
Physik-Institut

Programmieren in C++
FS 2024

Lecture 4: Data handling in C/C++

1 Introduction to data handling

In the previous class, we went over how to process and analyse data within our code. In
reality, most of the time the data we need to process cannot be hard-coded into a program.
Most of the time we are given a set of data in a specific form and we have to import it into
our variables in our code. You will not get an e-mail with a nice array or vector of integers,
and you will not send one. You will more likely going to give or get a text file with many
numbers, characters, strings and lines. Today, we will cover how we can import and output
data using C/C++. Today’s class is dedicated on how to import and prepare the data to be
processed.

1.1 ifstream

Within C/C++ there is a built-in file-streaming function called ”fstream”. We need to load
it at the beginning of the C++.

1 #include <fstream>

Now, suppose you are given a .txt data file as the following:

1 some_numbers.txt

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15 10

Following a is a code to import the above data set. Inspect it to see what it does.

1 // data_import.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6

7 using namespace std;

8 int main(int argc,char *argv[]){ // Main begins

Programmieren in C++ Lecture 4: Data handling in C/C++

9 // Variable declaration

10 ifstream input_data; // This is the variable that will be used to

import data.↪→

11 input_data.open("some_numbers.txt");

12 string line_holder; // This is a string that will hold onto the

input line. Everything will be treated as a string.↪→

13

14 for (int i=0; i<10; i++){ // getline for loop

15 getline(input_data,line_holder); // You can read one line at

a time using getline.↪→

16 cout<<line_holder<<endl;

17 } // getline for loop ends

18 input_data.close(); // Always close your file as soon as you're done

working with it.↪→

19

20 // Note that each time you get the line, you will have progressed to

the next line, in order to read the file from the top again, you

must close the ifstream and open the file again.

↪→

↪→

21

22

23 cout<<"While method"<<endl;

24 input_data.close(); // re-initializing the input file.

25 input_data.open("some_numbers.txt");

26 while (input_data >> line_holder){ // while input begins

27 cout<<line_holder<<endl;

28 // Here you are directly pushing each line from input_data

into line_holder. No "getline" is needed.↪→

29 // While loop ends when the file ends as there is no more

line to push into line_holder.↪→

30 } // while input ends.

31 input_data.close();

32

33 return 0;

34 } // Main ends

and the output:

some_numbers.txt

1

2

3

4

5

6

7

8

9

While method

some_numbers.txt

1

2

3

4

5

1 INTRODUCTION TO DATA HANDLING 2

Programmieren in C++ Lecture 4: Data handling in C/C++

6

7

8

9

10

11

12

13

10

Note that while loop is the obvious choice for importing data especially when you do not know
how long the data set is. Also, we know that the data other than the first line are integers.
If we know that obviously we don’t want to import them as strings, we want to import load
them into an array or vectors.

1 // data_import.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6

7 using namespace std;

8 int main(int argc,char *argv[]){ // Main begins

9 // Variable declaration

10 ifstream input_data; // This is the variable that will be used to

import data.↪→

11 input_data.open("some_numbers.txt");

12 string line_holder; // This is a string that will hold onto the

input line. Everything will be treated as a string.↪→

13

14 // Removing the "some_numbers.txt in the header by getting the first

line (typically headers are longer than 1 line)."↪→

15 for (int i=0; i<1; i++){ // getline for loop

16 getline(input_data,line_holder);

17 } // getline for loop ends

18

19 // At this point we know that everything else in the file are

integers, and we don't know how many integers there are. Let's

create a vector of integers and load them.

↪→

↪→

20 int dummy_integer;

21 vector<int> input_integers;

22 while (input_data >> dummy_integer){ // while input begins

23 // Note that you still need the line_holder to allow the iteration.

24 input_integers.push_back(dummy_integer);

25 } // while input ends.

26 input_data.close();

27

28 // Now let's print and make sure we get what we imported

29 int index=0;

30 for (int element: input_integers){

31 printf("input_integers[%i]=%i \n",index,element);

32 index++;

33 }

34 return 0;

1 INTRODUCTION TO DATA HANDLING 3

Programmieren in C++ Lecture 4: Data handling in C/C++

35 } // Main ends

The output from the above code looks like the following:

input_integers[0]=1

input_integers[1]=2

input_integers[2]=3

input_integers[3]=4

input_integers[4]=5

input_integers[5]=6

input_integers[6]=7

input_integers[7]=8

input_integers[8]=9

input_integers[9]=10

input_integers[10]=11

input_integers[11]=12

input_integers[12]=13

input_integers[13]=10

As stated above, a typical header is more than just one line. It is important to inspect a given
file and locate where the relevant data begins.
As most of you are also aware, a typical data set is not as simple and definitely not single
dimensional. However the import method is just the same. Supposed you have a bit more
complex file seen below.

1 some_data.txt

2 This is the header and it will start in the next couple of lines.

3

4

5 Or not.

6 x y z

7 1 2 87

8 2 4 99

9 3 7 33

10 4 3 11

11 5 2 634

12 6 9 213

13 7 11 41

14 8 31 532

15 9 312 12

16 10 56 76

17 11 13 31

18 12 89 321

19 13 137 12

20 10 1478 94

There are many different ways to deal with this header. The simplest way is to look at the
line number and skip until line 71. As for multi-dimensional data set, modify the while loop
to accommodate more than a single element from each line.

1 // data_import.cxx

2 #include <iostream>

3 #include <stdio.h>

1in C index starts at 0, so skip until 6th element or index 6

1 INTRODUCTION TO DATA HANDLING 4

Programmieren in C++ Lecture 4: Data handling in C/C++

4 #include <vector>

5 #include <fstream>

6

7 using namespace std;

8 int main(int argc,char *argv[]){ // Main begins

9 // Variable declaration

10 ifstream input_data; // This is the variable that will be used to

import data.↪→

11 input_data.open("some_data.txt");

12 string line_holder; // This is a string that will hold onto the

input line. Everything will be treated as a string.↪→

13

14 // Removing the "some_numbers.txt in the header by getting the first

line (typically headers are longer than 1 line)."↪→

15 for (int i=0; i<6; i++){ // getline for loop

16 getline(input_data,line_holder);

17 } // getline for loop ends

18

19 // At this point we know that everything else in the file are

integers, and we don't know how many integers there are. Let's

create a vector of integers and load them.

↪→

↪→

20 int dummy_x, dummy_y, dummy_z;

21 vector<int> x,y,z;

22 // vector<int> input_integers;

23 while (input_data >> dummy_x >> dummy_y >> dummy_z){ / /while input

begins↪→

24 // Note that you still need the line_holder to allow the iteration.

25 x.push_back(dummy_x);

26 y.push_back(dummy_y);

27 z.push_back(dummy_z);

28 } // while input ends.

29 input_data.close();

30

31 // Now let's print and make sure we get what we imported

32 int index=0;

33 for (int element: x){

34 printf("x[%i]=%i, z[%i]=%i, z[%i]=%i

\n",index,element,index,y[index],index,z[index]);↪→

35 index++;

36 }

37 return 0;

38 } // Main ends

As you can see, for data separated by tab or space are very easy to handle. Now let’s move
onto writing some data.

1.2 ofstream

Similar to ifstream, you must import fstream libraries in order to use ofstream. Ofstream is
extremely similar to using a cout command. The following is an easy example. Let’s reuse
the random number generator from a previous example to output some data.

1 // data_export.cxx

2 #include <iostream>

1 INTRODUCTION TO DATA HANDLING 5

Programmieren in C++ Lecture 4: Data handling in C/C++

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 using namespace std;

7 int main(int argc,char *argv[]){ // Main begins

8 // Define the threshold for the random number generation.

9 const int rand_threshold=999999; // constant integers cannot be

changed once declared.↪→

10 vector<int> numbers; // empty numbers vector

11 int sign_generator=1; // a sign generator to assign + or -

12 for (int i=0;i<1000000;i++){ // random vector generator begins

13 sign_generator=-1; // by default the sign is negative

14 if(rand()%2==0){ // roll the dice, if even = positive

number. Statistically this is 50% of the numbers

generated

↪→

↪→

15 sign_generator=1; // 50% of the numbers will be

positive↪→

16 } // sign generator ends

17 numbers.push_back(sign_generator* (rand() % rand_threshold)

); // new random number generated and signed↪→

18 } // random numbers created

19 // variables for linear search

20 int max=-99999;

21 int min=99999;

22 vector<int> target_index;

23 for (int value : numbers){ // Linear search begins

24 if (value > max){ // max if statement begins

25 max=value;

26 } // max found if statement ends

27 if (value < min){ // max if statement begins

28 min=value;

29 } // max found if statement ends

30 } // Linear search ends

31 cout<<"max is: "<<max<<endl;

32 cout<<"min is: "<<min<<endl;

33

34 // Now, let's create a header for it and write all of the random

numers into a text.↪→

35 ofstream output;

36 output.open("random_numbers.txt");

37

38 output<<"random_numbers.txt"<<endl;

39 output<<"max is: "<<max<<endl;

40 output<<"min is: "<<min<<endl;

41

42 for (int value : numbers){ // Linear search begins

43 output<<value<<endl;

44 } // Linear search ends

45 output.close();

46 return 0;

47 } // Main ends

The output file should look similar to this:

1 INTRODUCTION TO DATA HANDLING 6

Programmieren in C++ Lecture 4: Data handling in C/C++

1 random_numbers.txt

2 max is: 999998

3 min is: -999995

4 -931732

5 -638629

6 -238759

7 ...

You will see a great similarity of usage of ofstream as the cout. Let’s now output some 3D
data with minimal header.

1 // data_export_3D.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 using namespace std;

7 int main(int argc,char *argv[]){ // Main begins

8 // Define the threshold for the random number generation.

9 const int rand_threshold=999999; // constant integers cannot be

changed once declared.↪→

10 ofstream output;

11 output.open("random_numbers_3D.txt");

12 output<<"random_numbers_3D.txt"<<endl;

13 output<<"x \t y \t z"<<endl;

14 int sign_generator=1; // a sign generator to assign + or -

15 for (int i=0;i<100000;i++){ // random vector generator begins

16 sign_generator=-1; // by default the sign is negative

17 if(rand()%2==0){ // roll the dice, if even = positive

number. Statistically this is 50% of the numbers

generated

↪→

↪→

18 sign_generator=1; // 50% of the numbers will be

positive↪→

19 } // sign generator ends

20 output<<sign_generator* (rand() %

rand_threshold)<<"\t"<<sign_generator* (rand() %

rand_threshold)<<"\t"<<sign_generator* (rand() %

rand_threshold)<<endl;

↪→

↪→

↪→

21 } // random numbers created

22 output.close();

23 return 0;

24 } // Main ends

The resulting data should look something similar to:

1 random_numbers_3D.txt

2 x y z

3 -931732 -694458 -638629

4 -238759 -886105 -762141

5 -642610 -203387 -491377

6 521161 899807 515893

7 384966 89476 457039

8 ...

1 INTRODUCTION TO DATA HANDLING 7

Programmieren in C++ Lecture 4: Data handling in C/C++

To be able to easily access the data from MS Excel or LibreOffice Calc, a common data file
type used is ”comma-separated values” .csv. You can create this easily by modifying above
code to the following.

1 // data_export_3D_csv.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 using namespace std;

7 int main(int argc,char *argv[]){ // Main begins

8 // Define the threshold for the random number generation.

9 const int rand_threshold=999999; // constant integers cannot be

changed once declared.↪→

10 ofstream output;

11 output.open("random_numbers_3D.csv");

12 output<<"random_numbers_3D.csv"<<endl;

13 output<<"x , y , z"<<endl;

14 int sign_generator=1; // a sign generator to assign + or -

15 for (int i=0;i<100000;i++){ // random vector generator begins

16 sign_generator=-1; // by default the sign is negative

17 if(rand()%2==0){ // roll the dice, if even = positive

number. Statistically this is 50% of the numbers

generated

↪→

↪→

18 sign_generator=1; // 50% of the numbers will be

positive↪→

19 } // sign generator ends

20 output<<sign_generator* (rand() %

rand_threshold)<<","<<sign_generator* (rand() %

rand_threshold)<<","<<sign_generator* (rand() %

rand_threshold)<<endl;

↪→

↪→

↪→

21 } // random numbers created

22 output.close();

23 return 0;

24 } // Main ends

The output should look similar to the following: Note that reading .csv files is not very trivial

Figure 1: Output .csv file from the above code.

1 INTRODUCTION TO DATA HANDLING 8

Programmieren in C++ Lecture 4: Data handling in C/C++

in C++. It involves reading data line-by-line then cut by the line by ”comma” separators2 as
strings then converted into integers.

2called delimiter

1 INTRODUCTION TO DATA HANDLING 9

Programmieren in C++ Lecture 4: Data handling in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

1 INTRODUCTION TO DATA HANDLING 10

Programmieren in C++ Lecture 4: Data handling in C/C++

2 Creating and reading files

1. Create each of the following using C/C++ code with at least 10 lines of headers. The
header must include:

– Maximum and minimum of the elements.

– Average of the elements.

– Median of the elements.

– Skew of the elements.

– Sample standard deviation of the elements.

– Total number of elements.

– Dimension of the data.

– Title of the data.

– Data file name and type.

– Date and time of the random number generation.

– A 1 dimensional data set with 1000 random number elements.

– A 2 dimensional data set with tabular separation and 10000 random number ele-
ments.

– A 3 dimensional data set with tabular separation and 10000 random number ele-
ments.

– Same as above but into comma separation and into a .csv file.

2. In your functions package, write 3 functions to read each of the above3.

3. Create a function that will allow you to save an array into a file.

4. Create a function that will allow you to save a vector into a file.

3Except for the .csv file since it has not been covered yet

2 CREATING AND READING FILES 11

Programmieren in C++ Lecture 4: Data handling in C/C++

= The theoretical lecture part of this course
will now continue for 15 minutes. =

2 CREATING AND READING FILES 12

Programmieren in C++ Lecture 4: Data handling in C/C++

3 Typecasting

As mentioned before, working with a .csv file as an input file is not very trivial in C++.
Suppose you are trying to read the file ”random numbers 3D.csv” seen in Figure 1 . Since
you are aware that each line has to be loaded as strings then cut by the delimiters, you need
to import another package called stringstream or sstream. You can do this by writing:

1 #include <sstream>

Below you will find a good example of using stringstream from reading a .csv file.

1 // read_csv.cxx

2 #include <iostream>

3 #include <stdio.h>

4 #include <vector>

5 #include <fstream>

6 #include <sstream>

7 using namespace std;

8 int main(int argc,char *argv[]){ // Main begins

9 ifstream input;

10 input.open("random_numbers_3D.csv");

11 string temp_string;

12 for (int i=0 ; i < 2; i++){

13 getline(input,temp_string);

14 } // Headers have been read and skipped

15

16 vector<int> x,y,z;

17 int counter=0;

18 char delimiter=','; // comma separator.

19 while(input >> temp_string){ // input while loop starts

20 stringstream temp_sstream(temp_string);//stringstream

created then destroyed at the end of each iteration in

stack.

↪→

↪→

21 while(getline(temp_sstream, temp_string, delimiter)){ //

Seperating each line by the delimiter.↪→

22 counter=counter%3;

23 switch (counter){ // Switch case is used to

determine x y or z↪→

24 case 0: // This is x

25 x.push_back(stoi(temp_string.c_str()));

26 break;

27 case 1: // This is y

28 y.push_back(stoi(temp_string.c_str()));

29 break;

30 case 2: // This is z

31 z.push_back(stoi(temp_string.c_str()));

32 break;

33 } // switch case ends

34 counter++;

35 } // stringstream while loop ends

36 } // input while loop ends

37

38 for (int i=0; i<10; i++){

39 printf(" %i , %i, %i \n", x[i],y[i],z[i]);

40 }

3 TYPECASTING 13

Programmieren in C++ Lecture 4: Data handling in C/C++

41

42 input.close();

43 return 0;

44 } // Main ends

In the above case, you will notice that the stringstream is being called temporally at the
beginning of each while iteration. This is safe as we know that we are creating and destroying
a temp sstream in the beginning of the while iteration and it gets destroyed at the end of each
iteration. This is because we are using stack part of the memory and we do not anticipate the
stringstream holding large data. Please note that you should never call a new heap variable
inside4.
You will also notice the usage of ”stoi” string to integer function. You may also have noticed
the usage of ”c str()”. These are two different functions. The stoi conversion function is
part of the standard C++ library which can convert character-strings to integers. However
as described above, it does not directly accept a c++ string type. It instead accepts a
character-string as this package has been built on top of character-string. The difference
between c-string and a c++ ”string” is that the programming language C, there is no such
thing as ”string”. Instead you can create an array of characters and treat them as a string
of characters. You will find more information on these functions in the following link https:
//en.cppreference.com/w/cpp/string/basic string/stol.
The important part for you in this course is that you learn how to use them. The output of
the above code is as follows:

-931732 , -694458, -638629

-238759 , -886105, -762141

-642610 , -203387, -491377

521161 , 899807, 515893

384966 , 89476, 457039

-595889 , -702861, -958155

22391 , 723140, 665356

-703603 , -515030, -981603

723693 , 134438, 899292

-20545 , -175639, -479698

As you may have noticed, .csv is not the only filetype that will require you to import data
non-trivially. There are many data types, data corruptions and encryptions which require the
manipulation of each line and its subset.
In the following practical session, we will practice handling data of different types.

4heap and stack are memory management terms and will be covered in the next class

3 TYPECASTING 14

https://en.cppreference.com/w/cpp/string/basic_string/stol
https://en.cppreference.com/w/cpp/string/basic_string/stol

Programmieren in C++ Lecture 4: Data handling in C/C++

= The practical programming part of this
course will now begin for 60 minutes. =

3 TYPECASTING 15

Programmieren in C++ Lecture 4: Data handling in C/C++

4 Data handling practice

1. Recall the very last element of exercise 1. Create a function that will read the .csv file
you’ve created, and compare the output with an LibreOffice Calc5.

2. Create a general function that intakes a delimiter character input and a stringstream
and prints each element.

3. Create a general function that intakes a delimiter character input and a string and prints
each element.

4. Write a program that can perform Caesarian encryption and decryption (for all 26 keys).
For more information on Caesarian encryption please visit http://practicalcryptography.
com/ciphers/caesar-cipher/#:∼:text=The%20Caesar%20cipher%20is%20one,become%20C%
2C%20and%20so%20on..

5 Conclusion

You have now learned the basics of data handling. Not only can you now analyse the data, now
you have the capability of importing and exporting many different types of data regardless
of how the data is organized. You must understand that even up until this point we cannot
handle very large data efficiently.
In most inefficient programs, the data gets written and read from the storage device multiple
times. This is typically very slow especially if the machines are equipped with tape or platter
hard drives.
For efficient and fast programs, the data is read once from the hard drive, and kept in RAM
until terminated. As long as your machine has enough RAM, you should never use the hard
drive other than to save the results of the analyses. Up until now, we have been only using
a small section of the RAM called ”stack”. In the next course we will start using the larger
section of the RAM called ”heap”.

Steven J. Lee, Roland Bernet 20. August 2024

5or MS Excel

5 CONCLUSION 16

http://practicalcryptography.com/ciphers/caesar-cipher/#:~:text=The%20Caesar%20cipher%20is%20one,become%20C%2C%20and%20so%20on.
http://practicalcryptography.com/ciphers/caesar-cipher/#:~:text=The%20Caesar%20cipher%20is%20one,become%20C%2C%20and%20so%20on.
http://practicalcryptography.com/ciphers/caesar-cipher/#:~:text=The%20Caesar%20cipher%20is%20one,become%20C%2C%20and%20so%20on.

	Introduction to data handling
	ifstream
	ofstream

	Creating and reading files
	Typecasting
	Data handling practice
	Conclusion

