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Exercise 1: Neutrino oscillations

In the Standard Model neutrinos are strictly massless, however the observation of neutrino oscillations

clearly indicate that they are massive and that there is lepton flavour mixing. Hence neutrino the

flavour eigenstates (⌫↵ with ↵ = e, µ, ⌧) are mixture of the massive neutrinos (⌫k with k = 1, 2, 3) such

that

|⌫↵i = U
⇤
↵k |⌫ki , (1)

where U is the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, that can be

parametrised as
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where cij = cos ✓ij and sij = sin ✓ij , with ✓ij the neutrino mixing angles, � denotes the Dirac CP vio-

lating phase and '2,3 are the CP violating Majorana phases (should neutrinos be Majorana fermions).

a) The massive neutrino states are eigenstates of the Hamiltonian, implying that

|⌫k(t)i = e
�iEkt|⌫ki . (3)

Show that the oscillation probability in vacuum for a neutrino of flavour ↵ produced at t = 0

(i.e. |⌫↵(t = 0)i = |⌫↵i) to be detected at a distance L with the flavour � can be expressed as
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where �m
2
kj = m

2
k �m

2
j .

Hint: we consider ultrarelativistic neutrinos, approximate that the propagation time t is equal

to the distance travelled L and assume that all the massive neutrinos have the same momentum

| ~pk| = |~pj | = E.

b) From the appearance probability in Eq. 4 deduce the probability P (⌫̄↵ ! ⌫̄�). What can you

conclude ?

c) From the formulae derive above and the parametrisation of the PMNS matrix in Eq. 2, can we

distinguish between Majorana and Dirac neutrino via the oscillation phenomenon?
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Solution:

a) Considering the flavour state ↵ created at t = 0, we have from Eqs. ?? and ??
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then expressing the mass eigenstates in terms of the flavour one (inverting Eq. ??), we have
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The amplitude of the transition ⌫↵ ! ⌫� is given by
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the mass and consequently also the flavour states being orthonormal (h⌫� |⌫�i = ���), we have
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The transition probability is thus given by
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Considering ultrarelativistic neutrinos lead to
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using now the “equal momentum” assumption (| ~pk| = |~pj | = E) the energy reads
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giving the energy di↵erence
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The probability is thus
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Finally in the light approximation (i.e. L = t as neutrinos propagate almost at the speed of

light and the time is not measured in experiment but the distance L is), the vacuum oscillation

formula is given by
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This expression can be recast as
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Using the unitary condition of the PMNS matrix
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one has
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b) Starting from Eq. 4, one has to make the substitution U ! U
⇤
in order to obtain the antineutrino

oscillation probability, leading to
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Due to the Dirac CP violating phase � present in the PMNS matrix
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implying that there is CP violation in the lepton sector (notice however that CPT is conserved

P (⌫↵ ! ⌫� ;L,E) = P (⌫̄� ! ⌫̄↵;L,E)).



c) If one considers Majorana neutrinos, the mixing matrix is given by Eq.2, which is simply

U↵k = U
Dirac

e
i'k . The quartic product [U↵kU

⇤
�kU

⇤
↵jU�j ] is invariant under rephasing, hence

the Majorana phases (should neutrino be Majorana fermions) cannot be measured in oscillation

experiments.

Implications of neutrino oscillations:

• massive and non-degenerated neutrinos,

• can probe �m but not the absolute mass,

• the sign of �m is not given by vacuum oscillations so we don’t know the mass ordering,

• CP violation in the lepton sector (Dirac phase �),

• not sensitive to the nature of neutrinos (neutrinoless double beta decay to probe Majorana nature).

Exercise 2: Neutrino masses In the following we consider the Inverse seesaw mechanism for

neutrino mass generation. In this extension, the SM is extended with right-handed neutrinos ⌫R and

additional sterile states X. The Lagrangian can be generically cast as
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in which MR is a lepton-number conserving mass matrix, while µR and µX are symmetric Majorana

mass matrices, which break lepton number. Neglecting µR and considering only one generation of ⌫L

and ⌫R with two singlet states X1 and X2, the ISS mass matrix after EWSB reads, in flavour space

(⌫L, ⌫
C
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with mD = Y
⌫
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p
2 as in the type I seesaw.

Considering the limit µ1, µ2 ⌧ mD ⌧ MR, the mass matrix can be written as
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and then one can perturbatively diagonalise it.

a) Derive the neutrino masses m
(0)
1 ,m

(0)
2 ,m

(0)
3 ,m

(0)
4 at 0th order (i.e. the eigenvalues of M0).

b) To lift the degeneracy between m
(0)
1 and m

(0)
2 one has to consider the perturbation �M . For

this we construct the 2⇥ 2 matrix in the degenerate subspace:
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where x
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i,j are the eigenvectors associated with the diagonalisation of M0. The eigenvalues m
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1

and m
(1)
2 of this perturbation matrix correspond to the correction to the 0th order masses.

What is the mass of the active neutrino? What can you conclude about the ISS mass spectrum?



Solution:

a) To diagonalise M0 and find the mass eigenvalues m
(0)
i , one has to compute det(M0 � �1) = 0.

This gives �
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since the physical mass has to be positive, we can always absorb the minus sign of m
(0)
3 by

rephasing the matrix diagonalising M0.

b) The eigenvectors v
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The matrix in the degenerate subspace is thus
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It is then easy to read m
(1)
1 =

m
2
D

M2 +m
2
D

µ1 and m
(1)
2 = µ2 giving respectively the active neutrino

mass and a ”light” sterile mass. Indeed, contrary to the type I seesaw the heavy sterile states do

not need to be extremely heavy to give the correct light neutrino masses, as the suppression comes

from the scale of lepton number violation (i.e. the matrix µ) that can be low. For instance the

correct light neutrino spectrum can be recovered for MR ⇠ TeV with O(10
�3

) Yukawa couplings

and µ ⇠ 1 MeV. Moreover depending on the number of new fields, if nX > n⌫R , the ISS spectrum

features 3 di↵erent scales: the light active neutrinos, “light” sterile states and heavy states.




