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Preface

We provide an introduction in Chapter 1, and discuss the theoretical concepts
that inform our research in Chapter 2. The computational methods involved in
our research are discussed in Chapter 3. The research, including an analysis and
discussion of our results forms Chapter 4.
Chapter 4, as well as parts of Section 2.4 consists of content from the original
paper:
"Abelian topological order of ν = 2/5 and 3/7 fractional quantum Hall states in
lattice models", B. Andrews, M. Mohan and T. Neupert, Phys. Rev. B 103,
075132 (2021) [1]. My contribution to this project involved the majority of the
data collection (this included running the iDMRG computations for the FCI lattice
systems and obtaining the area law plots).
I was also responsible for a large part of the data analysis, and contributed to
the development of the systematic routine that we developed towards the aim of
computing the topological entanglement entropy accurately.
Calculations were performed using the TeNPy Library (version 0.5.0) [2] and GNU
PARALLEL [3].
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Abstract

The theoretical investigation of the fractional quantum Hall effect (FQHE) has
been a reliable source of exciting physics since its discovery in 1982. It exhibits
unusual phenomena such as fractional statistics and fractional charge, and has
illuminated the connection between topology and physics.
The FQHE has been generalized on lattices—notably, these systems (termed frac-
tional Chern insulators) have been shown to exhibit lattice-specific FQH states.
FCIs have been proposed as candidate systems for topological quantum comput-
ing, which further motivates the investigation of their ground state statistics and
stability.
In this thesis, we study FQH states on a lattice. We work in the MPS framework,
and use the iDMRG algorithm on an infinite cylinder to probe the topological
order of the ν = 2/5 and 3/7 ground states for the Hofstadter model. We intro-
duce an efficient algorithm for this purpose, and demonstrate Abelian order for
nearest-neighbor interactions by computing the topological entanglement entropy.
We discuss the sensitivity of this method with respect to interaction range and
strength.
The Hofstadter model also exhibits FCIs with Chern numbers |C| > 1. We in-
vestigate the stability of these states and aim to characterize their breakdown
transitions. We use iDMRG to compute the entanglement energy spectrum and
correlation length with respect to interaction strength, in order to determine the
central charge and resulting phases.
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Chapter 1

Introduction

Understanding the physical properties of quantum many-body systems is a prob-
lem of central importance in theoretical physics. The challenges involved have
necessitated the development of new physics, notably new methods of classify-
ing phases of matter through topological order, for which the 2016 Nobel prize
was awarded to Thouless, Haldane and Kosterlitz [4]—and thus, in the last few
decades, the field has risen to prominence.
This new landscape of condensed matter research was sparked by the remarkable

discoveries of the integer quantum Hall effect (IQHE) and the fractional quantum
Hall effect (FQHE) in 1980 and 1982 respectively [5, 6]. The experimental setup
involves a two-dimensional electron gas in a strong perpendicular magnetic field,
at low temperatures.
On driving a current through the sample, one observes that the transverse electrical
conductivity (termed the Hall conductivity) σxy plateaus in steps and is quantised,
that is, σxy = e2ν/(h) where ν takes integer values. The key to this unusual
behavior was identified to be the disorder in the system. Later on, quantised
plateaus in the Hall conductivity were observed at fractional values of e2/h, with
the most prominent fractions being ν = 1/3 and 2/5.
Following these discoveries, several theories have been proposed and experiments

conducted to unravel these truly remarkable phenomena. The physics of the IQHE
is now well understood, and the explanation involves the quantum mechanics of
non-interacting electrons. Crucially, the Hall conductivity was understood as a
topological invariant of the system, which explained the robustness of the IQHE
and illuminated the connection between topology and quantum mechanics [7].
The study of the FQHE on the other hand presents a significant hurdle—the
system involves energy bands (that arise for charged particles in a magnetic field
and are termed Landau levels) that are fractionally-filled, and this leads to a highly
degenerate ground state. The effect is stabilized by electron-electron interactions
that would lift the degeneracy—however, the corresponding perturbation theory
involves a macroscopically large Hamiltonian that is difficult to diagonalize.
Despite this challenge, there has been significant theoretical progress, with cre-

ative approaches involving educated guesses for the ground state wavefunctions [8]
and analogies between the IQHE and FQHE [9]. The FQHE can be generalized on
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1. Introduction

the lattice through fractional Chern insulators (FCIs), which in the Landau-level
limit (for our purpose, this denotes flat Chern bands with unit Chern number)
share the universal topological properties of the FQHE [10]. Away from this limit
FCIs provide new physics that is not present in the continuum— as the physics of
FCIs for higher Chern numbers cannot be continuously connected to the continuum
physics [11, 12]. FCIs also provide a way to stabilize FQHE states without the need
for a strong magnetic field [10], and thus their study is of interest for technologies,
notably topological quantum computing—that proposes fault-tolerant quantum
computation by braiding the anyonic excitations of the ground state [13]. We dis-
cuss the main theoretical concepts introduced above that inform our research in
Chapter 2, notably the concept of fractional statistics and topological order, and
further discuss the models that stabilize these states on lattices.
Numerical methods present an attractive option for the investigation of quantum

many-body systems, given that analytic solutions often do not exist. Matrix prod-
uct state (MPS) based methods are well established tools for this simulation—in
particular, we used the infinite Density Matrix Renormalization Group (iDMRG)
algorithm on an infinite cylinder for the computation of the ground state wave-
function of FCIs. In Section 3, we introduce and motivate this method, why it is
suitable for our purposes, and its limitations. We also talk about various numerical
techniques that we can use to characterize these FQH states, and to confirm their
topological nature.
In Section 4, we detail the computational investigation of excitations of the FQH
ground state, and discuss the current status of the field. We investigate the topo-
logical order of ν = 2/5 and 3/7 FQH states in lattice models, and present and
discuss our results. In one of the central results of this thesis, we show that these
FQH states exhibit Abelian topological order in the case of nearest-neighbor in-
teractions. Also important is the algorithm that we devise for this purpose, that
allows us to compute the topological entanglement entropy accurately, and will be
of interest for further studies that aim to characterize topological order in FQH
states.
Various numerical studies have stabilized FCIs away from the Landau-level limit

[14–18]. Thus, it is of interest to investigate the stability of the FCI states, which
we study for systems with higher Chern number bands. We describe this research
in Chapter 5.
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Chapter 2

Theory

The theory of quantum many-body systems, notably topological insulators and
the fractional quantum Hall effect (FQHE) presents one of the biggest challenges
in modern physics research. There has been a lot of progress made on the theo-
retical aspects of FQHE—theorists have come up with ground state wavefunctions
that explain the physics at various filling factors, and have described the anyonic
excitations that these ground states support. Further, physicists have proposed
uses for these exotic fractional quantum Hall (FQH) fluids, notably the use of
these anyonic excitations to realize topological quantum computing [13]. As we
shall see, there are certain factors that make the theoretical study of the FQHE
challenging, and this has led to some creative approaches, and further, has shed
light on the celebrated role of topology in physics.
In this chapter, we introduce and explain important theoretical concepts that one
needs to be familiar with, in order to investigate quantum many-body systems—
and in our case, FQH states on lattices.
Section 2.1 considers the physics of particles in a magnetic field, section 2.2 intro-
duces the physics of the FQHE along with the fundamental concepts of fractional
statistics and topological order. In section 2.3 we consider the generalizations of
the FQHE to two-dimensional lattices in the form of fractional Chern insulators,
and highlight the criteria a model should have to support such fractional states.
Finally, in section 2.4, we look at the Hofstadter model, and discuss how we select
configurations that stabilize the FQHE and contain other features of interest, such
as Chern bands with |C| > 1.

2.1. Energy levels in a magnetic field

We present a brief recap of the physics of particles in a magnetic field—in partic-
ular, we introduce the concepts that will aid us in the discussion of the FQHE.
We can set up the problem by writing the quantum Hamiltonian that describes
an electron confined to a two-dimensional (we consider xy) plane, along with a
perpendicular magnetic field B = ∇×A where A is the gauge potential. This is
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2. Theory

given by

H =
1

2me

(p + eA)2 (2.1)

where p is the canonical momentum, and e and me are the charge and mass of the
electron respectively.
Choosing the Landau gauge, A = xBŷ and introducing an ansatz for the wave-
function based on translational invariance in the y direction allows us to interpret
the Hamiltonian as that of a harmonic oscillator in the x direction

Hk =
1

2me

p2
x +

mω2
B

2
(x+ kl2B)2 (2.2)

with frequency as the cyclotron frequency ωB = eB/m, and the magnetic length
lB =

√
~/(eB), which is the characteristic length scale for quantum phenomena

in the presence of a magnetic field. The energy eigenvalues also then correspond
to those of a harmonic oscillator

En = ~ωB
(
n+

1

2

)
(2.3)

We have obtained equally spaced energy levels of a particle in the presence of a
magnetic field, such that the gap between levels is proportional to the magnetic
field applied. We call these Landau levels. It is also straightforward to see that
these levels are degenerate if we write the wavefunction explicitly

ψn,k(x, y) ∝ exp[iky]Hn(x+ kl2B)exp

[
− 1

2l2B
(x+ kl2B)2

]
(2.4)

where Hn is the nth Hermite polynomial.

We now choose the symmetric gauge, A = 1
2
(−Byx̂ + Bxŷ). This gauge pre-

serves the rotational symmetry about the origin, allowing us to define the angular
momentum—a good quantum number for our gauge choice. We note also that the
gauge breaks the translational symmetries in x- and y-direction. We tackle this
problem with an algebraic approach.

We define the following momentum operators

π = p + eA→ a =
1

2e~B
(πx − iπy) (2.5)

π̃ = p− eA→ b =
1

2e~B
(πx + iπy) (2.6)
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2.1. Energy levels in a magnetic field

and the ladder operators allow us to construct the eigenstates as

|n,m〉 ∝ a†nb†m |0, 0〉 (2.7)

where n and m track the Landau level and the degeneracy respectively. Important
also is the lowest Landau level (LLL), for which we must have

a |0,m〉 = 0 (2.8)

Let z = x− iy and the corresponding derivative ∂ = (∂x + i∂y)/2. This allows us
to write the ladder operators as

a = −i
√

2

(
lB∂̄ +

z

4lB

)
(2.9)

b = −i
√

2

(
lB∂ +

z̄

4lB

)
(2.10)

This allows us to write 2.8 as a differential equation, the solution for which is given
as

ψLLL,m(z) = f(z)e−|z|
2/4l2B (2.11)

for any holomorphic function f(z). The lowest LLL state must be annihilated by a
and b, and this implies that this state ψLLL,m=0 ∝ e−|z|

2/4l2B . Further we construct
the higher LLL states by acting with b† on ψLLL,m=0, and thus

ψLLL,m(z) ∝
(
z

lB

)m
e−|z|

2/4l2B (2.12)

One can also construct the higher LL wavefunctions—one acts with a† on the LLL
states. Defining the angular momentum operator J = i~(x∂y − y∂x), we see that
the states are eigenfunctions of J , in particular for the LLL states we have

JψLLL,m = ~mψLLL,m (2.13)

We refer the reader to [19, 20] and [21], for a more pedagogical and thorough
introduction of QHE physics, along with the associated derivations.

In our discussion, we neglect the spin degree of freedom of the electron—in the
presence of a large magnetic field B, the energies of spins-↑ and ↓ are split by
∆ = 2µBB (this is the Zeeman effect), where µB is the Bohr magneton. Thus
large energies will be needed to flip the spins, and if we restrict our study to low
temperatures the electrons can be considered spinless.

5



2. Theory

2.2. Fractional Quantum Hall Effect
The physics of the FQHE is dominated by the electron-electron interactions,
which is negligible in the theoretical discussion of the IQHE [9]. Such inter-
actions can be modelled, for example, with the Coulomb potential. To make
these interactions dominant in the physics, one imposes the following requirement:
~ωB � VCoulomb � Vdisorder, where ωB is the cyclotron frequency associated with
the energies of our Landau level, as in Eq. 2.3. To fulfil this requirement, we must
conduct a Hall experiment at even lower temperatures and stronger magnetic fields
than in the IQHE, and further, we require a pure sample.
While the IQHE ground state is unique, a partially filled Landau level (ν < 1)

presents NCνN possible configurations (N being the number of states in the level)
which leads to highly degenerate ground states that cannot be dealt with the use
of perturbation theory. This presents a major challenge from an analytic point of
view, and has led to various creative theoretical approaches, one of which we now
introduce.

2.2.1. Laughlin states

Laughlin sought to capture the physics at the filling fractions ν = 1/m, where m is
an odd integer, by giving an ansatz for the ground state wavefunction. The guess
was motivated by angular momentum arguments [19]—for such discussions, we
often choose the symmetric gauge. Recall that the one-particle LLL wavefunction
is given by 2.12.
We can motivate the general form of the many-body LLL wavefunction (one ap-
proach, given by solving a two-body problem for interacting electrons in the LLL,
is provided in [21]), which is given as

ψLLL(z1, ..., zN) = ψ̃(z1, ..., zN)e−
∑N
i=1 |zi|2/4l2B (2.14)

for an analytic function ψ̃, that is asymmetric under particle exchange (thus en-
suring Pauli’s exclusion principle). Laughlin’s ground state wavefunction ansatz
is

ψ̃(z1, . . . , zN) =
∏
i<j

(zi − zj)m (2.15)

We notice that ψ̃ vanishes (with a zero of order m) when two electrons come close,
and the exponential term from Eq. 2.14 drops rapidly if electrons are far apart
from the origin. The wavefunction is thus peaked at a certain radius, such that
the two competing effects are balanced.
We conduct some checks on this function—firstly, we note that this function is
indeed asymmetric, when m is an odd integer. By examining the eigenvalues of

6



2.2. Fractional Quantum Hall Effect

the angular momentum, we can show that m is the relative angular momentum
of the electrons [21]. Further, considering the first particle z1, we find m(N − 1)
powers of z1 in ψ̃, which gives the maximum angular momentum of the first particle
as m(N − 1) and the corresponding radius R ≈

√
2mNlB (such that the droplet

area A = πR2). The number of states in the Landau level is then given by

Nφ =
Φ

Φ0

=
A

2πl2B
= m(N − 1) (2.16)

which confirms the expected filling fraction as

ν =
N

Nφ

=
N

m(N − 1)
≈ 1

m
(2.17)

where the approximation holds for large N. For a small number of particles, the
Laughlin wavefunction has large overlap (often greater than 99%) with the true
ground state (obtained by considering the full Hamiltonian, with electron-electron
interactions characterized by a Coulomb potential)—although this overlap is likely
to be negligible for a macroscopic number of particles [21]. The main attraction of
this state is that it lies in the same universality class as the true ground state—this
ensures that the states have the same topological properties, such as the fractional
statistics [22].

2.2.2. Excitations of the Laughlin ground state

Having introduced the Laughlin ground state, we now move on to the excitations
this state supports—in particular we consider the quasi-hole . Importantly, we
also introduce the concept of fractional statistics that we later investigate in our
research.

Quasi-Holes

The many-body wavefunction describing a quasi-hole at position zhole ∈ C must
fulfil the criterion that the probability density (the probability of finding an elec-
tron) vanishes at zhole. This motivates the following form

ψ̃hole(zhole,z1,...,zN ) =
N∏
i=1

(zi − zhole)
∏
k<l

(zk − zl)m (2.18)

7



2. Theory

We can consider the case of M quasi-holes in our fluid with positions zhole,a (for
a = 1, . . . ,M) by generalising Eq. 2.18 as

ψ̃hole(zhole, z1, . . . , zN) =
M∏
a=1

N∏
i=1

(zi − zhole,a)
∏
k<l

(zk − zl)m (2.19)

This now sets the stage for introducing a remarkable characteristic of the FQHE—
that of fractional charge.
We will derive this fractional charge (along with the corresponding statistics) later
on—for now we present a simple argument to motivate the concept. We fix m
quasi-holes at the same location zhole and write the corresponding wavefunction

ψ̃M−hole(zhole, z1, . . . , zN) =
N∏
i=1

(zi − zhole)
m
∏
k<l

(zk − zl)m (2.20)

By comparing this to the ground state wavefunction in Eq. 2.15, we notice that
ψ̃M−hole describes the absence of one electron at zhole. Hence, m holes correspond
to the deficit of one electron, and one hole must carry the charge +e/m that cor-
responds to 1/mth of this absence.
We make some more statements about the fractional charge, as it is a truly unusual
phenomenon. Firstly, we note that the total charge of the system will always be
an integer multiple of e (thus ensuring no physical laws are violated). However, in
the liquid, the fractional charged excitations act as independent particles. These
excitations have also been experimentally observed in shot noise experiments [23].
Notably, there is strong recent experimental evidence for anyons—their fractional
statistics have been directly observed using a Fabry-Perot interferometer [24], and
inferred from current correlations in an approach that collides anyons in a two-
dimensional electron gas (2DEG)[25].
We now discuss the quantum statistics of these excitations as this concept is inti-
mately connected to our research. We emphasize that there are certain steps and
substitutions in the derivation that we do not discuss here—our main purpose in
this section is to provide the motivation behind the form of the Berry connection,
which is a crucial ingredient in the discussion of the statistics. We refer the reader
to [26] for a more involved derivation.
We consider a state with M quasi-holes, |ψ〉 = Z−1/2 |η1, . . . , ηM〉, where Z =
〈η1, . . . , ηM |η1, . . . , ηM〉 gives the normalization.
We must compute the holomorphic Berry connection,

Aη(η, η̄) = −i 〈ψ| ∂
∂η
|ψ〉 = − i

2

∂logZ

∂η
(2.21)

8



2.2. Fractional Quantum Hall Effect

where we have used the fact that |η〉 is holomorphic and thus ∂Z
∂η

= 〈η| ∂
∂η
|η〉.

Similarly one computes the anti-holomorphic connection Aη̄. To simplify the cal-
culation for Z (that would otherwise require computing a macroscopic number
of integrals), we employ a plasma analogy for the ground state wavefunction that
simplifies the computation of expectation values—in our case, the normalization—
by considering an analogous (classical) statistical mechanical system of a plasma
of particles with charge −m, moving in two dimensions. Concretely, one can write
a classical Boltzmann distribution function with associated potential U(zi) that is
analogous to the Laughlin probability density (computed using Eq. 2.15),

e−βU(zi) =
∏
i<j

|zi − zj|2m

l2mB
e−

∑
i |zi|2/2l2B (2.22)

In the plasma, then, the quasi-hole is interpreted as a positively charged impu-
rity that screens the negative charges—this modifies the electric potential of the
impurity such that it falls off exponentially. Using Eq. 2.22 and modifying the
potential to account for the impurities, one obtains the classical potential (for M
impurities) as

U(zk, ηi) =−m2
∑
k<l

log

(
|zk − zl|
lB

)
−m

∑
k,i

log

(
|zi − ηi|
lB

)
−
∑
i<j

log

(
|ηi − ηj|
lB

)

+
m

4l2B

N∑
k=1

|zk|2 +
1

4l2B

M∑
i=1

|ηi|2

In the regime where the distance between any two impurities |ηi − ηj| is greater
than the Debye length λ (the characteristic length scale in screening), one can
carry out analytical simplifications and obtain the normalization as

Z = Cexp

(
1

m

∑
i<j

log|ηi − ηj|2 −
1

2ml2B

∑
i

|ηi|2
)

(2.23)

which allows us to compute the Berry connections over the configuration space of
M quasi-holes from Eq. 2.21 :

Aηi = − i

2m

∑
j 6=i

1

ηi − ηj
+

iη̄i
4ml2B

(2.24)

Aη̄i = +
i

2m

∑
j 6=i

1

η̄i − η̄j
− iηi

4ml2B
(2.25)

9



2. Theory

Fractional charge and statistics

The derivation of the fractional charge follows from Eqs. 2.24 and 2.25. We move
one of the quasi-holes on a closed path C. If we move on a path that does not
enclose any anyons, the first term in the connection vanishes and we get

Aη =
iη̄

4ml2B
,Aη̄ = − iη

4ml2B
(2.26)

The quasi-hole picks up a phase shift given by the Berry phase

eiγ = exp

−i ∮
C

Aηdη +Aη̄dη̄

 (2.27)

from which we obtain
γ =

eφ

m~
(2.28)

where φ gives the magnetic flux that the path encloses. One recognizes that this
must be equal to the Aharonov-Bohm phase of the particle. We recall that this
phase associated with a particle of charge q is γ = qφ/~, which allows us to read
off the hole charge as q = e/m.
Now, consider again the motion of a quasi-hole ηa in a closed path C, however
unlike in the previous argument, let this path enclose quasi-hole ηb. As with the
fractional charge, the second term of Eqs. 2.24 and 2.25 gives the Aharanov-Bohm
phase. The first term gives the statistics

eiγ = exp

− 1

2m

∮
C

dηa
ηa − ηb

+ h.c.

 = e2πi/m (2.29)

where we evaluated the integral using the residue theorem. We have derived the
phase from ηa moving around ηb. One can consider one rotation (captured in Eq.
2.29) as corresponding to two particle exchanges, hence the phase picked up in
one exchange is eπi/m. In three dimensions, we recall the exchange statistics are
completely given by the phase eiπα in the equation ψ(r1, r2) = eiπαψ(r2, r1) such
that α = 0 describes bosons and α = 1 describes fermions. Thus the derived
statistics correspond to α = 1/m. This is again rather unusual —as we have seen,
two exchanges do not bring the wavefunction back to the original state (unlike in
the case of fermions and bosons)— and has its root in the fact that we restrict
our particles to move in two dimensions. One also has to consider the topology of
the worldlines traced by particles in spacetime, which is fundamentally different
in two dimensions. A detailed discussion on anyons and the role of dimensions in
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topology can be found in [27]. We discuss the anyonic statistics further in Chapter
4, and compute them for FQH states at certain filling factors of interest.

2.2.3. Topological order

The FQHE statistics yield the concept of topological order. Let us consider the
problem of characterizing these states—to this end, we note that we cannot dis-
tinguish QH states through local order parameters or symmetries.
In [28], it is proposed that QH phases are an entirely new type of matter with
topological order, characterized notably by their ground state degeneracy. We dis-
cuss this concept further in Chapter 4, and investigate the order for certain filling
fractions of interest.
To summarize, in this section we have introduced the physics of the FHQE—

we looked at the main challenge in investigating these states that has its roots
in the highly degenerate ground state. We motivated the Laughlin wavefunction
ansatz that captures the physics of the FQHE at filling fractions ν = 1/m (for
m an odd integer) as it lies in the same universality class as the true ground
state. We discussed the excitations of the Laughlin ground state, and introduced
important concepts characteristic to the FQHE such as fractional charge, statistics
and topological order.

2.3. Fractional Chern Insulators

In our research, we investigated FQH states on a lattice, which we introduce and
motivate here. We recall that Chern insulators are band insulators with the single-
particle spectrum characterized by a finite Chern number, such that the filled
bands (termed Chern bands) can still have a finite, quantized Hall conductivity—
this has its roots in the breaking of time-reversal symmetry [29]. In the models we
will consider, one breaks the TR symmetry by including complex hopping phases
in the model Hamiltonian.
If instead, a Landau level—arising from a lattice Hamiltonian— is fractionally

filled, the interaction term (in the many-body Hamiltonian) is turned on, and the
resulting system exhibits a quantised fractional Hall conductance, we term it a
fractional Chern insulator.
Concretely, we look at two-dimensional systems with interacting particles, that
have a topologically ordered many-body ground state possessing topological prop-
erties (such as the anyonic excitations, and a quantized Hall conductivity) that, in
the Landau-level limit, match with those of the FQHE at the corresponding filling
factor ν [22].
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2. Theory

There exist a number of tight-binding models that can host these fractional states.
Let us consider the desirable criteria these models must possess. Firstly, in order
to resemble Landau levels, the Chern bands in the model must have a flat energy
dispersion and a flat Berry curvature [30]. A flat energy dispersion ensures that
the inter-particle interactions dominate the physics. Further, it is desirable to have
a large band gap such that higher bands do not contribute to the physics. The
requirement is formulated as W � Vint � EG, where W is the bandwidth, Vint is
the interaction strength and EG the band gap. This requirement can be quantified
by the gap-to-width ratio F = EG/W , which should be large.
However, these criteria are not strict: for instance, we note that FCI states

have been shown to survive even when the interaction strength is greater than the
bandgap [17].
The FCIs go one step further than simply recovering FQH physics. One recalls

the Landau-level limit for FQHE, which for our purposes denotes the requirement
of flat bands and unit Chern number. However, FQH states have been shown to
persist even when these conditions are violated. In particular, [17] and [31] show
that FCIs survive even if the Chern band we consider is not flat or isolated from
other bands. Further, FCI states have also been observed in Chern bands with
higher Chern numbers, |C| > 1 [14]—this is a significant result as the physics of
FCIs at higher |C| cannot be continuously connected to the Landau level physics
of the continuum [11, 12]. Thus, these FQH states are specific to the lattice, and
allow us to state that FCIs generalize the FQHE states in continuum Landau levels
to lattices. These states are found at the filling factor [14]

ν =
r

kr|C| − sgn(C)
(2.30)

where r is an integer, k = 1, 2 for bosons and fermions respectively.

2.4. Hofstadter model

2.4.1. Single-particle Hamiltonian

We consider spinless fermions hopping on a square lattice in the xy-plane subject to
a perpendicular magnetic field. A charged particle moving in a magnetic field picks
up a phase, referred to as the Aharanov-Bohm phase [32], and the corresponding
phase on a lattice is called the Peierls phase. The precise value of the phase θij
along a particular path is dependent on the gauge, since θij =

∫ j
i
A · dl, where A

is the vector potential and dl is the infinitesimal line element from sites i to j [33].
In our research, we work with the x-direction Landau gauge such that A = Bxŷ.
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2.4. Hofstadter model

For this choice of gauge, the fermions only acquire a phase when they hop in the
x-direction. The Hofstadter model [34] describes the single-particle Hamiltonian
that sets up the Chern bands, and is given as

H0 =
∑
〈ij〉1

[
te(iθij)a†iaj +H.c.

]
(2.31)

where t is the hopping amplitude, a†(a) are the creation (annihilation) operators
for spinless fermions, and 〈ij〉κ′ denotes pairs of κ′th nearest-neighbor sites on the
square lattice.
Crucially, there are two competing area scales in the model, the irreducible area
of a flux quantum and the magnetic unit cell area (we discuss the latter in section
2.4.2). This frustration is typically quantified using the flux density, defined as
nφ = BAUC/φ0 = p/q, where φ0 = h/e is the flux quantum and p, q are coprime
integers.
Finally, we note that since the kinetic energy of the system is quenched for the
FQH states, the interaction Hamiltonian dominates the physics. Ideally, the role of
the single-particle Hamiltonian is simply to facilitate tuning to the correct system
configurations.

Figure 2.1.: The Hofstadter butterfly plots the flux density nφ vs. the energy
eigenvalues of the Hamiltonian 2.31 divided by the hopping factor
E/t. The pattern repeats for nφ outside the plotted range [30]. The
single energy band (from the zero-field Hamiltonian) splits into q sub-
bands if a rational flux density nφ = p/q is introduced in the system.
The figure has been adapted from [34].
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2. Theory

a nφ = 1/4, C = 1 for the lowest band b nφ = 1/7, C = 1 for the lowest band

Figure 2.2.: Energy spectrum of the single-particle Hamiltonian 2.31 for two differ-
ent flux densities. The Chern number of the lowest band can be tuned
by varying the filling factor ν of the system according to Eq. 2.30. We
note also that the lowest band is flat and well separated, which makes
the Hofstadter model a good candidate for stabilizing FCIs.

2.4.2. Single-particle energy spectrum

If the Hamiltonian is symmetric under translations—in two-dimensions, if the lat-
tice translation operators Tx and Ty (defined along the x− and y−axis respectively)
commute with each other, and with the Hamiltonian—one can apply the Bloch
theorem to obtain a quantized energy spectrum with Bloch energy bands [35] (this
is used to solve cases involving periodic potential). The single-particle Hamiltonian
2.31 shows this symmetry in the case of zero magnetic field. If we now introduce
a finite magnetic field B (with vector potential A in the x-Landau gauge), this
translation symmetry of the Hamiltonian is broken, as the vector potential is not
invariant under translation by the lattice unit vectors.
Thus to obtain the single-particle energy spectrum, we need to find the symmetries
of the Hamiltonian. We can construct new commuting operators that define such
a symmetry—these are the magnetic translation operators (MTOs) and are a com-
bination of translation and gauge transformations [36]. The magnetic translation
algebra is constructed as in [37]. In cases where the magnetic field is homoge-
neous, the commuting MTOs enclose a magnetic unit cell, that—for a given flux
density nφ = p/q—is q times larger than the normal unit cell. The choice of the
magnetic unit cell is not unique—we choose a cell oriented along the x-axis, with
area AMUC = q × 1 for unit lattice constant.
We need to solve the Schrödinger equation for the energy spectrum of the single-
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2.4. Hofstadter model

particle Hamiltonian in the Hofstadter model. The MTOs can be explicitly written
as [36]

M q
x =

∑
m,n

a†m+q,nam,n and M1
y =

∑
m,n

a†m,n+1am,n (2.32)

where m and n denote the site indices along the x− and y−axes respectively. As
these operators commute with each other and with H0 (by construction), we can
define a Bloch theorem for magnetic translation symmetry with the momentum k
lying in the first magnetic Brillouin zone such that −π/(qa) ≤ kx < π/(qa) and
−π/a ≤ ky < π/a [38].
This motivates the wavefunction ansatz

Ψm,n = eikxmaeikynaψm (2.33)

where ψm+q = ψm. This ansatz is the magnetic equivalent of the Bloch wavefunc-
tion. Inserting this into Eq.2.31, we set up a q-dimensional eigenvalue problem
which one solves numerically. The solutions give the single-particle energy spec-
trum, plotted for some values of nφ in Fig. 2.2.
For a rational flux density nφ = p/q, the energy spectrum will have q bands—
plotting the energy eigenvalues with respect to the flux density nφ generates the
Hofstadter butterfly structure in Fig. 2.1. Further, increasing q decreases the band
width, such that nφ → 0 corresponds to the continuum limit [39]. Moreover the
filling factor of the lowest Landau level is given as ν = n/nφ, where n is the filling
factor of the system.
There are several important advantages of using the Hofstadter model for our

research. Firstly, due to the fractal energy spectrum with any desired Chern
band, the system is highly configurable and we can easily access all of the desired
topological flat bands. As mentioned in 2.3, we require a lowest Chern band
with Chern number |C|, that is well separated from the higher bands for our
investigation of FCIs. We follow [14], where the authors demonstrate that these
states are realized in the Hofstadter model for the density of states ns = 1/q.
Which corresponds to a flux density of

nφ =
p

|C|p− sgn(C)
=
p

q
(2.34)

for p, q ∈ N.
Second, the Hamiltonian is computationally minimal, since it only requires

nearest-neighbor hopping on a square lattice with a phase factor, albeit with an
enlarged effective unit cell.
Third, and crucially for our research, we can tune the relevant length scale in the
problem, the magnetic length, simply by adjusting the flux density. This allows
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us to access a large selection of system sizes at a low computational cost. We can
also choose the magnetic unit cell dimensions to be in the preferred direction for
our algorithm, which in our case is the x-direction. This powerful combination of
configurability and simplicity make the Hofstadter model an ideal choice for our
research.

2.4.3. Interaction Hamiltonian

The many-body Hamiltonian comprises the single-particle Hamiltonian from Eq.
2.31 with the addition of a density-density interaction term, such that

H = H0 +

dκe∑
κ′=1

V (κ′, nφ)fκ′−1(κ)
∑
〈ij〉κ′

ρiρj (2.35)

where κ ∈ R+ is the interaction range, V (κ′, nφ) = V0/(κ
′/lB) is the Coulomb

potential accounting for the fact that the lattice constant in units of lB varies
as a function of nφ, fi(κ) = min{Θ(κ − i)(κ − i), 1} is a scale factor involving
the Heaviside step function Θ, and ρi = c†ici is the fermionic density operator.
The sum is constructed such that we can tune the interaction range continuously
with respect to κ. In cases where κ is non-integer, we scale the dκeth nearest-
neighbor term by the fractional part of κ, where d. . . e denotes the ceiling operator.
The interaction strength constant, V0 = 10, is chosen predominantly due to its
simplicity, and hence low computational expense.
We note that although non-Abelian FQH states were originally introduced via

many-body interaction terms, it has since been shown that equivalent phases may
also be stabilized with two-body interactions [40–42].
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Chapter 3

Methods

In this chapter, we discuss and motivate the numerical methods utilized in our
research.
To investigate the physics of quantum many-body systems, we perform large scale
numerical simulations. The main difficulty in this investigation has its roots in the
exponential scaling of the Hilbert space with the system size - if the single particle
Hilbert space is spanned by d states, the basis of the corresponding N -particle
Hilbert space comprises of dN states.
To this end, Matrix product state (MPS) based methods are well established

tools for the simulation of quantum many-body systems, notably for systems in-
volving fermionic degrees of freedom (where the otherwise efficient quantum Monte
Carlo methods run into the notorious sign problem). The success of these meth-
ods can be attributed to the fact that the ground states of interest (in our case,
of two-dimensional gapped Hamiltonians) are area law states that only occupy a
corner of the Hilbert space.
In Section 3.1, we motivate these methods with a brief discussion of entanglement.

3.1. Entanglement and the area law

When different degrees of freedom of a quantum system cannot be described inde-
pendently, we say that the system is entangled [43]. A fundamental understanding
of this phenomenon proved crucial in the development of numerical methods for
the efficient simulation of many-body systems. Furthermore, the classification
of topological order—through topological entanglement entropy—is based on this
phenomenon [44].
Consider the bipartition of a 1D system into sections A and B, such that
|ψ〉 ∈ H = HA ⊗HB, where HA/B consists of all states described to the left/right
of the bond that we choose. For a pure state |ψ〉 ∈ H, we define the reduced
density matrix of a subsystem (say, A) by tracing out the degrees of freedom of
the subsystem B:

ρA = TrB(|ψ〉 〈ψ|) (3.1)
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We can quantify the entanglement between the two subsystems with the von Neu-
mann entanglement entropy S = −Tr(ρAlog(ρA)).
If the reduced density matrices on A or B are mixed, it follows that S 6= 0 and we
say the subsystems are entangled.
Each pure state |ψ〉 ∈ H can be written in terms of the states of the subsystems
using the Schmidt decomposition

|ψ〉 =
∑
α

Λα |α〉A ⊗ |α〉B (3.2)

Where the states {|α〉A/B} form an orthonormal basis of HA/B, and the Schmidt
coefficients Λα ≥ 0. For a normalized state |ψ〉, we find

∑
α Λ2

α = 1.
From Eq. (3.2), we can write ρA =

∑
α Λα |α〉R 〈α|R. Thus the entanglement

entropy can be written in terms of the Schmidt values,

S = −Tr(ρAlog(ρA)) = −
∑
α

Λ2
αlog(Λ2

α) (3.3)

For the case where there is no entanglement, Λ1 = 1, Λn>1 = 0 and thus S = 0.
A typical—randomly drawn—state in the Hilbert space follows a volume law;
in particular, the entropy S = N

2
logd−1

2
is close to the maximum entropy [45]

(where d is the on-site Hilbert space dimension). Ground states, on the other
hand, have been shown to be area law states—the entanglement entropy S grows
proportionally with the area of the cut, and further, S ∝ LD−1, where L is the
length of the system and D is the physical dimension [46].
For the 1D chain shown of size L, it follows that S(L) is constant (for L > ξ,
the correlation length of the system). The number of Schmidt values needed
increases exponentially with the system size for a randomly drawn state—for one-
dimensional area law states, it remains constant (further, only a few Schmidt
states contribute significantly, and the singular values in a gapped one-dimensional
system often decay exponentially [47]). The MPS representation exploits this
property, and provides an efficient way to represent these states [48].

3.2. Matrix Product States

In the MPS ansatz, the coefficients ψi1,...,iN of a pure quantum state are written as
products of matrices.

ψi1,...,iN = M [1]i1M [2]i2 ...M [N ]iN (3.4)
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3.2. Matrix Product States

Figure 3.1.: The AKLT state. The ellipses denote the spin-1 states (described in
Eq. 3.2.1) σi, while the singlet states between neighboring spins-1/2
bi and ai+1 are given by the squiggly lines.

WhereM [n] is a set of rank-3 tensors such thatM [n]in are matrices with dimension
χn × χn+1. χn is the bond dimension of bond n. Further, χ1 = χN+1 = 1 such
that the matrix product returns a number. We also introduce a diagrammatic
representation (See Fig. 3.2) for tensor networks, where a tensor with n indices is
represented by a symbol with n legs—further, one can perform tensor contraction
by connecting two legs. Note that the choice of symbol is arbitrary (here we
represent all tensors with a square), and the tensor is identified by the number of
legs it has.

3.2.1. Example: AKLT state

We discuss the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state [49] because it
presents a analytically solvable example. The AKLT state is the ground state of
the spin-1 Hamiltonian on a chain (See Fig. 3.1)

H = −
∑
i

Si · Si+1 +
1

3
(Si · Sj)2 (3.5)

where S are spin-1 operators. In the ground state, each spin-1 site is described in
terms of the triplet states of two spins-1/2:

|+〉 = |↑↑〉

|0〉 =
|↑↓〉+ |↓↑〉√

2

|−〉 = |↓↓〉

Adjacent spins-1/2 of neighboring sites form a singlet state |↑↓〉−|↓↑〉√
2

. One finds
that this state can be written as an MPS of dimension 2. Consider first the singlet
state on bond i

|Σ[i]〉 =
∑
bi,ai+1

Σba |bi〉 |ai+1〉 (3.6)
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with matrix Σ

Σ =

(
0 1√

2

− 1√
2

0

)
(3.7)

for bi and ai+1 as the adjacent spin-1/2 degrees of freedom on site i and i + 1
respectively. The ground state, written in terms of the spins-1/2 is then:

|ψGS〉 =
∑
a,b

Σb1a2Σb2a3 . . .ΣbLa1 |ab〉 (3.8)

We now introduce a mapping from the states of two spins-1/2 on site i, |ai〉 |bi〉 ∈
{|↑〉 , |↓〉}⊗2 to spin-1 states |σi〉 ∈ {|+〉 , |0〉 , |−〉}, with Mσ

ab |σ〉 〈ab|. Mσ
ab |σ〉 〈ab|

can be written in terms of three 2× 2 matrices, one for each value of σ

M+ =

(
1 0
0 0

)
,M0 =

(
0 1√

2
1√
2

0

)
,M− =

(
0 0
0 1

)
. (3.9)

The mapping for the full chain of length L is∑
σ,a,b

Mσ1
a1b1

Mσ2
a2b2

. . .MσL
aLbL
|σ〉 〈ab| (3.10)

Applying this to the ground state (consisting of singlet states on every bond)
written in terms of the spin-1/2 states, we obtain the form

|ψ〉 =
∑
σ

Tr(Mσ1ΣMσ2Σ . . .MσLΣ) |σ〉 (3.11)

Identifying Aσ = MσΣ gives us the MPS form of the AKLT state.
We note that any state in a finite system can be represented exactly in the MPS
ansatz. However, for a volume law state, the bond dimension χ required increases
exponentially with the number of sites N—area law states on the other hand can
be well approximated with a finite bond dimension.

3.2.2. Canonical form

As we wish to discuss numerical techniques in the MPS framework, we introduce
the canonical form of MPS states—in these forms, all tensors (except one) are
unitary. First, we note that the MPS representation is not unique. In particular
for a bond in an MPS (say, between sites n and n + 1), we can carry out the
substitutions

M [n]jn → M̃ [n]jn = M [n]jnV −1 (3.12)
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v(a)

(b)

a

a b

Ma b ψi1i2...iN
. . .

i2i1 i3 iN
M1 M2

ψ(c)
. . .

ᾱ

Figure 3.2.: (a) Graphical notation for representing tensor networks—in partic-
ular for vector v, matrix M and wavefunction |ψ〉 consisting of N
sites. (b) We perform tensor contraction by joining two legs, here
(M1M2)ab =

∑
i(M1)ai(M2)ib. (c) Representation of the overlap 〈α|ψ〉

between wavefunctions ψ and α.

M [n+1]jn+1 → M̃ [n+1]jn+1 = VM [n+1]jn+1 (3.13)

for an invertible matrix V with dimension χn+1 × χn+1, and this would describe
the same state as before. We can exploit this to obtain a convenient form—the
canonical form—of the MPS. For a general MPS state with rank-3 tensors M [n]jn ,
one can decompose the tensors as M̃ [n]jn = Γ[n]jnΛ[n+1] where Λ is a diagonal
square matrix consisting of positive terms, that correspond to the Schmidt values
at the bond. This form also allows us to choose the normalization. Consider the
following kinds of grouping

A[n]jn = Λ[n]Γ[n]jn (3.14)

B[n]jn = Γ[n]jnΛ[n+1] (3.15)

We can show that the A-(B-) form consists of left- (right-)normalized matrices.
Further, we can define a mixed canonical form, where we group the Γ and Λ
matrices in a way that gives A-matrices to the left of some bond n and B-matrices
to the right. This is crucial for implementing DMRG, and is discussed in Section
3.3.

3.2.3. Matrix product operators

Finally, let us look at the operator counterparts to the MPS. These are termed
Matrix Product Operators (MPOs), and consist of rank-4 tensors with two physical
indices σi and σ′i (represented as the outgoing and ingoing legs) that represent the
on-site degrees of freedom, and two virtual indices that connect horizontally. A
general MPO is written as

O =
∑
σ,σ′

W σ1σ′1W σ2σ′2 . . .W σL−1σ
′
L−1W σLσ

′
L |σ〉 〈σ| (3.16)
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We refer to [50] for a procedure by which to construct an MPO form for a Hamil-
tonian of interest. As an example, a Hamiltonian with multiple one and two-body
interactions of the form of Xi + YiZi+1 can be written in an MPO form with the
following on-site matrices

W [i] =

 1 0 0
Zi 0 0
Xi Yi 1

 (3.17)

3.3. Density Matrix Renormalization Group
In the previous section, we introduced an ansatz that efficiently represents one-
dimensional ground states (as these are area law states). In this section we de-
scribe a powerful numerical method—called the density matrix renormalization
group (DMRG)—that we used in our research to compute ground states and their
energies. The approach was initially described by White [51] and later on, was
reformulated as a variational optimization scheme within the space of MPS wave-
functions [52]. We consider and describe the latter approach in this section.

3.3.1. Mathematical formulation

Formally stated, the problem is to find a wavefunction |ψ〉 that minimizes the
energy expectation value

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

(3.18)

In the following discussion, we reformulate the problem 3.18 to motivate the im-
plementation of DMRG, which we discuss in Section 3.3.2.
We interpret 3.18 as minimizing the expectation value 〈ψ|H |ψ〉 with the constraint
〈ψ|ψ〉 = 1. Here, we introduce a Lagrange multiplier to extremize functional f :

f [|ψ〉] = 〈ψ|H |ψ〉+ λ(1− 〈ψ|ψ〉) (3.19)

The extremization of this functional can be carried out over the entire system—
however, such approaches are often unstable. In DMRG, one localizes this extremization—
that is, one optimizes a single MPS tensor at a time.
Starting from an MPS representation of the right-hand side of Eq. 3.19, we con-
tract the tensors around the MPS tensor of site i into Hi and Ni. We can now
write the parameters of the MPS tensor of site i in terms of a vector ai

fi[ai] = ai
†Hiai + λ[1− ai†Nlai] (3.20)

22



3.3. Density Matrix Renormalization Group

Figure 3.3.: The optimization problem is reduced to N eigenvalue problems. De-
picted is one such equation, which corresponds to one iterative step of
the DMRG algorithm. The tensor boxed in red is the tensor optimized
in this step.

We motivate the mixed canonical form of the MPS. Starting with MPS in the
canonical form, we group the tensors such that they are left normalized to the left
of site i : Aj<i = ΛjΓj and right normalized to the right of site i : Bj>i = ΓjΛj+1.
We also introduce an on-site tensor M i = ΛiΓiΛi+1. In this form, the operator
Ni = 1 ∀ i. For the final step in the optimization procedure, we minimize the
functional with respect to a†i .The problem thus reduces to an eigenvalue equation

Hiai = λai (3.21)

3.3.2. Implementation

Before starting the iterative procedure, we transcribe the initial wavefunction—
a guess for the ground state—into canonical MPS form and the corresponding
Hamiltonian into matrix product operator [2](MPO) form.
The algorithm sweeps to the right through sites i = 1 to N , in the following
manner:
1. Convert MPS to its mixed canonical form, with the on-site tensor M i.
2. Reshape the on-site tensor into a vector ai, and reshape the contracted tensor
Hi into a matrix.
3. Solve the eigenvalue problem 3.21, for instance with the Lanczos algorithm.
The equation is depicted graphically in Fig. 3.3. Store the lowest eigenvalue λ as
the best guess for the ground state energy.
4. Reshape ai into an MPS tensor, and convert MPS into mixed canonical form—
this time, with the on-site matrix at the next site.
An iterative procedure consisting of many sweeps, from the left to the right and
back, is used. The algorithm continues the run until some convergence criterion is
satisfied—such as convergence of energy.
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3.3.3. iDMRG and two-dimensional systems

In contrast to the finite-size DMRG algorithm that we introduced, the infinite-size
version (termed iDMRG) grows the system by adding sites to the lattice in the
center, and minimizes the MPS wavefunction ansatz with respect to the Hamilto-
nian for the enlarged system in every iteration [52].
The crucial step in the algorithm involves an assumption of translational invariance—
justified in the thermodynamic limit—which motivates a guess wavefunction for
each iteration, with the matrices associated with the added sites written in terms
of the site matrices of previous iterations. The algorithm then proceeds iteratively,
growing the system and minimizing the energy in each step until the matrices in
the center converge to a certain point.
The iDMRG algorithm in our research is set on an infinite cylinder geometry

that possesses a finite circumference Ly [53], with the infinite length of the cylinder
along the x-axis.
Assuming that our state is translationally invariant, with a unit cell of length L̄

(for a flux density nφ = p/q, L̄ will be a multiple of q), we can express the infinite
MPS with L̄ tensors {M [0],M [1], . . . ,M [L̄]} such that M [i] = M [i+L̄].
DMRG is inherently a 1D method—we can study 2D systems by mapping our

system to a 1D system with long-range interactions. This mapping is depicted
graphically for the infinite cylinder in Fig. 3.4—note the periodic boundary con-
ditions along the circumference. Along the cylinder axis we assume translational
invariance. We employ this geometry to study FQH states in Chapter 4. In Chap-
ter 4 we also discuss the benefits and shortcomings of the algorithm and the infinite
cylinder geometry for our research.
We refer the reader to [52] for an involved discussion of iDMRG.

3.4. Characterizing topological order
A significant challenge we faced in our research was the task of identifying out-
liers—computed ground states that are not topological in nature, or have signifi-
cant finite size effects.
In this section, we discuss the various techniques that were used to confirm the
topological nature of the computed ground states and further, to characterize their
topological order.

3.4.1. Flux insertion

In this method, we insert magnetic flux Φx adiabatically through the longitudinal
axis of our infinite cylinder (see Fig. 3.5a) and compute 〈QL〉, the average charge
on the left half of the infinite cylinder.
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Figure 3.4.: Winding a 1D chain around the infinite cylinder allows us to study
the 2D system using DMRG.

We recall that for a FQH state with filling fraction ν and Chern number (for
the lowest band) C, the Hall conductivity is given as σH = Cνe2/h, where e is
the electronic charge and h is Planck’s constant. From Laughlin’s charge pump-
ing argument, we can show that for a FQH state with ν = p/q, inserting q flux
quanta adiabatically causes charge ∆Q = qσHh/e = Cpe to be pumped along the
cylinder—this provides a way to confirm the FQH nature of our states [31].

3.4.2. Momentum-resolved entanglement spectrum and
CFT edge counting

We recall that the iDMRG algorithm solves iteratively for the ground state, by
carrying out Schmidt decomposition of the system into two half infinite cylinders
and truncating it at a given bond dimension χ.
The entanglement spectrum {εα} is defined in terms of the spectrum {Λ2

α} of the
reduced density matrix of equation 3.3 by Λ2

α = exp(−εα) for each α [54]. The
translational symmetry Ty of the cylinder allows us to assign momentum quantum
numbers to Schmidt states. In momentum-resolved entanglement spectrum, the
horizontal axis represents the momentum of the corresponding eigenvector of the
reduced density matrix ρ [55].
We consider the U(1) charge symmetry of the Hofstadter Hamiltonian, which
allows us to further resolve the spectrum into distinct U(1) charge sectors of the
left Schmidt states. Using the low-lying energies in the spectrum, we can comment
on the counting of the edge states (see Fig. 3.5b) by comparing them to the
characteristic counting of the edge conformal field theory (CFT) [55]—further
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characterizing, and confirming the topological nature of our states.

3.4.3. Density profile and correlation functions

We examine the density profile 〈ρi〉—the expectation value of the total number
operator. This method is powerful for identifying competing phases in our system
(such as the Wigner crystal [21]) and finite size effects that could lead to errors in
our computation of the topological entanglement entropy. We consider an example
for the Laughlin wavefunction in Fig. 3.5c.
We define the two-particle correlation function as the expectation value of the
density operator ρ of a particle at site 0 with the density operator of a particle at
site i:

〈: ρ0ρi :〉 = 〈: c†0c0c
†
ici :〉 (3.22)

Computing this quantity for our ground states, we observe a hole at small inter-
particle distance d (because of Pauli’s exclusion principle, as we consider fermions
in this example). On increasing d we observe damped oscillations, finally reaching
an asymptotic value that characterizes a homogenous fluid. This is consistent with
the Laughlin state, a liquid with short-range interactions that effectively maximize
the distance between particles. For a theoretical motivation we refer to [56, 57].
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a Charge pumping b Entanglement spectrum

c Density profile d Correlation function

Figure 3.5.: (a) Average charge on the left cylinder 〈QL〉 as a function of exter-
nal flux Φx, adiabatically inserted along the longitudinal axis of the
cylinder. We consider a state with ν = 1/7 and Chern number 3. The
observed charge pumping of three charges with the insertion of seven
flux quanta confirms the FQH state.
(b) Momentum-resolved entanglement spectrum for a state with ν =
1/3. Entanglement energies εα are plotted as a function of the mo-
mentum eigenvalues of the Schmidt states, and the color corresponds
to the respective U(1) charge sector. One observes an edge count-
ing of (1,1,2,3...), consistent with the edge counting for an Abelian
state from CFT. (c) Density profile for an FQH system with ν = 1/3.
We consider a system with 2 particles. As each electron splits into
three Laughlin quasi-electrons, we observe six density peaks of equal
amplitude. (d) The correlation function profile is consistent with the
Laughlin state [56]. We note that a larger system size would allow us
to better resolve the profile. See Fig. 4.2(d) for such a case. 27





Chapter 4

Abelian topological order of FQH
states in lattice models

Fractional excitations of the ground state, known as anyons, are among the defin-
ing features of FQH states. These anyons can obey either Abelian or non-Abelian
exchange statistics, such that the fractional phase shift to the ground state wave-
function is given by a one-dimensional or higher-dimensional braid group respec-
tively. [58–62].
In this chapter, we describe our numerical investigation of the topological order
and corresponding ground state statistics of the single-component ν = 2/5 and
3/7 FQH states, and present the results and analysis of our research.

4.1. Overview of current FQH research

In this section, we motivate the current state of research on the topological order
of FQH states. Here, we build up on the introduction contained in Chapter 1.
Continuum FQH states in the Jain hierarchy have been shown numerically [63–

65], and for the Laughlin state also experimentally [24, 25], to possess Abelian
topological order for the Coulomb interaction. The analysis of corresponding lat-
tice FQH states on the other hand is complicated by several factors, including the
limited number of viable experimental systems [66], and the difficulty of engineer-
ing long-range interactions [67].
It has also been shown that the lattice can host fundamentally different phases of
matter [68], as well as states with non-Abelian statistics at equivalent filling factors
[41, 69]. In particular, there are Abelian FQH states in lattice models stabilized
by two-body interactions that have been shown to possess non-Abelian statistics
when interactions are sufficiently long-range [41], which provides motivation for
further study.
Given the experimental challenges and theoretical interest, it is important to de-
velop an efficient method to analyse such states numerically and probe their quan-
tum statistics.
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4.2. Identifying topological order

In our research, we performed large-scale numerical calculations using the iDMRG
algorithm to investigate the Abelian nature of the single-component ν = 2/5 and
3/7 FQH states in the Hofstadter model with a large interaction strength, chosen
such that inter-band transitions are likely to occur.
For the purposes of this project, the iDMRG algorithm offers both notable ad-

vantages, as well as some drawbacks. The main advantage is that, unlike exact
diagonalization, no band projection needs to be taken for the interaction Hamil-
tonian and so inter-band transition effects are automatically taken into account.
An added benefit is that the algorithm works in the semi-thermodynamic limit,
meaning that a thermodynamic limit ansatz is taken along the the cylinder axis.
Furthermore, the system sizes attainable along the circumference are highly com-
petitive with alternative methods. The major disadvantage of the algorithm is
that it is inherently one dimensional, which means that even modest interaction
ranges on the two-dimension surface correspond to exponentially long-range in-
teractions on the unraveled one-dimensional chain. This is particularly an issue
for this project as we are motivated to tune the interaction range. Nevertheless,
we overcome this barrier through the use of an optimal sampling algorithm, as
explained in later sections.
The identification of the Abelian topological order in our research is based on

the area law of entanglement S = αLy−γ+O(e−L), where S is the von Neumann
entanglement entropy, α is a non-universal constant dependent on the microscopic
parameters of the Hamiltonian, Ly is the circumference of our cylinder and γ is
the topological entanglement entropy [44, 70].
Thus, we use the iDMRG algorithm on an infinite cylinder to compute ground

states with different Ly. We compute the von Neumann entanglement entropy
(see Eq. 3.3) at various system sizes to construct detailed plots of the area law of
entanglement, and extrapolate to obtain γ as the intercept at the ordinate.
The topological entanglement entropy cannot be removed by reducing the system
size and depends intrinsically on the type of quasiparticle excitations hosted by the
ground state. It is given as γ = ln(D), where D =

√∑
a da is the total quantum

dimension of the field theory description and da is the quantum dimension of a
quasiparticle of type a. The quantum dimension for Abelian anyons is always
one, whereas for non-Abelian anyons da > 1 [44]. The conventional Laughlin
argument for an Abelian FQH state at filling ν = r/s is that the ground state
degeneracy is s, the quasiparticles possess 1/s of an electronic charge, and the
topological entanglement entropy is γ = ln(

√
s) [8, 71]. For non-Abelian order,

this value is always larger. We note, however, that it has been recently shown that
the topological entanglement entropy may be larger than ln(

√
s) even for single-

component Abelian states, taking the general form γ = ln(
√
λs), with λ ∈ Z+
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[72, 73]. Thus the original statement ln(
√
s) implies that the state is Abelian,

though the converse is not always true. By precisely extrapolating the value of the
topological entanglement entropy from the area law of entanglement, we are able
to definitively conclude that a state exhibits Abelian order when γ = ln(

√
s).

Although the premise is simple, the execution is fraught with potential problems.
The first and perhaps most apparent problem is the precision to which we are able
to extrapolate to the topological entanglement entropy. In many-body numerics,
such as iDMRG, we are restricted to relatively small system sizes. Not only is
the area law technically non-linear at small system sizes, but more importantly,
finite-size effects exist along with this, leaving the area law data highly spread
and unreliable. Second, the individual data points are computed at a finite bond
dimension, which may be significantly distant from the actual value in the χ→∞
limit. Even slight errors in the individual data points can have a compound ef-
fect on the total error of the topological entanglement entropy, particularly if the
points are close together on the L-axis. Further, there is an arbitrariness in how
to construct the line of best fit—which points should be included and which ones
should be left out? We observed that minor changes in acceptance criteria can
have a drastic impact on the slope and the y-intercept of the linear regression.
Although a lot has been achieved with such computations in the past few years
[31, 74, 75], we argue that in order to perform a stand-alone computation of the
topological entanglement entropy, more care is required to address numerical and
statistical errors.
In our research, we address these issues by devising a systematic method that is
reliable enough to accurately compute the topological entanglement entropy for
ν = 1/3 and 2/5 states. Further, using this method we obtain an estimate for the
topological entanglement entropy of the ν = 3/7 state.
First, we plot the area law of entanglement in units of magnetic length, which in
the square-lattice Hofstadter model depends on the flux density through Ly/lB =√

2πnφLy. Since the processing cost for convergence for iDMRG scales exponen-
tially with Ly, exploiting the natural length scale of the Hofstadter model allows
us to obtain a larger number of data points at relatively low computational cost
[74]. Second, to remove arbitrariness and optimize the flux densities considered,
we choose values guided by an algorithm (this is detailed in the Appendix A). For
each data point, we scale the computation of the entanglement entropy with bond
dimension to obtain an extrapolation with error in the χ → ∞ limit. We accept
data points only if the error is smaller than 0.1%. Finally, to mitigate finite-size
effects, we construct multiple lines of best fit as we incrementally exclude data in
ascending Ly/lB, and stop as soon as the linear regression of the remaining points
yields R2 > 0.99. This is a necessary compromise between a precisely straight line
and a maximal data set. The details of the numerical method are discussed in the
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Appendix A.

4.3. Results

In this section we present our results from the many-body numerical calculations.
In section 4.3.1 we demonstrate the Abelian statistics of the FQH states in the
case of nearest-neighbor interactions, and in sections 4.3.2 and 4.3.3 we analyse
the effect on the topological entanglement entropy as we tune the interaction range
and strength respectively.

4.3.1. Nearest-neighbor interactions

To begin, we consider the FQH states stabilized by nearest-neighbor interactions,
as defined in the interaction Hamiltonian with κ = 1.
To benchmark our results, we start with the Laughlin filling ν = 1/3. Although
this state has been previously investigated using an area law constructed from
a many-body lattice simulation [31, 74, 75], we emphasize that the cited inves-
tigations are not systematic enough to be transferable for higher-order states in
the hierarchy. We therefore present the computation of the ν = 1/3 area law
plot using our systematic procedure in Fig. 4.1. We have algorithmically chosen
our data points to avoid selection bias, we have scaled each data point with χ
to eliminate convergence error, and we have systematically excluded small-Ly/lB
data to alleviate finite-size effects. Most importantly, all points are converged in
the entanglement entropy to δS < 0.1%, have a spacing of ∆(Ly/lB) > 0.1, and
the linear regression staisfies R2 > 0.99. Further tightening the constraints of the
algorithm yields eight such points, shown in the figure.
We note that for the ν = 1/3 state we obtained significantly more data points

that satisfy all of the criteria, which is why we further restricted the algorithm
to yield a smaller representative sample. The topological entanglement entropy
obtained from this data is γ = 0.557±0.043, which agrees closely with the Abelian
theory value of γ = ln(

√
3) ≈ 0.549 [76].

We progress from the Laughlin state to the next filling fraction in the hierarchy:
ν = 2/5. We hold the ν = 2/5 data to the same stringent quality standards that
we enforced for the ν = 1/3 state. The data obtained are shown in Fig. 4.1(b),
which serves as our first original result. Since for the ν = 2/5 state it is more
difficult to satisfy configuration constraints and convergence at accessible χ, this
presents a significant computational challenge compared to the Laughlin state [77].
Nevertheless, we obtain a set of four data points that satisfy all of the criteria. The
topological entanglement entropy obtained from these data is γ = 0.850 ± 0.103,
which agrees with the Abelian theory value of γ = ln(

√
5) ≈ 0.805 and iDMRG
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Figure 4.1.: Von Neumann entanglement entropy, SvN , against cylinder circum-
ference, Ly, in units of magnetic length, lB = (2πnφ)−1/2, for the
fermionic hierarchy states at (a) ν = 1/3, (b) ν = 2/5, and (c) ν = 3/7.
In each case, we use nearest neighbor interactions (κ = 1). (a, b) The
threshold where the R2 value first exceeds 0.99 is marked with a green
dashed line. All of the points above this threshold are used to con-
struct the line of best fit. In (c), we present the compete data set with
our largest system size Ly = 14. In all cases, we obtain points based on
the systematic procedure outlined in Appendix A with χmax = 3000.
The complete data sets are shown in the Appendix (in Fig. B.1) and
the points circled in red are studied in Fig. 4.2.

computations using the V1 Haldane pseudopotential [78]. Moreover, it is well-
separated from the non-Abelian prediction of γ = ln(

√
5(φ2 + 1)) ≈ 1.448, where

φ is the golden ratio [71, 79].
There are several additional remarks that can be made, specifically in compar-

ision to the Laughlin state. First, the minimum Ly/lB to effectively eliminate
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finite-size effects is larger for the ν = 2/5 state than for 1/3, increasing from 8.5 to
9.5. Second, the average spacing of the data on the Ly/lB-axis is reduced. States
with a larger cylinder circumference are generally more expensive to converge,
and so we were not able to access high-Ly/lB states with such stringent precision.
Finally, although this figure shows all of the data points obtained in accordance
to the algorithm, we generally obtained a vast set of data that corroborate this
conclusion. The Appendix A also explains how one may haphazardly reach the
same conclusion when not following a rigorous procedure.
The last filling factor that we consider is the ν = 3/7 state where, unlike in the
previous cases, the area law has not been previously investigated in any form. As
before, we systematically select flux densities guided by our algorithm and we scale
each configuration with χ so that we can extrapolate to the χ→∞ limit. Due to
computational expense of the ν = 3/7 configurations, we are not able to converge
every data point to within < 0.1% error and so we cannot directly use the R2 value
as an indicator of finite-size effects. Instead, we present the data for the largest
system sizes that we examined (Ly/lB > 10 and Ly = 14) with . 3% error in Fig.
4.1(c). The full data set is shown in the Appendix (in Fig. B.1).
Interestingly, we note that there are two types of finite-size effects in the problem.
Not only is there a finite-size effect due to cylinder circumference in units of mag-
netic length, the physical length scale in the system, but there is also a finite-size
effect due to the cylinder circumference alone, the numerical length scale. Although
a large Ly/lB ensures that each FQH droplet has a large allocated area, a large Ly
additionally ensures that there are enough sites (matrices in the MPS) in the finite
direction of the algorithm to accurately represent the ground-state wavefunction.
Since an increase in Ly/lB coarsely corresponds to an increase in Ly, this is an
effect that was not apparent in the previous two states. In line with the observed
trend, we obtain a topological entanglement entropy of γ = 1.020 ± 0.353,which
is in agreement with the Abelian theory value of γ = ln(

√
7) ≈ 0.973, and well-

separated from the non-Abelian prediction of γ = ln(
√

7(φ2 + 1)) ≈ 1.616 [79–82]

To confirm the FQH nature of the configurations, we additionally examine each
data point in detail. We present the case studies for the red-circled points in Fig
4.1. We examine the details of the ν = 2/5 configuration at nφ = 1/7 and (Lx, Ly)
= (1,10), shown in Fig. 4.2.(a-d), and subsequently the ν = 3/7 configuration
at nφ = 1/10 and (Lx, Ly) = (1, 14), shown in Fig. 4.2.(e-h). In Fig. 4.2.(a)
we present the charge pumping (see section 3.4.1) of the ν = 2/5 configuration.
The charge pumping shows that two charges are pumped across the cut after an
insertion of five flux quanta, which confirms the ν = 2/5 FQH state. In Fig.
4.2.(b), we present the momentum-resolved entanglement spectrum discussed in
section 3.4.2. For the ν = 2/5 Jain state, the counting is governed by the CFT
for two non-interacting chiral bosons, which yields 1,2,5,10,... with a multi-branch
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Figure 4.2.: Case studies of the points circled in red from Fig. 4.1. The ν = 2/5
state is obtained at nφ = 1/7, (Lx, Ly) = (1, 10),and χ = 800. The
ν = 3/7 state is obtained at nφ = 1/10, (Lx, Ly) = (1, 14), and
χ = 2000.
(a, e) Average charge on the left half of the cylinder, 〈QL〉, as a function
of the external flux, φx, adiabatically inserted along the cylinder axis as
shown in the inset (not to scale). The charge pumping was performed
at the reduced bond dimensions of χ = 400 and 500, respectively. (b,
f) Momentum-resolved entanglement spectrum, showing the entangle-
ment energies, εα as a function of the momentum eigenvalues of the
Schmidt states (see section 3.4.2). In (b), we shift the spectrum, such
that ka → k̃a, to emphasize the edge modes.
(c, g) Average density, 〈ρi〉, and (d, h) two-point correlation function,
〈 : ρ0ρi : 〉, for each site in the MPS unit cell. Note that the dimensions
of the MPS unit cell are given in units of the lattice constant in this
figure.

structure [83, 84].
We note that we are unable to resolve the multi-branch structure in Fig. 4.2.(b)

and the verification of the counting sequence is hindered due to the modest mo-
mentum resolution, the compactified cylinder geometry, and the fact that post-
Laughlin Jain states are not pure CFT states [85]. We see that the first two
edge degeneracies are resolved for the bottom branch, 1,2,..., which shows similar
energy gaps to the literature [85] and tentatively accords with the Abelian Jain
state. However, we emphasize that the optimal configurations for the area law
plot, studied in our research, are not the optimal configurations to elucidate the
edge counting.
Finally in Fig. 4.2.(c,d) we plot the density and two particle correlation function,
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which we have described in section 3.4.3. The density plot shows that we are in
a striped phase and the two-point correlation function has the expected form for
a conventional FQH state [39, 57, 74]. Most significantly, we can see from the
asymmetric density and slight interference in the correlation function profile that,
despite our best efforts, some minor finite-size effects still remain. In Fig. 4.2.(e),
we present the analogous charge pumping curve for the ν = 3/7 configuration. In
this case, we observe three charges pumped after an insertion of seven flux quanta,
again in agreement with the expected Hall conductivity for the ν = 3/7 FQH state
in a C = 1 band. In Fig. 4.2(f), we show the momentum-resolved entanglement
spectrum, now at the higher resolution of Ly = 14. In this case we are only able
to accurately resolve the first degeneracy of the bottom branch to be 1 and hence
the verification of edge-state counting is ambiguous [83]. Reassuringly, the density
and two-point correlation function profiles in Fig. 4.2.(g,h) show less influence of
the finite system size than the ν = 2/5 configuration. The FQH configuration is
again in a striped phase and shows the conventional correlation function profile.

4.3.2. Tuning interaction range

Having observed Abelian topological order for the ν = 1/3, 2/5 and 3/7 states
when stabilized by a nearest-neighbor density-density interaction term, we now
investigate the effect of increasing the interaction range, such that 1 ≤ κ ≤ 3. As
before, we start with the most prominent ν = 1/3 state.
In order to investigate the effect of tuning interaction range, we take the eight
accepted points in Fig. 4.1.(a). Subsequently, we construct equivalent area law
plots for up to third nearest-neighbor interactions, as shown in Fig. 4.3.(a).
At this filling factor and parameter range, our results show that there is no sta-
tistically significant increase in the topological entanglement entropy as the inter-
action range is increased, where the integer-κ data yield γκ=1 = 0.557 ± 0.043,
γκ=2 = 0.619 ± 0.068 and γκ=3 = 0.680 ± 0.180. Moreover, as well as agreeing
with each other with a comparable precision, all of the computed γ agree with
the Abelian theory prediction within standard error. Throughout this procedure,
we ensure that the error standards are maintained to be < 0.1% and the linearity
threshold is consistently R2 > 0.97.
Note that the configurations at nφ = 1/4 and 1/5 with κ = 3 are excluded as out-
liers, based on abnormal finite-size effects observed in their density profiles. Since
these configurations have the smallest system sizes and MUC dimensions (4 × 1
and 5×1) out of the eight accepted points, it is unsurprising that they exhibit the
largest finite-size effects for the case of up to third nearest-neighbor interactions.
In Fig. 4.3.(b) we present the analogous plot for the ν = 2/5 state. We take the

four accepted data points from Fig. 4.1.(b) and maintain the error threshold to
be 0.1%. Unlike for the ν = 1/3 state, at this filling factor we observe a statisti-
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Figure 4.3.: Tuning the interaction range for the area law plots in Fig. 4.1. In each
case we tune (a,b) the corresponding colored points from Fig. 4.1(a,b),
and (c) the four colored points from Fig.4.1(c) that are closest to the
line of best fit. The data for κ = 1, 2, 3 is colored in black, green
and red, respectively, and data for intermediate values of κ is colored
blue. The value of the topological entanglement entropy predicted
from the Abelian theory, γ = ln(

√
s), is additionally marked with a

dashed line. In all cases, we increase the bond dimension of these
runs appropriately such that we maintain the same error threshold.
Consequently, the maximum bond dimension is χmax = 4000 for each
filling factor. The nφ = 1/4 and 1/5, κ = 3 data points at ν = 1/3
filling are marked as outliers.

cally significant increase in the topological entanglement entropy as the interaction
range is increased. We find that the integer-κ data yield γκ=1 = 0.850 ± 0.103,
γκ=2 = 1.446± 0.582, and finally γκ=3 = 2.267± 0.775.
Although this statistically significant increase hinges on a couple of data points,
the mean for the κ ≥ 2 data is consistently and significantly larger than both the
1 ≤ κ < 2 data and the Abelian theory prediction. More concretely, the topolog-
ical entanglement entropies for κ < 2 confirm the Abelian nature of the state at
short interaction range and have a distinctly higher precision than the κ ≥ 2 data.
We caution that our result at κ = 3 may be vulnerable to minor finite-size errors,
particularly affecting the nφ = 2/11 data point. Although we went to great lengths
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to alleviate finite-size effects at κ = 1, the quality of the configurations is expected
to deteriorate as κ is increased. In order to overcome this, the same systematic
procedure would have to be applied at κ = 3, which is beyong the scope of our
computational resources. The errors in the data also prevent us from commenting
on the continuity of the transition in the topological entanglement entropy as the
interaction range is increased.
Finally, we tune the interaction range for the state at ν = 3/7 filling, as shown in
Fig. 4.3.(c). In this case, we take the four accepted data points that are closest
to the line of best fit in Fig 4.1(c). We do this in the interests of computational
expense, since the configurations for this filling are already challenging to con-
verge, even at κ = 1. For consistency, we maintain the same error threshold.
Following the observation for the ν = 2/5 state, the topological entanglement en-
tropy increases with interaction range and by a larger margin than before, from
γκ=1 = 0.943 ± 0.102 to γκ=2 = 1.879 ± 0.441. The κ < 2 data solidifies the
observation of an Abelian state at short interaction range and with a significantly
higher precision than the result for κ = 2. We were not able to adequately alle-
viate numerical and statistical errors at κ = 3 for the bond dimensions that were
accessible to us. However, the κ = 2 data already shows a statistically significant
increase from κ = 1.

In order to verify the robustness of the FQH states at κ = 1, we examine their
charge pumping and momentum-resolved entanglement spectra. In our research,
we present in Fig. 4.4 the corresponding plots for the case studies introduced
in Fig. 4.2. From the charge pumping curves in Fig. 4.3(a,c), we can confirm
that the higher-κ states are valid FQH states corresponding to ν = 2/5 and 3/7
filling of a |C| = 1 band. From the ν = 2/5 entanglement spectra, we notice
only minor deviations in the low-lying entanglement energies, which become more
pronounced as κ increases from 2 to 3. From the ν = 3/7 entanglement spectra,
we observe a significant deviation in the low-lying states as κ is increased, where
only a small minority of the κ = 1 and 2 energies overlap. In both cases, the
numerical configurations preclude a precise verification of the counting.

4.3.3. Tuning interaction strength

Having observed an increase in the topological entanglement entropy with inter-
action range, we now investigate the effect of increasing the interaction strength,
such that 10 ≤ V0 ≤ 50, at fixed interaction range κ = 1.
In Fig. 4.5, we present the topological entanglement entropies for the ν =

1/3, 2/5, 3/7 fillings, along with their associated R2 values, as we vary V0 for the
κ = 1 configurations in Fig. 4.3. In Fig. 4.5.(a), we see that the result for
ν = 1/3 is stable to increases in interaction strength. In fact, the error in the
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Figure 4.4.: Case studies from Fig. 4.2 as a function of κ. The results for the ν =
2/5 state in (a, b) are obtained at χ = 800, 2000, 2000 for κ = 1, 2, 3,
respectively, whereas the results for the ν = 3/7 state in (c, d) are
obtained at χ = 2000 for both κ = 1 and 2. These bond dimensions
correspond to the values required for the area law plot in Fig. 4.3. (a,
c) Average charge on the left half of the cylinder, 〈QL〉, as a function
of the external flux, φx (See section 3.4.1). The charge pumping was
performed at the reduced bond dimensions of χ = 400 for ν = 2/5
at κ = 1, and χ = 500 for all other states. (b, d) Corresponding
momentum-resolved entanglement spectra.

topological entanglement entropy decreases from γV0=10 = 0.557±0.043 to γV0=50 =
0.560 ± 0.032 and the R2 value monotonically increases from R2

V0=10 = 0.998 to
R2
V0=50 = 0.999, which indicates that the result is converging, albeit slightly. In

contrast, we see that in Fig. 4.5.(b), the result for ν = 2/5 is not robust to increases
in the interaction strength. At V0 = 20 and 30, the nφ = 1/6 configuration deviates
from the linear correlation, which negatively impacts the R2 values and error bars.
Moreover, at V0 = 40 and 50, two of the four configurations deviate from the
linear correlation, which renders an extrapolation of the topological entanglement
entropy meaningless. In Fig. 4.5.(c) we observe a breakdown of the extrapolation
for the ν = 3/7 state already at V0 = 20. In this case, the topological entanglement
entropy fluctuates significantly for V0 ≥ 20, which is a clear indication of numerical
error [86]. This analysis shows that the selected FQH configurations for the ν = 2/5
and 3/7 states are prohibitively sensitive to increases in the interaction strength
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in the parameter range we study. In order to successfully compute the topological
entanglement entropies for these states, one would have to reevaluate the algorithm
for each value of V0, which is currently beyond the scope of our computational
resources.

4.4. Discussion and conclusions

In the research presented, we investigated the Abelian topological order for the
single-component ν = 1/3, 2/5 and 3/7 FQH states in the Hofstadter model with
band mixing. Having developed an efficient sampling algorithm that accounts for
both numerical and statistical errors, we constructed the area law of entanglement
for each of these states and extrapolated to read off the topological entanglement
entropies. For all states, we demonstrated topological order when interactions
are nearest-neighbor. Subsequently, we investigated the effect of increasing the
interaction range and strength. The non-Laughlin FQH configurations are sensitive
to increases in interaction range, where we observe a corresponding increase in
topological entanglement entropy, and interaction strength, to the extent that we
can no longer reliably extrapolate to the thermodynamic limit. In contrast, the
extrapolation for the Laughlin state is robust in both cases. These results highlight
the sensitivity of Abelian FQH states in lattice models, as well as the scope of our
proposed algorithm.
Given the consistent Abelian result for the topological entanglement entropy

in the case of nearest-neighbor interactions, we comment briefly on the nature of
these states as the interaction range and strength are increased.
In Fig. 4.3, we observe an increase in topological entanglement entropy with κ

for the ν = 2/5 and 3/7 states. There are several possible explanations for this
increase, including: (i) a breakdown of the FQH state, (ii) numerical error, or (iii)
a transition to different quantum statistics. Scenario (i) postulates a transition
from the FQH regime to a competing phase, which is conceivable, particularly
in the band mixing regime [87]. However, by studying the charge pumping and
entanglement spectra in Fig. 4.4, it is evident that the FQH phases have not been
broken down. Scenario (ii) postulates that finite-size effects become uncontrolled
as the interaction range is increased, which makes the data prohibitively noisy.
Although the data is more susceptible to these effects at large κ, we place a strong
emphasis on error analysis and only use the highest-quality subset of data points
in Fig. 4.3. Moreover, if numerical errors were dominant, one would expect fluc-
tuations in the topological entanglement entropy, rather than the steady increase
that we observe. Scenario (iii) postulates that the Abelian FQH states transition
to different quantum statistics, such as non-Abelian order [41]. With respect to
the topological entanglement entropy, our data do not rule this out. Although the
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4.4. Discussion and conclusions

Figure 4.5.: Tuning the interaction strength for the κ = 1 area law plots in Fig. 4.3.
The topological entanglement entropy data for the (a) ν = 1/3, (b)
2/5, and (c) 3/7 series are colored blue, orange, and green, respectively.
On the same axes, we plot the R2 values of the corresponding area law
plots with black crosses. The value of the topological entanglement
entropy predicted from the Abelian theory, γ = ln(

√
s), is marked

with a dashed line. In all cases, the bond dimensions are the same as
those for the κ = 1 plots in Fig. 4.3

κ = 3 data at ν = 2/5 slightly exceeds the non-Abelian prediction of γ ≈ 1.448,
this may be attributed to the minor finite-size effects present for the nφ = 2/11
data point.
In Fig. 4.5, we observe that the original extrapolation of the topological entan-

glement entropy for the ν = 1/3 state is stable to increases in interaction strength,
whereas the extrapolations for the ν = 2/5 and 3/7 states are not. Indeed, the
Laughlin state is known to be more robust than higher-order FQH states and has
been shown numerically on a lattice to survive with interaction strengths that far
exceed the band gap [17]. Moreover, we obtained a comparatively vast data set
for the ν = 1/3 state, which allowed us to tighten the constraints of the algorithm.
As a result, the error of the entropy values for the ν = 1/3 data is at least an order
of magnitude smaller than the ν = 2/5 state and two orders of magnitude smaller
than the 3/7 state. The finite-size effects are also reduced for the ν = 1/3 state in
a comparable Ly/lB domain, which renders the topological entanglement entropy
significantly more robust. For the ν = 2/5 and 3/7 states, we notice that the in-
creased interaction strength affects the noise in our data to the extent that we can
no longer reliably extrapolate to the thermodynamic limit. To accurately decou-
ple the physical and numerical differences between the Laughlin and non-Laughlin
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4. Abelian topological order of FQH states in lattice models

states and comment on the topological entanglement entropy, the algorithm would
need to be reevaluated for larger values of interaction strength.

This work complements several recent investigations in both experiment and
theory. In the continuum, there is a plethora of experimental phenomenology
to show that the Jain series of states from ν = 1/3 to 1/2 are Abelian for the
long-range Coulomb interaction [9]. In particular, the first direct experimental
observation of fractional statistics was made by two independent groups last year
for the ν = 1/3 state, which confirms its Abelian nature [24, 25]. Moreover,
theoretical investigations have been made into non-Abelian counterparts for the
Jain series [88]. We note, however, that apart from the Read-Rezayi clustered
states with many-body interactions [89], these states are derived from non-unitary
conformal field theories, which casts doubt on whether they can describe gapped
topological phases [90]. There have also been iDMRG investigations of the topo-
logical entanglement entropy of the ν = 2/5 state in the continuum [78], as well
as equivalent computations for trial wavefunctions directly transcribed to a MPS
representation [71], which all take the Abelian value. In lattice models, there has
been significant progress in experiments using optical flux lattices [91] and twisted
bilayer graphene [92]. In addition, numerical investigations have found that the
interaction range and strength can increase the stability of FQH states in optical
lattices [93], and they have identified numerous experimental proposals to realize
lattice FQH states in bilayer graphene [94, 95]. On the other hand, although the
theory suggests that the statistics of elementary excitations for lattice FQH states
may be sensitive to interaction range, experimental investigations in this direction
for non-Laughlin lattice FQH states are still limited.

The results in our research extend this foundation in three ways. First, we
investigate the ν = 2/5 and 3/7 states using iDMRG in lattice models. This is
in contrast to prior research, where the topological entanglement entropy has only
been investigated using iDMRG for the ν = 1/3 state in lattice models [74, 75] and
the ν = 2/5 state in the continuum [78]. Second, in order to investigate the lattice
ν = 2/5 and 3/7 states, we overcame computational and statistical challenges by
developing an algorithm to construct the area law plot. Finally, we exploited this
algorithm to tune the interaction range and strength, and we commented on the
scope of the algorithm and nature of the states in these regimes. Finding effective
ways to determine the topological order hosted by such prominent FQH plateaus
is important, not only to bolster our understanding of lattice FQH states but also
due to its practical implications. For example, some manifestations of the lattice
FQH states discussed in our research have already been observed experimentally in
bilayer graphene [80]. Moreover, advancements in optical lattices offer a promising
way to tune the interaction parameters for custom lattice configurations [96].

Future studies in this area could seek to characterize the states at large κ and
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V0. Specifically, the complete anyonic statistics hae not yet been obtained from a
comparable many-body simulation of the ν = 2/5 and 3/7 state in these limits.
Other avenues for research include numerical simulations on the torus to confirm
the incompressibility of the ν = 2/5 and 3/7 states, as well as work to establish
the prerequisites for stabilizing exotic Abelian states (with γ > ln(

√
s))). On the

technical side, it would be interesting to compare our results with the approach
developed by Zaletel et al., which implements the Coulomb interaction using Hal-
dane pseudopotentials on the infinite cylinder. Coupled with this, it would be
instructive to examine the effect of a dipolar interaction, to see whether the effect
on topological entanglement entropy is accentuated.
We hope our research will not only emphasize the care required when con-

structing area laws of entanglement but, more broadly, highlight the sensitivity of
Abelian lattice FQH states with respect to both interaction range and strength.
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Chapter 5

Breakdown transitions of model
FCIs in higher Chern bands

As we introduced in Chapter 2, FCIs generalize the FQHE states in continuum
Landau levels to lattices. We also demonstrated that the Hofstadter model (see
Section 2.4) is a suitable choice for stabilizing and studying FCIs, as it provides
access to Chern bands of desired Chern number. In our ongoing research, our aim
is to study the phase transitions where the FCI phase breaks down for this model.
A notable development comprises of numerical studies that stabilize FCIs away

from the Landau-level limit, notably for higher Chern numbers |C| > 1 [14] and
bands with a finite dispersion [15, 16]. To add to this, numerical studies also
observe FCI states when the interaction energy exceeds the band gap [17, 18].
The above developments motivate the need for further investigation regarding the
stability of FCI states.
We examine the entanglement energy spectrum (ES) and correlation length ξ

to determine the central charge and resulting phases with respect to interaction
strength and gap-to-width ratio. In this investigation we aim to examine the sta-
bility of higher Chern number FCIs, and characterize their breakdown transitions
in detail. An important question towards this aim is investigating the stability in
the thermodynamic limit.
The iDMRG algorithm on the infinite cylinder is again attractive for this purpose—

owing to the thermodynamic limit along the x-axis, and the ease in computing the
entanglement spectrum [54]. Also, as discussed in Chapter 4, iDMRG does not
require band projection for the interaction Hamiltonian, and thus automatically
takes band mixing into account.

5.1. Theory

Quantum phase transitions occur by tuning control parameters—we consider inter-
action strength and gap-to-width ratio—through a quantum critical point (QCP)
in a system, and have been demonstrated for FCIs in numerical studies [31, 74].
For system configurations distant from the critical point, the entanglement en-
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5. Breakdown transitions of model FCIs in higher Chern bands

tropy of the ground state wavefunction is finite and the MPS ansatz is effective.

In a continuous (second order) quantum phase transition (QPT), the ground
state near a critical point has long-ranged correlations, and the entanglement
(quantified by the von Neumann entropy in Eq. 3.3) is expected to diverge [97].
[74] observes such a divergence in the correlation length of FCIs, and this is one
indicator of a continuous phase transition. However, the MPS framework often
does not allow for discerning the order, as the exact ground state near a con-
tinuous phase transition cannot be accurately represented by an MPS with finite
χ—the corresponding von Neumann entropy is bounded by log χ, and the MPS
state will exhibit a finite correlation length— this makes it difficult to distinguish
such transitions from their first-order counterparts [98].
In order to investigate phase transitions with DMRG then, we need to figure out
to what extent we can study the physics in the vicinity of the critical point with
the MPS ansatz.

Computing the central charge c associated with the conformal field theory of the
phase transition has been achieved with iDMRG, notably for FCIs in [74]. The
central charge at the QCP counts the number of critical degrees of freedom and
determines the finite-entanglement scaling exponent κ that relates the correlation
length with χ for a continuous QPT [99].

The entanglement entropy S scales logarithmically with the correlation length
ξ [100]. We refer to this as finite entanglement scaling—in particular, for MPS
ground state wavefunctions with bond dimension χ, we expect the following rela-
tion near the critical point [99]

S(χ) =
c

6
log ξ(χ) (5.1)

which allows us to read off the central charge from the plot in Fig. 5.2. This
entanglement scaling procedure was introduced for one-dimensional systems [99,
100], however (importantly for our research) has been applied in FCIs [74] and the
continuum FQHE [101] in iDMRG studies with cylinder geometries—where the
authors vary χ to obtain multiple points in the S vs. log ξ plot. However, we can
obtain such a plot also by taking the multiple points for a constant χ near the
critical point as in Fig. 5.2.

The applicability of this entanglement scaling procedure in [74] is further dis-
cussed in [98]—it is argued based on the observation that the finite MPS correlation
length ξ near a QCP is much larger than the cylinder circumference Ly for a large
enough χ. This implies the entanglement of degrees of freedom far away from our
cut, and allows one to use the 1D critical scaling [98].
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5.1. Theory

Figure 5.1.: Case study for a CI-to-metal breakdown transition in the Haldane
model, with respect to interaction strength. Data has been computed
at a bond dimension χ = 200. We plot the [(a)] entanglement energies
εα, [(b)] entanglement entropy SvN and [(c)] correlation length com-
puted as a function of interaction strength V . [(d)] Charge pumping
computed in the CI regime. Insertion of one flux into the cylinder
leads to one charge pumped, and thus σH ∼ e2/h, verifying the C = 1
CI nature of the ground state.
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5. Breakdown transitions of model FCIs in higher Chern bands

Figure 5.2.: We compute the central charge c from Eq. 5.1 for the case study dis-
cussed in Section 5.2 and Fig. 5.1. In particular, we considered points
(ln ξ, SvN) in the vicinity of the phase transition. The central charge
is associated with the conformal field theory of the phase transition
[74]. We obtain c = 0.898± 0.0054.

5.2. Case study 1: CI-to-metal transition

As a starting point, we consider a CI-to-metal transition (see Fig. 5.1) for the
Haldane model [102]. As such transitions have been well studied, this provides a
verification for our numerics and allows us motivate our methods through example.
In particular we study the ES, correlation length and entanglement entropy with
respect to the interaction strength. The ES clearly resolves the two distinct phases,
with the transition occuring at V = 2. The phase at V < 2 consists of a dense
ES for the CI. We recall that characterizing the order of the phase transition is
a task that the MPS framework is not ideal for, as the ansatz always has a finite
entanglement.
Clear signatures of the phase transition are observed in the correlation length ξ,
which peaks at the QCP, followed by a significant drop in in the metallic regime.
Further, we can compute the central charge from Fig. 5.2, where the four points
on the plot are taken near the critical point in the metallic phase—See Fig. 5.2.

5.3. Current status of research

Our research is ongoing—the first step (and challenge) involves stabilizing the
FCIs on various configurations of the Hofstadter model that yield desired Chern
numbers. This involves running computations for several parameters, such as
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a ν = 1/5, C = 2 b ν) = 1/7, C = 3

Figure 5.3.: We utilize the charge pumping to verify the FCI nature of our states.
The Hall conductivity for a FCI with Chern number C is given as
σH = (e2/h)Cν, where ν(= p/q) is the filling factor of the system.
This corresponds to Cp charges pumped in q flux insertions, which we
confirm here for two higher Chern number states.

circumference Ly (an optimal length must be considered that mitigates finite-size
effects but is also computationally feasible), bond dimension χ and flux densities
nφ. We have identified that for our investigation, it is further important to study
the dependence of our FCI states on these parameters.
Once we stabilize these FCIs, we can tune the control parameters and search for
breakdown transitions.
Currently, we have stabilized various FCIs with higher Chern numbers in the
Hofstadter model—further the FCI nature of these states has been verified through
charge pumping (Fig. 5.3 provides this for FCIs with C = 2 and 3). We are also
investigating our numerical evidence that suggests a C = 5 FCI.
The features of a metal-to-FCI transition that we observed in the Hofstadter model
are presented in Fig. 5.4. In particular, we consider the Laughlin filling fraction
ν = 1/3, with the cylinder circumference Ly = 6 and χ = 250.
We state that the project is still a work in progress—our aim in this section was
to motivate this research and provide an account of the current status.
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Figure 5.4.: Observed metal-to-FCI breakdown transition in the Hofstadter model
with respect to interaction strength. Data has been computed at a
bond dimension χ = 250. Clear signs of phase transitions are observed
in the [(a)] entanglement energies εα, [(b)] entanglement entropy SvN
and [(c)] correlation length vs. V plots. Computing the central charge
for this transition would require an increase in χ.
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Chapter 6

Conclusion

In this thesis, we have investigated FQHE states on a lattice. Numerical studies
of FCIs are important to characterize the topological order, and can shed light on
their stability. These studies have also led to various interesting observations that
motivate the need for further investigation, such as lattice-specific states [14] and
stability of states away from the Landau-level limit [17, 18]. Through our research,
we aimed to illuminate the nature of these FCIs, and answer some fundamental
questions about their topological order and stability. We have also contributed to
the field of numerical investigation of FCIs, by devising a systematic and efficient
method towards characterizing topological order of model FCIs, and observed—
in the main result of this thesis— Abelian topological order for nearest-neighbor
interactions in the ν = 2/5 and 3/7 states.
Let us recap what we have covered and achieved in this thesis.

We started off by introducing the theory of the FQHE, motivated the need to
study the excitations of the ground state, and introduced the concepts of fractional
charge and statistics. We also studied the Hofstadter model and plotted the single-
particle spectrum. We argued how we can tune the parameters of the model to
stabilize FCIs, notably for higher Chern numbers.
We then discussed the Matrix Product State (MPS) formalism, its effectiveness

and its shortcomings, especially in two dimensions. We introduced the DMRG
algorithm and described its implementation as a variational method in the MPS
framework. We presented various techniques that we used in our research to
characterize FCI states and to confirm their FQH nature.
Then we moved on to the main research of our thesis—the investigation of

topological order for ν = 2/5 and 3/7 FQH states on a lattice. We used the
iDMRG algorithm on an infinite cylinder geometry to compute ground states and
corresponding area law plots. We exploit this area law scaling for two dimen-
sions to obtain the topological entanglement entropy. We developed an efficient
algorithm for this computation, which allowed us to probe the topological order
of these states. We identified Abelian order for the filling factors of interest for
nearest-neighbor interactions. We also investigated the sensitivity of this routine
with respect to the interaction range and observed an increase in the topological
entanglement entropy, for which we discussed the different possible explanations.
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6. Conclusion

Finally, we introduced our current research on the stability of FCIs with a higher
Chern number. We described the numerical tools used to study and characterize
the breakdown transitions of FCIs. We presented our current work towards this
goal, which has involved stabilizing FCIs for various configurations of the Hofs-
tadter model.
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Appendix A

Numerical method

In an effort to remove arbitrariness from the computation of topological entangle-
ment entropies, we follow a set algorithm for the data collection and analysis. In
this appendix, we outline and justify the steps in the procedure. We start with a
description of the systematic selection of nφ values in Sec. A.1, we then explain how
the entanglement entropy is extrapolated for each configuration in Sec. A.2, and
finally show how the line of best fit is constructed for the area law of entanglement
in Sec. A.3.

A.1. Selection of nφ
For a given filling factor, we list all values of the coprime fraction nφ ≡ p/q that
satisfy the following constraints:

•
1

2π

(
(Ly/lB)min

Ly

)2

< nφ < 0.4

Due to finite-size effects, we can safely set a lower bound on the Ly/lB =√
2πnφLy values that we produce. From preliminary investigations of the

bosonic Laughlin state [Fig. B.1.(a)], the simplest FQH state, we found that
finite-size effects are sufficiently suppressed at Ly/lB & 8. Since finite-size
effects for higher-order FQH states require larger cylinder circumferences to
be suppressed, we set at least (Ly/lB)min ≡ 8. As we proceed up the FQH
hierarchy, we can increase this minimum threshold. Furthermore, it has been
shown experimentally that Laughlin states require nφ < 0.4 to be stabilized
and that this critical nφ may be lower for higher-order hierarchy states [93].
Hence, we set the upper limit for the flux densities to 0.4.

• Ly ≥ 4

Since we are interested in the effect of tuning the interaction range across
first, second, and third nearest neighbors, we demand that the system size
is at least four sites across in the y-direction.

• 4 ≤ q ≤ 20
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Similar to above, we demand that the system size in the x-direction is also
at least four sites acrossi. Furthermore, we set the maximum value to 20 so
that we limit the precision of the required flux density values. This makes
the results more relevant for experimental set-ups, such as optical flux lat-
tices [103].

• Nmin ≥ 2

We require that the total number of particles in our system (N = nqLxLy)
is an integer greater than or equal to two, for two-body interactions.

• qLxLy ≤ Ns,max

We limit the total size of the MPS unit cell to be less than or equal to Ns,max.
This restricts the memory cost, which scales linearly with the system size.
We adjust the value Ns,max ∼ 100 depending on computational resources.

• ∆Ly/lB > 0.1

We require that the separation between Ly/lB values is greater than 0.1.
This is to minimize the susceptibility of the line of best fit to errors in the
individual values for the entanglement entropies. It also efficiently provides
a greater range of Ly/lB values to consider. The value of 0.1 was chosen as
a compromise between precision and a maximal data set.

Finally, we define a processing cost function Γ(p, q, Lx, Ly) ≡ qLxe
Ly+ñφ , where

ñφ = 20nφ is the normalized flux density, defined such that the range 1 ≤ ñφ < 8
is comparable to 6 . Ly . 15. We then sort the configurations in ascending
Γ, attempt to converge all of them up to χmax . 3000, and use those that are
successful.
The processing cost function roughly quantifies how much processing time is

needed for a state to converge. It is not the physical processing cost of the iDMRG
algorithm itself, which scales (conservatively) as ∼ O(χ3Dd3 +χ2D2d2) for a single
bond update, where D is the MPO bond dimension and d is the single-site Hilbert
space dimension. Rather, the processing cost function takes into account the χ
required for convergence in a given model. It is well known that the convergence
processing cost of the iDMRG algorithm scales linearly with cylinder length and
exponentially with cylinder circumference. Moreover, from preliminary investiga-
tions of the Laughlin states, we find that a state is more likely to converge with a
smaller nφ, showing roughly the same scaling precedence as cylinder circumference.

iThese conditions on Ly and q do not guarantee that a system will be large enough to sufficiently
suppress finite-size effects, as exemplified by the outlier in Fig. 4.3.(a).
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Figure A.1.: Extrapolation of the entanglement entropy, SvN, in the χ→∞ limit
for the fermionic Hofstadter model at ν = 1/3, with flux density
nφ = 1/3 and cylinder circumference Ly = 6. (a) SvN as a function
of χ−1, where χ ∈ [50, 100, 150, . . . , 1100]. (b) A close-up of the last
two points shown in (a), including the equation of the straight line
through these points, and the limχ→∞(SvN) estimate with error bars
shown in red. (c) The change in entropy as the bond dimension is
incremented, ∆SvN, for the data points in (a).

A.2. Extrapolation of the entanglement entropy to
the χ→∞ limit

Since the final result for the topological entanglement entropy, γ, is highly sensitive
to the values of the individual entanglement entropies, SvN, we need to minimize
the error in SvN to obtain a representative value for γ. Furthermore, since we are
comparing γ between different Hamiltonians, we additionally need to ensure that
all SvN are computed to the same accuracy for a fair comparison.
To this end, we study the convergence of SvN with bond dimension χ. An

illustrative example for the Laughlin state in the fermionic Hofstadter model is
shown in Fig. A.1. Figures A.1.(a,b) show the convergence of SvN with χ for this
system. We can see that as χ is increased, the entropy is approaching a value of
1.43. To quantify this, we note that entropy increases monotonically with bond
dimension, as demonstrated in Fig. A.1.(c). Hence, the highest-χ value for SvN

will be the lower bound of our entropy estimate. Moreover, we know that in the
χ→∞ limit, dSvN/dχ→ 0, which implies that dSvN/dχ monotonically decreases.
Hence the extrapolation of our last estimate of ∆SvN/∆χ will serve as our upper
bound. Since a polynomial fit of all data points is computationally costly, and will
have negligible benefits as we reduce the errors, we instead take limχ→∞ SvN to be
directly in between our lower and upper bounds, as exemplified by the red data
point in Fig. A.1.(b).
In order to maintain a consistent accuracy among all entanglement entropy

values in this manuscript, we continue with the entropy convergence until all
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limχ→∞ SvN estimates have error bars < 0.1%, unless otherwise stated. Conse-
quently, the example system in Fig. A.1 is sufficiently converged for χmax = 1100.

A.3. Linear regression
For a given area law plot of the entanglement entropy, there can be great variability
in the y-intercept of the linear regression depending on which points are consid-
ered, as shown in Fig. B.1. Moreover, it is known that finite-size effects become
significant for small systems, and in the extreme case, the area law even breaks
down since S = αLy − γ + O(e−Ly). Therefore, there is motivation to carefully
reject data with small cylinder circumferences without biasing the final result for
the topological entanglement entropy. To reconcile this issue, we use an algorithm
to construct the line of best fit.
For all the data points on the plot, we draw lines of best fit: the first of which

considers all of the data, the second rejects the smallest Ly/lB point, the third
rejects the smallest two Ly/lB points, etc. We continue in this manner until we
reach a line that satisfies R2 > 0.99. It is this line that we use for our linear
regression. The data is quantifiably linear and so finite-size effects are suppressed,
and we take the first such line because it is based on the most points.
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Appendix B

Complete data sets

In Fig. B.1, we present the complete set of data collected in this project for κ = 1,
both systematic and unsystematic. Along with the area law of entanglement in
the top panel of each plot, we also present the topological entanglement entropy
estimate from including all points with a cylinder circumference ≥ Ly/lB (middle
panel), along with the corresponding R2 values for each of these linear regressions
(bottom panel).
In Fig. B.1.(a,b) we show data for the bosonic and fermionic Laughlin states.

For the bosonic Laughlin state, we computed the entanglement entropy for 76 con-
figurations, 46 of which converged with < 0.1% error and are shown in Fig. B.1.(a).
Even with the complete < 0.1% error data set, we still obtain a clear agreement
with the Abelian theory value of γ = ln

(√
2
)
≈ 0.347. We also note that after the

R2 = 0.99 threshold, finite-size effects are suppressed since we maintain R2 > 0.99,
and the average topological entanglement entropy agrees with the theory based on
all values drawn after this point. This plot also highlights the dramatic effect
that a few relatively minor outliers (notably {nφ = 1/3, Ly = 4} and {nφ = 2/7,
Ly = 6}) can have on the topological entanglement entropy estimate and raises
concerns of selection bias in unsystematic studies. For the fermionic Laughlin
state, we computed the entanglement entropy for 89 configurations, 53 of which
converged and are shown in Fig. B.1.(b). Overall, we notice similar features as for
the bosonic Laughlin state. However, we note that on this occasion the complete
< 0.1% error data set does not agree with the Abelian theory. We emphasize that,
as with the bosonic Laughlin state, it is simply coincidence whether or not the
complete data set agrees with the theory due to the significant finite-size effects
at small cylinder circumference. Once we draw a line through all points above the
R2 = 0.99 threshold, we do see a clear agreement. As with the bosonic Laughlin
state, R2 > 0.99 is maintained above this threshold, which indicates that finite-
size effects have been effectively alleviated. Note also that the R2 > 0.99 threshold
occurs at Ly/lB = 9.21, which is larger than the bosonic value Ly/lB = 8.12, as
expected.
Motivated by the results from the Laughlin states, we construct correspond-

ing plots for the next filling factors in the hierarchy: the bosonic ν = 2/3 and
fermionic ν = 2/5 states, shown in Fig. B.1.(c–e). For the bosonic ν = 2/3 state,
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Figure B.1.: The complete data sets for the: (a) bosonic and (b) fermionic Laugh-
lin (0th hierarchy) states with < 0.1% error; the (c) complete bosonic,
(d) complete fermionic, and (e) < 0.1% error fermionic 1st hierarchy
states; and (f) the fermionic 2nd hierarchy state. (top panels) Von
Neumann entanglement entropy, SvN, plotted as a function of cylinder
circumference, Ly, in units of magnetic length, lB = (2πnφ)−1/2. The
line of best fit is drawn through the set of points above the smallest
Ly/lB that yields R2 > 0.99 for < 0.1% error data and R2 = R2

max
otherwise. This cut-off is marked with a green dashed line. (middle
panels) The y-intercept of the line of best fit drawn through all points
greater than or equal to Ly/lB, denoted as −γ≥. The Abelian the-
ory prediction, γ = ln(

√
s), is marked in red. (bottom panels) The

square of Pearson’s correlation coefficient for the line of best fit drawn
through all points greater than of equal to Ly/lB, denoted as R2

≥. The
corresponding threshold, either R2 = 0.99 or R2

max, is marked with a
red dashed line.
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we computed the entanglement entropy for 41 configurations, only 5 of which con-
verged, and so we simply show all of the data in Fig. B.1.(c). For this filling factor,
we are not able to draw any conclusions regarding the topological entanglement
entropy. We note incidentally, however, that the value of the topological entangle-
ment entropy for the largest R2 value gives the closest agreement with the Abelian
theory, which indicates potential agreement once finite-size effects are alleviated.
For the fermionic ν = 2/5 state we computed 50 entanglement entropies, shown
in Fig. B.1.(d), and 20 converged to < 0.1% error, shown in Fig. B.1.(e). In this
case, when a line is drawn through all data points above the R2

max threshold in
Fig. B.1.(d), we obtain a close agreement to the Abelian theory value, similar to
the result obtained using the < 0.1% error data. We note however, that the R2

value does not maintain its large value after the threshold, which indicates that
significant fluctuations are still present. In contrast, when we examine exclusively
< 0.1% error data points in Fig. B.1.(e), we see that R2 > 0.99 is maintained after
the threshold. In keeping with the noted trend, the value at which this occurs,
Ly/lB = 9.47, is higher than for the corresponding Laughlin state.
Most ambitiously, we construct an area law plot for the secondary fermionic

hierarchy state at ν = 3/7. For this state, we computed the entanglement entropy
for 44 configurations, only 12 of which converged to < 0.1% error. Consequently,
we present all of the data in Fig. B.1.(f). Given the immense computational effort
in obtaining high-Ly/lB data for the ν = 3/7 state (∼ 256GB of memory and ∼ 2
weeks run-time per data point), we analyze this as a stand-alone plot. As demon-
strated in Fig. B.1.(d), we cannot reliably apply the R2 threshold analysis, since
the error of the data set is not small enough. We also note that for this system
both physical (Ly/lB) and numerical (Ly) finite-size effects are significant. Taking
the largest system sizes that we considered, with respect to both length scales,
yields the subset shown in Fig. 4.1.(c). The extracted data is still significantly
noisier than any other data presented in the main text, however the complete data
set suggests that these finite-size effects will be alleviated if the cylinder circum-
ference is further increased. Specifically, we again point out that the estimate of
the topological entanglement entropy with the largest R2 value yields the closest
agreement to the Abelian theory. This is true for all of the area law plots in our
analysis.
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Appendix C

Total quantum dimensions

Generalized parafermion FQH states are expected at the filling ν = k/(Mk + 2),
whereM even/odd corresponds to bosons/fermions and k is an integer [89]. These
states are described by a SU(2)k Chern-Simons theory in the bulk and the rational
CFT [SU(2)/U(1)]k × U(1)k(MK+2) on the edge [79]. Since the total quantum
dimensions for SU(2) or U(1) theories with positive and negative k levels are
identical, the total quantum dimension for the coset theory is given as

Dcoset =

√
(|k|+ 2)|Mk + 2|

2 sin
(

π
|k|+2

) . (C.1)

For the non-Abelian ν = 2/5 state we may set k = 3, M = 1 to yield D2/5 =√
5(ϕ2 + 1), whereas for the non-Abelian ν = 3/7 state we may set k = −3,

M = 3 to yield D3/7 =
√

7(ϕ2 + 1). Note that in both cases this is larger than
the minimum Abelian value for the total quantum dimension

√
s by a factor of√

ϕ2 + 1.
Since both the ν = 2/5 and 3/7 non-Abelian theories have |k| = 3, they describe

a theory of Fibonacci anyons [104]. As mentioned in the main text, the total
quantum dimension must take the form D =

√∑
a d

2
a, where da is the quantum

dimension of a quasiparticle of type a. For Abelian anyons da = 1, whereas for
non-Abelian anyons da > 1 [44]. Furthermore, for any ν = r/s FQH state the
ground-state degeneracy must be at least s, which confirms the minimum Abelian
value for the total quantum dimension

√
s. In addition to Abelian anyons, a

Fibonacci theory also hosts non-Abelian anyons of quantum dimension ϕ [105].
Therefore, based on these two arguments alone, the total quantum dimension for
a |k| = 3 theory must take the form D|k|=3 =

√
αϕ2 + β, where α, β are positive

integers satisfying α + β ≥ s.
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