where T = 100 and S = 500. The null hypotheses are H: 6, = 0
and the alternative hypotheses are H;: 6, > 0, and so we are in the one-sided
setup (1). The studentized test statistics are z;., = wy,/d7., where

1
and 67,= ——— 2( X, — X )~

ERE T(T—1) £

1
,s ; Xr

\IM\]

.S

The individual means 6, are equal to either O or 0.25. The number of means
equal to 0.25 is 0, 100, 200, or 400. The covariance matrix is of the common
correlation structure: o, = 1 and o, ; = p for s # j. We consider the values
p = 0and p = 0.5. Other specifications of the covariance matrix do not lead to
results that are qualitatively different; see Romano and Wolf (2007).

We include the following multiple testing procedures in the study. The value
of k is k = 10. The nominal level is « = 0.05, unless indicated otherwise.

e (StepM) The studentized StepM construction of Romano and Wolf (2005b).
 (k-gH) The k-FWE generalized Holm procedure described in Section 4.2,
where the individual p-values are derived from z7,; ~ f7—; under 6, = 0.

* (k-StepM) The studentized k-StepM construction described in Section 4.3.
This procedure is based on the operative method with N, = 50; see
Remark 4.1.

* (FDP-LR;) The FDP procedure of Lehmann and Romano (2005) with
v = 0.1 described in Section 6.1.
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¢ (FDP-StepMy ;) The studentized FDP-StepM construction described in Sec-
tion 6.2 with y = 0.1.

* (FDP-StepM}/¢) The studentized FDP-StepM construction described in Sec-
tion 6.2 with v = 0.1 but nominal level & = 0.5. Therefore, this procedure
asymptotically controls the median FDP to be bounded above by y = 0.1.

» (FDR-BH ;) The FDR construction of Benjamini and Hochberg (1995)
described in Section 5 with y = 0.1.

The performance criteria are (i) the empirical k-FWEs and FDPs, compared
to the nominal level a = 0.05 (or @ = 0.5 for the method controlling the median
FDP), and the empirical FDRs and (ii) the average number of false hypotheses
rejected. The results are presented in Table 1. They can be summarized as
follows.

* All methods provide satisfactory finite-sample control of their respective
k-FWE, FDP, or FDR criteria.

* By controlling a generalized error rate, the power is often much improved
compared to FWE control.

* The methods that implicitly account for the dependence structure of the
test statistics are more powerful than the worst case methods based on indi-
vidual p-values: 10-StepM is more powerful than 10-gH and FDP-StepM,
is more powerful than FDP-LR ;.

e The methods controlling a central tendency of the FDP are more power-
ful than the methods controlling P{FDP > 0.1}: FDP-StepM}¢? and
FDR-BH,,; are more powerful than FDP-LR,; and FDP-StepM,) ;.

By design, the increase in power that one is afforded by controlling a gener-
alized error rate comes at the expense of relaxing the strict FWE criterion. As a
result, the expected number of false rejections typically also increases. This
relationship is depicted in Figure 1, where for various scenarios the average
number of true rejections is plotted against the average number of false rejec-
tions. In these scatter plots, each method is represented by number, where the
numbers correspond to the order of the methods in Table 1. Not surprisingly,
the relationship is generally increasing and concave with StepM being in the
lower left corner and FDP-StepM)/¢ being in the upper right corner.

Recall the discussion of Section 6.4 where some virtues of controlling the
FDR versus controlling the median FDP were mentioned. To examine this issue,
we look at the sampling distribution of the FDP when the median FDP and the
FDR are controlled. Figure 2 summarizes the distribution of the realized FDPs
for various scenarios via box plots. It can be seen that, although median FDP
control and FDR control are achieved, the variation of the sampling distribu-
tions is considerable, especially for the case of common correlation p = 0.5.
As a result, the realized FDP may well be quite above y = 0.1. This feature is
more pronounced for control of the median FDP, especially when p = 0.5.
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FIGURE 1. Scatter plots of average number of true rejections against average number of false rejections for various

scenarios. The numbers correspond to the order of the methods in Table 1. That is, 1 corresponds to StepM, 2 corre-
sponds to 10-gH, ..., and 7 corresponds to FDR-BH, ;.
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TABLE 1. Empirical FWEs, FDPs, and FDRs (in the rows “Control” and
expressed as %) and average number of false hypotheses rejected (in the rows
“Rejected”) for various methods, with 7= 100 and S = 500. The nominal level
is @ = 5%, apart from the second to last column where it is @ = 50%. The
number of repetitions is 5,000 when all 8, = 0 and 2,000 for all other scenarios,
and the number of bootstrap resamples is M = 200.

FDP- FDP- FDP- FDR-
StepM 10-gH 10-StepM LRy, StepMo,| StepMy%¢  BHy,
Common correlation: p = 0
AllG; =0

Control 5.4 0.0 1.6 5.0 5.4 55.4 10.5
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0

One hundred 6; = 0.25
Control 3.5 0.0 0.9 0.9 2.1 43.5 7.9
Rejected 9.9 25.8 55.2 12.1 22.4 63.5 59.6

Two hundred 6; = 0.25
Control 3.1 0.0 0.4 0.0 0.2 33.7 6.0
Rejected 20.3 51.6 115.1 36.9 127.7 161.7 146.2

Four hundred 6; = 0.25
Control 1.2 0.0 0.0 0.0 1.1 32.1 2.0
Rejected 41.1 102.9 261.0 124.4 385.5 394.8 336.3

Common correlation: p = 0.5
AllG; =0

Control 5.6 0.9 5.3 2.2 5.5 52.3 5.0
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0

One hundred 6; = 0.25
Control 4.8 0.6 5.2 1.1 5.3 48.9 6.3
Rejected 16.9 27.0 44.4 15.2 30.2 83.6 53.8

Two hundred 6; = 0.25
Control 3.9 0.3 4.9 0.6 5.3 49.9 5.3
Rejected 35.3 52.5 92.0 44.0 83.7 179.5 134.0

Four hundred 6; = 0.25
Control 3.5 0.1 5.3 0.3 5.3 51.1 2.0
Rejected 77.3 106.0 203.1 139.8 238.4 385.3 316.9

9. EMPIRICAL APPLICATIONS
9.1. Hedge Fund Evaluation

The data set we consider is similar to one in Romano and Wolf (2005b). The
difference is that we focus on a shorter time horizon, thereby increasing the num-
ber of funds under study. Our universe consists of all hedge funds in the Center
for International Securities and Derivatives Markets (CISDM) database that have
a complete return history from 01/1994 until 12/2003.
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FIGURE 2. Box plots of realized FDPs for various scenarios. The upper part is for con-
trol of the median FDP, and the lower part is for control of the FDR. The labels on the
x-axis—100, 200, and 400—denote the number of false hypotheses. The horizontal dashed
line indicates y = 0.1.

All returns are net of management and incentive fees, and so they are the
returns obtained by the investors. As in Romano and Wolf (2005b), we bench-
mark the funds against the risk-free rate,'” and all returns are log returns. So
we are in the situation of Example 2.1(a). It is well known that hedge fund
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returns, unlike mutual fund returns, tend to exhibit nonnegligible serial corre-
lations; see, for example, Lo (2002) and Kat (2003). Accordingly, one has to
account for this time series nature to obtain valid inference. Studentization for
the original data uses a kernel variance estimator based on the prewhitened qua-
dratic spectral (QS) kernel and the corresponding automatic choice of band-
width of Andrews and Monahan (1992). The bootstrap method is the circular
block bootstrap, based on M = 5,000 repetitions. The studentization in the boot-
strap world uses the corresponding “natural” variance estimator; for details, see
Gotze and Kiinsch (1996) and Romano and Wolf (2006). The block sizes for
the circular bootstrap are chosen via Algorithm A.5. The semiparametric model
P7 used in this algorithm is a VAR(1) model in conjunction with bootstrapping
the residuals.'®

There are 210 funds in the CISDM database with a complete return history
from 01/1994 until 12/2003, and the number of monthly observations is T =
120. However, one fund is deleted from the universe because of a highly unusual
return distribution, and so the number of funds included in the study is S = 209
in the end. (Fund 154, Paradigm Master Fund, reported one unusually large
negative return; see Figure 3. As a result, it unduly dominates the bootstrap
sampling distribution of the largest studentized test statistics z}, ,,; see Fig-
ure 4.) Table 2 lists the 10 largest basic and studentized test statistics, together
with the corresponding hedge funds. Similar to the analysis of Romano and
Wolf (2005b), the two lists are almost completely disjoint; only the fund IMG
Capital Partners appears in both lists.

We now use the various multiple testing methods to identify hedge funds
that outperform the risk-free rate, starting with the the Holm procedure and its
generalizations and also the FDR procedure of Benjamini and Hochberg (1995),
all of which are based on individual p-values only. The p-values are obtained
by the studentized circular block bootstrap, which corresponds to applying the
StepM method to each single strategy, that is, the special case S = 1. The block
sizes for the circular block bootstrap are chosen, individually for each fund, via
Algorithm A.5 in the Appendix for the special case S = 1. The semiparametric
model P; used in this algorithm is an AR(1) model in conjunction with boot-
strapping the residuals.!” The results are displayed in the left half of Table 3.

Next, we turn to the studentized StepM method and its generalizations.?° The
block sizes for the circular block bootstrap are chosen via Algorithm A.5. The
semiparametric model P; used in this algorithm is a VAR (1) model in conjunc-
tion with bootstrapping the residuals.?! The k-StepM procedures are based on
the operative method using N,,,. = 100; see Remark 4.1. The results are dis-
played in the right half of Table 3.

Not surprisingly, the results are comparable to those of the simulation study.
First, when a generalized error rate is controlled, the number of rejected hypoth-
eses can greatly increase. For example, for the nominal level of & = 0.1, whereas
the (1-)StepM method rejects 16 hypotheses, the 2-StepM method rejects 29
hypotheses. Second, the methods that implicitly account for the dependence
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FIGURE 3. Histogram of the monthly log returns of fund 154. In 08/1995 the fund,
Paradigm Master Fund, reported a return of —53.77%, resulting in a tremendous outlier
to the left.

structure of the test statistics reject more hypotheses than the methods based on
individual p-values. For example, for the nominal level of a = 0.1, whereas the
FDP-LR, ; method rejects 22 hypotheses, the FDP-StepM, ; method rejects 36
hypotheses. Third, the methods controlling a central tendency of the FDP are
the ones that reject the most hypotheses.
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Funds Resulting in Largest Studentized Statistic
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FIGURE 4. Histogram of the fund index that corresponds to the largest studentized sta-
tistic zy5, ,, in M = 5,000 bootstrap repetitions. Fund 154, Paradigm Master Fund, cor-
responds to the largest studentized statistic disproportionally often.

Remark 9.1. The number of respective rejections of the augmentation meth-
ods of van der Laan et al. (2004) easily can be computed from the algorithms
described in Sections 4.3 and 6.2. For example, if the StepM method is used as
the initial procedure to control the 1-FWE, then their method to control the
3-FWE at level @ = 0.1 results in 19 rejections (as opposed to our 33 rejec-
tions). And their method to control the FDP with y = 0.1 at level @ = 0.1
results in 17 rejections (as opposed to our 36 rejections).
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TABLE 2. The 10 largest basic and studentized test statistics, together with the
corresponding hedge funds, in our empirical application. The return unit is 1%.

W1, s Fund 7 Fund

1.70  Caduceus Capital 13.65  Coast Enhanced Income

1.67  Libra Fund 9.74  Market Neutral Median

1.48  FBR Weston 8.64  Univest (B)

1.37  Needham Emerging Growth 8.06 JMG Capital Partners

1.34  Westcliff Hedged Strategy 7.77  Market Neutral Long/Short Median
1.31  Spinner Global Technology 6.32  Arden Advisers

1.24  FBR Ashton 6.29  Millennium Partners

1.23  JMG Capital Partners 6.18  Black Diamond Partners

1.21  Bricoleur Partners 6.03  Gabelli Associates

1.20  Emerging Value Opportunities 5.53  Arden International Capital

9.2. Multiple Regression

In empirical work, it is quite common to estimate large-dimensional regression
models and to then ask which are the “important” variables. The habitual prac-
tice is to assess importance via the individual -statistics or, equivalently, via
the individual p-values without taking into account the multitude of tests. Con-
sequently, as discussed earlier, typically too many variables will be identified
as important.

As an example, we consider a Mincer regression where log wages are
regressed on a large number of explanatory variables. The data consist of a
random sample of T = 4,975 people from the Austrian Social Security data-
base on 08/10/2001. The explanatory variables include a dummy for gender, a
dummy for blue collar (vs. white collar), age, age squared, work experience,

TABLE 3. Number of outperforming funds identified

a

not

Procedure a=0.05 a=0.1 defined Procedure a=005 a=01 a=05
Holm 10 13 StepM 11 16

2-gH 13 20 2-StepM 17 29

3-gH 16 22 3-StepM 29 33

4-gH 20 24 4-StepM 29 36

FDP-LR()1 13 22 FDP-SthMUl 17 36

FDR-BHj 101 FDP-StepM3¢d 127

Naive 102 130 Naive 102 130
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TABLE 4. Number of important variables identified

@
not

Procedure a =0.05 «=0.1 defined Procedure a=005 a=01 a=05
Holm 0 0 StepM 5 6

2-gH 0 9 2-StepM 7 8

3-gH 9 11 3-StepM 10 11

5-gH 9 11 5-StepM 12 12

10-gH 11 14 10-StepM 15 17

FDP-LR 0 0 FDP-StepM, 5 6

FDR 16 FDP-StepM3/¢ 12
Naive 23 33 Naive 23 33

work experience squared, time at current company, time at current company
squared, state dummies, industry dummies, and state-industry interaction dum-
mies, in addition to an intercept. The total number of explanatory variables is
S =291.

We now use the various multiple testing methods to identify the important
variables, starting with the Holm procedure and its generalizations and also the
FDR procedure of Benjamini and Hochberg (1995), all of which are based on
individual p-values only. The p-values are obtained by the wild bootstrap to
account for possible heteroskedasticity. To generate the resampled errors, we
use the two-point distribution; see (6.21) in Davison and Hinkley (1997). Stan-
dard errors both in the real world and in the bootstrap world are computed via
the well-known White estimator. The White estimator uses the modified resid-
uals rather than the raw residuals because the former have equal variance; see
page 271 in Davison and Hinkley (1997). The results are displayed in the left
half of Table 4.

Next, we turn to the studentized StepM method and its generalizations. The
k-StepM procedures are based on the operative method using N,,,, = 100; see
Remark 4.1. The results are displayed in the right half of Table 4. The findings,
in terms of comparing the various error rates, are similar to those of Sect. 9.1.

10. CONCLUSIONS

The problem of testing multiple hypotheses is ubiquitous in econometric appli-
cations. Unfortunately, this problem very often simply is ignored. As a result,
too many true null hypotheses will be rejected. The classical approach to account
for the multitude of hypotheses under test is to control the familywise error
rate (FWE), defined as the probability of falsely rejecting even one true hypoth-
esis. But when the number of hypotheses is very large, this criterion can become
too stringent. As a result, potentially very few false hypotheses will be rejected.
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This paper has reviewed various generalized error rates. They are more lib-
eral than the FWE yet still account for the multitude of tests by allowing for a
small number or a small (expected) proportion of true hypotheses among all
rejected hypotheses. Some simulations and two empirical applications have dem-
onstrated that in this way many more false hypotheses can be rejected com-
pared to control of the FWE.

As a special emphasis, we have presented some very recent multiple testing
procedures that implicitly account for the dependence structure of the individ-
ual test statistics via an application of the bootstrap. The advantage over tradi-
tional multiple testing procedures based on individual p-values alone is that the
number of false hypotheses rejected often increases, whereas the control of the
generalized error rates is not sacrificed. This advantage has also been high-
lighted via simulations and two empirical applications. The disadvantage is the
increased computational cost, but because of the availability of fast computers
this is less and less of a concern.

We have discussed further how the control of generalized error rates can apply
to various notions of model selection.

NOTES

1. We use the compact terminology of false rejection to denote the rejection of a true null
hypothesis. Similarly, the terminology true rejection denotes the rejection of a false null hypoth-
esis. A false rejection is sometimes termed a false discovery.

2. The 1-FWE is simply the usual FWE.

3. The definition of a Sharpe ratio is often based on returns in excess of the risk-free rate. But
for certain applications, such as long-short investment strategies, it can be more suitable to base it
on the nominal returns.

4. We trust that there is no possible confusion between a CAPM alpha «; and the level « of
multiple testing methods.

5. To show its dependence on P, we may write FWE = FWEp.

6. By “power” we mean loosely speaking the ability to detect false hypotheses. Of course,
several specific notions exist, such as the probability of rejecting at least one false hypothesis or
the probability of rejecting all false hypotheses. In the remainder of the paper, we will mean by
“power” the expected number of false hypotheses rejected, which is equivalent to the concept of
average power.

7. Equivalently, it addresses the question of whether there are any strategies at all that beat the
benchmark.

8. The «; depend also on S and k, but this dependence is suppressed in the notation.

9. This region could also be called a generalized confidence region in that we do not seek
to contain all the parameters with probability 1 — «, but instead seek to contain all, except at most
k — 1 of them, with probability 1 — a.

10. Usually, one can take Or = 0(137).

11. If a true hypothesis has been rejected so far, then the FWE criterion has already been vio-
lated, and, therefore, the rejection of further true hypotheses will not do any additional harm.

12. Obviously, some very crude bounds could be obtained using Markov’s inequality or vari-
ants thereof.

13. For example, when forecasting inflation, a suitable, simple-minded benchmark might be
last period’s inflation.
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14. For example, it is common to provide tables where the important explanatory variables are
identified via asterisks; one asterisk if significant at level 10%, two asterisks if significant at level
5%, and three asterisks if significant at level 1%, where the levels are for individual tests always.

15. Here optimality is defined in an asymptotic minimax sense; see Abramovich et al. (2005)
for details.

16. For instance, they assume that the sparsity tends to zero, and so the limiting model for the
vector is that of a “black object” (where all entries are equal to zero).

17. The risk-free rate is a simple and widely accepted benchmark. But, of course, our methods
also apply to alternative benchmarks such as hedge fund indices or multifactor hedge fund bench-
marks; for example, see Kosowski, Naik, and Teo (2005).

18. To account for leftover dependence not captured by the VAR(1) model, we use the station-
ary bootstrap with average block size b = 5 for bootstrapping the residuals.

19. To account for leftover dependence not captured by the AR(1) model, we use the stationary
bootstrap with average block size b = 5 for bootstrapping the residuals.

20. Similar to the analysis of Romano and Wolf (2005b), the basic StepM method does not
detect a single outperforming fund, so it is not pursued further.

21. To account for leftover dependence not captured by the VAR (1) model, we use the station-
ary bootstrap with average block size b = 5 for bootstrapping the residuals.
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APPENDIX A: Use of the Bootstrap

This Appendix details how to compute the constants ¢;, ¢; ., a?j, and ‘?j,\-\ in Algorithms
4.1, 4.2, 4.3, and 4.4, respectively, via the bootstrap. At first, a proper choice of the esti-
mator PT of the underlying probability mechanism P must be made. (One can 1mp1101tly
define Py by describing how a bootstrap data matrlx X 7 is generated from Py.) This
choice depends on the context. If the data X (T), - ,Xz . are i.i.d., one should choose the
Efron (1979) bootstrap; if they constitute a time series, one should choose the moving
blocks bootstrap, the circular blocks bootstrap, or the stationary bootstrap. These various
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bootstrap methods are detailed in Appendix B of Romano and Wolf (2005b). In any case,
we use the notation 67 for a suitable parameter vector corresponding to the bootstrap law.

ALGORITHM A.1 (Computation of the ¢; via the bootstrap).

1.

1.

The labels ry,...,rs and the numerical values of Ri,R,,... are given in Algo-
rithm 4.1.
Generate M bootstrap data matrices X3:',..., XM, (One should use M = 1,000

in practice.)

From each bootstrap data matrix X3"', 1 = m = M, compute the individual test

statistics wy'{", ..., wyg.

(a) For 1 = m = M, and any needed K, compute kmaxy g = k-max,cg(wy " —
Or.,). .

(b) Compute cx(l — a,k,Pr) as the 1 — a empirical quantile of the M values
kmaxy i, ... kmax3y. .

Ifj=1¢=cq,.., S}(l—a,k,PT).

If]>16,:max{ck(1—akPT)K—IU{R,1+1 LS I C

{1,.. =k — 1}
ALGORITHM A.2 (Computation of the ¢; .| via the bootstrap).
The labels ry,...,rs and the numerical values of R{,R,,... are given in Algo-
rithm 4.2.
Generate M bootstrap data matrices X3',..., XM, (One should use M = 1,000

in practice.)
From each bootstrap data matrix X3, 1 = m = M, compute the individual test

statistics wy'{", ..., Wy

(a) For1=m = M, and any needed K, compute kmaxy | = k-max,cg|wy —
b, |

(b) Compute ck,|.|(1 — ek, 137) as the 1 — a empirical quantile of the M values
kmaxy (..., kmaxy .

Ifj=12¢ . =cu. sy (1 — a,k Pp).

Ifj>1, Ej,H = max{cmi‘(l a, k, PT)IK =1U {ijl +1,...,8, I C

{19"'3Rf*1}) ‘Il =k - 1}'

ALGORITHM A.3 (Computation of the z?j via the bootstrap).

1.

The labels ry,...,rs and the numerical values of R\,R,,... are given in Algo-
rithm 4.3.
Generate M bootstrap data matrices X?’l, . ,X;’M. (One should use M = 1,000

in practice.)
From each bootstrap data matrix X;™, 1 = m = M, compute the individual

test statistics wy{",...,wypi. Also, compute the corresponding standard errors
OA-* m 0’\_* m
T,1 >+ ¥YT,S

(a) For 1 =m = M, and any needed K, compute kmaxy g = k-max,eg([wy )" —
07‘ . ] Ak, m)

b) Compute dg(1 — a,k,Pr) as the 1 — a empirical quantile of the M values

p p q

kmaxy g, ..., kmax3y

Ifj=1, dAlzd{l ..... s}(l_a,k,ﬁr)' R
Ifj>1, dj = max{dg(l — a,k,Pr):K = 1 U {R_,-_l + 1,...,8}, I C
{1,...,Rj71}, =k - 1}
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ALGORITHM A.4. (Computation of the dAjYH via the bootstrap).

1. The labels ry,...,rs and the numerical values of R{,R,,... are given in Algo-
rithm 4.4.
2. Generate M bootstrap data matrices X', ..., X3™. (One should use M = 1,000

in practice.)
3. From each bootstrap data matrix X3, 1 = m = M, compute the individual

test statistics wy'{",...,wp¢. Also, compute the corresponding standard errors
SEN SEN
o'y, 075"

4. (a) For 1 =m = M, and any needed K, compute kmaxy g | | = k-max e (|wy)" —

Or, . | /67

(b) Compute dK’H(l — a,k, ﬁT) as the 1 — a empirical quantile of the M values

kmax;m [reee kmax;’%|,‘.
5.01fj=1,4d, 11 =dp..... s (1= aykaPT)~A
If_] > 1, d/’H = max{dK,H(l - a,k,PT):K =1U {ijl + 1,...,5}, 1 C
{I,...,R_ =k—1}.

Remark A.l. For convenience, one can typically use wy, in place of én,k in
step 4(a) of Algorithms A.1-A.4. Indeed, the two quantities are the same under the fol-
lowing conditions: (1) wy is a linear statistic; (2) 6, = E(wyz4); and (3) Py is based on
Efron’s bootstrap, the circular blocks bootstrap, or the stationary bootstrap. Even if
conditions (1) and (2) are met, w;,, and éT,,k are not the same if Py is based on the
moving blocks bootstrap because of “edge” effects; see Appendix B of Romano and
Wolf (2005b). On the other hand, the substitution of wy., for éT - does not affect in
general the consistency of the bootstrap approximation. Lahiri (1992) discusses this sub-
tle point for the special case of time series data and wy,,, being the sample mean. He
shows that centering by GT -, provides second-order refinements but is not necessary for
first-order consistency.

When a time series bootstrap is used, then the choice of the (average) block size
becomes an important practical problem. The method we propose here to choose a block
size for an application of the k-StepM procedure is a generalization of Algorithm 7.1 of
Romano and Wolf (2005b), who only deal with the StepM procedure.

Consider the first step of the k-StepM procedure. The goal is to construct a general-
ized joint confidence region for the parameter vector # with nominal coverage proba-
bility of 1 — «. Here, importantly, “coverage probability” stands for the probability of
containing at least S — k + 1 elements of 6.

ALGORITHM A.5 (Choice of block size).

Fit a semiparametric model Py to the observed data Xr.

Fix a selection of reasonable block sizes b.

Generate M data sets )?}, ... ,)?#4 according to Py.

For each data set 7?, m=1,...,M, and for each block size b, compute a gener-
alized joint confidence region GJCR,, ; for 0.

Compute §(b) = #{At least S — k + 1 elements of (Py) € GJCR,, »}/M.

6. Find the value of b that minimizes |§(b) — (1 — a)| and use this value b.

N~

o
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Algorithm A.5 is based on the first step of the k-StepM method. Because the general
k-StepM method, for k > 1, does not discard any hypotheses in subsequent steps—in
contrast to the StepM method—we recommend continuing to use the chosen value b
throughout. If, on the other hand, the operative method of Remark 4.1 is used, then at a
given subsequent step some hypotheses may already have been discarded. In that case,

one can apply Algorithm A.5 to the subset of € that corresponds to the nondiscarded
hypotheses.



