10

11

12

13

14

16

17

18

19

20

21

22

23

24

Programmieren in C++
FS 2024

Physik-Institut

Lecture 7: Objects and classes

1 Introduction

C++ is an object oriented programming (OOP) language. One of the greatest advantage of
OOQP is the fact we can have a main code, and cut up everything else into smaller objects.

1.1 Objects and classes

You have already seen objects and classes in this class. Since the beginning of the course,
you have been building your functions package. Your functions package has .cxx and an
accompanying header file with respective constructors.

The functions package can also have objects embedded in them.

Let’s look at the following example starting with the header file for objects, its source code
and finally the main

// myobjects.h

#include <iostream> // "including" input/output stream.
#include <stdio.h>

using namespace std;

class operatingsystem{
public:
string name;
int date_of_publication;
void set_name(string newname) ;
string get_name();
int age();
void set_age(int newage);

};

class car{
public:
string name;
string year;
string model;
void set_name(string newname) ;
string get_name();

};

Note that the header file keeps all of the structure of variables. In compound variables as above
objects, you can have any number of variables in each object as you wish. Just remember
that as you increase the number of inner-variables, size of the object increases as well in terms
of memory allocation.

Following is the .cxx file for the accompanying header file.

Programmieren in C++ Lecture 7: Objects and classes

Here, you must define what each of the methods you’ve defined does. You have to refer back
to the header to see what objects use what variables. Finally, let’s look at an example main
code:

1 INTRODUCTION

Programmieren in C++ Lecture 7: Objects and classes

As you may have noticed, similar to functions package, you can have a single objects package
with many different objects. The step you need to be aware of is that you need to compile
everything together. Suppose you have a myfunctions.h

and accompanying myfunctions.cxx

1 INTRODUCTION

7

8

9

10

11

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Programmieren in C++ Lecture 7: Objects and classes

using namespace std;

void sayhelloto(string input){
cout<<"Hello "<<input<<endl;

}

If you have been compiling your functions package properly in the past, all you need to now
is to create an extra step in your Makefile to compile myobject.cxx into myobject.o linker and
link all of myobject.o myfunctions.o and main.cxx together. Below you will find an example
Makefile you should have made and maintained by now.

#This ts the directory of YOUR source code.
sourcedirectory=./

#These are your source codes and components
trial=$(wildcard *.cxx)
myobjects=myobjects.cxx
myfunctions=myfunctions.cxx
mymain=main.cxx

output=9% (mymain: . cxx=)

#Here, we're defining the compilers.
CC=gcc

CPP=g++

NVCC=nvcc

#We're defining systems wvariable such as "remove" from system and
— "timestamp"

RM=rm

TIMESTAMP=$(shell date +"%Y_%m_%d_T-%H_%M")

SFLAG=-Wall
PFLAG=-1ncurses

objects = $(trial:.cxx=)

#objects =

#When a Makefile is executed, by default 2t tries the option "all"

all: clean second third

#We will tell the makefile to clean, compile the first component, second
— then the third component.

$(objects): %: %h.cxx

Q@echo Compiling $(sourcedirectory)$<
@$(CPP) -o $(addprefix run_,$@.exe) $(SFLAG) $< $(PFLAG)
Qecho Successfully compiled $(sourcedirectory)$<
@echo executable is $(addprefix run_,$0.exe)
second:
#Let's now compile the second part.
@echo Compiling $(sourcedirectory)$(myobjects)
@$(CPP) -c -o $(myobjects:.cxx=.0) $(SFLAG)
— $(sourcedirectory)$(myobjects) $(PFLAG)

1 INTRODUCTION 4

42

43

44

46

47

48

49

51

52

53

55

56

57

58

59

60

61

62

63

64

65

66

Programmieren in C++ Lecture 7: Objects and classes

third:

Qecho Successfully compiled $(sourcedirectory)$(myobjects)
Q@echo The unliked compiled code is $(myobjects:.cxx=.0)

@echo Compiling $(sourcedirectory)$(myfunctions:.cxx=.0)
@$(CPP) -c -o $(myfunctions:.cxx=.0) $(SFLAG)

— $(sourcedirectory) $ (myfunctions) $(PFLAG)

Qecho Successfully compiled $(sourcedirectory)$(myfunctions)
@echo The unliked compiled code is $(myfunctions:.cxx=.0)

#Let's link the second part

clean:

Q@echo Linking $(myobjects:.cxx=.0) and $(myfunctions:.cxx=.0) with
— $(mymain)

@$(CPP) -o $(addprefix run_,$(output).exe) $(SFLAG)

< $(sourcedirectory)$ (myobjects:.cxx=.0)

— $(sourcedirectory)$(myfunctions:.cxx=.0) $(mymain) $(PFLAG)
Q@echo Successfully compiled $(sourcedirectory)$(output)

@echo Everything is linked and compiled into $(addprefix

— run_,$(output) .exe)

Qecho $(TIMESTAMP)

@echo "Making 01d/$(TIMESTAMP) directory"

$(shell mkdir -p old/$(TIMESTAMP))

@echo "Copying the source to the old directory"

$(shell cp -r $(sourcedirectory)/*.cxx 0ld/$(TIMESTAMP))
$(shell cp -r $(sourcedirectory)/*.h 01ld/$(TIMESTAMP))
@echo "Moving all .exe to the old directory"

$(shell mv *.exe old/$(TIMESTAMP))

$(shell mv *.o0 0ld/$(TIMESTAMP))

Q@echo "Copying the Makefile to the old directory"
$(shell cp Makefile old/$(TIMESTAMP))

You should know that there are properties such as inheritance and ”private” variables inside

objects but we will not cover that in this course. We will stay ”"public”. Now, let’s practice
making and using some objects.

1 INTRODUCTION)

Programmieren in C++ Lecture 7: Objects and classes

= The practical programming part of this
course will now begin for 60 minutes. =

1 INTRODUCTION 6

Programmieren in C++ Lecture 7: Objects and classes

2 Practice session 1

1. Create the above objects car and operating system as you have seen in the example.
2. Create a method for each object to tell you how old it is.
3. Create a ”Getter” and ”Setter” for each and all variables for each object.

4. Create an array of operating systems and set their properties for at least 5 operating
systems.

5. Create a vector of cars and set their properties for at least 5 cars.
6. Do all of the above using heap memory.

7. Create at least 5 of your own objects with at least 5 properties and 3 methods in each
object.

2 PRACTICE SESSION 1 7

Programmieren in C++ Lecture 7: Objects and classes

= The theoretical lecture part of this course
will now continue for 15 minutes. =

2 PRACTICE SESSION 1 8

Programmieren in C++ Lecture 7: Objects and classes

3 Questions and catch up time

During this session you may ask questions and try to catch up on everything else that you
have not yet completed since the beginning of the course.

In our next class we will move onto a pseudo-programming/scripting using ROOT framework,
You should by now be as comfortable as you can with everything that has been covered in the
previous lectures. The following practice session will be an exercise to everything that you’ve
learned.

3 QUESTIONS AND CATCH UP TIME 9

Programmieren in C++ Lecture 7: Objects and classes

= The practical programming part of this
course will now begin for 60 minutes. =

3 QUESTIONS AND CATCH UP TIME 10

Programmieren in C++ Lecture 7: Objects and classes

4 Practice session 2

1. Start with a new main, makefile, functions package and objects package.
2. Create a random number generator in your functions package.

3. Create a general function that takes in a stack vector and calculates average, max, min
and standard deviation.

4. Create a general function that takes in a heap vector and calculates average, median
max, min, skew and sample standard deviation.

5. Create a new object called "data” that can hold all of the values above.
6. Modify the data object to store a set of heap or stack array or vector as well.

7. Create an array and vector of data objects in heap, and stack and input 10000 random
integers each and return all of their properties (i.e. average, max, min and etc).

5 Conclusion

What you have been doing in the last practical session is essentially the how "ROOT” analysis
framework got put together by CERN.

ROOQOT has a very large number of objects and built-in function with a command line infras-
tructure which allows you to quickly test and draft parts of your code without compiling.

In the next class, we will go over how we can use the scripting and command line functions
in ROOT.

I strongly recommend attempting to install ROOT in your current system. The compilation
typically takes in between 1 to 8 hours depending on your systems specification. Therefore
we cannot cover it during the class. For more information please visit

https://root.cern.ch /releases/release-62804/.

Steven J. Lee, Roland Bernet 22. August 2024

5 CONCLUSION 11

https://root.cern.ch/releases/release-62804/

	Introduction
	Objects and classes

	Practice session 1
	Questions and catch up time
	Practice session 2
	Conclusion

