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Standard Model Higgs potential:

V (H) =
1
2

m 2
HH2 + λvH3 +

λ

4
H4 , where λ = m 2

H/(2v2) ≈ 0.13.

Want to measure λ, to determine if V (H) is consistent with nature.
Challenging! Cross-section ≈ 10−3 × H prod.
−3.3 < λ/λSM < 8.5 [CMS ‘21]

λ appears in various production channels:

Gluon fusion – dominant, 10x

VBF

t t̄ associated production

H-strahlung
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Higgs Self Coupling



Leading order (1 loop) partonic amplitude:

Mµν ∼ Aµν1 (Ftri + Fbox1) +Aµν2 (Fbox2)

Ftri contains the dependence on λ at LO

Form factors:
LO: known exactly [Glover, van der Bij ‘88]
Beyond LO... no fully-exact (analytic) results to date

QCD: numerical evaluation, expansion in various kinematic limits
EW: first steps: this work (HE) [Davies, Mishima, Schönwald, Steinhauser, Zhang ‘22]
(see also HTL considerations) [Mühlleitner,Schlenk,Spira ‘22]
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Gluon Fusion



NLO QCD:
large-mt [Dawson, Dittmaier, Spira ‘98] [Grigo, Hoff, Melnikov, Steinhauser ‘13]

numeric [Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke ‘16]
[Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher ‘19]

large-mt + threshold exp. Padé [Gröber, Maier, Rauh ‘17]

high-energy expansion [Davies, Mishima, Steinhauser, Wellmann ‘18,‘19]

small-pT expansion [Bonciani, Degrassi, Giardino, Gröber ‘18]

NNLO QCD:
large-mt virtuals [de Florian, Mazzitelli ‘13] [Grigo, Hoff, Steinhauser ‘15, Davies; Steinhauser ‘19]

HTL+numeric real (“FTapprox”) [Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, Mazzitelli ‘18]

large-mt reals [Davies, Herren, Mishima, Steinhauser ‘19 ‘21]

N3LO QCD:
Wilson coefficient CHH [Spira ‘16; Gerlach, Herren, Steinhauser ‘18]

HTL [Chen, Li, Shao, Wang ‘19]
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gg → HH Beyond LO
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[Borowka, Greiner, Heinrich, Jones, Kerner ‘16]

Total cross section (14TeV):
σLO σNLO σNNLO

B-i HTL – 38.32+18.1%
−14.9% 39.58+1.4%

−4.7%

FTapprox – 34.25+14.7%
−13.2% 36.69+2.1%

−4.9%

Full 19.85+27.6%
−20.5% 32.88+13.5%

−12.5% –
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gg → HH Beyond LO



As we investigate NNLO QCD and beyond, we should consider NLO EW:

M∼ αsαt

(
A1 + αsA2 + αtA3 + αt,λ,gaugeA4 +O(α2

s , α
2
t , . . .)

)

H χ/φ±
H Z

There are more scales to deal with, compared to the QCD contribution,
start with αsα

2
t diagrams with internally propagating Higgs:

expansion parameter not small αt = αm2
t /(2s2

W m2
W ) ∼ αs/2

only planar integrals in this subset
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Electroweak Corrections



High-Energy Expansion
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The full diagrams depend on a lot of variables:
ε, s, t,mt ,mh

complete analytic solution is out of reach

First, expand around mext
H = 0 (as for QCD):

expand amplitude integrals with LiteRed [Lee ‘14]

Unlike for QCD the scale “mint
H ” remains, from the propagator:

complicates the IBP reduction
Master Integrals with this many scales are difficult.

We expand in this scale also, and propose two ways to do it:
A: s, |t| � m2

t � mint
H

2 ∼ mext
H

2 ,

B: s, |t| � m2
t ∼ mint

H
2 � mext

H
2 .

mext
H

mint
H

mext
H

mt

mint
Hmt
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High-Energy Expansion



Expansion by Regions [Beneke, Smirnov ‘98] :
Assign a hierarchy to the dimensionful parameters.
Reveal all relevant scalings of the integration variables.
Expand the integrand according to the scalings for each region.
Integrate the expanded regions.
Sum the contributions from all regions.

Here:

m2
t << s, |t| : m2

t ∼ χm2
t

Revealing all relevant regions can be a hard task.
Automatized in the Mathematica package Asy.m [Pak, Smirnov ‘11] .
Algorithm is based on the α-parameter representation of Feynman diagrams.
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Asymptotic Expansions
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Asymptotic Expansions
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Asymptotic Expansions



Option A: asymptotic expansion around mint
H = 0:

two sub-graphs: mtTmint
H

mint
H + × Tl

mint
H

mt

The two-loop subgraph is a Taylor expansion of the Higgs propagator:
results in integrals with a massless internal line, scales s, t,mt .
IBP reduce with FIRE and Kira [Smirnov ‘15] [Klappert,Lange,Maierhöfer,Usovitsch ‘21]

these coincide with the QCD Master Integrals – reuse the old results [Davies,Mishima,Steinhauser,Wellmann ‘18,‘19]

The massive tadpoles are easily computed by MATAD. [Steinhauser ‘00]

The asymptotic expansion procedure is done by exp and FORM. [Harlander,Seidelsticker,Steinhauser ‘97] [Ruijl,Ueda,Vermaseren ‘17]

We expand to quartic order: (mint
H )a (mext

H )b, 0 ≤ (a + b) ≤ 4.
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High-Energy Expansion “A”
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High-Energy Expansion “A”



Option B: expand around mint
H ≈ mt ,

simple Taylor expansion, exp not necessary
much easier to implement

IBP reduce resulting integrals, FIRE+Kira
mt

Write Higgs propagator as: 1
p2−m2

H
= 1

p2−m2
t (1−[2−δ]δ)

expand around δ → 0 where δ = 1−mH/mt ≈ 0.28.

This yields new integral families compared to the QCD computation:

all lines have the mass mt ,

compute the MIs in the high-energy limit.

We expand to (mext
H )4 and δ3.
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High-Energy Expansion “B”



Option B: expand around mint
H ≈ mt ,

simple Taylor expansion, exp not necessary
much easier to implement

IBP reduce resulting integrals, FIRE+Kira
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Write Higgs propagator as: 1
p2−m2

H
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This yields new integral families compared to the QCD computation:
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High-Energy Expansion “B”



Calculation of the Master Integrals
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p1 + p2 + p3 + p4 = 0, p2
i = 0,

(p1 + p2)2 = s, (p1 + p3)2 = t ,
s + t + u = 0
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Calculation of the Master Integrals
Equal Mass Limit



The integral families can be obtained by crossings from the graphs shown above.
We reduce the scalar integrals with Fire [Smirnov ’15] and find 140 master integrals. We make sure to
reduce to a minimal set by:

We apply FindRules on all scalar integrals and run a second reduction.
Equating results of both reduction runs reveals non-trivial relations between master integrals of different families.
We run a search for master integrals with Kira [Klappert, Lange, Maierhöfer, Usovitsch ’21] .

We make sure to have a ’good’ basis with ImproveMasters [Smirnov ’20] , i.e.:
The denominators factor in ε = (4− d)/2 and the kinematics.
We get rid of spurious poles in ε, so that we have to calculate only to O(ε0).
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Calculation of the Master Integrals
Equal Mass Limit



Full solution of the master integrals is still very complicated:
Solutions depend on 3 scales: s, t , mt .
The master integrals have up to 7 massive internal lines.
The solutions have two thresholds at

√
s = 2mt and

√
s = 3mt .

However: Analytic solutions possible in the high energy region m2
t � s, |t|.

In the following:

How to obtain a deep expansion utilizing the differential equations?

How to obtain boundary conditions to solve the differential equations?

How well does the approximation work?
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Calculation of the Master Integrals
How to solve the master integrals?



Establish a system of differential equations for the master integrals in the variable mt .

Compute an expansion around mt = 0 by:

Inserting an ansatz for the master integrals into the differential equation.

Mn(ε,mt → 0) =
∞∑

i=−2

jmax∑
j=0

i+4∑
k=0

c(n)
ijk εi mj

t lnk (mt )

Compare coefficients in ε and mt to establish a linear system of equations for the c(n)
ijk .

Solve the linear system in terms of a small number of boundary constants using Kira and FireFly.
[Klappert, Klein, Lange ’19,’20]

Compute boundary values for mt → 0 and obtain an analytic expansion.
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Calculation of the Master Integrals
Deep Expansion
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Calculation of the Master Integrals
Deep Expansion
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Calculation of the Master Integrals
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Calculation of the Master Integrals
Deep Expansion



Establish a system of differential equations for the master integrals in the variable mt .

Compute an expansion around mt = 0 by:
Inserting an ansatz for the master integrals into the differential equation.

Mn(ε,mt → 0) =
∞∑

i=−2

jmax∑
j=0

i+4∑
k=0

c(n)
ijk εi mj

t lnk (mt )

Compare coefficients in ε and mt to establish a linear system of equations for the c(n)
ijk .

Solve the linear system in terms of a small number of boundary constants using Kira and FireFly.
[Klappert, Klein, Lange ’19,’20]

Compute boundary values for mt → 0 and obtain an analytic expansion.

⇒ Why not utilize the differential equation in s or t?
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Calculation of the Master Integrals
Deep Expansion



We can always put one scale to unity, we choose s ≡ 1.

We can use the differential equation in t in a similar manner.

Boundary conditions are then only needed in the limit mt , |t| → 0.

However, calculating the boundaries in the limit mt → 0 with full dependence on t turns out to be not
harder than in the double limit mt , |t| → 0.
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Calculation of the Master Integrals
Differential Equation in t



We can always put one scale to unity, we choose s ≡ 1.

We can use the differential equation in t in a similar manner.

Boundary conditions are then only needed in the limit mt , |t| → 0.

However, calculating the boundaries in the limit mt → 0 with full dependence on t turns out to be not
harder than in the double limit mt , |t| → 0.

⇒ No benefit in utilizing the differential equation in t .
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Calculation of the Master Integrals
Differential Equation in t



How to obtain the boundary values?

We start with the α representation of the diagram:

In =

∞∫
0

(
n∏

i=1

dαi
αδi

i

Γ(1 + δi )

)
U−d/2e−F/U ,

with the Symanzik polynomials U and F .

We use expansion-by-regions [Beneke, Smirnov ’98] and reveal the different regions with Asy.m [Pak, Smirnov ’11] .

High-energy limit: s, |t| ∼ χ0, m2
t ∼ χ

In total we reveal 13 regions:
One hard region (mt = 0), where master integrals are known [Smirnov, Veretin ’00; Bern, Sixon, Smirnov ’05] .
13 ’soft’ regions, where α parameters scale differently in χ.

We calculate the expansion using Mellin-Barnes techniques.
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Calculation of the Master Integrals
Boundary Conditions



Symanzik polynomials: (αi1...in = αi1 + · · ·+ αin )

U = α23α14 + α1234α5, F = Sα2α4α5 + Tα1α3α5 + m2
t α12345U

8 soft regions contribute for mt → 0: (m2
t → χm2

t )

αi → χv(r)i αi , ~v (1) = (0, 0, 0, 0, 1), ~v (2) = (0, 0, 1, 1, 0), . . .

After rescaling we can expand in χ, e.g.:

I(1)5 =

∫ ( 5∏
i=1

dαiα
δi
i

Γ(1 + δi )

)
U−d/2

1 e−F1/U1

[
1− χ

(
m2

t α5 − S
α2α4α1234(α5)2

(U1)2
+ . . .

)
+ . . .

]

with the expanded Symanzik polynomials

U1 = α23α14, F1 = Sα2α4α5 + Tα1α3α5 + m2
t α1234U1

S = −s, T = −t
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Calculation of the Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



Useful formula:
∞∫

0

dααae−Aα = A−1−aΓ(1 + a),

∞∫
0

dααa(A + Bα)b = A1+a+bB−1−a Γ[1 + a,−1− a− b]

Γ(−b)
,

1
(A + B)λ

=

i∞∫
−i∞

dz
2πi

Bz

Aλ+z

Γ[−z, λ+ z]

Γ(λ)
, with Γ[x1, x2, . . . , xn] = Γ(x1)Γ(x2) . . . Γ(xn)
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Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques
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Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



We can describe the expansion with one template integral:

T1,{δ1,δ2,δ3,δ4,δ5},ε =

∫ ( 5∏
i=1

dαiα
δi
i

Γ(1 + δi )

)
U−d/2

1 e−F1/U1

=
(m2

t )−δ1234−2ε

Sδ5+1

∫
dz1

2πi

(
S
T

)z1 Γ[δ23 + ε, δ14 + ε, δ2 − δ5 − z1,−z1, δ4 − δ5 − z1, δ1 + z1 + 1, δ3 + z1 + 1, δ5 + z1 + 1]

Γ[δ1 + 1, δ2 + 1, δ3 + 1, δ4 + 1, δ5 + 1, δ23 − δ5 + 1, δ14 − δ5 + 1]

We find up to 3-dimensional Mellin-Barnes integrals.

The analytic continuation in δi and ε can be performed with MB.m [Czakon ’05] .

The sum of all regions has to be free of poles in δi .

⇒ How to perform Mellin-Barnes integrals systematically?
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Calculation of Master Integrals
Boundary Conditions – Mellin-Barnes Techniques



We find:

I3 = m−4ε+2
t

∫
dz1

2πi
Γ[−z1, z1 − ε+ 2,−z1 + ε− 1, z1 + 1, z1 + 1, z1 + ε]

Γ[2− ε, 2z1 + 2]

We use MB.m for the analytic continuation in ε:

I3 = m−4ε+2
t e−2εγE

(
− 3

2ε2
− 9

2ε
− 21

2
− 5π2

12
+ I(MB) +O(ε).

)
With the remaining integral:

I(MB) =

−1/7+i∞∫
−1/7−i∞

dz1

2πi
Γ[−z1 − 1,−z1, z1, z1 + 1, z1 + 1, z1 + 2]

Γ(2z1 + 2)
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Mellin-Barnes Integrals
Example



We can close the contour to the right and sum the residues at z1 = 0, 1, 2, ...:

I(MB) =

−1/7+i∞∫
−1/7−i∞

dz1

2πi
Γ[−z1 − 1,−z1, z1, z1 + 1, z1 + 1, z1 + 2]

Γ(2z1 + 2)

= 4 +
π2

6
+ 2

∞∑
k=0

(
2k + 1

k

)−1
(4k2 + 8k + 3)[S1(k)− S1(2k)]− 4(k + 1)

(2k + 1)(2k + 2)(2k + 3)2
−3 −2 −1 0 1 2 3

Re(z1)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Im
(z

1
)

Summation over residue sum can be done analytically with HarmonicSums [Ablinger et al. ’10-] , Sigma and
EvaluateMultiSums [Schneider ’07-] .
The (inverse) binomial sums we encounter sum to special constants, e.g.:

∞∑
k=0

ξk

(
2k + 1

k

)−1 1
3 + 2k

=
2

ξ
√

(4− ξ)ξ

ξ∫
0

dt
√

(4− t)t − 1
ξ→1
=

4π

3
√

3
− 2
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Mellin-Barnes Integrals
Example



Most complicated boundary condition: G4(1,1,1,1,1,1,1,-1,-1)

The irreducible numerators can be handled by starting from the
topology with all 9 lines.

We end up with a large number of Mellin-Barnes integrals:
one-dimensional two-dimensional three-dimensional

2003 515 14

Taking residues and summation can be automatized.
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Mellin-Barnes Integrals
Example



During our calculations we find terms like:

I =

−1/7+i∞∫
−1/7−i∞

dz2
z8

2 Γ2(−z2)Γ2(z2)

(z2 + 1)3(z2 + 2)3

Naive residue sum gives:

I = −
∞∑

k=0

3k5(4 + 3k)

(1 + k)4(2 + k)4 = −18ζ3 −
3π2

3
− 21π4

10
+ 240,

not in agreement with numerical evaluation.

−3 −2 −1 0 1 2 3

Re(z2)

−3

−2

−1

0

1

2

3

Im
(z

2
)

Problem: integral does not fall off fast enough for |z2| → ∞.
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Boundary Conditions – Pitfalls



Problem: integral does not fall off fast enough for |z2| → ∞.

We can solve this problem with regularization:

I =

−1/7+i∞∫
−1/7−i∞

dz2 ξ
z2

z8
2 Γ2(−z2)Γ2(z2)

(z2 + 1)3(z2 + 2)3 = −
∞∑

k=0

ξk

(
3k5(4 + 3k)

(1 + k)4(2 + k)4 +
k6

(1 + k)3(2 + k)3 ln(ξ)

)

=
∞∑

k=0

ξk

(
3k5(4 + 3k)

(1 + k)4(2 + k)4 +

[
1− (2 + 3k)(4 + 12k + 15k2 + 9k3 + 3k4)

(1 + k)3(2 + k)3

]
ln(ξ)

)
ξ→1
= −18ζ3 −

3π2

3
− 21π4

10
+ 240 + 1

Alternative approach: high precision numerical evaluation in combination with PSLQ [Ferguson, Bailey ’92] .
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Boundary Conditions – Pitfalls



Master Integrals Results
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We obtain analytic expressions of all 140 master integrals up to O(m120
t ).

The final result can be expressed via harmonic polylogarithms [Remiddi, Vermaseren ’99]

H0(−t/s),H1(−t/s),H0,1(−t/s),H0,0,1(−t/s),H0,1,1(−t/s),H0,0,0,1(−t/s),H0,0,1,1(−t/s),H0,1,1,1(−t/s)

and transcendental numbers

π, ln(3),
√

3, ζ2, ζ3, ψ
(1)(1/3), Im

[
Li3(i/

√
3)
]
.

We also extended the calculation of the master integrals with massless internal line up to O(m120
t ).
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Master Integrals Results
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1− 4m2
h/s

Fixed order mt expansions diverge at√
s ∼ 1000 GeV.

The Padé approximation extends the
range of validity.
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Master Integrals Results



The master integrals for both methods are computed as an expansion in mt � s, |t|.
The expansions diverge for

√
s ∼ 750GeV (“A”),

√
s ∼ 1000GeV (“B”).

The situation can be improved using Padé Approximants:
Approximate a function using a rational polynomial

f (x) ≈ a0 + a1x + a2x2 + · · ·+ anxn

1 + b1x + b2x2 + · · ·+ bmxm ,

where ai , bj coefficients are fixed by the series coefficients of f (x).

We compute a set of various Padé Approximants:
combine to give a central value and error estimates
a deeper input expansion⇒ larger n + m⇒ smaller error
here, m120

t expansion allows for very high-order Padé Approximants
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Padé-Improved High-Energy Expansion
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Master Integrals Results
Padé Improvement
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With expansions up to m120
t we

reach: pT & 120 GeV.

Error estimate from Padé
approximations is reliable.
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Padé Improvement
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Padé Improvement
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Padé Improvement
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Padé Improvement



Approach A:

middle line massless mint
H ≈ 0

calculated in the context of QCD corrections
[Davies, Mishima, Steinhauser, Wellmann ’18, ’19]

Approach B:

middle line massive mint
H ≈ mt
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Comparison to the mH → 0 Expansion
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Approach A: threshold at
√

s = 2mt = 346 GeV Approach B: threshold at
√

s = 3mt = 519 GeV
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Comparison with Approach A
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Comparison with Approach A



Form Factor Results
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The form factors require UV renormalization (they are IR finite):

MS renormalization of the top quark mass,

m0
t → mt

[
1 +

αt

π

1
ε

( 3
16

+
NC

2
m2

t

m2
H

)]
LO has no δ expansion, so NLO δ terms must already be finite X

The second term in (· · · ) renormalizes the tadpole diagrams,
computed, but not included in the following plots.
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Renormalization



Re(Fbox1), fixed cos θ = 0,
expansion “B”
(to (m2

H)2δ3(m2
t ){15,16,56,57}):

mt expansion diverges
(strongly) around√

s ∼ 1000GeV
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High-Energy Expansion and Padé Approximation



Re(Fbox1), fixed cos θ = 0,
expansion “A” Padé
(to (m2

H){0,1,2}):

(m2
H)1 and (m2

H)2 terms differ
by at most 5% for√

s ≥ 400GeV
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Convergence of Asymptotic Expansion (“A”)



Re(Fbox1), fixed cos θ = 0,
expansion “B” Padé
(to (m2

H)2δ{0,1,2,3}):

δ2 and δ3 terms differ by at
most 0.5% for

√
s ≥ 400GeV
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Convergence of δ Expansion (“B”)



Re(Fbox1), fixed cos θ = 0, best “A”
and “B” Padé

“A”, “B” differ by at most 2%
for
√

s ≥ 400GeV,

0.1% for
√

s ≥ 500GeV
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Comparison of “A”, “B” Expansions
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Expansions “A” and “B” agree for pT values as
small as 120 GeV.

deep expansions of the MIs required, for
small Padé errors
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Form Factors at Fixed pT



Conclusions:
First step towards electroweak corrections to double Higgs production:

more difficult than the QCD contribution (extra internal scale)
expansion allows us to compute them

High-energy expansion:
Padé-based approximation to improve expansion
good description of (partial) form factors for pT & 120GeV
two different expansion methods, which give equivalent results
deeper exp. of MIs compared to QCD papers→ better Padé

Outlook:
Apply calculation strategy to the full electroweak corrections.
⇒ This will include also non-planar sectors.

Explore complementary expansions to cover the whole kinematic range.
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