
Stefano Frixione

Collinear factorisation for e+e− collisions

Based on: 1909.03886 (SF), 1911.12040 (Bertone, Cacciari, SF, Stagnitto)

2105.06688 (SF), 2108.10261 (SF, Mattelaer, Zaro, Zhao)

2207.03265 (Bertone, Cacciari, SF, Stagnitto, Zaro, Zhao)

Zurich, 15/11/2022



Assumption:

Somewhere, someone will build an e+e− collider

(linear or circular)



� Cross sections stemming from e+e− collisions are plagued by

large logs that must be resummed

� One way to do that is by means of collinear factorisation;

another, with YFS

� Either way, the so-called precision tools currently available are not

sufficiently accurate to meet the expected precision targets –

only limited progress made since the 90’s



Consider a generic cross section, sufficiently inclusive:

σ = αb
∞
∑

n=0

αn
n
∑

i=0

n
∑

j=0

ςn,i,jL
iℓj

This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = mZ

L = 24.18 =⇒
α

π
L = 0.06

0 ≤ mll ≤ mZ , ℓ = 8.29 =⇒
α

π
ℓ = 0.02

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 13.66 =⇒
α

π
ℓ = 0.034



Consider a generic cross section, sufficiently inclusive:

σ = αb
∞
∑

n=0

αn
n
∑

i=0

n
∑

j=0

ςn,i,jL
iℓj

This is symbolic, and only useful to expose the presence of:

ℓ = log
Q2

〈Eγ〉2
, L = log

Q2

m2

Numerology: consider the production of Z → ll at:

•
√

Q2 = 500 GeV

L = 24.59 =⇒
α

π
L = 0.068

0 ≤ mll ≤ mZ , ℓ = 1.46 =⇒
α

π
ℓ = 0.0036

mZ − 1 GeV ≤ mll ≤ mZ , ℓ = 4.51 =⇒
α

π
ℓ = 0.01



It takes a lot of brute force (i.e. fixed-order results to some O(αn)) to overcome

the enhancements due to L and ℓ.

It is always convenient to first improve by means of factorisation formulae:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ (1)

= Kcoll(L; ℓ)⊗ dσ̂(ℓ) (2)

Use of:

(1) YFS (resummation of ℓ)

(2) collinear factorisation (resummation of L)

Common features: K is an all-order universal factor; β and dσ̂ are
process-specific and computed order by order
(still brute force, but one needs comparatively less)



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = Ksoft(ℓ;L)β(L)dµ

= eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

This is symbolic, and stands for both the EEX and CEEX approaches
[hep-ph/0006359 Jadach, Ward, Was] that build upon the original YFS work [Ann.Phys.13(61)379]

EEX: exclusive (in the photons) exponentiation, matrix element level

CEEX: coherent exclusive (in the photons) exponentiation, amplitude level,

including interference



YFS

Aim: soft resummation for:
{

e+(p1) + e−(p2) −→ X(pX) +
n
∑

i=0

γ(kn)

}∞

n=0

Achieved with:

dσ(L, ℓ) = eY (p1,p2,pX)
∞
∑

n=0

βn (Rp1,Rp2,RpX ; {ki}
n
i=0) dµX+nγ

• Y essentially universal (process dependence only through kinematics); resums ℓ

• The soft-finite βn are process-specific, and are constructed by means of local

subtractions involving matrix elements and eikonals (i.e. not BN)

βn = αb
n
∑

i=0

αi
i
∑

j=0

cn,i,jL
j

• For a given n, matrix elements have different multiplicities, hence the need for

the kinematic mapping R



Collinear factorisation

Aim: collinear resummation for:
{

k(pk) + l(pl) −→ X(pX) +

n
∑

i=0

ai(kn)

}∞

n=0

ai = e± , γ . . .

with initial-state particles stemming from beams:

(k, l) = (e+, e−) , (k, l) = (e+, γ) , (k, l) = (γ, e−) , (k, l) = (γ, γ) , . . .

Master formula:

dσ(L, ℓ) = Kcoll(L; ℓ)⊗ dσ̂(ℓ)

−→ dσkl =
∑

ij

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2; pX , {ki}

n
i=0)

• Γα/β universal (the PDF); resums L

• The collinear-finite dσ̂ij are process-specific, and are the standard short-distance

matrix elements, constructed order by order (with BN). May or may not include

resummation of other large logs (including ℓ)



YFS vs collinear factorisation

Both are systematically improvable in perturbation theory:

in YFS the βn’s (fixed-order), in collinear factorisation both the PDFs

(logarithmic accuracy) and the dσ̂’s (fixed-order, resummation)

+ YFS: very little room for systematics. Exceptions are the kinematic mapping R, and

the quark masses (when the quarks are radiators). Renormalisation schemes??

– Collinear factorisation: systematic variations much larger. At the LL (used in

phenomenology so far) a rigorous definition of uncertainties is impossible

(parameters are arbitrary), and comparisons with YFS are largely fine tuned

– YFS: the computations of βn are not standard (EEX) and highly non-trivial (CEEX)

+ Collinear factorisation: the computations of dσ̂ij are standard



Collinear factorisation

=

dσ = PDF ⋆ PDF ⋆ dσ̂

PDFs collect (universal) small-angle dynamics



Very similar to QCD⋆, with some notable differences:

� PDFs and power-suppressed terms can be computed perturbatively

� An object (e.g. e−) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not

⋆Side benefit: we can recycle a lot of what is done for LHC



All physics simulations based on collinear factorisation done so far are based

on a LL-accurate picture

This is not tenable at high energies/high statistics:

� accuracy is insufficient (see e.g. W+W− production)

� systematics not well defined (e.g. α is literally an arbitrary parameter)

Bear in mind:

◮ There is no precision physics without the ability of assessing

uncertainties



All physics simulations based on collinear factorisation done so far are based

on a LL-accurate picture

This is not tenable at high energies/high statistics:

� accuracy is insufficient (see e.g. W+W− production)

� systematics not well defined (e.g. α is literally an arbitrary parameter)

Step 0 was to upgrade PDFs from LL to NLL accuracy: increase of
precision, and meaningful systematics, in particular factorisation-scheme
dependence



z-space LO+LL PDFs (α log(Q2/m2))
k
:

∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

◮ for e−



z-space LO+LL PDFs (α log(Q2/m2))
k
:

∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes

◮ for e−

z-space NLO+NLL PDFs (α log(Q2/m2))
k

+ α (α log(Q2/m2))
k−1

:
−→ 1909.03886, 1911.12040, 2105.06688 (Bertone, Cacciari, Frixione, Stagnitto)

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, and γ

◮ both numerical and analytical

◮ factorisation schemes: MS and ∆ (that has DIS-like features)



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

Γi = Γ
[0]
i +

α

2π
Γ

[1]
i +O(α2)

Results:

Γ
[0]
i (z, µ2

0) = δie−δ(1− z)

Γ
[1]
e−

(z, µ2
0) =

[

1 + z2

1− z

(

log
µ2

0

m2
− 2 log(1− z)− 1

)]

+

+Kee(z)

Γ[1]
γ (z, µ2

0) =
1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

+Kγe(z)

Γ
[1]
e+ (z, µ2

0) = 0

Note:

◮ Meaningful only if µ0 ∼ m

◮ In MS, Kij(z) = 0; in general, these functions define a factorisation scheme



Bear in mind that PDFs are fully defined only after adopting a definite

factorisation scheme, which is the choice of the finite terms associated

with the subtraction of the collinear poles

(done by means of the Kij(z) functions)

� 1911.12040 −→ MS

� 2105.06688 −→ a DIS-like scheme (called ∆)

At variance with the QCD case, there is also an interesting

renormalisation-scheme dependence of QED PDFs

(not discussed in this talk)



Definition of the ∆ scheme

The idea: minimise the impact of NLO corrections

K(∆)
ee (z) =

[

1 + z2

1− z

(

2 log(1− z) + 1
)

]

+

K(∆)
γe (z) =

1 + (1− z)2

z

(

2 log z + 1
)

Thus:

Γe−(z, µ2
0) = δ(1− z) +

α

2π

[

1 + z2

1− z

]

+

log
µ2

0

m2

Γγ(z, µ2
0) =

α

2π

1 + (1− z)2

z
log

µ2
0

m2

This is exactly the same as at the LO when µ0 = m

(a convenient choice for several reasons)

◮ The kernels Kij(z) also enter the evolution equations (see later)



NLL evolution (1911.12040, 2105.06688)

General idea: solve the evolution equations starting from the initial
conditions computed previously

∂Γi(z, µ
2)

∂ logµ2
=
α(µ)

2π
[Pij ⊗ Γj ] (z, µ

2) ⇐⇒
∂Γ(z, µ2)

∂ logµ2
=
α(µ)

2π

[

P⊗ Γ
]

(z, µ2) ,

Two ways:

� Mellin space: suited to both numerical solution and all-order, large-z

analytical solution (called asymptotic solution). Dominant

� Directly in z space in an integrated form: suited to fixed-order, all-z

analytical solution (called recursive solution). Subleading

Formulae are simpler when working with a single lepton family; the physical picture is

the same as that with multiple families



A technicality: owing to the running of α, it is best to evolve in t rather
than in µ, with: (∼ Furmanski, Petronzio)

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+O(α3) , L = log
µ2

µ2
0

.

Note:

◮ t ←→ µ; notation-wise, the dependence on t is equivalent to the dependence on µ

◮ t = 0 ⇐⇒ µ = µ0

◮ L is my “large log”

◮ Tricky: fixed-α expressions are obtained with t = αL/(2π) (and not t = 0)



Mellin space

Introduce the evolution operator EN

ΓN (µ2) = EN (t) Γ0,N , EN (0) = I , Γ0,N ≡ ΓN (µ2
0)

The PDFs evolution equations are then re-expressed by means of an
evolution equation for the evolution operator:

∂E
(K)
N (t)

∂t
= b0α(µ)KN

(

I +
α(µ)

2π
KN

)−1

E
(K)
N (t)

+
b0α

2(µ)

β(α(µ))

∞
∑

k=0

(

α(µ)

2π

)k

×

(

I +
α(µ)

2π
KN

)

P
[k]
N

(

I +
α(µ)

2π
KN

)−1

E
(K)
N (t)

◮ Can be solved numerically

◮ Can be solved analytically in a closed form under simplifying assumptions.

Chiefly: large-z is equivalent to large-N



Asymptotic MS solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

{

1 +
α(µ0)

π

[

(

L0 − 1
)

(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+
(

L0 − 1− 2A(ξ1)
)

log(1− z)− log2(1− z)

]}

where L0 = log µ2
0/m

2, and:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)

with:



ξ1 = 2t−
α(µ)

4π2b0

(

1− e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1− e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)

Remember that:

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+O(α3) , L = log
µ2

µ2
0

.



Asymptotic ∆ solution

Non-singlet ≡ singlet; photon is trivial

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

[

(

1 +
3α(µ0)

4π
L0

) ∞
∑

p=0

S1,p(z)−
α(µ0)

π
L0

∞
∑

p=0

S2,p(z)

]

The Si,p(z) functions are increasingly suppressed at z → 1 with growing p.
The dominant behaviour is:

ΓNLL(z, µ2)
z→1
−→

e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1− z)

−1+ξ1

×

[

α(µ)

α(µ0)
+
α(µ)

π
L0

(

A(ξ1) + log(1− z) +
3

4

)]

A vastly different logarithmic behaviour w.r.t. the MS case

However, Γ
(MS)
NLL − Γ

(∆)
NLL = O(α2)



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms



Key facts

� Both MS and ∆ results feature an integrable singularity at z → 1,

basically identical to the LL one

� In addition to that, in MS there are single and double logarithmic terms

� Owing to the integrable singularity, it is essential to have large-z

analytical results: the PDFs convoluted with cross sections are obtained

by matching the small- and intermediate-z numerical solution with the

large-z analytical one

Analytical recursive solutions are used as cross-checks



A look at the photon:

Γ(MS)
γ (z, µ2)

z→1
−→

tα(µ0)
2

α(µ)

3

2πξ1
log(1− z)−

tα(µ0)
3

α(µ)

1

2π2ξ1
log3(1− z)

Γ(∆)
γ (z, µ2)

z→1
−→

1

2π

α2(µ0)

α(µ)

1 + (1− z)2

z
L0 +

1

2πξ1

t α2(µ0)

α(µ)
L0

−
t α(µ)

2πξ1

e−γEξ1eξ̂1

Γ (1 + ξ1)
(1− z)ξ1 L0 .

MS vs ∆ exhibits the same pattern as for (non-)singlet: logarithmic

terms dominate at z → 1 in MS, but are absent in ∆



All physics simulations based on collinear factorisation done so far are based

on a LL-accurate picture

This is not tenable at high energies/high statistics:

� accuracy is insufficient (see e.g. W+W− production)

� systematics not well defined

Step 0 was to upgrade PDFs from LL to NLL accuracy

Step 1 (2207.03265, Bertone, Cacciari, Frixione, Stagnitto, Zaro, Zhao) is to include in the NLL PDFs thus

obtained the ingredients necessary for sensible phenomenology, in particular:

◮ evolution with all fermion families (leptons and quarks), including their respective

mass thresholds

◮ renormalisation schemes: MS, α(mZ), and Gµ

◮ assess implications by studying realistic observables in physical processes



Sample results for:

e+e− −→ qq̄

e+e− −→ tt̄

e+e− −→ W+W−

with qq̄ production (massless quarks) restricted to ISR QED radiation.

The other two are in the SM

NLO accuracy, automated generation with MG5 aMC@NLO

(this version now public, but not yet as v3.X)

What is plotted:

σ(τmin) =

∫

dσΘ

(

τmin ≤
M2

pp̄

s

)

, p = q , t ,W+

τmin ∼ 1 is sensitive to soft emissions (not resummed)



Dependence of PDFs on factorisation scheme

z < 1 z ≃ 1

Very large dependence at the NLL at z → 1 (O(1)); this is particularly significant

(but unphysical!) since the electron has an integrable divergence there

Electron at NLL in the Delta scheme close to the LL result (differences of O(5%))



Dependence of observables on factorisation scheme

qq̄ tt̄ W+W−

O(1) differences for PDFs down to O(10−4 − 10−3) for observables

In the MS scheme, huge cancellations between PDFs and short-distance cross sections

Behaviour qualitatively similar for different renormalisation schemes



Factorisation vs renormalisation scheme dependence

qq̄ tt̄ W+W−

Renormalisation-scheme dependence much larger than factorisation-scheme dependence,

with process-dependent pattern

Depending on the precision, renormalisation scheme is an informed choice; factorisation

scheme always induces a systematic



NLL vs LL

qq̄ tt̄ W+W−

Effects are non trivial

Pattern dependent on the process (and on the observable) as well as on the

renormalisation scheme



Impact of γγ channel

tt̄ W+W−

Essentially independent of factorisation and renormalisation schemes: a genuine physical

effect

Utterly negligible for tt̄, significant for W+W− – process dependence is not surprising



Thus:

◮ The inclusion of NLL contributions into the electron PDF has an impact

of O(1%) (precise figures are observable and renormalisation-scheme dependent)

◮ This estimate does not include the effects of the photon PDF

◮ The comparison between MS- and ∆-based results shows differences

compatible with non-zero O(α2) effects, as expected

◮ Renormalisation-scheme dependence is of O(0.5%)

If the target is a 10−some large number relative precision, these effects must be

taken into account



Outlook

Increasing the precision of theoretical results will be essential for the

success of the physics programs at future e+e− colliders

QED collinear factorisation is very similar to its QCD counterpart: it is

possible to recycle many of the techniques invented for the LHC

QED PDFs are now NLL accurate. It is important that they be used in the

context of realistic simulations

LEP-era YFS-based results are not up to the task. What to do is in
principle clear; in practice, it looks painful and of limited scope
(count the number of applications)



EXTRA SLIDES



z space

Use integrated PDFs (so as to simplify the treatment of endpoints)

F(z, t) =

∫ 1

0

dyΘ(y − z) Γ(y, µ2) =⇒ Γ(z, µ2) = −
∂

∂z
F(z, t)

in terms of which the formal solution of the evolution equation is:

F(z, t) = F(z, 0) +

∫ t

0

du
b0α

2(u)

β(α(u))
[P⊗F ] (z, u)

By inserting the representation:

F(z, t) =
∞
∑

k=0

tk

k!

(

J LL

k (z) +
α(t)

2π
J NLL

k (z)

)

on both sides of the solution, one obtains recursive equations, whereby a
Jk is determined by all Jp with p < k. The recursion starts from J0,
which are the integrated initial conditions



For the record, the recursive equations are:

J LL

k = P
[0]⊗J LL

k−1

J NLL

k = (−)k(2πb0)
kF [1](µ2

0)

+

k−1
∑

p=0

(−)p(2πb0)
p

(

P
[0]⊗J NLL

k−1−p + P
[1]⊗J LL

k−1−p

−
2πb1
b0

P
[0]⊗J LL

k−1−p

)

We have computed these for k ≤ 3 (J LL) and k ≤ 2 (J NLL), ie to O(α3)

Results in 1911.12040 and its ancillary files



Large-z singlet and photon

As for the non-singlet, start from the asymptotic AP kernel expressions:

PS,N
N→∞
−→





−2 log N̄ + 2λ0 0

0 − 2
3 nF





+
α

2π





20
9 nF log N̄ + λ1 0

0 −nF



+O(1/N) +O(α2)

This implies

(EN )SS = EN

M−1
[

(EN )γγ

]

=
α(µ0)

α(µ)
δ(1− z)

⇒ Singlet ≡ non-singlet

Photon ≡ initial condition + α(0) scheme



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α

But: vastly different from the numerical (exact) solution

→ 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the δ-like peak of the electron initial-condition



Photon ≡ initial condition + α(0) scheme =⇒

Γγ(z, µ2) =
1

2π

α(µ0)
2

α(µ)

1 + (1− z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

.

Or: ∼ Weizsaecker-Williams function, plus the natural emergence of

a small scale in the argument of α

But: vastly different from the numerical (exact) solution

→ 1/N suppression of off-diagonal terms in the evolution operator is over-compensated

by the δ-like peak of the electron initial-condition

By solving the 2× 2 system e.g. in MS:

Γ(MS)
γ (z, µ2)

z→1
−→

tα(µ0)
2

α(µ)

3

2πξ1
log(1− z)−

tα(µ0)
3

α(µ)

1

2π2ξ1
log3(1− z)



A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

logq(1− z)

1− z
singlet, non− singlet

logq(1− z) photon

of our recursive solutions

Non-trivial; stems from keeping subleading terms (at z → 1) in the AP kernels


