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Abstract

In this thesis we present a new NLO QCD calculation of Higgs plus jet pro-
duction at the LHC. We use the recently developed extension of the g7 subtraction
formalism to cancel the IR divergences for each sub-processes [1]. This method
exploits the observation that the transverse momentum of the Higgs bhoson plus
jet system completely describes the singularity structure of QCD when final-state
coloured particles are present. In particular we stress that the subtraction works
at arbitrary values of the jet radius while the jet-function, i.e. the clustered final
state radiation contributions, is currently known in the small R limit only. Our NLO
results, for small jet radius values (R < 0.1), nicely agree with those obtained by
an independent computation performed with local subtraction, both for the inclusive
cross section and several differential distributions.
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1 Introduction

Particle colliders are one of the main tools used to understand the structure of funda-
mental physics. In particular, they are the best known strategy to date for studying
heavy objects that are short-lived and rarely produced. The Large Hadron Collider
(LHC), at Cern, is the largest and most powerful particle accelerator in the world. In-
side the accelerator, two beams of high-energy hadrons (protons or heavy ions) travel
almost at the speed of light before being collided. The high energy and high luminosity
(a measure of the number of potential collisions per unit area in a given period of time)
of the LHC allows the study of very rare and short-lived massive particles and, in par-
ticular, allowed in July 2012 the discovery of a new boson with a mass close to 125 GeV.
This particle is consistent with the Higgs boson predicted by the Brout-Higgs-Englert
mechanism [2-4] and its discovery was therefore an extraordinary achievement for the
high-energy physics community.

Nowadays, the Higgs boson still plays a leading role in the searches for new physics at
the LHC. In particular, altough the run | and Il measurements at LHC showed that the
new resonance is compatible with the Standard Model (SM) Higgs boson, there still is
the possibility that more precise measurements will uncover small deviations from the
SM predictions.

During run | and Il differential Higgs observables were measured, altough still with
relatively large uncertainties. Among these observables, a prominent role is played by
the transverse momentum spectrum (p7) of the Higgs boson, whose study could shed
light on the structure of the Higgs sector. For instance, evidence of new physics could
emerge either as distortions of its shape due to modified light Yukawa couplings [5, 6]
or as deviations in the tail of the differential distributions [7].

At the LHC, Higgs with high transverse momentum are typically accompained by high
transverse momentum jets. The precise calculation, i.e. the computation of higher order
corrections to the production cross section of the Higgs plus jet process within per-
turbative Quantum Field Theory (QFT), is therefore of crucial importance for the high-
precision program. At present, many different techniques allowing for the computation
of higher order corrections to LHC observables have been developed and succestully
applied to different kind of processes. The current state of the art for the Higgs plus
jet observable is next-to-next-to-leading order (NNLO) in Quantum-Chromo-Dynamics
(QCD). This computation has been performed in Ref. [8] using the N-jettiness event-
shape variable, in Ref. [9] using sector-improved residue subtraction and in Ref. [10] with
the antenna subtraction method.

Another method that is well suited for higher order corrections to LHC observables is
gr-subtraction (see Ref. [11]) that was originally formulated for colour singlet produc-
tion (see Ref. [12] for the actual implementation of many on- and off-shell colour singlet
processes). In the last few years gr-subtraction has been extended for coloured massive
final states and applied to top-quark and bottom-quark pair production at NNLO in the
works [13] and [14]. The NNLO production of tfH for the flavour off-diagonal channels
has also been computed in Ref. [15]. Very recently, gr-subtraction has been applied
to next-to-leading order (NLO) Electroweak (EW) and mixed QCD-EW corrections for
Drell-Yan processes in the works [16] and [17].

Until now, however, gr-subtraction has never been applied to processes with jets in



the final state. The main goal of this thesis is to compute the NLO corrections to the
Higgs plus jet process by extending the gr-subtraction formalism to deal with these
processes.

The thesis is organized as follows. In chapter (2) we will briefly discuss the appeare-
ance and the main properties of infrared (IR) divergences in Quantum Chromo Dynamics
(QCD), relevant for the computation of IR safe observables. In chapter (3) we will in-
troduce the g7-subtraction method and illustrate its main keypoints trough the explicit
example of Higgs production in gluon-gluon fusion at NLO. Chapter (4) and (5) are de-
voted to the presentation of the Higgs plus jet computation at NLO. Finally, in chapter
(6) we present our conclusions.



2 Infrared sinqularities in Quantum Chromo Dynamics

The infrared divergences are a general property of gauge theories with massless par-
ticles. In QCD, these divergences are associated with regions of phase space where
a real or a virtual gluon has vanishing four-momentum (soft) or becomes collinear to
another massless parton.

To better illustrate the appearance of these divergences in QCD we consider the or-

der a; = % (gs is the strong coupling) corrections to the production of hadrons in
electron-positron collisions, namely ete™ — hadrons. This reaction proceeds via ete™
annihilation into a quark-anti-quark pair at lowest order. The Born process, shown in
figure (1), is a purely Quantum Electrodynamics (QED) process whose cross section is
given by

- Amd?
o = G Ne)_el. (1)
q

where the sum runs over the different flavours of the quarks, a is the QED coupling,
N, (= 3) accounts for all possible colour states, Q? = 2p; - p; is the centre of mass
energy of the e*te™ pair and e, are the electrical charges of the quarks in unit of
electron charge. The order a5 corrections to the cross section are given by diagrams in
which a real gluon is emitted in the final state, and diagrams in which a virtual gluon is
exchanged (interfered with a Born graph) as depicted in figure (2). The real and virtual
contributions are both separately divergent in the unresolved limits and give a finite,
and thus physical, result only after being combined together. Unresolved means that
the energy of the gluon is much smaller than the energy (Q) involved in the process or
that the gluon is emitted almost parallel to one of the two fermions and cannot therefore
be distinguished from it. For the sake of clarity, we will now consider the case where
the emitted real gluon has vanishing energy (note that since the gluon is massless, this
is equvalent to k¥ — 0). The sum of the amplitudes for the emission of a gluon from
the quark and antiquark respectively in the k¥ — 0 limit is given by

qi-elk)  q2- €(k)}_

(2)
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Where Mp represents the amplitude for the Born process and t? is the generator of
the fundamental SU(3). representation. Taking the square and averaging (summing)
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Figure 1: Leading order Feynman diagram for e*e™ to hadrons
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Figure 2: Real gluon emission (left graph) and virtual gluon exchange in ete™ annihi-
lation

over the initial (final) state quantum numbers we get

2q1 - q2
Meoil]* = [M|*Crgs —— =, 3
Mool = WMol Cra 1 =0, 1) ®)
where Cr (= /\57[1 = %) is the Casimir of the fundamental SU(3). representation. In

particular, it is important to note the factorised form of the squared amplitude. This,
as we are going to show in more detail in section (2.2), is a general feature of the soft
emissions'. From the squared amplitude we turn to the cross section by supplying the
phase space factor for the gluon

3k 2q1 - q2
o 2 -Born
Iqq9 = Crgs0qg / 2k°27) (g1 - k)(q2 - k) "

Let us now consider the process in the rest frame of the virtual photon and let us call
6 the angle between the gluon and the quark 3-momenta. We have then

o & Born Lk() 4
%ag = Cr 27 a1 /dcos o k% (1 —cos 0)(1 + cos 6) ©)

The cross section for producing an extra gluon is therefore divergent in three regions
e when the emitted gluon has vanishing energy (k — 0),
e when the emitted gluon is parallel to the direction of the quark (cos 8 =1, 6 = 0),

e when the emitted gluon is parallel to the direction of the antiquark
(cos8 = —1,0 = n).

The first divergence is called soft while the last two are called collinear. Both diver-
gences are of infrared type. As already stated above, the sum of the real and virtual
corrections of order a; to the production of hadrons in e* e~ annihilation is finite. It fol-
lows that the virtual corrections must have the same kind of singularities, with opposite
sign. This cancellation is a consequence of a general theorem in quantum mechanics,
the Kinoshita-Lee-Nauenberg (KLN) theorem [18] [19]. Roughly speaking, the theorem

"Note that in presence of more than three coloured particles at Born level, strict factorisation does not
hold because of non trivial soft colour-correlations.



deals with divergences that arise because of degeneracy in the final state. For exam-
ple, the final state with an extra soft gluon is nearly degenerate with the state with no
gluons at all, and the state with a quark split up into a quark plus a gluon, with paral-
lel momenta, is degenerate with the state with no radiation at all. The theorem states
that the cross section obtained by summing up over degenerate states are not divergent.

2.1 et cross sections

At the beginning of this chapter, we briefly discussed the production of a quark-antiquark
pair in ete™ annihilation. As already argued, its cross section is not physically mean-
ingful, since coloured partons are never observed in the final state. A physically more
meaningful quantity is the cross section for eT e~ to hadrons. One must therefore define
a cross-section that is calculable and finite in perturbation theory and that in some way
characterises the hadronic final state. A possible observation is that the distribution of
the final state hadrons should be reminiscent of that of the “hard” partons described
by perturbation theory. Soft and collinear partons are copiously produced in all-order
QCD, leading to configurations characterised by sprays or clusters of hadrons, called
jets, along the direction of the hard partons. Many different definitions of jets exist in
the literature and all of them are based on a so-called jet-algorithm. Jet algorithms
provide a set of rules for grouping particles into jets. They usually involve one or more
parameters that indicate how close two particles need to be in order to belong to the
same jet. The first definition of jets, designed for e™ e~ collision processes, goes back to
Sterman and Weinberg [20] and reads as follows. A hadronic event in ete™ collisions,
with centre-of-mass energy Q, contributes to the Sterman-Weinberg 2-jet cross section
if we can find two cones with opening angle 0 containing all the energy of the event
except at most a fraction € << 1 of the total energy. We distinguish three contributions

(a) the virtual cross section contributes to the 2-jet cross section, irrespective of the
value of € and 0 .

(b) The real cross section, with one gluon emission, when the energy of the emitted
gluon k¥ is limited by k° < €Q, contributes to the 2-jet cross section.

(c) The real cross section, when k° > €Q, when the emission angle with respect to
the quark (or antiquark) is less than J, contributes to the 2-jet cross section.

The contributions are

2a 0 dko d cos 0
a = — ornisc 6
7 Toorm F/ / 1—cos2 @’ (©)
20, €0 ko dcos 8
= orniC 7
Tb = o F/() / 1—cos? 6’ Y

.o 2asC /QdkO/ d cos 6 +/c°5(”“5) d cos 0 )
¢ Pom T nF 0 KO | Jess 1—cos?0 )4 1—cos28 |



Summing the three contributions plus the Born cross section together we get a 2-jet
cross section that depends on the two parameters € and 0

4a 0
2jet(€, 0) = Ogorn [ 1 — 7& log(e) log(j) +0(?) ). (9)

In particular the result is finite meaning that all the divergent pieces canceled out.
This follows from the fact that the Sterman-Weinberg jet algorithm, at order as, allows
one to sum up over all degenerate states leading thus to an IR safe observable. The
Sterman-Weinberg algorithm, while giving a physically clean picture, is however no
longer used since not well suited for analysing multi-jet final states. Reconnecting to
the actual process under consideration in this thesis, we will now introduce a set of
jet-algorithms that is widely used in hadron-hadron collisions and that is part of a
larger class of algorithms called sequential recombination jet algorithms (see ref [21]
for more details).

211 k7 type algorithms with incoming hadrons

The main idea in sequential recombination algorithms is to introduce a measure of
distance d;; between two particles i and j and a jet resolution threshold d:. The
algorithm then works as follows

1. compute the distances d;; between all the pairs of particles i, j,

2. find the minimal d;,
3. if dij < doy recombine the two particles into a single particle and go back to
step 1,

4. it dij > doy stop the algorithm and classify all particles as jets.

Additionally one has to define a recombination scheme, which indicates what momentum
to assign to the combination of two particles, the simplest is the 4-vector sum.

In hadron-hadron collisions an additional precaution needs to be taken due to the fact
that divergences in the QCD branching probabilities are not just between pairs of out-
going particles, but also between an outgoing particle and the incoming beam direction
(see section (2.3) for more details). This can be taken into account by introducing the
idea of an additional particle-beam distance d;3. Moreover, in hadronic collisions, it
is standard to use variables that are invariant under longitudinal boosts (such as the
transverse momentum and the rapidity).

To cluster the particles in kr-algorithms, one can introduce a general class of distance
measures in momentum space, each classified by an integer p, namely

dig = (pl,i)z” for each parton i,

2
2p )%

dij = min(pfi,pL’j 2 for each parton pair i, j. (10)
0



Where

ARy = (yi — yj)’ + (9 — ¢))", (1)

denotes the distance between the two particles i and j in the rapidity-azimuth space
and Ry plays the role of a jet resolution threshold in the sense that two particles are
not recombined togheter if their distance is greater then Ry.

By now we have motivated the appearance of IR divergences in perturbative QCD
calculations. Moreover we have explicitly shown, by means of the ete™ — jets example,
how one needs to define physical observables in order for this divergences to cancel. In
the following section we will describe the behaviour of QCD matrix elements at order a;s
in the soft and collinear limits, i.e. we will present the well-known factorisation formulae
(see Ref. [22]). The knowledge of these limits is fundamental for the computation of
higher order cross-section corrections because it allows one to isolate the singularities
of the cross-sections in the intermediate steps of the computation, i.e. in the separate
computation of real and virtual contributions.

2.2 Infrared factorisation of QCD amplitudes

We consider a process characterised by m partons, with momenta p1, ..., pp, in the final
state at lowest order. We denote the corresponding tree level matrix element as M,,.
The matrix element has the following structure

Mz: ----- i,nl,";ﬁ ----- Sm (12)

where {c1,...cu}, {s1,...sn} and {ay, ...a,} respectively denote the colour, spin and
flavour of the m final state QCD partons.

In the following we use the conventional dimensional regularisation (CDR) with d =
4 — 2e space-time dimensions and consider two helicity states for the fermions and
d — 2 helicity states for the gluons.

We also define the spin-polarisation tensor

;
S1,5] Clyeens CniS1yeees s, ClyeesCiSy oS
Tay, 0y = E E MG m[ ar (13)
spins#sq,s; colours
which is the square of the matrix element (12) summed over all spin and colours apart
from s.
2.2.1 Factorisation in the collinear limit

We consider now the limit in which two of the final state QCD partons, say p; and p,,
become collinear to each other. This limit can be precisely defined as follows

kZ ¥ k? n*
N ¥ B (] — ph — k" — L
pr=2zp" K=~ T py=0—=2)p e e W
ki
51252/31-/)2:—2 kl—>0. (14)

(1—2) "



In equation (14) we introduce the Sudakov decomposition: the lightlike (p> = 0) vector
p* denotes the collinear direction while n*” is an auxiliary light-like vector needed to
fix one of the four degrees of freedom of the p1, p, four-vectors.

In the small k; limit (i.e. neglecting terms that are less singular then 1/k?), the square
of the matrix element (12) fulfils the factorisation formula

2 ’ A s
Moy, (1. p2, - )P = 5 8o I,0 (p. .. ) Pory (2 kiie) . (19)

where p is the dimensional regularisation scale. The spin polarisation tensor is obtained
by replacing the partons a4 and a; with a single parton denoted by a.

The parton a carries the quantum numbers of a1 + a; in the collinear limit. Thus, its
momentum is p* and its other quantum numbers are obtained according to the following
rule: gluon + anything gives anything and quark + antiquark gives gluon.

The kernel ﬁ’jf;z(z ki ;€) is the d-dimensional Altarelli-Parisi (AP) splitting function.
The explicit expression for the splitting functions is (at 1 loop)

A A C/: 1+Zz

Poq(zi€) = Poi(z, ki €) = 0ss > [1 — e(1 —z)] , (16)
A A C 1+ 1—22

Prrlzie) = Piiz kiie) = 60 [(Z) - ez] , (17)
Duv Duv TR v kukv

Phg(z ki €) = Pég(z, ki;e) = 5 [—g” +4z(1 —2) j(il] . (18)

g 7 2

A 1 z 1—-2z K kY
uv . ny 1™
Pg (z,ki; €)= 722CA [—g (1 Z + ) 201 —€e)z(1 —2) 2 ] . (19

The AP kernels can be considered as matrices acting on the spin indices s,s” of the
spin polarisation tensor. In particular note that the splitting functions (16) and (17)
originating from the splitting of a fermion are proportional to the unity matrix in the spin
indices. The splitting functions (18) and (19) instead, originating from the splitting of
a gluon have an explicit k; — dependence producing non-trivial azimuthal dependence
with respect to the directions of the other momenta in the factorised matrix element.
Equations (16)—(19) lead to the more familiar form of the d-dimensional splitting func-
tions only after average over the polarisations of the parton a. This is obtained by
means of the factors
1

5 0ss (20)

for a fermion, and (the gauge terms are proportional either to p* or to p”)

1 1

mdﬂ”(”) = m(—g,,v + gauge terms) (21)

with

—g"dyp)=d—=2, p'dulp)=dun(p)p’ =0, (22)



for a gluon with on-shell momentum p.
Denoting by (Py,q,) the average of P,,4, over the polarisations of the parent parton a,
we have:

(butei) = Puteie) = 5 [ 122 —et1-a)] . 2
(Pyglzi €)) = (Pyglzi€)) = % [H“Z_Z)Q —ez] , (24)
(Poglz: €)) = (Pyylzi€)) = % [1 —~ 221(1__:)] , (25)
(Pyy(z:€)) = %20/4 [1 iz 122 —z)] . (26)

2.2.2 Factorisation in the soft limit

In the following we consider the emission of a soft, i.e. with vanishing four-momentum,
gluon off a hard parton.

Unlike for the collinear radiation, the soft gluon emission does not change the momentum
of the radiating parton. However, since the gluon carries a colour, it will change the
colour of the emitter. This leads to non-trivial colour correlations between the matrix
elements.

To discuss the soft factorisation formulas we consider the same general QCD process
as in Eq. (12) assuming that one of the partons, say p1, is a gluon. In particular we
consider the case in which the gluon becomes soft and is emitted by an external leg.
Internal lines that go on-shell do not lead to a soft singularity and therefore will not
be considered.

The general factorisation formula of the matrix element (12) in the p{ — 0 limit can be
written as

Mp1; pas s Pm) = igsp©e(q))"  M({pi}), (27)
where /#? is called Eikonal current and is defined as
m i
Pi
Jh = T (28)
; " pi-p

The factor T is a general “colour operator” and depends on whether the emitter is a

gluon or a fermion. In particular we have

t¢, outgoing g or incoming q,
T2 = {4 —t1% outgoing G or incoming g, (29)

ifcae gluon.

Moreover colour conservation is expressed as

Y Tr=0. (30)
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Figure 3: Process with 3 hard coloured partons and one soft gluon

By squaring Eq. (27) and summing over the gluon polarisations we arrive at the well-
known soft-gluon factorisation formula for the squared tree-level amplitude:

IM(pi; pa, oo pull® = G21*2) TET Sii(p)|M(p2, . pa) (31)
i
where S;;(p) is the eikonal function and is given by
Pi - Pj
Sij(p1) = 50—~ ——. (32)
! 2pi - p1)(pj - p1)

The product of the colour operators on the right-hand side of Eq. (31) can in some
special cases be expressed as a linear combination of Casimir invariants of the colour
group. In these cases we say that the algebra “closes”. In particular, the algebra
“closes” when there are three or fewer coloured hard partons.

To illustrate this we consider a general process with three emitting partons (gluons or
quarks) p1, p2, p3 and additional soft radiation k as shown in Figure (3). Using the
colour conservation formula in Eq. (30) we can write

AT =T = T2 =T/ ,with (i,j, k) € {1,2,3} (33)
1= Cr .lf parton l .lS a quark or antiquark, (34)
Cy if parton i is a gluon.
Equation (31) then becomes
[M(K; 1, p2, p3)|* = gope2 ((732 — Tt = T))Su(k) + (T3 = T{ — T5)Sis(k)
(TP = T3 — T32)523(/<)) [M(p1, p2, p3)|*- (39)

2.3 Coloured partons in the initial state

As we briefly pointed out at the beginning of this chapter, the soft and collinear diver-
gences cancel out provided that the production cross section is defined inclusively, i.e.
the final state F is produced, where F is an ensemble of jets and/or heavy particles,
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Figure 4: Amplitudes for virtual photon scattering off a quark

but allowing for the production of additional radiation X.

This is a general property of the scattering of non coloured partons, so leptons or pho-
tons. If the scattering involves coloured particles in the initial state, the IR divergences
in the final state still cancel for inclusive observables. However, mass singularities
associated with collinear emission in the initial state do not cancel out and require
separate treatment.

To better illustrate how collinear divergences in the initial state are treated in scat-
tering processes with coloured partons in the initial state, we consider the scattering
of a virtual photon off a “free” (i.e. independent of being inside a proton) quark with
momentum p (see ref [23]) as showed on the left hand side of Figure (4).

v'(a) +q(p) = a(l) (36)

At lowest order in QCD, the virtual photon sees a point-like quark; hence the “free”
quark distribution function is given by

GheX) = (1 = x). (37)

Higher order corrections generate a colour field surrounding the quark. Note that for
the rest of this section we will use the lower indices “free” and “proton” to denote a
quark independent of its life in the proton and a quark in the proton, respectively.
Next we consider the order a5 correction to the “free” quark distribution coming from
the collinear emission of a gluon from the initial state quark as shown on the right hand
side of figure (4).

This correction together with the leading order contribution gives

2
Giree(X) = 0(1 — X) + & ((/A’qq(x)) log (/Q\z) + C(x)) (38)

s
JT

where (ﬁqq(x)) is the azimuthally averaged, unreqularized AP splitting function obtained
from equation (16) for d = 4 and C(x) is a calculable function. The important thing
to note here is the collinear divergence associated to the limit in which the gluon is
emitted collinearly to the quark. It is exposed as a logarithmic enhancement in the
cut-off A on the gluon transverse momentum.

This is not quite the complete answer for gjee. The full result requires the inclusion of
virtual gluon radiation as well. A physical argument that provides a useful short-cut to
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this computation is to note that because the delta function 6((p + g)?) is common to
all the virtual diagrams, their contribution to the quark distribution is proportional to
0(1 — x). Thus, for example, the splitting function becomes

(Paq(x)) = (Pyqlx)) + AS(1 — x). (39)

Second, in order to conserve quark (ie. Baryon) number, the integral of the quark
distribution cannot vary with Q2. This implies that the function on the right hand side
of Eq. (38) must integrate to 0. We can use this condition to fix the coefficient A. The
final answer is the same as before with the unregularised splitting kernel replaced by
the reqularised one:

Ce[1+x 3
Pu(x)) = —| ———+ z0(1 —x)|. 40
Note that we have introduced the “plus” distribution prescription in order to requlate
the soft divergence at x — 1.

We therefore have

2
el ) = 801 =)+ % (Pygtrtog ( ) + ). i)

At variance to the previous section, this collinear divergence is not subject to the
theorems of cancellation of singularities since the underlying hard-scattering process
Y +q — g+ X probes the quark density at scales given by the virtuality of the photon
and is not completely inclusive over the initial state.

The situation is even more severe when considering the realistic case of a quark inside
the proton. In fact, in order to obtain the quark distribution inside the proton, we need
to convolute Eq. (41) with the probability density function go(x) of finding a quark in
the proton and also take into account that the quark carries in general a fraction & of
the proton’s total momentum. This gives

1 2
a dé X Q X
Gproton (X, 02) =qo(x) + ;5 ’ 5%(5){(’% (E)MOCJ (/\2) + C(ﬁt) } (42)
Analogously to the renormalisation of the coupling constant, we can regard go(x) as a
bare, non measurable, quantity. The collinear singularities are absorbed into this bhare
distribution at a “factorisation scale” p.
In other words, we define a “renormalised” distribution qproton(x, %) by

1 2
ot =)+ % [ o 1P (52100 (5) (5]}

and then rexpress the bare distribution in terms of the renormalised as

. (' d 2
qo(x) = flprown(xvﬂz) - (}Ij( ;flpmmn(&uz){(/’q (;))loq (Xz) +C (;) }
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This gives

A 1 / 2
Gproton (X, Q) = %roton(xrﬁ’z) + % ’ [;q|aroton(szrﬂ2){<qu (;) ) log (Sz) + },

and is finite. In equation (45), the ellipses stand for the finite (non-logarithmic) con-
tributions. It is interesting to note that in this procedure of absorbing the logarithmic
singularities in the bare distribution, there is still arbitrariness in how the finite con-
tributions are treated. How much finite contribution is factored out (i.e. absorbed in
the bare distribution) is what defines the so-called “factorisation scheme”. In particular,
in this thesis, all calculations are done in the MS scheme, where in addition to the
divergent contribution, only a ubiquitous log(47r) — yr contribution is absorbed into the
bare distribution.
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3 g7 subtraction method

At the beginning of the previous chapter we briefly illustrated the appearance of in-
frared divergences in real radiation corrections. In particular, we have seen that these
divergences appear only after integrating on the phase space of the emitted partons,
in contrast to the explicit structure of the poles in e in virtual corrections. The eas-
iest way to make the cancellation between real and virtual corrections manifest is to
integrate over the entire phase space of the real parton emitted. In doing so, however,
kinematic information about the process is lost. To see this, consider again the process
ete” — hadrons at NLO, which was discussed in Chapter (2). For this particular
example, integration over the entire phase space of the emitted real gluon would lead
to the full NLO cross section

Otot = O2—jet + 3—jet - (46)

One would thus lose kinematic information about the 2-jet and 3-jet processes, which
could in principle be measured at an ete™ collider. This motivates the introduction of
a so-called subtraction scheme, a method that allows to extract the singularities of the
real correction without having to integrate over the entire phase space of the radiated
parton.

Roughly speaking, subtraction procedures can be divided into two categories

e Local subtraction method,
e Slicing methods.

The basic idea of local subtraction methods (see e.g. [24], [25] and [26)) is to identify
a function S that reproduces the matrix elements in the unresolved (IR singular) limits
and is simple enough to be integrated over the unresolved phase space. This function
can then be subtracted from the real correction to make it finite, and added back to the
virtual correction to cancel the infrared poles. The discussion of this type of subtraction
methods is beyond the scope of this thesis and will not be discussed further.

In this thesis, for the computation of NLO cross sections, we make use of the gr-
subtraction method (see Ref. [11]). This method can be classified as a slicing method.
The basic idea of gr-subtraction is to identify an observable, g7, that represents a
good resolution variable in the sense that

e for g7 > 0 the real emission cross section cannot be divergent. The real correc-
tions are then finite and they have the IR structure of a LO + jet computation.

e All the IR divergences are contained in the small g7 limit.

One can then use this observable to slice up the phase space into an unresolved part
and a resolved part. This can be schematically written as

max cut max

qar q7 qr
/d(l)/ |IMg|*Fdqr = /dd)(/ |MR|2quT+/ |MR|2}"qu) ,
0 0 ¢

(47)
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where d® represents the additional variables on which the real phase space depends
and F is a general measurement function.

The slicing in g7 on the r.h.s. of the above equation allows us to identify the integral
for 0 < g7 < ¢ with all the Born-like soft-collinear contributions and the integral
for g7 > g$* with the finite LO+jet contribution.

For a generic massive non coloured final state F, one can write the gr-subtraction

formula schematicallg as
GOI\ITLO =1 iﬁLO ® aog l/% 0 [a al_i) et ‘mﬂo]: (48)
qrid—

In particular the first term on the right hand side of the above equation represents all
the contributions that live at g7 = 0 while the second term represents the subtracted
real corrections.

To illustrate each piece of the g7 subtraction formula in further detail we consider the
explicit example of Higgs production at NLO.

3.1 Setup of the calculation

The SM Higgs boson does not couple directly to gluons (or photons), while it couples
to quarks via a Yukawa interaction proportional to the quark mass. Hence in QCD with
ns =5 light flavours, Higgs production in gluon fusion is mediated trough a heavy top
quark loop. If all scales involved in the process under consideration are substanstially
smaller then the top quark mass, it is possible to integrate out the top quark loop by
taking the limit m; — oo. The resulting effective field theory (EFT) lagrangian consists
of five-flavour QCD and a term coupling the Higgs field to the square of the gluon field
strength tensor,

1
Lo = —ZAHG;]VG"""’. (49)
The effective coupling A is given by
a
A= 3715v +0(a?), (50)

where v is the vacuum expectation value parameter, v = (Grv/2)~".

The effective Lagrangian generates three interaction vertices depicted in the figure(5)
with the corresponding Feynman rules. The two-gluon-Higgs-boson vertex is propor-
tional to the tensor

H™ (p1, p2) = ¢"' p1 - p2 — piph (51)
while the vertices involving three and four gluons and the Higgs boson are exactly
proportional to their counterpart from pure QCD

VP (p1, pa, p3) = (p1r — p2)° g™ + (p2 — p3)'g™" + (p3 — p1)" g™, (52)
and

Xibt = faveleae(g"° 9" — §"79"?) + facelpae(g" g°° — g" ")

+ fudefbce(gpvgpa - gupgvo) : (53)
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Figure 5: Interaction vertices in HEFT

3.2 Higgs production at NLO

We look at inclusive Higgs production in gluon gluon fusion?

g(p1) + g(p2) — H(p) + X(k) (54)

where pq, p; are the momenta of the incoming gluons, p is the momentum of the Higgs
and k is the momentum of the additional radiation.

We start discussing the needed counterterm within the gr-subtraction formalism. For
this we need to consider the real corrections, where one parton recoils against the
Higgs. For Higgs production at NLO, in the gg-channel, the extra parton is always a
gluon as showed in Figure (6) . The kinematics of the process in equation (54) can be
worked out in terms of the usual Mandelstam invariants

2
m
s=(p1+p), t=(pr—p’ u=(p2—pland z= el (55)

and with g7 = %” the transverse momentum of the Higgs. We denote the corresponding
matrix element as Myg_.ng(p1, p2, p, k).

We observe that, when g7 is small, the additional gluon is constrained to be either
collinear to one of the incoming partons or soft. Thus the g7 — 0 limit contains the
three possible singular regions of the M g4y matrix element:

e first collinear region: p1 -k — 0 ;

e second collinear region: p; - k — 0 ;

2At NLO, two other channels (qg and ¢g) have to be considered. However, to illustrate the general idea
of gr-subtraction, we restrict ourselves to the gg-channel only.
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Figure 6: All Feynman diagrams contributing to the real correction at NLO in HEFT

e soft region: k¥ — 0.

As shown in Ref. [27], it is possible to capture all singular limits by a single “collinear”
factorisation formula

8ag e
zpy - k

im Mgl = (Pyg(2))|Mggoni(zpr, pa. PP + (1 > 2). (56)

as a result of colour-coherence. The counterterm can be therefore written as

[ Mggomgl?
it = [ faiiaittn) foottp), ugo%ewr—cf#t) 57)

To/x1
457212 x'}'“xa
= ( TH ) /dX1 /(IX2 X1 X2 /[/Qd 2/ T
JT mH To/x T
1—
X ( (Pyg (@) Mggn(zpr, p2. p)I* + (1 & x) . (58)

min/ (1 — 2)2 —42)(%

where in the last step we substituded the explicit formula for the two body phase space
(see Appendix A) and used

1
201 —
/ d cos 6(6* -2 (59)
1 p1-k my Xy
Next we perform the change of variables
(x1, %) = (%1, %) with % = zx; and % = x (60)

and then again

(%1, %) = (1,y) with 7= %% and y = %log (f) (61)
2
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Moreover we can insert

2
1_/d261—z [dﬂé ?H (62)
4y ¢
m,

_ln\/?o |nax)d
as 50 XT (2=
— dyf,(x
£ i R 9 e
Znes (] 1— A X
x/ = ‘(P (z)>fg(X;) +n o), (63)
X

99
2 /(1 =2)2 —4zx3

with 79 = 5 . The limits of z are given by the kinematics. In particular, since we are
interested in the small g7 limit, we can approximate

and get

Zmax ~ 1 — 2x7.

The integral over the threshold variable z can then be written as

172XT _ n <
/ E -2 <ng(z)>fg(X1)
2 /(1= 2)2 —42x3 ‘

_/1 20 dz (1= 2)(Pyg (2))fg(2) — 2Caly (1)

‘ (1 — 2)2 — 42x3

(64)

+ CAfg(;ﬂ)

172)(7 1
/ dz : (65)
% \/ (1= 2)2 —4zx%

The integral in equation (64) is finite for every x7 thus, if we are only interested in the
small g7 limit, we can simply set x7 = 0. This gives

[ dell- z)</“3gg(z)1>fi(z;) — 2Caly (1) 66)
1 ~ —
= [ Zipenn, ) - citogt =) - ATy s) o
with the reqularised splitting function
_ z 1—-2z 1 (1M Ca — 2ny)
(Pgq(2)) = CA[(1 _— +— + z(1 —z)] + 56(1 —Z)T. (68)

The integral in equation (65) can be evaluated explicitly and then expanded for small
XT

CAf X1

~ Cafg(x1)(log(1 — x1) — log(x7)). (69)

/1 2XT
X \/1—2 —4ZX
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The updated counterterm reads

max

4mp? ‘ R
Qs m?, /7 In /70 -\ A0) /(XT )LX%
n 0

7 M1 —¢ N 1o G2}y X3 b
! . _
y { JREG (X;) - ) - ¢ ‘°9‘X7)f9(*”}
+ (%1 < %). o

This is almost the final form of the counterterm, the only thing we still need to take
care of is the integration over x7. In particular, having already identified x7 as a good
resolution variable, we can apply the slicing method discussed above and write

(Xmax)Z 2
[ Srere{as J o]
0 XT 2

l_czm (Xmax)z 2\—e
- /dx%+/ Do | P A Blogpy | (71)
0 r X7 2

cut

where A and B represent the terms in the second line of equation (70). The first
integral on the second line of the above equation represents the Born-like soft-collinear
approximation (see equation (47)), therefore, for the computation of the counterterm we
only have to focus on this piece:

2
rcut B
[0 dx;(x%)—“f{A +5 log(x%>}
_ A B 2 B 2.
- (6 + 262) + (Al'og(rcut) + Z I'Og (Icut)) + 0(6) : (72)

From the above computation we get the divergent ro« = 0 contribution, requlated by
the poles in €. This piece contributes to the H-function in equation (48) as

€
4p?
7 —1
gg _ O\ "n VI

REETO JCT B ; r“ - 6] In /7 dy AggHH{fg()h)fg(;Q)
CA (11CA — 2/7{) 1 . . 1
[262 - 126] - fg(X1)(fg ® <ng>)(X2)e}
+ (%1 < %), (73)

with the short hand notation (f; ® (P,4))(X2) for the convolution of the AP splitting
function with the gluon pdf.

It is important to note that the €’ pole and the € pole multiplying the pieces defined
at z = 1 cancel when combined with the IR poles of the virtual as expected from the
KLN theorem.

However, the purely initial state collinear pole, i.e. the one that multiplies the convo-
lution of the splitting function, does not cancel with the poles of the virtual. As already
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mentioned in the section (2), this pole is included in the definition of the renormalised
parton distribution function by applying MS subtraction.

The other contribution from equation (72) is the one at et # 0. In particular, this piece
is used to subtract the divergence of the real in d = 4 dimensions. We can therefore
write the g7 subtraction counterterm as

g _ % ("D o [ j
ar = o dy agg_),_,{4CAfg(x1)fg(xz)L2(rwt)
MGy —2n .
| = T2 0t + )y © (Prs) [ Een } 4 1 0
(74)
with
" 1
Li(reqt) = log (2) , (75)
Feut
L(reur) = log? (2) , (76)
Feut
and the partonic level horn cross section (in d = 4) given by
2 2
A (0) — & my 77
99=H " 7 576v2S’ 77)

To complete the NLO calculation, we need to consider the contributions that live at
gr =0, i.e. the parts that enter the H function (see 48). In the following we list and
explain all these contributions.

The Born cross section (o) is clearly defined at g7 = 0 since at this order, in pertur-
bation theory, the Higgs is produced with no accompayining radiation.

The virtual correction to the LO process is given by the 1-loop amplitude interfered with
the lowest order one. The IR singular structure of the virtual correction is universal
and can be found in equation (38) of Ref. [27]. In particular, once the IR singularities
are subtracted trough a subtraction operator

- 1 (M€ 1 1 ? 2(MCy—2
/ggHH:_4() {(+iﬁ—ﬂ)2CA+E(CAnf)} (78)

s €? e 12 12
one gets a finite contribution (the subtracted virtual) |/\~/l(;g)_),_,|2, with
(1) 7 (1
Mgg—)H = [1 - /gg_’H]Mgg—)H‘ (79)

Note in particular that the subtraction operator could in principle be read off the z =1
piece of the integrated counterterm in equation (73).

There are two contributions coming from the MS subtraction. One is due to the fact,
that only contributions below a factorisation scale yZ are subtracted. This contribution
can be represented in direct space as

s Q?
05 ® %ng(z) log (H%) . (80)
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The other contribution comes from choosing a specific subtraction scheme, in particular
for the “hard scheme” defined in Ref. [28] this is given by the so called beam functions
Can(2) and is zero for the specific case of gluon gluon splitting, i.e., Cyy(z) = 0.

All in all we can write the full g7 = 0 contribution in direct space as

I

2 2
op® |1+ %Hg”“) — %k/so log (QZ) + aj log (%)(ng(a) + Pyy(22)) | . (81)
Tt Tt Hp HE

H(1) . : .
where Hg( Vis the ratio of the subtracted virtual matrix element squared and the Born
matrix element squared and is defined at u,z? = Q?

M) (a0

H) _ g9—H ' (82)
T MO (a0

In particular H;m = CA§ + % and can be found in eq. (85) of Ref. [28].

2

The factor kf log 3—2 (k are the powers of a5 at LO, ie, k = 2 for our case)
R

comes from the running of the coupling and is needed to counterbalance the change of

scale when setting g = Q in Hgm.

3.2.1 Results

All the graphs shown in this section were generated via the code higgs_at_nlo
implemented by us and publicly available at:
https://gitlab.com/mark.costantini/h_jet_nlo.

In figure (7) we show the ry dependence of the NLO cross section for gg — H + X,
at 13TeV and for different scales pr and pgr. Note that the results are normalised
to the rqy independent NLO cross section obtained by MCFM (which implements the
dipole subtraction method, see Ref. [24,25]). In particular, in the plotted range, we
observe a flat ryt dependence. This is because the power suppressed contributions,
left after the cancellation of the logarithmic sinqularities at small r., are quadratic
(and thus suppressed in the plotted range) for the inclusive production of a colourless
final state [29]. In the following table we compare the ros = 0 extrapolated result of
g7 subtraction against the MCFM result for the 3 different scale variations. We find
an agreement whitin a few sigmas. Moreover, by comparing these results with the LO
results we observe a K factor of approximately K = 2.3.

NLO [pb] PE = pR = my | pp = 5t pgr =2my | pp = 2my, pr = =
g7 subtraction | 30.749 & 0.003 24.341 = 0.002 39.310 & 0.004
mcfm 30.741 & 0.001 24.343 +0.003 39.328 - 0.004
LO [pb] 13.322 £+ 0.002 10.431 = 0.001 17.034 +=0.002

In figure (8) we plot the NLO differential distribution for the Higgs rapidity obtained with
our numerical program against that calculated with MCFM, and find excellent agreement.
Moreover, comparing the NLO distribution with the LO distribution we still observe a
K factor of about 2.3.
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Figure 8: Rapidity distribution of the Higgs at the LHC (at 13TeV) computed at NLO
accuracy. Comparison of our results (in red) with the MCFM results (in cyan). In orange

the LO distribution.
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4 Higgs plus Jet production at NLO

We consider the inclusive production of a Higgs boson together with a high transverse
momentum jet in proton proton collisions,

p(P1) + p(P2) — H(p3) + j(pa) + X. (83)

The LO cross section for Higgs production at non-vanishing transverse momentum is at
O(a?) and receives contributions from the parton level processes gg — Hg, q(g)g —
Hg(g) and gg — Hg, with the first two accounting for the bulk of the cross section.
The relevant contributions at NLO are listed in the following table.

LO | 99— Hg q9—Hq qq— Hg
NLO | g9 — Hgg g9 — Hqq qg — Hqg
qq9 — Hqq qq— Hgg qq — Hqg

To calculate the NLO cross section, we use the g7 subtraction method. As mentioned in
the previous section, the basic idea of the gr-subtraction method is to identify an ob-
servable that is sensitive to IR radiation and that is related to the transverse momentum
of the initial-state radiation. For the case of the production of a massive colour singlet,
such as the Higgs, we have seen (see section (3.2)) that the correct observable is the
transverse momentum of the colour singlet itself. However, this is no longer correct if
one has an additional coloured parton in the final state. In the following, we will first
discuss the correct identification of the g7 subtraction observable for a process with
jets in the final state, then the calculation of the g7 counterterm, with special attention
to the main differences to the colour singlet case, and finally the calculation of the
contribution that lives at g7 = 0.

41 g7 imbalance and clustering algorithm

A first natural guess for gt could be

Higgs + p_l;l_ardest Parton

qr = pt ' (84)

i.e. one identifies the hardest parton as the jet at parton level. In fact, it is clear that
for all processes with Born-like kinematics, qr is exactly zero, since the parton and
the Higgs are back-to-back in this configuration. However, special care must be taken
when there are two partons in the final state. In particular, in the limits in which the
radiation is either soft or collinear, the qr observable defined above is vanishing, as
it should be. Nonetheless, configurations characterised by the presence of two hard
and collinear final state partons have a non-vanishing qrt despite being divergent. We
conclude that the definition of gt given in Eq. (84) does not reqularise the final state
collinear singularity. We can modify it by defining the jet only after applying a clustering
algorithm. To do so let us define the kinematics of the process pre-clustering® as

a(p1) + b(p2) — H(p3) + c(pa) + d(ps), (85)

3this kinematical variables are to be contrasted with the ones defined post-clustering
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with a, b, ¢ and d generic coloured partons. Given the three final state momenta

(p3, pa and ps) and the two clustering parameters Ry (see section (2.1.1)) and p"",

the clustering algorithm works as follows.

1. Check wheter the two partons cluster into a single jet, i.e. compute Ry5' as
Ris = 2(cosh(ys — ys) — cos(¢s — ¢s)) (86)

if Ry5 < Ry — the two partons are clustered together.

The resulting event represents a Higgs and a jet perfectly balanced and, hence,
qt = 0. In particular, two collinear partons in the final state will be clustered
together, solving the final-state radiation (FSR) issue.

2. Check if the leading jet passes the cut

if pripjer) < p';in'jet — cut the event .

3. Finally apply the cut on the g7 of the Higgs plus jet system

if g7 < ¢ — cut the event .

The new, post-clustering, kinematics now reads as follows

a(p1) + b(p2) — H(p3) + j(pjed) + X (k), (87)
with
qr = p_l;l_iggs + pl_:_arclest jet , (88)

and the invariants

Q” = (p3 + piet) s = (p1 +p2)°s t = (p1 — pjer)’,
2

u=(p,— pjet)z, z= -~ (89)
Note in particular that k in (87) represents the additional softer radiation.
In this way gt represents a good resolution variable since sensitive to IR radiation.
Before presenting the explicit form of the counterterm and H-function, we briefly discuss
the relevant contributions to Higgs plus jet production in the collinear/soft regions of
the 3-particle phase space. This will be of help in understanding the various pieces
that enter in the calculation.
In figure (9) we show in a schematical way all the relevant configurations. Diagrams
1 and 2 represent the final state splitting of a generic parton into two hard collinear
partons or into a collinear pair of hard parton and soft gluon. These two configurations
are clustered into a single jet (see step 1 of the clustering algorithm) and thus provide
a Born-like contribution to the process, which can be written as follows

' =00®J. (90)

*Note that this radius definition differs from the standard R? = (Ay)® 4 (A¢)? definition by terms of order
R4
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We refer to the contribution J as the jet function. Diagrams 3,45 and 6 represent the
initial state radiation. This type of radiation is already present in the colour singlet
production, we refer to it as gisg. Finally, diagram 7 represents the soft radiation that
is not clustered. This type of radiation enriches the singularity structure of the double
real contribution and must therefore be included in the counterterm.

4.2 Counterterm

In the previous section, we briefly explained the relevant terms that enter into the
calculation. In particular, we saw that the clustering procedure physically requlates
configurations in which we have a final state collinear splitting. This means that we do
not have to worry about these contributions when constructing the counterterm. The
relevant types of singularities are then

e initial state radiation,

e soft radiation in the whole cut phase space (i.e. soft radiation that is not clus-
tered).

We also subtract the soft limit of the collinear approximation to ensure we do not double
count it.

As done in section (3) we can proceed by writing down the hadronic real emission cross
section and then by approximating the real phase space and the matrix elements in the
relevant IR singular regions. In full we would have

1 —lnyT d(])g t
O = d— d l. e o
o /Tlnin l /ln\ﬁ y l]T/lg]—)O/ 25 (qT qr )

x> falx)fs(2) M3y caPO(Ryi > Ro). (91)

a,b

Where ¢ and d represent two generic final state partons.

The O©-function in the second line of Eq. (91) ensures that we only consider unclustered
configurations. This cut in the phase space introduces a new technical complication and,
in particular, it will change the singularities due to soft radiation. However, hard initial
state collinear radiation should not depend on the phase space cut. This is because by
imposing a minimal transverse momentum p3 v > p§f we are automatically separating
the jet from the beam axis in p7 space.

The approximated real emission cross section for the process in equation (87) can be
written as

__ 12/, 0ut out 2 -out out
ocr _Tﬂ (Uu,coll - a,collﬁsoft) + 7_b (Ub,coll - Ub,collﬁsoﬁ)

+ TG TbasooLﬂ,ab + T”Tjo—soolg,aj + TbT]O—soolll‘i,bj ’ (92)

where T, and T; represent the colour operators of the parton a(b) and the jet re-
spectively. The superscript “out” means that we are considering only radiation outside
the jet cone (i.e. unclustered configurations). The above double real (or 2-jet) cross
section is approximated in the sense that the matrix element square in equation (91) has
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been replaced with the usual collinear/soft factorisation formula. In particular ag(“g)
is obtained via the replacement

,coll

8a, %€ p

M3y cqnl® = [Map).cotl” = (2, €)|Mpom(zp102), P21ty p3, pa))|* . (93)

Z[J1(2) -k

where P(z, €) represents the adequate splitting function for the process under consid-

: - out - R F- d 2 i
eration. The terms ogy; . are obtained via replacement of [M{, | |~ with

|M50ft,m,,|2 = —871(15#26 Tn Ty LML ) |MBorn(p1 » P2, P3, P4)|2. (94)

(pm - K)(pn - k

Finally UL?(LE),CO“_)SM is obtained from equation (93) by taking the z — 1 limit. This
matrix element can be written as

1 P1- P2
M ,coll—sof 2= 817(15L12€ T2
| (b) tl 1(2)[31(2) -k (131 +P2) Tk

| Meom(p1, P2, p3, pa)|>. (95)

P out out H H H -
It is important to note that Ta(b),coll ~ Ta(b),collssoft N €QUAtiON (92) only contains hard
collinear divergences. The singularity in this piece is thus independent on wheter the
phase space is cut or not. This means that we can rewrite the approximated real
emission cross section as

2 2
ocr = Ty 0a,cot + T Op ol (96)
2 2
- Ta Og,coll>soft — Tb Op, coll—ssoft (97)
out out out
+ 14 TbUsoft,nb + TUT/Jsoft,uj + Ty T]'Usoft,bj (98)

The terms in the line (96) represent the initial state radiation (ISR) and were already
present in the colour singlet production discussed in the section (3.2). The terms in the
lines (97)-(98) represent the conceptually new contributions to the counterterm due to
the presence of a coloured parton in the final state.

In the following we will discuss these contributions and give the analytical formulae for
them.

4.2.1 Initial state collinear counterterm
The derivation of the collinear counterterm
OisR = T2 00 coll + T Ob col (99)

can be done following the same reasoning as for the Higgs production case. In the
appendix (A) we give the explicit formula for the d-dimensional 3-body phase space,
necessary to derive the counterterm. To be definite, we present the explicit form of
the initial state counterterms for the gluon-gluon channel only. This process receives
contributions from two different subprocesses. The gluon-gluon splitting process

g(p1) + g(p2) — H(p3) + g(ps) + g(ps) (100)
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with
spli a ! —log v/ do T dz X
Ug? llt I /dl dyf XZ) B|M g—)Hg|2{|:/ ng(z)fg(1) (101)
Tmin lOg\f X z 7
1MCy—2n . C N
_ *‘12”9()(1)] Li(rew) + 4Afg(x1)Lz(rcut)} + (% < x). (102)

And the gluon to quark splitting

g(p1) + g(p2) — H(ps) + q(ps) + q(ps) (103)
with

g-spli ~logv/T d(DB
oo / dr [ dyfybo) [ S 1Maggl (104)

Tiin log /7T S

dz X1\~
x {/ —Pygle )fg(;)u(rcm)}zwr(m o x). (105)
]

4.2.2 Soft counterterm

For the explicit derivation of the soft counterterm we refer to Ref. [1].
It is possible to write the soft counterterm as the sum of three separate contributions:

soft soft soft soft
Oct = 0BDC + Onm + Odec - (106)

We call the first piece on the right hand side of equation (106) the “Born decoupling”
since it contains the full dependence on the Born kinematics of o2, The second term
we call the “mismatch” since it appears only because we are insisting in writing the
collinear radiation over the full phase space. The third term we call the “soft decoupled”
piece. Next we will present the analytic formulas needed to compute this terms.

Born Decoupling

The Born decoupling contribution to the counterterm is given by

Li(ra, u
aitle = % g ) (2109 ) 4 21004 (107

Note especially that this contribution vanishes if we are considering diagonal channels
(like the gg- or gg-channel) where T? = T2.

Decoupled Mismatch

The mismatch piece is affected by the phase space cuts i.e. it has an explicit jet radius
dependence. The full R dependent contribution can be written as

sote _ 95 Lilr)

Onm = ;UBOI‘H P (_Ts - sz)/mm(R) (108)

with

1
Iam(R) = 2 /1_ﬁ \/ﬂjixz log(&(x)), (109)
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and

E(x):1+(X—(1—§2))+\/(X—(1—R22))(X+(1+R22))- (110)

Notice in particular that the integral in equation (109) vanishes in the R — 0 limit
giving therefore a neglectable contribution for very small jet radii.

Decoupled Soft

The decoupled soft term contribution also explicitly depends on the jet radius and is
given by

Q. Ly(r
Tied = ijSUBorn%(_TﬂTj — T Tj)lsort(R) (11)
with
RZ
2 5 R? » =%
lsoit(R) = - log (R (11— 4)) tan ZT

RN Xlog(1—xz)
T hog V1 =X
1 V1 — 32
+ lZ/ 2dx1L2tan—1 (”) — 2log 2] . (112)
— X

L &(x) —x

The leading R behaviour of the above integral can be found trough a Laurent expansion
in R and is given hy

alR) 2 l0g( ) + O(R). (13)

Note in particular that the terms in the brackets in equation (112) only lead to power
corrections in R.
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4.2.3 Results

In this section we will present the results for the subtraction i.e.
H+1-jet H+1-jet
o (R) = acinio (R) - (114)

As already discussed above, given a certain production channel, say the ab-channel,
the full counterterm can be written as

H+1-j
Ocintn (R) = Giskiab + GBI o + oot (R) + g5l 4 (R) (115)

with UI?I))hC,ub non-zero only for the non-diagonal channel gg.

In particular, as we will show explicitly, the counterterm involves full jet radius depen-
dence. This means that the subtraction works for any jet radius used in experiments at
the LHC.

All the plots shown in the following were generated via our own numerical program
(hjet_at_nlo), which is publicly available at
https://gitlab.com/mark.costantini/h_jet_nlo .

In particular we use the NNPDF31_nlo_as_0118 PDF set from [30]. The minimal trans-
verse momentum of the jet is 30 GeV and the center of mass energy is 13 TeV.

In figure (10) we show the dependence of the full R subtracted piece on r¢ for the gg-
channel and for different jet radii. By comparing these results with the ones obtained
for Higgs production (see figure (7)) we see that the Higgs plus jet subtracted piece
exhibits a much larger rq dependence. In particular, the power dependence at NLO is
found to be linear as for the case of heavy quark pair production (see Refs. [13,31,32]).
In general, the ry dependence is due to the power suppressed contributions that are
left after the cancellation of the logarithmic singularity at small e, (a more detailed
discussion can be found in Ref. [33] and references therein).

In figure (11) the performance of the leading R subtracted piece to converge to the full
R extrapolated result is shown. In particular from the comparison of figures (10) and
(11) it becomes clear that the leading R expansion of the counterterm only works for
small jet radii like R = 0.1.

Finally in figure (12) we show the rq dependence of the subtracted piece for the gg-
and gq’-channels.
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4.3 H-Function

To complete the NLO calculation we need to consider all the pieces that live at g7 = 0
ie. all the pieces contributing to the 1-jet process. In the following we will present all
these terms and give the explicit formulas for the gg-channel.

4.3.1 Born

The Born process clearly contributes to the H-function since at this order the Higgs
and the jet are exactly “back-to-back” thus giving g7 = 0. For the gg — Hg process,
as for all other processes contributing to Higgs plus jet production at the same order in
perturbation theory, the explicit formulas for the squared matrix elements can be found
in Ref. [34].

4.3.2 Virtual, soft and jet-function contribution

In the section for the colour singlet production we have seen that the IR poles of
the virtual correction exactly cancel with those of the subtraction operator in equation
(78). For the case of Higgs plus jet production, the IR singular structure of the virtual
contribution is known and can be found in equations (3.1)-(3.5) of Ref. [34]. However,
the subtraction operator is no longer the same as for the colour singlet production. In
particular, it receives contributions from the jet function and the soft counterterm.

The leading R behaviour of the jet function has been calculated in Ref. [35]. In particular,
this calculation does not take into account the power corrections in R and is therefore
only valid for small jet radii. Depending on whether we have a gluon or a quark as the
leading jet with additional collinear radiation, we obtain a gluon- or quark-jet-function
contribution, respectively. For the case of Higgs plus jet production in the gluon-gluon
channel, we only have a gluon-jet-function contribution, written as:

7’ ® Jy. (116)
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The gluon jet-function reads

Q? (11— 2ny) 1 2\ \ 1
Jo= 7 (W)Z{e P@12+QW Il A bl B

+my (117)

where J; is a finite contribution and is given by

C s2 C 52 C
_ ) 2, LA 95 s° La sy Ga 2
‘71—{ Bolog(R)+4log(R)+log(tu)(ﬁo+4log(tu) 2log(l?))
67 23 7
CA(18 108 ’_3)}’ (118)

(11Cy — 2ny)
12

The contribution to the H-function from the soft radiation has been computed in Ref. [1].
For this piece the full R dependence is known. However, since we are missing power
corrections in the jet function anyway we only use the leading R terms. We thus add
the following term to the H-function

with

Bo = (119)

05’ ® (Ts + lgoe) (120
with
Lo (0\° 1 1 € 5
Fg—j_l(”iz?) (TaT,+TbT])e(log(R)—l—zlog(R))
. 0>\~ 1 € 22
= 7(!’/2? ZCA log 77 +§log (R, (121)
gg—channel
and
as [Q*\ 1 [, t ) u
Mepc=—— 5] =—|(T?log|— T;log [ — 122
oo 2(%) Eem(2)omalz))
= 0. (123)
gg—channel

Taking into account the jet-function and the soft radiation contribution, we can write
the subtraction operator for Higgs plus jet production in the gluon-gluon channel as

2
THjet,(1) _ Q 1 2By
lyg 4(‘,1?) {(62 +UT€ 12)2CA+ (124)
CA 1 52 1
+€2+(230+CA109(R2)+CA109(M))6 (125)

+ Doy (] (126)
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The subtracted virtual is then defined as
M;ljget,“) — [1 _ 7;2&,(1)]]\/1?;91,(1) ) (127)

Note in particular, that apart from the finite virtual contributions we also need to take
into account the finite contributions coming from the jet-function and the integrated
soft counterterm. For this purpose we define the hard factor

Hjet,(
sty IO

2
g9 = W + ._71 lOg (R ) (128)

4.3.3 MS contribution

Conceptually, the MS contribution to the g7 = 0 cross section is equivalent to the
colour singlet case discussed in equation (80). The only complication comes from the
existence of more subprocesses. In particular for the gg-channel additional contributions
need to be taken into account due to the gluon to quark splitting subprocesses. The
full MS cross-section can then be written as

2
MS = [ log ( S ) (Pgg(z1) + ng(ZZ))) (129)
JT r
2
+ %oy (% ) 2m(Pypta) + Pt (130
J r
+ o) + Cte)) | 131

where Cy4(2) = (1 — z) and can be found in [28].
We now have all the ingredients to compute the full H-function:

HHiet () — gBom o (4 1 95 et (1) _ ﬁkg lo Oj +MS (132)
T T 9 PG
R
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5 Results

Having discussed the content of equation (48) for the case of Higgs plus jet production,
we will now present the complete NLO results. We use the NNPDF31_nlo_as_0118
PDF set from [30]. The jet radius is fixed at R = 0.1, the minimal transverse momentum
of the jet is 30 GeV and the center of mass energy is 13 TeV.

In figure (13) we show the rqy dependence of the full NLO result (all the partonic
channels contributing at this order combined) for different scales g, ur.

As already stated in section (4.2.3) the rq, dependence is linear as for the case of heavy
quark pair production.

In the following table we compare the rq+ = 0 extrapolated result of g7 subtraction
against the MCFM result for the 3 different scale variations

NLO [pb] PE = pR = my | Pp = 5, pgr =2my | pp = 2my, pg = =
g7 subtraction | 13.256 & 0.034 11.162 £ 0.024 15.755 £ 0.05
mcfm 13.250 & 0.007 11.140 & 0.005 15.701 £ 0.01
LO [pb] 7.758 £+ 0.007 5.900 == 0.005 10.451 £+ 0.01

The results are in agreement with the cross section computed with the Catani-Seymour
subtraction formalism within a few sigmas thus providing a strong cross check on our
result. Moreover, by comparing these results with the LO results we observe a K factor
of approximately K =~ 1.7.

In figure (14)-(17) we compare the NLO differential distributions obtained with our
own numerical program (in red) against those obtained with MCFM (in cyan). The g7
subtraction slicing parameter is r,¢ = 0.0003 and the scales pr and pg are set to the
central value my =~ 125 GeV.

In figure (14) we show the NLO differential distribution of the Higgs rapidity. From the
graph it is clear that we find excellent agreement bhetween our and the MCFM result
for a rapidity range of |yy| < 1.5 (i.e. where the bulk of the events are). The small
discrepancy for larger values of the rapidity modulus is due to the lower statistics in
these regions. A computationally more intensive simulation would therefore resolve the
discrepancy. Furthermore, comparing the NLO distribution with the LO distribution (in
orange) we still observe a K-factor of about 1.7.

In figure (15) and (16), where we plot the invariant mass of the Higgs plus jet pair
and the transverse momentum of the Higgs respectively, it is interesting to note the
change in the shape of the distribution for the kinematically allowed minimum values. In
particular, for figure (16) we note that while at LO the Higgs was exactly back-to-back
with the jet and thus had a sharp cut-off of the transverse momentum at 30 GeV, at
NLO, due to the soft unclustered radiation, even smaller values of pr are allowed.
Finally, in figure (17), we show the differential NLO distribution of the transverse
momentum of the jet. Here again we find excellent agreement between our and the
MCFM result. Furthermore, from the comparison of the NLO and the LO distributions we
still observe a K-factor of approximately 1.7.
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Figure 14: Rapidity distribution of the Higgs computed at NLO accuracy. Comparison
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Figure 15: Invariant mass distribution of the Higgs + jet pair computed at NLO accuracy.
Comparison of our result with the MCFM results.
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Figure 16: Transverse momentum distribution of the Higgs computed at NLO accuracy.

Comparison of our result with the MCFM results.
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6 Conclusions

Higgs plus jet production is a benchmark process at the LHC and represents an impor-
tant observable for new physics searches. In this thesis we have computed the NLO
corrections to this process within g7 subtraction. We now summarise our results.

In the chapter 2 we discussed the occurrence of IR divergences in perturbative QCD
calculations and, in particular, introduced the factorisation properties of QCD matrix
elements (at first order) in these singular limits. These properties are of fundamental
importance in the computation of IR safe observables and are at the basis of most
subtraction schemes. In chapter 3 we introduced the gr subtraction scheme through
the explicit example of Higgs production in gluon-gluon fusion at NLO. In particular, we
discussed the correct identification of the g7 subtraction observable and presented all
the analytical formulas needed for this NLO calculation.

Chapter 4 was devoted to the presentation of the extension of the g7 subtraction for-
malism for a process with a jet plus a massive colour singlet in the final state. We
observed that a jet clustering algorithm is necessary for the gr subtraction observable
to regularise all IR singular regions. This, in particular, means that the subtraction
explicitly depends on the jet radius. The calculation of the Higgs plus jet observable
was divided into two parts: the counterterm and the H-function. In particular, we saw
that the counterterm involves the full dependence on R, while the contribution of the
jet-function to the H-function is only valid in the small R limit.

The full NLO cross section is therefore only valid in the small R limit. We explicitly
verified this validity for jet radii R < 0.1. An important calculation, for the extension
of the work done in this thesis, is therefore represented by the computation of the full
R-dependent jet function.

Finally, in the chapter 5, we presented our results. The NLO cross section calculated
with our numerical program agrees with the corresponding cross section obtained with
MCFM. Moreover, we observe a linear dependence of the g7 subtraction NLO cross sec-
tion on the slicing variable r in contrast to the quadratic dependence of the colour
singlet case. Finally, we compared our NLO results for various kinematical distributions
with those obtained using the MCFM program, and found excellent agreement.
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A 2 and 3 Particle Phase Space

In this appendix we show the explicit form of the two and three particle phase space
employed to analytically integrate the collinear limit of the real emission cross section
in section (3) and (4) respectively.

For the two particle case the kinematic is given by

2
p—>k+q,k2:0,qzzQz,ézpz,ZZg (133)
The two body phase space is defined as
dd—1k dd—1c—l»‘
d —\d s(d

Exploiting the c.o.m. frame semplifications this can be written as

1 dko(ko)d*3de_1 _
00 ) V0 + Q2 V3 — K =k + 07 (135)

1 V3 3 1 o
=4\/g(2,_,)c/—z(2“ —z)) /dQH deos B(sin B)4~1, (136)

where in the last step we solved the delta function and used:

dQy_1 = dQy_ydcos O(sin 9)"*4

Further, after a change of variables cos 8 — x* = [C’,—ZQ
4 2
s =y /1— 5 ixg)z (137)

we get

/ dod (k

nnx

/dQ[/ 2// dXT
7/ (1 — 2)? 4zx

1
dc059(6++ d7),

(138)
with X7 = 2{ Note that the integral in cos 8 is necessary in order to separate the
region in which cos 8 is negative from the positive one. In particular

0" = d(cos 6 — | cos O(x7)|), (139)
0~ = d(cos 6 + | cos O(x7)]), (140)
4 2
with | cos (xr)| = /1 — —21 (141)

(1—2)
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For the three body phase space we have the kinematics
a2 12 _ 2 _ 2_ 2
p—=k+pi+py, $=p k=0 gy=(p+p) =0 (142)

Using the two body phase space decomposition (see for instance Hitoshi's notes on
phase space) just once we get

dQ?
[ ot p = [ G ot auidodipr. ) (143)

where d(|>§’(k, g12) is the two particle phase space calculated above and d(|>§’(p1,p2) is
the phase space for p; and p, in the frame where they are “back to back”. We can
therefore write

m, \x

4
(Q) Omax d 2 XT
/ dod(k, p1, pa) = — /O 2 2?( [dQ i / de (144)

/dcos o(6* +6*)/d<bg(p1,p2). (145)

X
\/ (1= 2)2 —4zx3
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