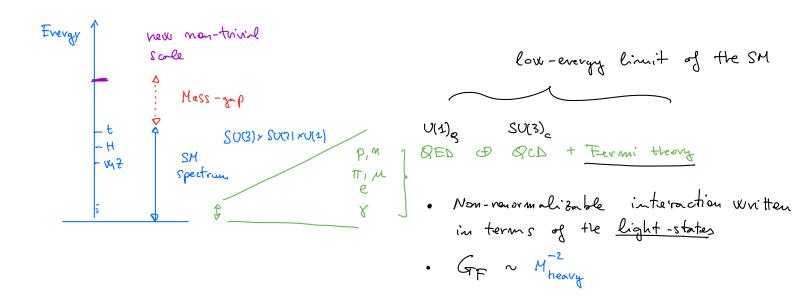
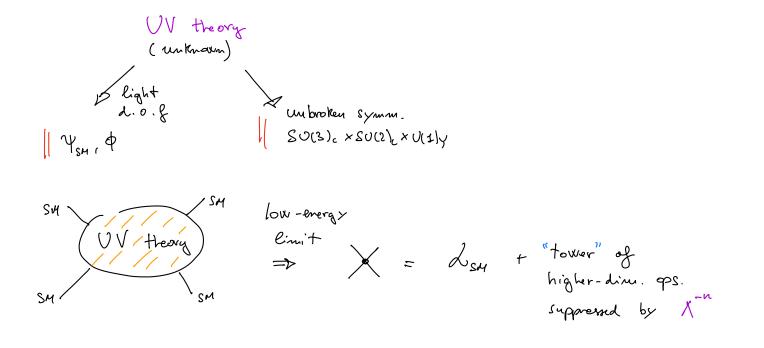
8. The SM as an effective theory

8.1 Generalities

The modern point of view on the SM is that this is the low-energy limit of a theory containing more degrees of freedom



Similarly to the case of the low-energy limit of the SM, we can think there is a theory "above" the SM (the UV coupletion of the SM)



$$\lambda_{SM-EFT} = \lambda_{gauge} + \lambda_{Y} + \lambda_{Fermion} + \lambda_{\phi} + \sum_{d>q} \sum_{i} \frac{c_{i}^{[d]}}{\Lambda^{d-q}} O^{i}(\Psi_{SM}, \phi, \Lambda^{a})^{[d]}$$
adim. couplings.

Infinite list of operators (finite at any fixed order in d) satisfying

• Grange symm. $SU(3)_{c} \times SU(2)_{c} \times U(1)_{f}$

- O Local interactions of Y_{SM} ⊕ Φ ⊕ A^a
- · Loventa invarionce
- ⊙ Global/approximate symm. (?)

Which is the (lowest) value of A, and which is the structure of the Cital are the big open questions in particle physics

N.B.: If we probe processes at E << />

 \(\lambda \) this construction is predictive
 (as it is the Fermi Heory at low energies), given finite order of
 operators (\(\lambda \) couplings) at finite d (\(\lambda \) prevision in E/A)

8.2 The Higgs hierarchy problem

All the SM couplings, except the thiggs mans ters, are dimension-less couplings Description under RGE

$$\frac{\lambda^{2} \frac{\lambda}{d \mu^{2}} g_{i} = \beta_{ij}(\{g\}) g_{j}}{\lambda^{2}} \Rightarrow g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})}$$

$$\frac{\partial}{\partial \mu^{2}} g_{i} = \beta_{ij}(\{g\}) g_{j} \Rightarrow 0$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{j} \log(V^{2}/\Lambda^{2})$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{i}(\Lambda) + \beta_{ij} g_{i}(\Lambda)$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda) + \beta_{ij} g_{i}(\Lambda)$$

$$\frac{\partial}{\partial \mu^{2}} g_{i}(V) \approx g_{i}(\Lambda)$$

$$\frac{\partial}{$$

 $g_1(v) \approx y_3$ \Rightarrow relatively small change over several $y_1 \approx 1$ $y_2 \approx 1$ $y_3 \approx 1$ $y_4 \approx 1$ $y_5 \approx 1$ $y_6 \approx 1$

The only exception is the thiggs man term:

$$M^2(V) = M^2(\Lambda) + \frac{c^2}{16772} (\Lambda^2 - V^2) + \log \text{ terms}$$

quadratic sensitivity to the cut-off

The quadratic cut-off dependence signals a quadratic dependence of the renormalized value of μ^2 at low energies from possible physical high scales in the theory

$$\overline{E}$$
. Z $=$ Z $+$ Z $=$ \overline{Y}_R $=$ \overline{Y}_R $=$ \overline{Y}_R $=$ \overline{Y}_R $=$ \overline{Y}_R $=$ X $=$ X

$$\frac{1}{\mu^{2}} \left(\Lambda \right) \sim \frac{1}{16\pi^{2}} \left[\frac{MR^{2}}{\Lambda^{2}} + \Lambda^{2} \right] + \dots$$

If \(\frac{\times MR}{41T} >> MH \) we need to \(\frac{\time - tune}{100} \) the values in the Lagrangian in order to reproduce the observed value of MH

General argument why we expect some form of New Physics not far from the TeV scale -> Stabilization of the Higgs sector

8.3 Classifying the ops. of do4 in the SMEFT

$$4) \quad \phi^{m} \quad \longrightarrow \quad (\phi^{\dagger} \phi) \quad , \quad (\mathcal{D}_{\mu} \phi \mathcal{D}^{m} \phi^{\dagger}) \quad \longrightarrow \quad d \geqslant 6$$

2)
$$\psi^{M} \rightarrow (\overline{\psi}_{L}^{M}\psi_{L})^{K} \rightarrow d \geqslant 6$$

5)
$$A^{m}, \phi^{m} \rightarrow (\phi^{\dagger}\phi), F_{nr}, D_{n} \rightarrow d \geqslant 6$$

$$\int_{SMEFT} = \int_{SM}^{(d \le 4)} + \int_{V}^{(d = 5)} + \int_{V}^{(d \ge c)} + \int_{V}^{(d \ge c)$$

The only allowed d=5 op. in h_{SMEFT} is a bit special since it violates total lepton number (exact symmetry of h_{SM})

It's possible to conceive lower scales of NP, which do not alter the structure of $\Lambda^{d=5}$ (\rightarrow small m_{ν}), provided LN remains unbroken. This is why we put the label "LN" on the scale of the d=5 operator

A very similar argument holds for operator violating baryon number (appearing at d=6)

We can now look at the structure of the d=6 operators

(3)

=> Few independent electroweak structures (see tables) but 2499 rew free coplings (mainly flavor sector)

$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $		
		$Q_{ud}^{(8)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $		
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating					
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$\left[(q_s^{\gamma j})^T C l_t^k \right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{lphaeta\gamma} arepsilon_{jk} \left[(q_p^{lpha j})^T C q_r^{eta k} ight] \left[(u_s^{\gamma})^T C e_t ight]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma} \varepsilon_{jn} \varepsilon_{km} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$\left[(u_s^{\gamma})^T C e_t \right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$						

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$			
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_p e_r \varphi)$		
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$		
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_pd_r\varphi)$		
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$						
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$			
$Q_{\varphi G}$	$arphi^\dagger arphi G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{arphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r}) \right)$		
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{\varphi\widetilde{W}}$	$\varphi^\dagger \varphi \widetilde{W}^I_{\mu \nu} W^{I \mu \nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$		
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right $		
$Q_{\varphi\widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$\left (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) (\bar{u}_p \gamma^{\mu} u_r) \right $		
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$		

64)

The fact that a large number of free par ometers is connected to the flavor sector emerges more clearly by the following table:

Imposing exact $U(3)^5$ No glavor symmetry
for 3 or 1 gen.

Imposing U(3)5
but allowing only
linear terms in
the 3 Yukawa coupl.
as breaking terms

	ı					1			
Class	Operators	3 G	en.	1 G	len.	Exa	act	$\mathcal{O}(Y)$	(e,d,u)
1–4	X^3, H^6, H^4D^2, X^2H^2	9	6	9	6	9	6	9	6
5	$\psi^2 H^3$	27	27	3	3	_	_	3	3
6	$\psi^2 X H$	72	72	8	8	_	_	8	8
7	$\psi^2 H^2 D$	51	30	8	1	7		7	_
8	$(ar{L}L)(ar{L}L)$	171	126	5	i.—.i	8	8 8	8	
	$(ar{R}R)(ar{R}R)$	255	195	7	1.—.	9	_	9	_
	$(ar{L}L)(ar{R}R)$	360	288	8	1—	8	_	8	_
	$(ar{L}R)(ar{R}L)$	81	81	1	1	_	8.——8	i.—.	_
	$(\bar{L}R)(\bar{L}R)$	324	324	4	4	_	_	-	_
	total:	1350	1149	(53)	(23)	41)	6	(52)	(17)

بإلى

Most of the SMEFT parameters appearing at d=6 control the breaking of the U(3) 5 flavor symmetry