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Exercise 1: u — ey

This exercise will be corrected in two tutorials.

The discovery of neutrino oscillations imply that they are massive and that there is lepton mixing.

This opens the door to charged lepton flavour violation (cLFV), such as the process u — ey forbidden

in the Standard Model. In the following we consider the Standard Model with three massive Dirac

neutrinos, such as

VQZZUM‘VZ', with a=euT; 1=1,2,3.
i

The general diagram for the process p — ey is

Mp—e+y)=My = p

By Lorentz invariance, the amplitude should be of the form

My = te(p — q) [ig"or (A + B7s) + 7a(C + Dvs) + gA(E + Fys)] uu(p),

where A, B,C, D, E, F are Lorentz-invariant coefficients (so-called invariant amplitudes).

a) Using the Ward identity show that, in the limit m, — 0, the amplitude reduces to
6/\/\/1)\ = 6/\7]6(]9 - q)Aqua/\l,(l + 75>uu<p) .

b) Applying the Gordon decomposition

kF+1* GoHY
2m 2m

a(k)y*Tu(l) = a(k) (kv — 1,)| Tu(),

where I' can be 1 or 5, show that

My = Te(p — )2A(1 + 75) [(p - €) — myu(y - )] un(p).-

(1)

Thus in what follows we can focus only on the terms containing (p - €) to compute A.


https://www.physik.uzh.ch/en/teaching/PHY563/FS2024.html

The rare process y — ey arises from one-loop diagrams involving a massive neutrino v; in the loop.

Working in Feynman gauge, the different Feynman diagrams contributing to the decay are given by

Figure 1: Feynman diagrams contributing to p — e, with ¢ the Goldstone boson associated to W.

c) From the vertices present in the loop diagrams el, €2, e3 and e4 explain why we can ignore these
four diagrams in the computation of the amplitude given in Eq.

Focusing on the diagrams a, b, ¢, d, we will consider the momentum assignments depicted in Fig. |2 in
what follows.
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Figure 2: Momentum assignments.

Our goal is now to compute the contribution from diagram b, and extract the invariant amplitude Ap.
To do so, the relevant Feynman rules are given by
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Table 1: Feynman rules for W interactions and associated Goldstone bosons in the SM with massive

Dirac neutrinos.



d) Write down the amplitude M; and show that it can be written as

- ieg? d*k 1 1
My = / 42 p—I—k: m? (k + q)? — M3, k? — M}

Xte(p — q)7 PL[_mu(mu + k) + muu(p)ex, (6)

e) In the above expression, we have to sum over the neutrino mass eigenstates, hence we want to
have an expression that will not depend on m; on the denominator. Expand the contribution in
the high-momentum limit and show that the amplitude can be cast as

d*k NA 1 1
_iC 7
My =1 / o+ 71 (k + ) — M3, B2 — M3, Q

with
_ 2 Uim?  and - N* = ae(p — q) PRy [=my(my, + ) + (0 + k)2Ju(p) . (8)

Before performing the loop integration we introduce the Feynman parameters to combine the propa-
gators in the denominator

1 Ma™ ™" T(my+ ... +my)
= d .d n 7 )
D Dy>. D / a.-.dond() i - VS aDi=m T(my).T(m) ©)

with I'(n) = (n — 1)!
f) Show that the denominator can be written as

D=["-(1—-a)My]*  with I=k+ap+oq, (10)

g) Using the shift of variable & = [ — ayp — aaq and keeping only terms proportional to (p - €) show
that the numerator is given by

N2ex = —myas(p - €)te(p — q) Pruu(p) (11)

We can now perform the loop integration using

i1 (-1 "Fn—f 1 nd/2
/ Cmd (@~ Ay~ (4m) d/2 I'(n
d
2

i 2 (=t dF 1) / 1\ 421 "
/ @md @2 -Ar —  (dmd2 2 T(n) A ‘ (12)
And then perform the integration over the Feynman parameters using
102 1
dand . 13
/ o Oé2 1—0[1) 4 ( )

h) What is M;? Deduce the expression of the invariant amplitude Aj.

We now want to compute the invariant amplitude A, arising from diagram c.



i) Write down the amplitude M.. Using the shift of variable | = k 4+ a1p + a2q and focusing only
on the denominator, show that A. = 0 in Feynman gauge (we are only interested in the part
proportional to (p - €)).

The invariant amplitude coming from diagram d turns out to be A, = —A,. Using this result, we can
finally evaluate the decay rate.

j) Given that I'(u — evv) = mZG%/(1927r3) compute the branching ratio BR(u — ey) = %

What can you conclude?



Solution:

a) The first step is to replace the polarisation vector ¢* by the momentum ¢* of the photon. The
Ward identity gives

PMy=0 = i.(p—q) [iqu”aAV(A + Bys) + ¢ (C + Dvs) + ¢ gr (B + F%)} u,(p)

= d.(p—q) [iqu”oAy(A + Bs) + 4(C + Dvs) + ¢*(E + F%)} uu(p) , (14)

The first term is proportional to ¢*¢”oy, and hence vanishes, while the last one is zero since the

photon is on-shell (¢> = 0). So we just have to work out the second term:

0 = aelp—q) [¢(C+ Dvs)] uu(p)
= Uc(p—q) [(¢+p—pP)(C+ Dvs)] uu(p). (15)
Using pu,,(p) = myuu,(p) and te(p — q)(p — ¢) = te(p — q)me, we have
0 = telp—q) [(mu —me)(C + Dys)]uu(p), (16)

and since m,, # m. we arrive at C = D = 0.
Going back to the matrix element multiplied by the polarisation vector we have
My = e(p — ) |ie* ¢ or, (A + Bs) + (B + Fys) | uu(p) , (17)

and by construction of the polarisation vector (e - ¢) = 0. Finally since we are interested in the limit
me = 0, the outgoing electron will be left-handed, and the amplitude will be of the form Pru. or in

our case U Pr. In this approximation we have A = B and recover

GAMA = e’\ﬂe(p - q)AquU)\V(l + 75)“#(29) . (18)

b) From the Gordon identity we have

— Q) Pt o
(p—q) L

a(p — ¢)y"Tu(p) = ulp—q) o 5 (P =)y = po)| Tu(p)
(0 (2
= alp—a)5,—[2p = @) —i0" g T'u(p), (19)
o
leading to
u(p — q)ic" g (1 +y5)ulp) = alp—q)[(2p — " —2m*] (1 +y5)ulp), (20)
Plugging this expression into Eq. (3)
EMy = ftelp—q)A[2p — @)r — 2mun] (1 +75)uu(p)
= Ue(p—q)2A[(p-€) —mpu(y-€)] (1 +75)uu(p) - (21)

Thus in order to compute the decay rate p — ey we can only focus on the computation of the terms

involving (p - €) to extract the invariant amplitude A.
c¢) Looking at the vertices of diagrams e; and es we know that the amplitude will be proportional to

M, Moy o< te(YaVu v g™ )uu€® o e (Yo )upe® o< te(y - €)uy (22)



hence we cannot have a term proportional to (p - €), and we can then neglect these diagrams in the
determination of the invariant amplitude A. A similar argument holds for diagrams e; and ey.

We now proceed to compute the contribution from diagram b

d) From the Feynman rules and the momentum assignments, the amplitude reads

My = —ZZ/ d4k (P —q) <—Z\[ i) aPL> (;p:k;ermz) (\[‘qu Um’(miPL_muPR)> uy(p)

—ig® ap i

je M A 23
"+ q)2— M K2 — Mgv (ieMwgap)e (23)
,eg d*k P+ ¥ +m;
B ; / W —q) (UinFr) m (Upi(mi P, — my Pr)) uy(p)
1 A
24
e+ g2 — MR — M2 (24)
Focusing on the numerator we have
WPL(p + F + mi)(mi Py — my,Pr) = yami P, — a(p + §)ymy, Pr (25)
using
(p + K)Pruy(p) = Pr(p + F)uu(p) = Primy + F)uu(p) (26)
we arrive at
ieg? 1 1
M; =
b / 4zp+k ?(k+q)2—M5{,k2—M2
xte(p — @) Prl=myu(my, + K) + miJuu(p)en, (27)

e) Having to sum over the neutrino mass eigenstates, we want to have an expression that will not
depend on m; in the denominator. For this, we expand the contribution in the high momentum limit:

2

Z<p+k =2 Ua [ o P }Z e 3

where the leading term vanishes due to the GIM mechanism. Similarly we have

UUZm 2
S G = S 29)

The amplitude can then be cast as

_ zeg 1 1
My = Z ’“m/ p—i—k 212 (k+q)2 — M2, k2 — M2

X iie(p — Q)Pm [ mu(mu+%) + (p+ k) (p)ex
/ d4k 1 1

= C (W)

p+k 22 (k + q)? — My, k2 — My,

with

_ Z Upim? and - N* = Ge(p — q) Pry* [=myu(my, + K) + (0 + 5)2Juu () (31)



where we changed 4* P, — Pgy* to match the required form of the amplitude proportional to (1+s).

f) We focus now on the denominator, we want to combine the propagators by using Feynman param-
eters. In this case we have

1 ! o I'(4)
—_— = dajdosdagd(og + ag +az — 1 32
D?DsD; /0 ardagdagdlon +az+as = Voo - T T D)
leading to
G/Idadadaé(a +az+ag—1) o (33)
o T an(p k)2 o+ an((k+ )2 - M) + as(k? — M)
The denominator can then be cast as
DY* = ai(p+k)?+ as((k+q)? — ME,) + as(k* — Mg))
= al(mi + 2(p : /ﬂ) + k2) + 042(]{32 + 2(]{,‘ . q) — MI%V) + (1 — 1 — Oég)(k‘Q — MI%V)
= K +2(a1p + azq) - k+ aym;, + M (o — 1) (34)

we want a denominator of the form /%> — A to perform the loop integration, hence we make the following
change of variable £ — | — a1p — aiaq, leading to
DY* = (I—onp— a2q)® + 2(01p + a2q) - (I — c1p — a2q) + cnm? + M (o1 — 1)
= P—MZ(1-m) (35)
The amplitude is thus

dl N
My = 6iC Oé1d041d062d0435(0‘1 toataz—1) (2m)* 12 — M, (1 0‘1)]46/\
— MZ,(1-

1—ag d4l Ole)‘
= —6ZC/ dal/ dO[2/ ) [l2 — M‘%V(]. _al)]4€/\7 (36)

g) We turn now to the numerator and make the same change of variable

N = tc(p— Q) Pry=mpu(myu + §) + (p+ k)*Ju(p)
= tie(p = Q) Pry [=mu(my + 1 — onp — aaff) + (p+ 1 — 01p — 029)"Jun(p)
= te(p — Q)Pry =mu(my + [ — a1p — aag)
424 (1-— 041)2p2 + a2q2 +2a1p - 1 — 209q - | — 2a109p - qluy(p) (37)

First we can ignore terms proportional to [ as they will be zero by symmetry considerations of the
integral over 1. So we can focus only on terms depending on [° and [%. As we want N*e) to be of
the form . (1 + v5)(p - €)u,, we can also ignore the other scalar terms as they will be proportional to
(v - €). The remaining terms are

NYex = tc(p— q)Pry =m0’ (—eup — a2q)sluu(plex , (38)
leading to
1. PR'y/\*prgQ\ = muPR'y)‘e,\ =mu(y-€) =0
2. PryMPqsen = Pr[29™ — +Py*qgen = Pr2(q - €) — Pry’7qgex

= —Pr?y*pgex — PryP7vM (g — p)gen = —Pr26™ — v ]pgen
= —2Pgr(p-€) + Prmy(y-€) = —2Pr(p-¢€) (39)



Finally the numerator is given by

N = N'ey = —2myaite(p — ) Pr(p - €)up(p) = —myuaziic(p — ¢) (14 75)(p - €)uu(p) (40)

h) Now that we have the desired form for our amplitude, we can do the loop integration. Since our

numerator is independent of [, we have from Eq.

d4l 1 7 1 1
/ (2m)* 12 — M2,(1 — aq)]4 - (47)26 2,1 — a2’ (41)
leading to
m = O” oo
My = 4: 2]744 / dal/ i@ _1;1)]2 X te(p — q) (1 +75)(p - €)uu(p) - (42)

Using Eq. [13] we arrive at

My = —Mé”jjwxae<p—q><1+%><p‘e>uu<p>
Zi AT S Uy 1y = 1+ )0 () (43)

Comparing it with My = tc(p — ¢)2A4(1 +v5) [(p - €) — mu(7y - €)] uu(p) we have

_ eg*my,
A = 5l 2art, Z Uirm (44)

i) For the diagram ¢ we need the conjugate vertices, i.e.
VW,LLI/Z‘ = _i%UuiVQPL ) V(bul/i = \f ez(mlPR mePL) (45)
W

Writing down the amplitude we have

i —ig™?
X0 — 3, (07 - 2z, Mo
_ e Z / d'k te[miPr(p + F +mi)nPreuy,
— 2y D,
B eg d*k ue[m ’7)\PLE Juy
_ Z / ) , (46)

clearly the numerator cannot be written in the form (p - €), hence we can ignore the contribution of
diagram c in the computation of the invariant amplitude A.

j) Finally we can compute the branching ratio of the muon cLFV radiative decay. We have A =
A +Ap+ A+ Ag=Apas A, = —Ag and A, = 0 in Feynman gauge. We have

M = ue(p — q)24iq" o5, Pruy(p)
= 24eMuc(p — q)(an — ad) Pruu(p) , (47)



where we used 0, = —igu, + 7,7, We thus have

2
MP = DS S (o — )ar — 1) Pt 0)] [ (0) (o + 70 Pre o — )]

spin pola
= 2[APTr [(p — §)(gr — W) Pr(P + mu) (=g + Yad) Pr] (-9
= 2APTr [ (¢ — ) (q™ — Y DP(—do + Vad) PL]

= 2[4 [Tr [PaPaaPL] + T [=pa°pradPr] + T [=pr*dpaaPL] + Tr [Py dpragd PL]

+Tr [~dq*paaPr] + Tr [dg"PradPr] + Tr [~d(—7*DpgaPr] + Tr [¢(—7*pradPL]
(48)

using ¢¢ = q-q = 0 and ¢”g, = 0 we have
IMPP = 2AP | Tr [py* dprad Pr] + Tr [d(—1"DpradPrL] | - (49)
The second term vanishes due to Y*¢py, = 4(a - b) leaving us with dq¢ = 0, and the first one reads

Tr [y dpradPr] = Tr[4p(q-p)dPr] =8(q-p)(q-p) = 2m,, (50)

where we have used Tr(¢pPr) = 2(a - b). Finally we have

IMP> = 4m|A]?. (51)
The decay width is given by
I( —>e)—’M|2— Cg'm, Z m2 (52)
H = 16mm,,  2(43) 7o M, Ui '

and to obtain the branching ratio one need to divide by the total decay width that can be approximated
by I'(pn — evv) = miG%/(1927r3), with G% = ¢*/(32M;},) leading to

2 2

3@
- 16mM,

BR(n—¢7) = Z Upim} Z Upim}
with the following approximations: . ~ 1/137, My ~ 80 GeV and m; ~ 10710 GeV, we have
BR(p — ey) < 1075 (it is actually BR(p — ey) < 1075%) implying that this is non observable. Hence
if 4 — ey should be observed it would imply that we have New Physics beyond the Standard Model

9

64m 2M4

extended with Dirac neutrinos masses.



