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Exercise 1: µ ! e�

This exercise will be corrected in two tutorials.

The discovery of neutrino oscillations imply that they are massive and that there is lepton mixing.

This opens the door to charged lepton flavour violation (cLFV), such as the process µ ! e� forbidden

in the Standard Model. In the following we consider the Standard Model with three massive Dirac

neutrinos, such as

⌫↵ =
X

i

U↵i⌫i , with ↵ = e, µ, ⌧ ; i = 1, 2, 3 . (1)

The general diagram for the process µ ! e� is

By Lorentz invariance, the amplitude should be of the form

M� = ūe(p� q) [iq⌫��⌫(A+B�5) + ��(C +D�5) + q�(E + F�5)]uµ(p) , (2)

where A,B,C,D,E, F are Lorentz-invariant coe�cients (so-called invariant amplitudes).

a) Using the Ward identity show that, in the limit me ! 0, the amplitude reduces to

✏�M� = ✏�ūe(p� q)Aiq⌫��⌫(1 + �5)uµ(p) . (3)

b) Applying the Gordon decomposition

ū(k)�µ�u(l) = ū(k)


kµ + lµ

2m
+

i�µ⌫

2m
(k⌫ � l⌫)

�
�u(l) , (4)

where � can be 1 or �5, show that

✏�M� = ūe(p� q)2A(1 + �5) [(p · ✏)�mµ(� · ✏)]uµ(p) . (5)

Thus in what follows we can focus only on the terms containing (p · ✏) to compute A.



The rare process µ ! e� arises from one-loop diagrams involving a massive neutrino ⌫i in the loop.

Working in Feynman gauge, the di↵erent Feynman diagrams contributing to the decay are given by

Figure 1: Feynman diagrams contributing to µ ! e�, with � the Goldstone boson associated to W .

c) From the vertices present in the loop diagrams e1, e2, e3 and e4 explain why we can ignore these

four diagrams in the computation of the amplitude given in Eq. 5.

Focusing on the diagrams a, b, c, d, we will consider the momentum assignments depicted in Fig. 2 in

what follows.

Figure 2: Momentum assignments.

Our goal is now to compute the contribution from diagram b, and extract the invariant amplitude Ab.

To do so, the relevant Feynman rules are given by

`�↵

⌫i

��

= i
gp

2MW
U↵i [mi PL �m↵PR] ⌫i

`�↵

W+
µ

= �i
gp
2
U⇤
↵i �µ PL

�±

A⌫

W⌥
µ

= ieMW gµ⌫

Table 1: Feynman rules for W interactions and associated Goldstone bosons in the SM with massive

Dirac neutrinos.



d) Write down the amplitude Mb and show that it can be written as

Mb =
ieg2

2

Z
d4k

(2⇡)4

X

i

U⇤
eiUµi

(p+ k)2 �m2
i

1

(k + q)2 �M2
W

1

k2 �M2
W

⇥ūe(p� q)��PL[�mµ(mµ + /k) +m2
i ]uµ(p)✏� , (6)

e) In the above expression, we have to sum over the neutrino mass eigenstates, hence we want to

have an expression that will not depend on mi on the denominator. Expand the contribution in

the high-momentum limit and show that the amplitude can be cast as

Mb = iC
Z

d4k

(2⇡)4
N�

[(p+ k)2]2
1

(k + q)2 �M2
W

1

k2 �M2
W

✏� , (7)

with

C =
eg2

2

X

i

U⇤
eiUµim

2
i and N� = ūe(p� q)PR�

�[�mµ(mµ + /k) + (p+ k)2]uµ(p) . (8)

Before performing the loop integration we introduce the Feynman parameters to combine the propa-

gators in the denominator

1

Dm1
1 Dm2

2 ...Dmn
n

=

Z 1

0
d↵1...d↵n�(

X
xi � 1)

⇧↵mi�1
i

[
P

↵iDi]
P

mi

�(m1 + ...+mn)

�(m1)...�(mn)
, (9)

with �(n) = (n� 1)!

f) Show that the denominator can be written as

D = [l2 � (1� ↵1)M
2
W ]4 with l = k + ↵1p+ ↵2q , (10)

g) Using the shift of variable k = l�↵1p�↵2q and keeping only terms proportional to (p · ✏) show
that the numerator is given by

N�✏� = �mµ↵2(p · ✏)ūe(p� q)PRuµ(p) , (11)

We can now perform the loop integration using

Z
ddl

(2⇡)d
1

(l2 ��)n
=

i(�1)n

(4⇡)d/2
�(n� d

2)

�(n)

✓
1

�

◆n�d/2

,

Z
ddl

(2⇡)d
l2

(l2 ��)n
=

i(�1)n�1

(4⇡)d/2
d

2

�(n� d
2 � 1)

�(n)

✓
1

�

◆n�d/2�1

. (12)

And then perform the integration over the Feynman parameters using
Z

d↵1d↵2
↵1↵2

(1� ↵1)2
=

1

4
. (13)

h) What is Mb? Deduce the expression of the invariant amplitude Ab.

We now want to compute the invariant amplitude Ac arising from diagram c.



i) Write down the amplitude Mc. Using the shift of variable l = k + ↵1p+ ↵2q and focusing only

on the denominator, show that Ac = 0 in Feynman gauge (we are only interested in the part

proportional to (p · ✏)).

The invariant amplitude coming from diagram d turns out to be Aa = �Ad. Using this result, we can

finally evaluate the decay rate.

j) Given that �(µ ! e⌫⌫̄) = m5
µG

2
F /(192⇡

3) compute the branching ratio BR(µ ! e�) = �(µ!e�)
�(µ!e⌫⌫̄) .

What can you conclude?



Solution:

a) The first step is to replace the polarisation vector ✏� by the momentum q� of the photon. The

Ward identity gives

q�M� = 0 = ūe(p� q)
h
iq�q⌫��⌫(A+B�5) + q���(C +D�5) + q�q�(E + F�5)

i
uµ(p)

= ūe(p� q)
h
iq�q⌫��⌫(A+B�5) + /q(C +D�5) + q2(E + F�5)

i
uµ(p) , (14)

The first term is proportional to q�q⌫��⌫ and hence vanishes, while the last one is zero since the

photon is on-shell (q2 = 0). So we just have to work out the second term:

0 = ūe(p� q)
⇥
/q(C +D�5)

⇤
uµ(p)

= ūe(p� q)
⇥
(/q + /p� /p)(C +D�5)

⇤
uµ(p) . (15)

Using /puµ(p) = mµuµ(p) and ūe(p� q)(/p� /q) = ūe(p� q)me, we have

0 = ūe(p� q) [(mµ �me)(C +D�5)]uµ(p) , (16)

and since mµ 6= me we arrive at C = D = 0.

Going back to the matrix element multiplied by the polarisation vector we have

✏�M� = ūe(p� q)
h
i✏�q⌫��⌫(A+B�5) + ✏�q�(E + F�5)

i
uµ(p) , (17)

and by construction of the polarisation vector (✏ · q) = 0. Finally since we are interested in the limit

me = 0, the outgoing electron will be left-handed, and the amplitude will be of the form PLue or in

our case ūePR. In this approximation we have A = B and recover

✏�M� = ✏�ūe(p� q)Aiq⌫��⌫(1 + �5)uµ(p) . (18)

b) From the Gordon identity we have

ū(p� q)�µ�u(p) = ū(p� q)


(p� q)µ + pµ

2mµ
+

i�µ⌫

2mµ
((p� q)⌫ � p⌫)

�
�u(p)

= ū(p� q)
1

2mµ
[(2p� q)µ � i�µ⌫q⌫ ]�u(p) , (19)

leading to

ū(p� q)i�µ⌫q⌫(1 + �5)u(p) = ū(p� q) [(2p� q)µ � 2mµ�
µ] (1 + �5)u(p) , (20)

Plugging this expression into Eq. (3)

✏�M� = ✏�ūe(p� q)A [(2p� q)� � 2mµ��] (1 + �5)uµ(p)

= ūe(p� q)2A [(p · ✏)�mµ(� · ✏)] (1 + �5)uµ(p) . (21)

Thus in order to compute the decay rate µ ! e� we can only focus on the computation of the terms

involving (p · ✏) to extract the invariant amplitude A.

c) Looking at the vertices of diagrams e1 and e3 we know that the amplitude will be proportional to

Me1 ,Me3 / ūe(�↵�µ�⌫g
µ⌫)uµ✏

↵ / ūe(�↵)uµ✏
↵ / ūe(� · ✏)uµ (22)



hence we cannot have a term proportional to (p · ✏), and we can then neglect these diagrams in the

determination of the invariant amplitude A. A similar argument holds for diagrams e2 and e4.

We now proceed to compute the contribution from diagram b

d) From the Feynman rules and the momentum assignments, the amplitude reads

Mb = �i
X

i

Z
d4k

(2⇡)4
ūe(p� q)

✓
�i

gp
2
U⇤
ei�↵PL

◆
i(/p+ /k +mi)

(p+ k)2 �m2
i

✓
i

gp
2MW

Uµi(miPL �mµPR)

◆
uµ(p)

⇥ �ig↵�

(k + q)2 �M2
W

i

k2 �M2
W

(ieMW g��)✏
� (23)

= i
eg2

2

X

i

Z
d4k

(2⇡)4
ūe(p� q) (U⇤

ei��PL)
/p+ /k +mi

(p+ k)2 �m2
i

(Uµi(miPL �mµPR))uµ(p)

⇥ 1

(k + q)2 �M2
W

1

k2 �M2
W

✏� (24)

Focusing on the numerator we have

��PL(/p+ /k +mi)(miPL �mµPR) = ��m
2
iPL � ��(/p+ /k)mµPR (25)

using

(/p+ /k)PRuµ(p) = PL(/p+ /k)uµ(p) = PL(mµ + /k)uµ(p) (26)

we arrive at

Mb =
ieg2

2

Z
d4k

(2⇡)4

X

i

U⇤
eiUµi

(p+ k)2 �m2
i

1

(k + q)2 �M2
W

1

k2 �M2
W

⇥ūe(p� q)��PL[�mµ(mµ + /k) +m2
i ]uµ(p)✏� , (27)

e) Having to sum over the neutrino mass eigenstates, we want to have an expression that will not

depend on mi in the denominator. For this, we expand the contribution in the high momentum limit:

X

i

U⇤
eiUµi

(p+ k)2 �m2
i

=
X

i

U⇤
eiUµi


1

(p+ k)2
+

m2
i

[(p+ k)2]2
+ ...

�
'

X

i

U⇤
eiUµi

m2
i

[(p+ k)2]2
, (28)

where the leading term vanishes due to the GIM mechanism. Similarly we have

X

i

U⇤
eiUµim2

i

(p+ k)2 �m2
i

'
X

i

U⇤
eiUµi

m2
i

(p+ k)2
. (29)

The amplitude can then be cast as

Mb =
ieg2

2

X

i

U⇤
eiUµim

2
i

Z
d4k

(2⇡)4
1

[(p+ k)2]2
1

(k + q)2 �M2
W

1

k2 �M2
W

⇥ūe(p� q)PR�
�[�mµ(mµ + /k) + (p+ k)2]uµ(p)✏�

= iC
Z

d4k

(2⇡)4
N�

[(p+ k)2]2
1

(k + q)2 �M2
W

1

k2 �M2
W

✏� , (30)

with

C =
eg2

2

X

i

U⇤
eiUµim

2
i and N� = ūe(p� q)PR�

�[�mµ(mµ + /k) + (p+ k)2]uµ(p) , (31)


