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“Gott erschuf den Festkörper - der Teufel die Oberfläche”

Wolfgang Pauli



Abstract

Real systems exchange energy with their environment at least to some extent. One

alternative to describe dissipative systems is to build a non-Hermitian (nH) Hamiltonian

to provide a simple description of open systems (that is, having gains and losses), which

was already demonstrated in a wide spectrum of applications, ranging from mapping

into classical systems, containing optical systems, electrical circuits, and mechanical

systems, up to quantum materials [1, 2]. NH Hamiltonians are strikingly sensitive to the

boundary conditions resulting in the breakdown of the bulk-boundary correspondence

(BBC, being a signature of topological materials) and the existence of the skin effect.

The notion of skin effect is mostly understood in one-dimensional systems, where the

anomalous localization of all eigenstates results from non-reciprocal, direction-dependent

hoppings. One dimensional nH models have been studied widely. NH higher dimensional

models are our current interest and our objective is to reconstruct the bulk boundary

correspondence in models in 2D and 3D within tight-binding formalism. The Wess-

Zumino term which was introduced by Kawabata et al.[3] as a topological invariant for

two-dimensional models was also studied for these models analytically and numerically.
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Chapter 1

Introduction

I Motivation

One way of describing a system with dissipation is using a non-Hermitian Hamiltonian

formulation. Dissipation occurs in photonic systems in the form of radiational loss, in

periodically driven systems, in electronic systems having finite quasiparticle life time,

and in electronic circuits as a passive RLC circuit form [4–6]. In some topological non-

Hermitian systems, one observes a so-called skin effect at the boundaries. The skin

effect is a phenomenon in which an extensive number of eigen modes are localized at the

boundary, scaling with the system size.

Due to the skin effect, the shape of the bulk spectrum is completely different from

the spectrum with open boundaries. Consequently, the conventional bulk boundary

correspondence (cBBC) breaks down, because one can not predict any more from the

bulk Hamiltonian the existence of the boundary states (or modes). The establishment

of the bulk boundary correspondence for the non-Hermitian (nH) systems is one of the

current interests in condensed matter research. Due to the huge number of localized

states the Bloch theorem also fails in nH systems [7].

There were different approaches to reestablishing the bulk boundary correspondence

(BBC) for non-Hermitian systems. Depending on the dimension of the system and its

symmetries, one should find different topological invariants. The spectrum of nH systems

can be displayed on the complex plane and thus it is necessary to redefine the notion

of an energy gap [7]. Two different types of energy gaps can be defined on the complex

plane, line gap and point gap. The definitions of them are given in the theoretical part

in chapter 3. In case of line gap, the Hamiltonian can be continuously and adiabatically

deformed to a Hermitian Hamiltonian while at the same time keeping the symmetry of

1
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the system. Thus the physics in that case is not intrinsically nH. In contrary, the point

gap topological phase can not be contracted to a Hermitian Hamiltonian but unitary

Hamiltonian, so the resulting physics is intrinsically non-Hermitian [2].

In 1D systems the non-trivial topology comes from the point gap topology of periodic

boundary (PBCondition) Hamiltonian. There the 1D spectral winding number is non-

zero. Therefore due to the point gap topology of PB Hamiltonian the skin effect appear.

In Hermitian counterpart non-trivial topology is not possible without symmetry protec-

tion. There were experiments in one dimensional systems where skin effect was detected,

which inspires further studies on their generalisation higher dimensional systems [8].

To understand the topology of nH systems it is necessary to understand the basic prin-

ciples of Hermitian topology. For this reason chapter 2 introduces the historical back-

ground of topological materials and basic Hermitian topology. First of all, in Hermitian

systems nodal systems (semimetals) and fully gapped systems (insulators) can be of

topological interest. Nodal systems have can be divided into Dirac nodal system and

Weyl nodal systems in Hermitian case. Weyl nodes itself have chirality and they appear

in the system always in pairs so that the net chirality is zero. When two Weyl nodes

with opposite chirality come together they annihilate to a Dirac node. System with

Weyl nodes are topological non-trivial. On the contrary Dirac nodes necessitate time

reversal symmetry that makes the topology of the system non-trivial, and without time

reversal symmetry the phase is topologically trivial. [9]

Nodal systems can have the so-called exceptional topology in non-Hermitian systems.

This is when the topological nature comes from the degenerate point in the system.

The degenerate point in non-Hermitian system is called exceptional point, because the

degenerate eigenvectors coalesce and that makes the Hamiltonian defective. Exceptional

topology seem to have always skin effect which is shown as point gapped energy spec-

trum of the Hamiltonian in periodic boundary condition (spectrum of Hamiltonian with

periodic boundaries is said to be the bulk spectrum). This fact is studied and confirmed

in the recent research and mentioned in the next section [8]. Some line gapped systems

in the periodic boundary spectrum can have higher order skin effect (this is when the

codimension of the skin modes are higher than one [10]) in presence of certain spatial

symmetries. In this case, the spectrum of Hamiltonian in open boundary condition has

point gap. [3]

While, due to the non-Hermiticity the degeneracy is stable in 2D systems on contrary

to the Hermitian case where the stable degenerate nodal phase appears in 3D and in

2D, nodal phase should be protected by symmetries. [1]

The purpose of the thesis was to find a way to reconstruct bulk boundary correspondence.
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II Current research progress

1D nH systems have been studied widely in recent years. For more detailed studies refer

to the following review paper Ref.[1].

As mentioned above the reconstruction of the bulk boundary correspondence is needed

especially in two or higher dimensions. We know that depending on whether the system

has internal or spatial symmetry the topological invariant can be determined. Kawabata

et al. suggested the geometrical term Wess-Zumino integral for the two-dimensional

systems and the term can be quantized under certain spatial symmetries. This term is

consistent with the topological phase of the system and therefore the corner skin effect

can be predicted for its particular system. [3]

This section is based on the research of Ref.[8] and [11].

Kai Zhang et al. [8] found interesting observations and proposed a theorem of universal

non-Hermitian skin effect for the models two and higher dimensions. The theorem says

The energy spectrum of the Hamiltonian in periodic boundary condition is

the mapping of d-dimensional torus to the energy eigenvalues on the complex

plane, C. The energy spectrum can be formed either one or more loops

without inner area or it can cover one or more finite area. In case of finite

area there are always skin effect by opening the boundary conditions, on the

contrary in case of loop spectrum there appear no skin effect regardless of

the geometry of the system. [8]

Therefore, they also observed that the type of the skin effect is divided into two different

cases, the corner skin effect (CSE) and geometry dependent skin effect (GDSE). CSE

depends on the type of the point groups. In the case of GDSE, the skin effect can

appear in systems such as random polygons. However, this case can be also violated

when we have some spatial symmetries such as mirror symmetry given in the example

of the paper. One important corollary of the theorem they suggested is that the systems

with exceptional points always carry skin effects. Additionally, the appearance of the

skin effect can be reflected in the dynamical property of the wave packets in different

geometries of the non-Hermitian systems. [8]

We know that in presence of internal symmetries the non-Hermitian matrix can be

topologically classified, but in the presence of spatial symmetries it has two benefits.

Firstly, when we have a some topological phase by adding additional spatial symmetry

it can alter the topological property. Secondly, in presence of certain spatial symmetry

the invariant can be computed in an easier way. In the recent work of Ryo Okugawa et
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al.[11] the inversion symmetry was generalized for non-Hermitian Hamiltonian so that

also the extended Hermitian Hamiltonian (for definition please refer to the chapter 3)

version can have the inversion symmetry. Although, the generalized inversion symmetry

is not unique [12, 13] and defined as follows for a nH Hamiltonian H(k) [11]

UIH(k)U−1
I = H†(−k), (1.1)

where UI is a unitary matrix and U2
I = 1. The inversion symmetry becomes proper in-

version symmetry when the Hamiltonian is Hermitian. The extended Hermitian Hamil-

tonian gets inversion symmetry in presence of generalized inversion symmetry in the

following way:

ĨH̃(k)Ĩ−1 = H̃(−k), Ĩ =

(
0 UI

UI 0

)
(1.2)

All the extended Hermitian Hamiltonians have chiral symmetry. The chiral symmetry

operator Γ anticommutes with the inversion operator Ĩ, i.e., ĨΓ = −ΓĨ.

In presence of conventional inversion symmetry PH(k)P−1 = H(−k) for a non-Hermitian

Hamiltonian any extended Hermitian Hamiltonian has inversion symmetry and therefore

the inversion operator takes the form P̃ = diag(P, P ). In that case the chiral operator

and the inversion operator commutes, i.e., P̃Γ = ΓP̃ . [11]

The topology can be predicted by looking at the inversion and chiral operators whether

they commute or anticommute for the extended Hermitian case. Due to the conventional

inversion symmetry there are no skin effect in the 1D system [3], whereas the generalized

inversion symmetry the system carries skin effect. [11]

Furthermore they derived simple formula to calculate the 1D winding number (for the

definition please refer to its Ref.[11] in Eq.(3)) if the system has generalized inversion

symmetry using the topological correspondence between extended Hermitian Hamilto-

nian and its non-Hermitian Hamiltonian [1]. This formula predicts the skin effect and

also can be used to calculate the weak topological invariant for the higher dimensional

systems. [11]

In presence of chiral symmetry and inversion symmetry 1D winding number calculated

for ribbon geometric Hamiltonian in 2D predicts the zero energy modes in Hermitian

systems, which are localized at the corners in the full open boundary condition. This

statement is only valid when the ribbon geometric Hermitian Hamiltonian is gapped

at zero energy. In its non-Hermitian case it predicts corner skin modes. In presence
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of generalized inversion symmetry for the non-Hermitian Hamiltonian and its extended

Hermitian Hamiltonian the same calculation can be done. [11, 14]

Moreover, using the generalized inversion symmetry the zero energy exceptional point

in 2D or line in 3D can be detected. [11]

III My research content and the thesis organisation

I studied 4 different models in tight-binding formalism in 2D and 3D. As I mentioned

above the reconstruction of bulk boundary correspondence is needed for higher dimen-

sional models. The first model is a 2D nodal system with exceptional degeneracy

(semimetal) called π-flux model, which has reciprocal property, i.e. the outcomes by

switching the input and output it has the same result. The most of the 1D models are

not reciprocal which makes this model interesting to study. The singular value decom-

position spectrum is a possible way to reconstruct the bulk boundary correspondence

[1] and this method could be used for the reconstruction.

The second model is a 2D model which exhibits corner skin modes and in its Ref.[3] it

suggested a topological invariant called Wess-Zumino (WZ) term, the quantization of

which is consistent with its corner skin phase and the phase without corner skin states.

The quantiization of this WZ term is studied in presence of different spatial symmetries.

Furthermore, its quantization is investigated in 3D case and its possible outcomes were

studied in relation with the spatial symmetries with respect to the 3rd spatial dimension.

The WZ integral was computed for the 3D model which exhibits corner skin modes by

keeping 3rd dimensional k-point constant and by building real space Hamiltonian with

respect to the third direction.

The 4th model is a model with single exceptional degeneracy on the surface which also

exhibits corner skin states on its surface. The WZ term was computed for that model

systematically. [15]

My thesis is organized in the following way. In chapter 2, I introduced the historical

background of the topological insulator studies and some introduction to Hermitian

topology, because by understanding the topology in Hermitian insulators the unique

features of non-Hermitian topology become clearer. In chapter 3, I wrote theoretical

background of the non-Hermitian systems and their topology which are relevant to

understand my thesis project. In the following chapter 4, all the methods to investigate

the properties of the models are described in detail. In each of chapter 5 to chapter 8 the

results of the models are demonstrated and all together 4 models were investigated. In
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each model I show the spectra with different boundary conditions and their topological

invariant WZ term for 2D and 3D models were calculated. Finally, in the last chapter 9

the final conclusion is made.



Chapter 2

Historical background of

topological insulators and

topology in Hermitian models

One of the main topics in condensed matter physics is the study of phase transitions.

Landau developed a theory that describes phase transitions occur due to the symmetry

changes of a system [16]. Here, a local order parameter can be defined for an ordered

phase, which changes as the symmetry of the system changes. Although, Landau’s sym-

metry breaking theory successfully describes many condensed matter phases, it can not

explain topological quantum states [17] (later also discovered topological classical states,

for example electrical circuit model [4]). This theory rather describes classical orders

which classifies classical statistical states on finite-temperature expressed by positive

probability distribution functions. But we need a concept to classify quantum ground

states, so called quantum orders in which the states are expressed by complex ground

state wave functions. Topological state does not always have a nonvanishing local or-

der parameter, because topological equivalent states could occur between two different

symmetric phases. Or, topological phase can occur without breaking any symmetries.

[17, 18] Although, symmetries play also a very important role in classification of topo-

logical phases as we will see later. There are several works in which it was revealed that

a long-range entanglement in the quantum ground state itself gives us the topological

order [19–21]. The reason why the quantum states are not easy to determine is that the

possibilities of long-range entanglement are very large, so that there are plenty of new

states beyond the symmetry breaking criterion. [22]

The concept of ’topology’ is a field in mathematics. How this concept was developed

to classify physical systems is now our interest. We know from introductory solid state

7
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physics that due to the periodicity of lattice structure, for simplicity let us take 1-

dimensional system, we can build Fourier transform if we have an infinite long sys-

tem. We can realize an infinite long system by connecting the two ends. The Fourier-

transformed space is called the reciprocal space or crystal momentum space, into which

the periodic properties such as topological features of ’real’ space can be mapped [23].

Such Hamiltonian in reciprocal space is the Bloch Hamiltonian and the energy eigen-

states can be plotted as a function of crystal momenta which is called dispersion relation.

We have an electronic insulator when we have an energy gap around the so-called Fermi

level, which separates valence and conduction bands. Topologically, insulators can be

generally classified trivial and non-trivial. Topological trivial insulators are the conven-

tional insulators, i.e. atomic insulators. Additionally, vacuum is topologically classified

as a trivial insulator. Non-trivial topological electronic states can be found in e.g. topo-

logical insulators, topological semimetals and topological superconductors. [24] As from

now we can term non-trivial topological insulators as topological insulators.

To characterize the topological state of a system a topological invariant can be defined

[24–26]. A topological insulator connected to a trivial insulator has gapless boundary

states. i.e., at the interface between two systems, a band gradually interpolates to the

conduction band in order to change the topological invariant. [23, 24] In a topological

class two different states are regarded as equivalent if the systems can be transformed

continuously between each other without closing the energy gap and keeping the sym-

metry. Due to this topological equivalence the system is persistent in presence of small

perturbations, a property which makes topological materials promising for future appli-

cations. [18, 24]

To get some intuition, we give an overview of the historical development of topology in

condensed matter studies. Klaus von Klitzing discovered in 1980 that the Hall conduc-

tance is quantized [27] as integer multiples of fundamental natural constants of e2/h,

which occurs when electrons confined to two dimensions (xy-plane) are placed in a

strong magnetic field (in z-direction). The effect is known as integer quantum Hall ef-

fect (IQHE). Under strong magnetic field the electrons move in orbits with the cyclotron

frequency ωc this leads to quantized Landau levels with energy εm = ~ωc(m+ 1/2), here

m is an integer. From these Landau levels first N states are filled and the rest is empty.

When electric field is applied for example in x-direction the electrons start to drift and

this results in Hall conductance:

σxy = Ne2/h, (2.1)

[28] here N is an integer, which is calculated by Thouless, Kohmoto, Nightingale and

den Nijs (TKNN) [25] in 1982 using the Kubo formula. The invariant N was later
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identified as a term already known from topology, because the integer invariant N has

the form of the topological invariant n, and was first called the Chern number [24]. The

Chern number comes from the mathematical theory of fiber bundles [29]. Physically,

it can be explained based on the Berry phase [30] which is a phase factor coming from

the adiabatic evolution of the Bloch wave functions |um(k)〉. In 2 dimensions, a band

structure is a mapping from the crystal momentum k, that is defined on a torus, to the

eigenenergies of the Bloch HamiltonianH(k). When a Bloch wavefunction is transported

on a closed loop in k-torus the Bloch wave function takes a well defined Berry phase

calculated by the line integral Am = i 〈um|∇k|um〉 [24]. The Chern invariant n is the

total Berry flux, Fm = ∇×Am, in the Brillouin zone and is given by:

nm =
1

2π

∫
d2kFm, (2.2)

n =

N∑
m=1

nm n ∈ Z, (2.3)

summed over all occupied bands m and well defined as long as the energy gap remains

finite between occupied and empty bands. [25]

The discovery of IQHE was the birth of the field of topological phase studies in condensed

matter. The model which was proposed by Haldane in 1988 [31] was a spinless 2D model

and can exhibit similar IQHE without external magnetic field and emerging Landau

levels. Such materials, which can have topologically non-trivial states without external

magnetic field, were later referred to as Chern insulators, because its topological non-

trivial phase can be calculated by Chern number. However, experimental realisation of

these materials came only mid 2000’s.

Until 2000’s there were not much connection between the research of IQHE and anoma-

lous Hall effect (AHE). Only after the use of Berry phase formalism to describe the

intrinsic behavior of AHE [32–35] that there exists quantum version of AHE [33, 34, 36],

the quantum anomalous Hall effect (QAHE). Therefore, it is connected to the topo-

logical electronic states. As a result, in terms of Berry phase, Berry connection and

Berry curvature the IQHE and QAHE are closely related [18, 30, 37]. Consequently, it

turned out to be the model of Haldane was exact the QAHE with the right magnetic

components exhibiting strong spin orbit coupling (SOC) and thus, the Chern number is

non-zero. [18] Both QIHE and QAHE do not have time reversal symmetry (TRS). [23]

Since the generalized reformulation of Berry phase in 1984 [38] until mid 2000’s the

studies of electric polarization [39], methods for constructing Wannier functions [40],

orbital magnetization [41, 42], understandings of the spatial decay of Wannier functions

[43], and other procedures to determine the localization of electronic states [44–46] were
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well explored. However, these theories implicitly assumed TRS and thus they describe

in general normal insulating case, because in presence of TRS the Chern number is zero

and therefore the phase is non-topological. [47]

As mentioned before, at the interface of two different topological phases in insulators

exist gapless conducting states. Thus the boundary state is a bulk property, when the

system is placed in vacuum. This phenomenon is called the bulk boundary correspon-

dence (BBC). From this follows insulators which have non-zero Chern numbers exhibit

gapless boundary states and are called Chern insulators. Chern insulating phase exists

when there is no time reversal symmetry (TRS). Both QIHE and QAHE do not have

TRS. However, there are states which are topologically non-trivial in presence of TRS.

Then, there must be defined another topological invariant to fulfill the BBC and this is

the topological invariant ν which is Z2 number [48], i.e., the value ν takes 0 or 1, trivial

or non-trivial, either of two different phases in the system.

We take a look at the TRS and the definition of the Z2 number a little more in detail.

A Bloch Hamiltonian which is invariant under TRS (given by an antiunitary operator

Θ) satisfies:

ΘH(k)Θ−1 = H(−k) (2.4)

There are equivalence classes of Hamiltonians which fullfills above condition and which

can be smoothly deformed into each other by keeping the energy gap open. Θ2 = −1

is satisfied for spin-1/2 particles. This condition leads us to the Kramer’s theorem [49]

which demonstrates the fact that a TRS invariant Hamiltonian has at least two-fold

degenerate eigenstates. The proof for this is given as follows: if there is non-degenerate

state |ψ〉 with Θ |ψ〉 = α |ψ〉 for some constant eigenvalue α thus when we apply two times

the TRS operator then Θ2 |ψ〉 = |α|2 |ψ〉, and this is not permitted because |α|2 6= −1.

In the electronic system, up and down spins become degenerate when the system has no

spin-orbit coupling. However, when the system has spin-orbit coupling, this symmetry

has non-trivial outcomes. [24, 50]

There are numerous ways to formulate mathematically the Z2 invariant ν [50, 51] (for

other references refer to [24]). One method (done by Fu and Kane 2006 [50]) is to

build a unitary matrix wmn(k) = 〈um(k)|Θ|un(−k)〉 (called sewing matrix) based on

the occupied Bloch eigenstates |un(−k)〉. Due to the antiunitarity of Θ (Θ2 = −1),

the unitary matrix has wT (k) = −w(−k). In the Brillouin zone there are 4 points

at which k and −k coincide, the so called time reversal symmetry invariant points Λa

(TRIM - Time Reversal symmetry Invariant Momenta). Then w(Λa) is antisymmetric.

An antisymmetric matrix has the property that the squareroot of determinant of the

matrix is its Pfaffian, so we can define δa = Pf[w(Λa)]/
√

Det[w(Λa)] = ±1. Then the
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Z2 invariant is defined by:

(−1)ν =

4∏
a=1

δa (2.5)

The above one is an example of topological classification based on the presence of a

symmetry in the system. Analogously, basing on the internal symmetries such as time

reversal symmetry (TRS) T , particle hole symmetry (PHS) C, chiral symmetry (CS) Γ

and the combinations thereof one can construct a periodic table which specifies where

we can find a non-trivial topological phases. This symmetry classification of topological

phases was first constructed by Altland and Zirnbauer as a classification of random ma-

trices (AZ symmetry classification) [52]. In the periodic table the relations between the

internal symmetries, dimension of the system, unitarity or antiunitarity of the symmetry

operator (operator2 = ±1) and their topological classification by Z, Z2 or trivial phase

represented as 0 are connected to each other. [53]

Table 2.1: AZ symmetry classification [24]

Symmetry d

AZ T C Γ 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0

AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0

AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z

CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0

C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0

CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

It is worth to look at Haldane’s model a little more in detail. Haldane took a simple

model of graphene which exhibits quantum Hall effect without external magnetic field.

Also, in other literatures one usually takes the example of graphene because it introduces

the concept of 2D quantum spin Hall insulator (as we will look at it as next) and also

because the existing Dirac electrons in graphene has a necessary analogue at the surface

of a 3D topological insulator. The Dirac points which are present in graphene of Haldane

model ( firstly, he did not consider the spin d.o.f.) are protected by inversion P and

TRS, meaning that when we break the symmetries the degeneracy at the Dirac point

will be lifted. Haldane imagined that by breaking the TRS one could get a non-zero
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integer Hall conductivity at each Dirac point [24]. The non-zero Hall conductivity can

be explained by the term in eq.(2.2). The system has 2 Dirac points because of the TRS

which is explained by fermion doubling theorem [54] and this is the reason why we get

integer value of the Hall conductivity [24]. When the inversion symmetry is broken the

system becomes a normal insulator. [47]

Non-trivial topological phases appear in gapless nodal systems and fully gapped systems.

In future I use the term ”non-trivial topological system” just as ”topological system”.

In condensed matter in the vicinity of the nodal degeneracy the dispersion is linear.

This kind of dispersion can be described by the relativistic Dirac and Weyl equations.

Even though the electrons in the system are not relativistic, the presence of periodic

potential of the crystal allows such description. There are subtle differences between

Dirac semimetals and Weyl semimetals and the details are reviewed in the work of

N.P.Armitage et al. [9].

The particles resulting from the Weyl equations are called Weyl fermions and the Weyl

fermions have a chirality or handedness. If two Weyl fermions with opposite chirality

move freely in Brillouin zone (BZ), then they coalesce and results in Dirac fermion. The

simplest realization to have stable Weyl nodes is to keep the inversion symmetry in the

system. Due to the Weyl fermionic property the system would suffer non-conservation

of the electric charge. To avoid this non-physical consequence the system should always

have pairs of Weyl fermions with opposite chirality, so that the net chirality is equal zero.

This is one example of the fermion doubling theorem [54]. In the case of Dirac dispersion

in graphene, the degeneracy is protected by inversion and TRS. In the presence of TRS

the Dirac points must come in pairs, which is another example of the fermion doubling

theorem. [9]

As mentioned above, in presence of TRS there is also a non-trivial topological phase.

The next question was how to realize this kind of system. A 2-dimensional topological

insulator was later called quantum spin Hall insulator. In 2005 this system was theo-

retically formulated and also predicted to exist in graphene and in 2D semiconductor

system with uniform strain gradient [48, 55–57]. Then, this was proven experimentally

in the following year on HgCdTe quantum well structures [58]. In graphene the spin-

orbit coupling term commutes with the spin operator so that the Hamiltonian decouples

from the up and down spin terms. The spin 1/2 of the electron was ignored in the model

of Haldane. The theory of the quantum spin Hall insulator is simply two duplicates of

Haldane model with plus and minus sign for conductivity. In addition this does not

violate TRS, because TRS flips both spins and the sign of the conductivity σxy. Fur-

thermore, due to the TRS the states at k = 0 are protected by Kramer’s degeneracy
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even if the spin conservation is violated. This confirmed that the spin Hall insulator is

a stable topological phase.

There are the so-called ”chiral” and ”helical” states in the context of topological insula-

tors. The ”chiral” states are chiral in the sense that the states move only in one direction

along the edges of the 2D system. The ”helical” states are two states propagating in

opposite directions, for example spin up and down spin currents in spin Hall insulator.

Because the helicity of a particle is the correlation between spin and momentum, the

term helical is used in analogy with helicity.

In the year 2006, theoretical groups independently formulated the 3D generalization of

the topological quantum spin Hall insulators and used the term ”topological insulator”

for these electronic phases [51, 59–61]. Fu, Kane and Mele (2007) [62] showed the

link between bulk and the gapless surface states, which is then called bulk boundary

correspondence. The 3D topological insulator was experimentally realized in the year

2008 by the group led by Hasan at the Princeton University [63].

Besides the topological classification it is interesting to see that how Wannier function

(Fourier transformation of the Bloch wave functions) behaves in normal insulating phase

and Chern insulating phase. The Wannier functions (WF) are exponentially localized

in the case of normal insulator (i.e., Chern number is zero) and the localization diverges

when it is in Chern insulator phase (i.e., when Chern number is non-zero) due to the

singularities of wave functions in reciprocal space. However, in the case of TRS the

states are also exponentially localized, which means the divergence of the WF is only in

the case Chern insulator non-trivial phase and it does not necessarily hint to the other

non-trivial states. [64]

Some topological non-trivial insulator can be smoothly transformed into a topologically

trivial state without closing the bulk gap of the system in absence of symmetry. [24] For

this reason, there is a notion of a symmetry protected topological phase, in which the

symmetry has to be broken in order to change the phase into a trivial state.

Symmetry protected topological phases exist not only due to the internal symmetries,

but also it exists in the presence of spatial symmetries, i.e., which are non-locally acting

in position space, such as rotation, mirror reflection, or other spatial group symmetries.

They are called topological crystalline insulators (TCI). [24] The gapless boundary states

exist only when the surface of the TCI support the same symmetry of the bulk. [65]

Furthermore, there are higher order topological phases in which the boundary states are

localized at the hinges and corners. These boundary states have codimension higher than

one (which means for example there are states at the corners localized in 2D system.
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The corner states have dimension 0 and codimension 2) and come from the interplay of

crystalline symmetries and topology of the system. [10, 66, 67]

In the standard quantum mechanics we have Hermitian operators to describe observable

quantities in closed systems. All topics above are for Hermitian systems. In recent

years there is intense interest in non-Hermitian (nH) systems. Real physical systems

are connected to the environment and have gain and loss of energy and particles. This

presence of interactions with the environment makes their description more composite.

Although non-Hermiticity was ubiquitous in physics for many decades [7], there are

even more motivations to study such systems recently. Especially, since we have already

investigated widely topological properties within the framework of Hermitian systems,

it is compelling to further study nH topological systems.

Besides other approaches to describe open systems [7, 68, 69], the effective nH formal-

ism is conceptually clearer and relatively intuitive for mesoscopic systems (mesoscopic

systems refer to the size of the system which ranges from several nanometers to sev-

eral micrometers). The basic theory of the non-Hermitian Hamiltonian is introduced in

chapter 4. Some experimental realisations are already found in a wide spectrum ranging

from classical systems consisting of optical settings, electric circuits, and mechanical

systems to the quantum systems. [70–72]

In nH systems the conventional bulk-boundary correspondence is broken due to the phase

transition of the system between open boundary and periodic boundary cases. There

are interesting nH properties which can not be found in the Hermitian models such as

nH skin-effect, exceptional degeneracies in the nodal phases which accompany the open

Fermi-Seifert surfaces ([1], which appear due to the branch cuts of the eigenvalues) and

the topological classification of the nH random matrices based on the nH generalized

symmetries for both gapped and gapless phases will be discussed in the next chapter 4.

More in detail refer to the review letter of E.J.Bergholtz et al. [1].



Chapter 3

Theoretical Background of

non-Hermitian Hamiltonians

I General properties of non-Hermitian Hamiltonians and

its topology

This section is taken from Ref.[1].

Non-Hermitian (nH) Hamiltonians have their unique features that can not be found

in Hermitian systems. We define that the left eigenvector is ψLH = EψL and right

eigenvector is HψR = EψR. By diagonalizing the nH Hamiltonian one can see that the

left and right eigenvectors in general not equal. We also notice when the Hamiltonian

is not Hermition the time evolution operator is no longer unitary. [1] When a simple

nH Hamiltonian is given as

(
0 α

1 0

)
, α ∈ C, then the eigenvalues are E± = ±

√
α.

Additionally, the eigenvalues can be not analytic under system parameters depending

on the systems. Here the derivative of the energy w.r.t. α diverges, i.e., |∂αE(α)| −→ ∞
as α −→ 0. It is interesting that such properties can be used in sensing devices which has

been proposed recently [73]. The corresponding left and right eigenvectors are [1]:

ψR,± =

(
±
√
α

1

)
, ψL,± =

(
1 ±

√
α
)
, (3.1)

for the two level system there are two left and two right of them. In general each set

of left and right eigenvectors do not form orthonormal set. Therefore at the degenerate

point the eigenvoctors can coalesce and results in only one left vector and one right

vector so that the matrix becomes defective. The degeneracy happens at α = 0 and

15
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then the energy eigenvalue becomes E± = 0. The degenerate point in nH Hamiltonian

is called exceptional point [74] and the topology containing degenerate points is called

exceptional topology. In general depending on the system N eigenstates can become

linear dependent. We can then say N -order exceptional point. [1]

Another important feature is of nH band structure is the appearance of Fermi arcs. This

is caused by the possibility of branch cut in the energy function. The branch cut is at

arg(α) = π. Consequently, the eigenvectors swap ψR/L,± −→ ψR/L,∓, E± −→ E∓ by

encircling the exceptional point as arg(α) −→ arg(α) + 2π due to the energy function

crossing over the branch cut. [1]

I.1 Non-trivial topology in one-band non-Hermitian model

In contrast to the Hermitian topology in nH systems one-banded system can be topo-

logically non-trivial. In nH systems the winding number is defined along the path on

complex energy plane, whereas in Hermitian case the winding number is eigenstates

winding based on the Berry phase. The homotopical winding number is then defined as

[75, 76]:

w =
1

2πi

∫ π

−π
dk∂k lnEk. (3.2)

Ek are the energy eigenvalues and k are the indices of crystal momentum. When we

have multiband model the Ek will be replaced by detH(k) in eq.(3.2) and the H(k)

is the bulk nH system Hamiltonian. The winding number in eq.(3.2) takes integer (Z)

values. [1]

The simplest one dimensional model which shows non-trivial topology on its energy

spectrum is the Hatano-Nelson model [77] given by:

H =
∑
n

(JLc
†
ncn+1 + JRc

†
n+1cn), JL, JR ∈ R, (3.3)

c†n(cn) is the creation (annihilation) operator on site n and |JR| 6= |JL| in general.

The complex energy spectrum is then Ek = (JL + JR) cos (k) + (JL − JR) sin (k). The

energy spectra winds around the origin clockwise and counterclockwise direction for

|JL| − |JR| < 0 and |JL| − |JR| > 0, respectively. The winding number of the Hatano-

Nelson model is w = −1 and w = 1 so that the model has two different topological phase.

We know topological phase transition occurs when the energy gap closes. As expected

in the above model between the two different topological phases, the phase transition

requires Ek = 0 for some k when |JL| = |JR|. The energy spectra of the Hatano-Nelson

model represents the minimal example for the point gap [2], which will be defined later.
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I.2 Non-Hermitian skin effect

The nH Hamiltonians exhibit an another exotic feature called nH skin effect [78–81].

Skin effect is phenomenon which occurs in the system in open boundary condition where

macroscopic number of eigenstates pile up at the boundaries. Skin effect can be inter-

preted from the existence of the exceptional points. In the proximity or presence of EPs

the wave functions need to go through the EPs by opening the boundary from PB to

OB. The number of the skin states scale with the system size, because also the number

of the EPs scale with the system size.

The skin states can be also forbidden due to the symmetries, for example, in presence

of PT -symmetries [82].

In one dimension the boundary would be the two ends. In Hatano-Nelson model the skin

effect occurs due to the asymmetric hopping strength |JR| 6= |JL|, where the end with

the skin modes depend on which hopping strength is dominant. The simplest case where

we can see the skin effect is when the hopping strength in one direction is turned off,

i.e., JL = 0 in the eq.(3.3). The whole Hamiltonian in the open boundary condition can

be written in single Jordan block form, so that the eigenenergies become an exceptional

point of order N , when N is the total number of sites. [1]

I.3 Two-band non-Hermitian model and its topology

Two-band models in reciprocal space can be written in general form as

H(k) = d(k) · σ + d0(k)σ0 (3.4)

here d = dR + idI with dR,dI ∈ R3 which all depend on k, d0 ∈ C, σ = (σx, σy, σz)
T

are the Pauli matrices, and σ0 is the 2× 2 identity matrix. [1]

The energy spectrum is then

E± = d0 ±
√
d2
R − d2

I + 2idR · dI (3.5)

here all terms depend on the lattice momentum k, that is left out for simplicity.

The general Hamiltonian becomes Hermitian if the term dI equals zero. A degenerate

points will occur when dR term is tuned to zero. This results in occurence of stable

topological phase only in 3 spatial dimensions, i.e., Weyl semimetal. While in non-

Hermitian case for dI 6= 0, generic and stable degeneracy [83] can occur in two-spatial
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dimensions due to the two real conditions need to be satisfied [1]

d2
R − d2

I = 0, dR · dI = 0. (3.6)

we can see also any non-trivial solution to this eq.(3.6) gives us exceptional degeneracy,

where the nH Hamiltonian becomes defective. These phases define the nH Weyl phases

according to E.J.Bergholtz et al [1], which are topological stable 2D nodal phases.

Connecting the EPs there are purely imaginary and purely real energy spectrum called

nH Fermi-arcs or i−Fermi-arcs and these lines are results of the branch cut of the energy

eigenfunction [84–87]. These nH Fermi-arcs are comparable to the Fermi-arcs of the 3D

Weyl semimetals. However, the difference is that the Fermi-arcs are bulk property and

not surface property like in the Hermitian Weyl phase. [1]

II Topological classification of non-Hermitian random ma-

trices

We know that two different Hamiltonian belongs to one topological class as long as these

two Hamiltonians can be smoothly transformed to each other keeping the symmetries

without closing the energy gap. In addition to the Bloch bands, which is based on the

translational symmetry of the lattice structure, AZ symmetry classification of the Her-

mitian systems for topological insulators and superconductors is widely studied today.

We compare the non-Hermitian amendment of the topological classification for gapped

phases with Hermitian realm.

II.1 Internal symmetry classification

The classification of topology in condensed matter systems is based on the symmetries

of the Hamiltonian. The most fundamental symmetries are the internal symmetries,

which is distinct from the space group symmetry. Space group symmetries depend on

its specific spacial structure of the system. The internal symmetries are time-reversal

symmetry (TRS), particle-hole symmetry (PHS), and chiral symmetry (CS), where TRS

and PHS are antiunitary, whereas CS is unitary. [2]

Time reversal symmetry:

T H∗(k)T −1 = H(−k), where T±T ∗± = ±1 (3.7)
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Particle hole symmetry:

CH∗(k)C−1 = −H(−k), where CC† = ±1 (3.8)

Chiral symmetry:

ΓH(k)Γ−1 = −H(k), where ΓΓ† = Γ†Γ = Γ2 = 1 (3.9)

An internal symmetry is a transformation acting only on the fields. Thus, internal

symmetries do not transform space time points, and leaving the Lagrangian or the

physical results invariant. [2] Using internal symmetries one can classify the Hermitian

random matrices in 10-fold classes. This 10-fold symmetry classification is the famous

Altland-Zirnbauer (AZ)[52] classification as mentioned in the previous chapter.

In the Hermitian system by definition H∗ = HT the complex conjugation and the trans-

position are equal. Thus, PHS in eq.(3.8) is equal to CHT (k)C−1 = −H(−k). In non-

Hermitian systems this equality does not hold. Consequently, the PHS is ramified in

the presence of non-Hermiticity and PHS is generalized. Such symmetry generalization

occurs for all other symmetries in nH systems. Therefore, 10 symmetry classes in Hermi-

tian systems ramify into 43 symmetry classes [88] in non-Hermitian systems, which was

first classified by Bernard and LeClair. In this classification they have overcounted some

symmetries and also overlooked some of them. Besides symmetry ramification there are

also symmetry unification. Time reversal symmetry and particle hole symmetry can be

unified in the non-Hermitian systems. The operation of time reversal symmetry on H

is the same as the particle hole symmetry operation on iH. Thus, the total number of

generators of the non-Hermitian internal symmetries TRS, PHS, TRS†, PHS† (for the

definitions please refer to its paper Ref.[2]) and the combinations of them defines the 38

symmetry classes.TRS and PHS can be combined into the CS, Γ̂ := T̂ Ĉ.[2] The detailed

discussion of the internal symmetry classification of the nH matrices please refer to the

Ref.[2].

II.2 Space group symmetries and their role in topological systems

This section is taken from Ref.[65]

In addition to the AZ symmetry classifications by including the spatial symmetries the

topological classification gets enriched. Such additional symmetries have two possible

outcomes affecting the formulation of topological systems. Firstly, one can simplify

the calculation of topological invariant and secondly, the topological classification can
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be changed. Those non-trivial topological systems protected by spatial symmetries are

called topological crystalline insulators (TCIs) and superconductors (TCSs). [65]

Space group symmetries act non-locally, in contrast to the internal symmetries which act

locally. Space groups describe spatial symmetries of a crystal or a lattice. The operations

are composed of lattice translations and point group symmetries which should leave at

least one spatial point unchanged. The examples of point groups are inversion, reflection,

proper and improper rotations. Followed by the crystallographic restriction theorem in

presence of lattice-translation symmetries the rotations with 1-,2-,3-,4-, and 6- fold axes

are allowed. A space group operation G maps the point on lth site to the l′th site from

the unit cell r to the unit cell at position uGr + Rm. uG is a n × n orthogonal matrix

and the site is translated by lattice vector Ri. A unitary operator Ĝ acts on the electron

field operator, i.e., the fermion annihilation operator ψ̂(r) as follows:

Ĝψ̂i(r)Ĝ−1 = (UG)ji ψ̂j(uGr +Ri), (3.10)

here UG is a unitary matrix and the sites in a unit cell and the internal degree of freedom

are labeled with i and j. The indices are summed over j. [65]

The fact that the translation operator can be chosen to be diagonal representation in

an irreducible representation allows the Bloch basis functions can be used in generating

irreducible representation in a space group.

In momentum space the fermionic annihilation operators transform as:

Ĝψ̂i(k)Ĝ−1 = (UG(uGk))ji ψ̂j(uGk) (3.11)

here (UG(uGk))ji = (UG)jie
−iuGk·Ri (not summing over i). [65]

Example: The Su-Schrieffer-Heeger (SSH) chain is one dimensional and has A and B

sublattices (labeling two different atoms). When a reflection R̂ operates the atom A in

the j = 0th unit cell then the index of the fermionic operator âj flips its sign to â−j

and the operator for the atom B b̂j → b̂−j−1. In reciprocal space with the action R̂:

â(k)→ â(−k) and b̂(k)→ e−ik b̂(−k). [65]

Let us take an example of ramification of symmetry classification in presence of inversion

symmetry for TCIs and TCSs in Hermition systems. We take a d-dimensional Bloch

Hamiltonian H(k), and the r1 direction is invariant under reflection R1:

R−1
1 H(−k1, k̃)R1 = H(k1, k̃), (3.12)

here k̃ = (k2, ..., kd) and the operator R1 is unitary. We drop the index 1 for later.
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With respect to the given reflection plane and the right choice of a phase for R, R

satisfies the conditions:

R† = R, R2 = 1 (3.13)

then the eigenvalues of R are +1 or −1. The commutation relation with the AZ sym-

metry operators T , C and Γ are:

ΓR = ηΓRΓ, TR = ηTRT, CR = ηCRC, (3.14)

here ηΓ,T,C = ±1 tells that if R commutes or anticommutes with the operators Γ, T and

C. Thus in presence of the internal symmetries and the reflection symmetry there are

altogether 27 symmetry classes, which is tabulated in the Ref.([65]).

III Energy gap in complex energy spectrum

This section is taken from Ref.[2].

In Hermitian systems two systems are in a topological phase if and only if the two

Hamiltonians can be continuously deformed to each other and simultaneously, if the

symmetry is conserved. Energy gap is the region where no energy states are present.

Therefore, energy gap closes only if the spectrum are contractible to a zero dimensional

single point E = EF . Thus, the energy spectrum is uniquely defined in Hermitian

systems and the gap is open if and only if the spectrum does not cross the Fermi energy

level EF . [2]

However, in nH systems the concept gap is not trivial due to the complex energy spec-

trum, which can be displayed on the complex plane, C. In non-Hermitian system, we

can define 2 different gaps on the complex plane. One of them is point gap at EP , where

the energy spectrum can be contracted to one point. The other one is line gap, when a

line can be drawn between two bunch of energy spectrum. [2]

The topological phases are classified also based on its type of energy gap. For instance,

when there are no symmetries in the system the topological phase with point gap is

present only in odd spatial dimensions (see class A in section). Whereas, topological

phase determined by line gap is only present in even spatial dimensions. [2]

III.1 Point gap

In general the complex energy reference point E = EP for the point gap is non zero.

However, due to the symmetries of the system there are sometimes restrictions on the
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Figure 3.1: Energy gaps in nH systems. It shows their gap closing. In (a), Hermitian gap
closing occurs when the energy spectrum crosses the Fermi level. In (b), point gap closes
when the spectrum crosses the reference energy point EP . In (c), line gap closes when there
are energy eigenvalues connect the energy spectrum on the two sides. The figure is taken

from Ref.[2].

EP . For example, in presence of time reversal symmetry (TRS) Im(EP ) = 0 because

the eigenenergies are in (E,E∗) pairs. Also, for having the sub lattice symmetry (SLS)

it should be zero EP = 0, because the energy spectrum come in (E,−E) pairs.

Definition 1: A non-Hermitian Hamiltonian H(k) is defined to have a point

gap if and only if it is invertible (i.e. , for all k det(H(k)) 6= 0) and all the

eigenenergies are nonzero (i.e. , for all k E(k) 6= 0). [2]
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III.2 Line gap

A line in the complex energy spectrum, which separates energy spectra to two regions,

has also restrictions due to the symmetry. Mostly, we can take as a line gap the real

axis Im(E) = 0 or the imaginary axis (Re(E) = 0). For example, in presence of TRS

the eigenenergies come in pairs (E,E∗), then the real axis (imaginary gap) would be the

line separating the energy spectrum. Whereas, in presence of chiral symmetry CS the

energies come in (E,−E∗) pairs, then the imaginary axis (real gap) would be the line.

Definition 2: A non-Hermitian HamiltonianH(k) is defined to have a line gap

in the real (imaginary) part of its complex spectrum [real (imaginary) gap] if

and only if it is invertible (i.e., ∀k detH(k) 6= 0) and the real (imaginary) part

of all the eigenenergies is nonzero [i.e., ∀k Re(E(k)) 6= 0 (Im(E(k)) 6= 0)].[2]

The existence of the imaginary gap means the system has significant nonequilibrium

wave dynamics, which has no counterpart in the band theory with Hermiticity. [2]

IV Unitary and Hermitian flattening of energy spectrum

IV.1 Unitary flattening for systems with point gap

Every nH Hamiltonian H(k) with a point gap can be flattened to a unitary matrix U(k)

respecting its symmetry and without closing the point gap. The proof of that statement

is in Ref.[2]. Thus the classification of the nH Hamiltonian becomes the classification

of that unitary matrix. The extended Hermitian Hamiltonian of that flattened matrix

then given by:

H̃(k) :=

(
0 U(k)

U †(k) 0

)
, H̃2(k) = 1. (3.15)

If the nH Hamiltonian H(k) has the above discussed symmetries the corresponding

extended Hermitian Hamiltonian H̃(k) have the symmetries which are given in the

following:

T̃±H̃∗(k)T̃ −1
± = ±H̃(−k), T̃± :=

(
T± 0

0 T±

)
; (3.16)

C̃±H̃∗(k)C̃−1
± = ±H̃(−k), C̃± :=

(
0 C±
C± 0

)
; (3.17)
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Γ̃H̃(k)Γ̃−1 = −H̃(k), Γ̃ :=

(
0 Γ±

Γ± 0

)
; (3.18)

S̃H̃(k)S̃−1 = −H̃(k), S̃ :=

(
S 0

0 S

)
; (3.19)

η̃H̃(k)η̃−1 = −H̃(k), η̃ :=

(
0 η±

η± 0

)
; (3.20)

Additionally, all extended Hermitian Hamiltonian respects the chiral symmetry CS (or

SLS) because of its off diagonal structure with the given symmetry operator Σ:

ΣH̃(k)Σ−1 = −H̃(k), Σ :=

(
1 0

0 −1

)
; (3.21)

Thus the topology of the nH Hamiltonian with point gap can be also given by the

corresponding extended Hermitian Hamiltonian which respects the above symmetries

and they are already obtained in the previous works [89, 90]

IV.2 Hermitian flattening for systems with line gap

In the presence of a line gap on the other side, we can flatten the non-Hermitian Hamil-

tonian into Hermitian (anti-Hermitian) Hamiltonian by keeping the real gap (imaginary

gap) open and without breaking its symmetry. The proof for this statement can be also

found in the Ref.[2]. As a result the topology of the corresponding Hermitian matrix is

the same as the corresponding non-Hermitian matrix [89, 90]. Additionally, the topology

of an anti-Hermitian matrix H(k) with H†(k) = −H(k) under an imaginary gap has

the same topology as the Hermitian matrix iH(k) with a real gap [2, 91]. However, the

resulting physics of these two anti-Hermitian H(k) and the corresponding Hermitian

iH(k) matrices are different.[2]

V Topological invariant for non-Hermitian systems

Topological invariant for nH systems depends on the type of their energy gap in addition

to the dimensionality and the symmetries of the system. In this section we take a

look at the definitions of the winding numbers for some particular cases. The type
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of the invariant for particular systems can be determined considering separately the

symmetries. [2]

The extended Hermitian Hamiltonian H̃(k) and its nH Hamiltonian H(k) carry topo-

logical correspondence which was shown by Gong et al. [75]. Because the extended

Hermitian Hamiltonian H̃(k) respects CS, the topological invariant that specifies the

system is given as

W2n+1 :=
n!

(2πi)n+1(2n+ 1)!

∫
tr(H−1dH)2n+1 (3.22)

this topological winding number is the same as the spectral winding number for the point

gaps in systems without symmetries, which is in total contrary to the Hermitian case

where the Chern numbers characterize band structures for even dimensional systems

without symmetries. Based on the observation of this correspondence between extended

Hermitian Hamiltonian and its nH Hamiltonian the periodic table of nH Hamiltonians

was first made recently by Gong et al. [75].

V.1 Wess-Zumino term as topological invariant

The Wess-Zumino (WZ) term was originally used in high energy physics and later as a

topological term in disordered 2D superconducting systems as well as for the quantum

mechanical path integral formulation of a single spin system as a effective Langrangian

term. [92, 93]

The WZ term depends on the spatial property of the system. This geometrical topolog-

ical invariant can be used thus to determine the topological phases for the systems in

2D with certain spatial symmetries and is given as the following integral

WZ[H] =

∫
T 2×[0,1]

tr
[
H−1dH

]3
=

∫ 1

0

∫ 2π

0

∫ 2π

0

d2kdt

24π2
εijktr(H−1∂iHH

−1∂jHH
−1∂kH)

(3.23)

The matrix H in the integral is not the system Hamiltonian but it is an extension of the

Hamiltonian we are interested in. They are given in the following way. In the case when

one dimensional winding number is zero, there exists smooth path between an invertible

Hamiltonians H(kx, ky, t)

H(kx, ky, t = 0) = H(kx, ky) (3.24)

to a final constant Hamiltonian:

H(kx, ky, t = 1) = Hconst (3.25)
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This integral in Eq.(3.23) is a real number which takes value in the circle [0, 1] and

which can be quantized under certain spatial symmetry. Further condition on the

Hconst is given later in chapter 6. There are certain ways of extending the Hamil-

tonian H(kx, ky) −→ H(kx, ky, t) so that the difference between two different extensions

H(kx, ky, t) and H ′(kx, ky, t) is integer valued three dimensional winding number of third

homotopy class π3(GLN (C)) = Z (Two functions are said to be in a homotopy class, if

one function can be continuously deformed to other function), where N is the dimension

of the system H(kx, ky) [94].

VI Bulk-boundary correspondence

This section is taken from Ref.[1].

We know the bulk boundary correspondence from Hermitian systems. That is the prop-

erty where we can compute the topological invariant from Bloch Hamiltonian (means

for infinite system) and if this is non-trivial then the system is topologically non-trivial.

In that case, we already know that there are boundary states for the system in OBC.

When BBC is valid then the energy dispersion of the case with OBC and PBC have

the similar shape. In many nH Hamiltonian the spectra in PBC and OBC look totally

different, which is called spectral instability by opening the boundary condition. This is

due to the topological phase transition from PBC to OBC. In that case we also always

observe the skin states at the boundary. As mentioned previously, the skin states appear

due to the existence of the EPs.

However, due to some symmetries in the system the skin states can also be forbidden.

Due to the PT -symmetries the skin states do not pile up at the boundaries [82].

Because the conventional BBC is broken in nH systems, we want to reconstruct the BBC

for nH systems. There were several tries to reconstruct the BBC, however, they are not

yet complete. Further please refer to the Ref.[1]

One of the approaches to reconstruct the BBC is building singular value decomposition

(SVD). With SVD we can reconstruct the cBBC for the models where the cBBC is

broken in case of eigenvalue spectrum. The spectrum in PBC has the same shape as

the spectrum in OBC and in OBC case we see the boundary modes. [95] However, the

exotic features of nH properties can not be covered with SVD approach. In the following

we look at the definition of the SVD.
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VI.1 Singular value decomposition

This section is mainly based on the Ref.[96]

Singular value decomposition (SVD) is used in many context, such as dimension reduc-

tion of data based on their biggest singular values [97], reestablishing of bulk boundary

correspondence in non-Hermitian systems [1] and renormalization group procedure [22].

An another use is to inspect if a transformation is unitary by performing the singular

value decomposition [98].

The definition for SVD is given as follows: Let M be any complex m× n matrix. Then

M can be written in the factorized form as:

M = U ·Σ · V † (3.26)

which is called singular value decomposition (SVD). Σ is an m×n diagonal matrix with

r distinct positive real entries σi = Σii (where i = 1, 2, ..., r and r ≤ m) which are known

as singular values of the matrix M . U is an m×m and V is an n× n unitary matrix,

correspondingly. The column vectors of U and V are left- and right-singular vectors of

matrix M and form a set of orthonormal eigenvectors of MM† and M†M , respectively

and thus the σi are the square roots of non-negative eigenvalues of the corresponding

matrices. The matrices U and V are not unique, however they can be always chosen so

that the entries σi are in descending order. Using SVD, we can also determine the range,

null space and rank of the matrix M . More specifically, the number of the non-zero

singular values is the rank of matrix, rank(M) = r and corresponding singular vectors

(of the non-zero singular values) span the range of matrix M . Therefore, the number of

right-singular vectors with vanishing singular values span the null space of matrix M :

M~vk = ~0, for k = m− r,m− r + 1, ...,m. [96]



Chapter 4

Methods

To reconstruct the bulk boundary correspondence we should be able to construct the bulk

Hamiltonian. The models of this research project are given in tight-binding formalism.

When the bulk Hamiltonian is given we want to know if there are boundary states.

To know if we have just a few boundary states or if there exist skin states, we need a

method to see where the biggest probability of the real space eigenvectors can be found.

For that purpose, we calculate the inverse participation ratio (IPR) values to see how

many states are how much localized on the lattice. However, we do not know where

on the lattice the well-localized states can be found, somewhere on the bulk side or at

some boundaries. To know that we can construct the probability density profile and see

exactly where the biggest probabilities can be found.

Except for the analytical calculation of the Wess-Zumino term, the diagonalization and

calculations were done using the linear algebra libraries in Python.

I Tight binding models

This section is taken from Ref.[99].

The models I used in my thesis are the matrix forms in tight-binding formalism. The

formalism focuses on the basis orbitals which are used to describe the outermost valence

and the lowest conduction states of the given system. The orbitals are never built explic-

itly, instead they are appproximated by linear combination of atomic orbitals (LCAO)

[100], which are usually taken single electron eigenfunctions (orbitals) ϕj(r − Rn) of

isolated Hydrogen-type atoms:

28
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ψm(r) =
∑
Rn

bm(Rn)ϕm(r −Rn), (4.1)

here Rn is atomic position in the crystal and bm(Rn) are the coefficients or the contri-

bution of that orbital. m refers to the m-th energy level. [99, 101] The wavefunction

ψm(r) is the solution of the following time-independent single electron Hamiltonian:

H(r) = Hat(r) +
∑
Rn 6=0

V (r −Rn) = Hat(r) + ∆U(r), (4.2)

Hat is single atomic Hamiltonian and V (r−Rn) is the potential contribution of the atom

at Rn and this is assumed small. Then, the sum can be written as a small potential

contribution ∆U(r). [99, 101]

Bloch theorem tells us that the wave function in a crystal changes only by a phase

factor with the periodicity of the lattice. To get the energy for the m-th energy band,

we assume only the m-th atomic energy level with the energy εm contributes:

εm =

∫
d3rψ∗m(r)H(r)ψ(r) (4.3)

= Em −
βm +

∑
Rn 6=0

∑
l e
ik·Rnγm,l(Rn)

1 +
∑

Rn 6=0

∑
l e
ik·Rnαm,l(Rn)

, (4.4)

here ψ(r) is the linear combination of all wavefunctions of each atom in the crystal. Em

is the energy for atomic level-m. αm,l, βm and γm,l are the so-called tight binding matrix

elements. [99, 101]

The element βm is the atomic energy shift which come from the potentials of the neigh-

boring atoms:

βm = −
∫
φ∗m(r)∆U(r)φm(r)d3r, (4.5)

The interatomic matrix element between the atomic orbitals m and l coming from the

neighboring atoms is the next element γm,l:

γm,l = −
∫
φ∗m(r)∆U(r)φl(r −Rn)d3r, (4.6)

The third one is the overlap integral of the atomic orbitals m and l on neighboring

atoms:

αm,l = −
∫
φ∗m(r)φl(r −Rn)d3r, (4.7)
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For good description of band structure using tight binding formalism, the terms αm,l

and βm are assumed to be small. [99, 101]

In the tight binding formalism the second quantized Hamiltonian using the atomic or-

bitals as basis states is written as follows:

H = −t
∑
〈i,j〉,σ

(c†i,σcj,σ + h.c.), (4.8)

where t is the hopping integral, c†i,σ(cj,σ) is the creating (and annihilating) operators

with the spin polarization σ between the nearest neighbors 〈i, j〉 and their hermitian

conjugates (h.c.). The hopping term t corresponds to the interatomic matrix element

γ in above tight binding formalism. When t = 0 the case corresponds to isolated atom

and it is impossible for the electron to hop. When t is non zero the electrons can reside

on both sides so that the kinetic energy can be lowered. [37, 101]

Using tight binding models one can illustrate intuitively the Berry phases, Berry curva-

ture, electric polarisation, magnetoelectric couplings, and topological insulators. [37]

II Wyckoff positions

By calculating the Wyckoff position we can know where the states can be found in a

unit cell and understand the probability density profile. On the other side, by looking

at the probability density profile we can maybe guess also what symmetry the system

could possess. The definition for the Wyckoff positions are given by

Definition 2. The orbit aα = gαq|gα 6∈ Gq, α = 1, ..., n of a symmetry

site q modulo lattice translations are classified by a Wyckoff position of

multiplicity n. Note that we define the multiplicity with respect to the

primitive, rather than the conventional cell.[102]

C2T ψ(kx, ky) = C2e
−ik·rψ(kx, ky) = eik·rψ(−kx,−ky) (4.9)

e−ik·r is the eigenvalue for the translation operator on the Bloch wave function and

r = (a, b) is the hopping length in 2D.

Applying the C2 operator on the eigenvector (eigenstate in the valence band) at the high

symmetry points we get the eigenvalues, which are listed in the table below.
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By setting a = 1 and b = 1 we get for the TRIM points in 2 dimensions the following

points Γ = (0, 0), M = (π, π), X = (π, 0) and Y = (0, π)

Table 4.1: C2 eigenvalues of inversion symmetric 2D systems for s- and p-orbitals and
corresponding Wyckoff positions.

Wyckoff

positions

k points

Γ = (0, 0) M = (π, π) X = (π, 0) Y = (0, π)

(0, 0) (s-orbital) 1 1 1 1

(1
2 ,

1
2) (s-orbital) 1 1 -1 -1

(0, 1
2) (s-orbital) 1 -1 1 -1

(1
2 , 0) (s-orbital) 1 -1 -1 1

(0, 0) (p-orbital) -1 -1 -1 -1

(1
2 ,

1
2) (p-orbital) -1 -1 1 1

(0, 1
2) (p-orbital) -1 1 -1 1

(1
2 , 0) (p-orbital) -1 1 1 -1

For non-Hermitian Hamiltonians we donot have Fermi level, instead there are line gap

and point gap on the energy spectrum on complex plane. To find The Wyckoff position

in non-Hermitian systems we take the states with negative real energy part, because as

mentioned above the nH Hamiltonian can be smoothly transformed to the Hermitian

Hamiltonian if there is line gap. Therefore, the energy eigenstates with negativ real

part would correspond to the occupied states. However, the Wyckoff positions for nH

Hamiltonians are not well defined.

III Inverse participation ratio

The inverse participation ratio (IPR) is the measure of a state |ψ〉 how this is spread

over a basis |α〉Nj=1, here N is the dimension of the basis. Explicitly said, if pi is the

probability of finding the (normalized) state |ψ〉 in |α〉i, then the IPR is defined as follows

Iψ =
∑

i |ψ|4 =
∑

i p
2
i . Thus, if |ψ〉 is only located in a single state |α〉0, then pi0 = 1 and

Iψ = 1(largest IPR), on the contrary, if |ψ〉 equally located in every state |α〉i (equally

distributed), pi = 1/N ∀i, then Iψ = 1/N (smallest IPR). Then the IPR is equal zero

in thermodynamic limit. Therefore, the IPR is a measure of the localization of |ψ〉 in

the corresponding basis. [103]

In other words, if the state is an eigenfunction 〈r|ψ〉 = ψ(r) at lattice site r of a tight

binding model in its real space (lattice space) with the N number of lattice sites then the

IPR with the above definition gives us the inverse number of orbitals which contribute
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to this state. On the contrary, if we define the IPR (the actual definition of inverse

participation ratio) to be I ′ψ = 1/(N
∑

i |ψ(r)|4) = 1/(N
∑

i p
2
i ), then this quantity

gives us the proportion of the total number of atoms in that system contributing to

the corresponding eigenstate. [104] We can see this difference in the following example.

When we have a wavefunction spreads over l lattice sites supposing with the equal

probability amplitude |ψi(r)|2 = 1/l and zero on the remaining lattice sites. Then we

have I ′ψ = l/N and Iψ = 1/l. [104]

Now, we define the IPR in non-Hermitian system. Let us use the notation IPR(|Rn〉) of a

mode |Rn〉 instead of Iψ. In Hermitian systems the left eigenvector and right eigenvector

are the same for each state, therefore the IPR for Hermitian system is defined as follows

using only the ”right” eigenvector [105]:

IPR(|Rn〉) =

(∑
j,σ=A/B |〈j, σ|Rn〉|

2
)2

∑
j,σ=A/B |〈j, σ|Rn〉|

4 , (4.10)

here the ’right’ eigenmode is in the real space basis |j, σ〉 of the single particle Hilbert

space. The j-index denotes the unit cell and the σ = A/B the sublattice. This definition

has more complicated form in order to normalize the eigenstate 〈j, σ|Rn〉. [105] If we

have a nH Hamiltonian, then using the bi-orthogonal formulation of quantum mechanics

[106], the observable can be calculated 〈O〉RL =
〈
φL|O|φR

〉
. Then to calculate the

(bi)localization using the left and right eigenvectors the IPR can be defined in the

following way [105]:

IPRRL(|Rn〉) =

(∑
j,σ=A/B |〈Ln|j, σ〉 〈j, σ|Rn〉|

)2

∑
j,σ=A/B |〈Ln|j, σ〉 〈j, σ|Rn〉|

2 , (4.11)

When studying the singular value decomposition H = UΛV †, we could also write the

IPR for the |Un〉(|Vn〉) is the nth column of U(V) matrices

IPRSV D(|Un〉) =

(∑
j,σ=A/B |〈Vn|j, σ〉 〈j, σ|Un〉|

)2

∑
j,σ=A/B |〈Vn|j, σ〉 〈j, σ|Un〉|

2 . (4.12)

IV Probability density profile

To build the probability density profile we first have to find the eigenstate from the

Hamiltonian built in real space. Then we can calculate the probability at each site of

the lattice. The number in [0, 1] would be the probability for electron to be found at one

lattice site. When the hoppings of the system is given then we can find the real space
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tight-binding Hamiltonian by systematically building the matrix for a chosen size N of

the system.

Figure 4.1: Building the real space matrix from the hopping strengths for 9 unit cells. On
the left, we see Hatano-Nelson model with 9 unit cells and the hopping JL and JR connecting
the sites 1 and 9 are the boundary condition. On the right, the hopping strengths in green
boxes are in presence of periodic boundary condition and without them in open boundary

condition.

Whereas when the system is given in Bloch form, then we should make the Fourier

transform in each direction depending on the dimension of the system. Then Fourier

transformed blocks are used to build the whole hopping real space matrix. These can

be all done numerically on python. After building the real space Hamiltonian we can

calculate the eigenvectors ψ(x) of the Hamiltonian using the linear algebra libraries in

python. Depending on the numeration of the lattice site on building the real space

Hamiltonian we should reshape the whole length of the probability density amplitudes

| 〈ψ(x)|r̂|ψ(x)〉 |2 to 2 or 3 dimensions, here r̂ is the position operator. Examples of the

density profile for 2D are given in Fig.(4.2).

Figure 4.2: The probability density profile for π-flux (2D model). In brackets we have its
energy eigenvalue. The numbers 184 and 185 are the numbers come from their eigenvalues
numbering to sort with its real part of the eigenvalues for a system with 20 × 20 unit cells.
184 and 185 correspond to the states in the middle of the spectrum. They are taken with the
biggest IPR values and we see that the eigenstates with biggest IPR values are in the middle
of the spectrum, because we would expect that they are in the middle of point energy gap.



Chapter 5

The 1st model: π-flux model

I Introduction

The Hermitian π-flux Hamiltonian is given by the first term with the hopping strength

t in the Hamiltonian in Eq.(5.1). The second term with the hopping strength ir is the

non-Hermitian diagonal hopping term. The model and its spectrum is illustrated on

Fig.(5.1) [4]

H(kx, ky) = t

(
2 cos ky 1 + e−ikx

1 + eikx −2 cos ky

)
+ ir

(
0 eiky

e−iky 0

)
(5.1)

Figure 5.1: The hopping strengths on the lattice. Solid black line is hopping t and dashed
line is for −t. On the left the π-flux model which is Hermitian model and its spectrum is
shown. On the right the red diagonal hopping is the nH term in the Hamiltonian. On the
right, the corresponding spectrum is shown by taking only real part of the energy. [4] The

figure is taken from Ref.[4]

The Hermitian π-flux model has 2 Dirac cones since the Dirac cones must come in pairs

[54]. By adding the nH term, each Dirac cone forms two EPs. The whole Hamiltonian

might not contain any symmetries. However, the degenerate points are stable because

the EPs are stable in already 2D, which is different from Hermitian systems [7]. The

real part of the energy degeneracy, we see in Fig.(5.1), is the Fermi-arc mentioned in

34
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the Ref.[7], which connects a pair of EPs. By plotting the imaginary part of the energy

spectrum we will see the iFermi-arc (only imaginary energy eigenvalues due to the branch

cut).

The π-flux model is reciprocal as it satisfies the condition H(kx, ky) = HT (−kx,−ky).
By adding nH term the Hamiltonian is still reciprocal and it is interesting to study. As we

mentioned in the previous Chapters until now one-dimensional models were investigated

mostly and those models had different hopping strength to right and left so that the

skin states were piled up at one of two ends. On the contrary π-flux skin states pile up

at both of the edges in 2D.

The nH hopping depends on ky we can build a ribbon geometric Hamiltonian which is in

y-direction periodic and x-direction open. Then the whole ribbon geometric Hamiltonian

is also H̃T (ky) = H̃(−ky) reciprocal, where the ky ∈ [0, 2π] is the boundary momentum.

[7] However, at each ky the system breaks the reciprocity. The 1D ribbon model exhibits

skin effect and we can calculate the winding number if the winding number can predict

the skin effects, in which case the 1D winding number is called the weak topological

invariant. We will see also the skin effect appears in the y-direction and not in the

x-direction. For particular ky skin effect appears and reciprocity relates to the existence

of the skin states at −ky at the other boundary. The strongest localization was found at

π/2 and 3π/2, where the Dirac points were touching in Hermitian π-flux model. Because

the Hamiltonian H̃(ky) is reciprocal at the (time-reversal invariant momenta = TRIM)

points ky = 0, π, the states are there delocalized. [4]

II Results

II.1 Exceptional degeneracy and energy spectrum

Firstly, I plotted the energy dispersion of π-flux Hermitian and non-Hermitian cases

(see Ref.(5.2)). We see the EPs by taking the absolute values of the energy eigenvalues.

When we plot the real part of the energies we can see the nH Fermi-arcs which connect

the EPs. We can also observe the number of the exceptional points are even due to the

non-Hermitian Fermion doubling theorem for 2D models [107], which appear by adding

nH term to the system and the a Dirac cone can double to 2 EPs.

I also plotted the energy spectrum from real space Hamiltonian in fully open boundary

condition (OBC) and periodic boundary condition (PBC) (see Fig.(5.3)). Due to the

exceptional degeneracy we see the point gap in the PBC spectrum with reference energy

Ep = 0, which confirms the bulk topology is non-trivial since there is a point gap.
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Figure 5.2: On the top left, is the energy dispersion of the π-flux Bloch Hamiltonian in
the Hermitian case. We see here the system has degeneracy at two points, which are called
Dirac dispersion. On the top right, we see the real part of the energy dispersion with the nH
hopping. We can also see the 4 EPs in the figure below by taking the absolute values of the

energies. The gap at the exceptional point is due to the coarser k-grid.

Each energy point is color-coded according to their IPR values of the corresponding

eigenstates. The number of well localized eigenstates can be seen approximately on the

IPR histogram (see Fig.(5.3)). There are 4 most localized states and they can be found

inside the point gap of the energy spectrum with fully OBC. These most localized states

must be the states with ky = π/2, 3π/2 in H̃(ky) Hamiltonian where the initial Dirac

point was located in the energy dispersion and we can confirm this later in the results

for the ribbon geometric case.

II.2 Probability density profile

We know that the IPR values of the eigenstates tell us only how well a state can be

localized, but it does not tell us the position of the localization on the lattice. Thus,

to see where the highly localized mode can be found, we can plot the density profile of

each eigenvector, which is shown in the Fig.(5.4). It makes sense that the localization

of the skin modes are found in y-direction, because the nH term is ky dependent. Also,

x-axis of the Dirac points is at kx = π where the system is reciprocal and this means
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Figure 5.3: On the top left, energy spectrum of the π-flux model in fully OBC for a system size
20x20 unit cells and the eigenvalues are color-coded according to their IPR values. On the top
right, we see the energy spectrum for fully PBC and color-coded with their IPR values. On the
bottom, the histogram of the IPR values for all states in the system in fully OBC. If a state ψi is
fully localized on one edge (although we cannot say with IPR values where the states are localized
in the whole lattice), the IPR of the i-th state should be Iψi

= 1
400 · 20 = 0.05. As we see on the

histogram most of the states are not well localized (in this system there are 20×20 = 400 states).

that the states are in that direction delocalized. The most localized 4 states are shown

on Fig.(5.4). The numbers above the figures are the sorted values w.r.t. the real part of

the eigenenergies and with that number the most localized IPR values are found.

I have calculated the IPR values of the states with different boundary conditions with

all possible 4 conditions, i.e. xOByPB, xPByOB, fully OB, and fully PB, all in the real

space. The states in x-direction PB are not well localized. However, the states are well

localized in the y direction PB case, which also explains the probability density profile

on Fig. (5.4), where the states are very well localized at the hinges along the y-axis.

As in the Ref.[4] stated, the states on one boundary are well localized. It is also true

that there are states with the same localization on the opposite boundary due to the

reciprocal connection between the states at ky and −ky.
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Figure 5.4: The probability density profile of the most localized 4 states. The localization
was determined by the IPR values of the whole eigenstates of the system with 20x20 unit
cells in full OBC. The color bar shows the probability strength per unit cell. The probability
density is calculated with the right and right eigenvectors (RR). The complex number in the
bracket is the energy eigenvalue of that state. The numbers after the EV are the numbers
that sorted the energy eigenvalues w.r.t. the real part of the eigenenergy and using them
chosen from their IPR values. These numbers are approximately in the middle of the numbers
400 because the edge states can be found inside the point gap as we see in Fig.(5.3) on the

top left.

II.3 Ribbon geometry

To investigate the system further we make the system in x or y direction periodic and

this is possible because we know the hoppings in the real space explicitly. I perform the

Fourier transform to the Hamiltonian along the periodic side. By taking the open chain

(for example) in x-direction, we have a ky dependence and construct this Hamiltonian

which can be called ribbon/slab geometric Hamiltonian. Then, we can look at the en-

ergy dispersion for the ribbon geometric Hamiltonians which depends on ky values (see

Fig.(5.6)). Each real and imaginary part of the energy eigenstates for the Hamiltonian

H̃(ky) with open boundary ribbon and periodic boundary ribbon cases were plotted.

Ribbon geometric Hamiltonian with open boundary means the 2 ends of the model in

x-direction are not connected. Periodic boundary when they are connected with the

x-direction hopping strength. In the Fig.(5.6) we see that the bulk boundary corre-

spondence is violated as the spectral flow from the dispersion of periodic ribbon case to
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Figure 5.5: Localization with different boundary conditions for the 4 cases: fully OBC,
xOByPB, xPByOB, and fully PBCs. The most localized states are expected for the condi-

tions fully OBC and xOByPB, which are pink and gray coloured histogramms.

the dispersion with open ribbon cases does not resemble. Spectral flow means how the

spectrum changes by opening the boundary conditions. In the real energy dispersion of

the OB ribbon, we see the band touching at the initial Dirac momenta for the Hermitian

π-flux dispersion.

II.4 1D winding number

At a fixed ky (or kx, depending on in which direction PB) the model can be seen as

a one-dimensional model and we can calculate the 1D winding number to see if the

invariant can predict the skin states.

When we have a first order skin effect the 1D winding number is expected to be non-

trivial for the quasi 1 dimensional model, which is realized by ribbon-geometric Hamil-

tonian.

The boundary hopping of the ribbon ends was changed to see how the spectrum would

change according to the hopping strength at the boundary. Even with the small hopping

strength the spectrum did not change much compared with the hopping strength as much

as the system hopping. When the boundary hopping is zero the spectrum collapses and

there are no point gap any more. The spectrum of the all ribbon geometric Hamiltonian

with the periodic boundary with any strength would look like the spectrum on Fig.(5.7)

on the top.
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Figure 5.6: On the left (top and bottom), real and imaginary part of the energy dispersion
of the Hamiltonian in x open chain and in ky dependent ribbon geometric case with the PBC
by connecting ends in x. On the right (top and bottom), the real and imaginary part of the
energy dispersion with the Hamiltonian with the same boundary conditions as on the left but
open ribbon ends in x. We see the spectral flow breaking after opening the boundary of the
ribbon Hamiltonian from left to right. In the periodic boundary case, we see the nH Fermi-arc or
nH iFermi-arc type zero energy states on the real and imaginary energy dispersions which connect

pair of exceptional points.

When the boundary of the ribbon geometry are connected (now with the proper system

strength) (Fig.(5.7) on the top left) we can compute the 1D winding numbers. The

spectra for the ky = π/2, 3π/2 cases are on top of each other so that we can see only

one of the colors which is cyan. Here the winding number is −1. Then when we look at

the energy spectrum of the 20x20 lattice with xOByPB cases below that figure we see

the state in the middle is most localized according to the IPR value.

We see also (Fig.(5.7) on the top left) for the other ky values when the winding is non-

zero the states in the real space are also relatively well localized according to the IPR

values. However, for the ky points except ky = π/2, 3π/2 values, we have line gap and

point gap. If we have only point gap for the case of ky = π/2, 3π/2, then the energy

spectrum has only point gap. When the spectrum is not showing point gap at all in

closed ribbon geometry, then the IPR values are also very small.
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Figure 5.7: On the top, we see the energy spectra for ribbon geometric Hamiltonian for
every fixed ky and kx values given by the colors. On the side bar, we see the corresponding
color-code with the k-values. On the bottom, we see the energy spectra for the lattices
with xOByPB condition (on the left) and xPByOB condition (on the right) with the size
20×20. The energy spectrum is color-coded with its IPR values which are given on the side
bar. The IPR values are calculated with the right and right eigenvectors. In the ribbon
geometric case, the 1D winding numbers were calculated and noted inside the point gaps and
the reference energy for the calculation of the winding numbers are noted beside the values

with the corresponding colors.

In case of kx ribbon geometric case the energy spectra have 8-formed winding (Fig.(5.7)

on the top right) so that we have positive winding number and negative winding number

for a fixed kx value due to their winding direction. Then, we look at their energy

spectrum on the real space and indeed the most localized states can be found where the

winding number is not zero. As predicted the winding number at kx = π is zero and its

real space spectrum also totally delocalized (Fig.(5.7) on the bottom right), because the

states are reciprocal due to the reciprocity condition.

II.5 SVD spectrum and recovery of BBC

Due to the fact that the bulk boundary correspondence is broken, we have to search other

method to predict the boundary states or skin states. We could look into the singular

value decomposition [1]. Additionally, I have plotted the singular value decomposition

for the open boundary condition and perdiodic boundary condition for ribbon geometric

Hamiltonian. In the case of SVD (in Fig.(5.8)) spectra we see that the bulk boundary

correspondence is restored, because the form of the spectra in both cases are similar and

in OBC there are zero states (Fig.(5.8) on the right bottom).
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Figure 5.8: On the top left, we see the energy dispersion in absolute values for the ribbon
geometric Hamiltonian in the form of xOByPB case. On the top right, we see the dispersion of
the SVD spectrum with the same ribbon geometry. Both cases on the top are with the connected
boundary condition of the ribbons. On the bottom, we see the corresponding energy and SVD

spectra in the open ribbon boundary cases.
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III Discussion for the π-flux model

The aim of the thesis is to restore the BBC. By plotting the probability density profile

we see the system has first order skin effect.

1D winding number can be used as a weak topological invariant, because we have a

2D system. To calculate the 1D winding number we had to build the ribbon geometric

Hamiltonian. As we have seen above the 1D winding number in our model indeed predict

the well localized states at the boudary. The most localized state is when we do not have

any line gap in the ribbon geometric spectrum. Additionally, those most localized states

are at the ky = π/2, 3π/2 values where the initial Dirac points were located. However,

along the kx direction the Dirac point location is at π so that the states from there

totally not localized (because of the reciprocity on that point).

Due to the first order skin effect in the ribbon geometric case xOByPB we could calculate

the spectral winding number and determine the source (+1) and sink (−1) numbers for

each ky value in the periodic boundary by connecting the x-ends, where the point gaps

are circulating around the EPs. Correspondingly, the energy eigenstates are very well

localized at the boundary so that it confirms it can predict the boundary skin states.

As in the paper ”universal skin effect” [8] stated that there exist skin states in π-flux

model due to its exceptional degeneracy.

Finally we looked at the singular value decomposition spectrum (SVD) which is expected

to recover the conventional type of bulk boundary correspondence which was mentioned

in the Ref.[1]. As we see at the spectrum in OB and PB the shape of the dispersion looks

similar and it is indeed recovers the cBBC. However, as in the Ref.[1] mentioned that

the SVD looses the information about the nH behavior, we cannot (for example) see the

degeneracy of the energy spectrum in OB ribbon geometric case, where only there the

states are mostly localized and not all of the zero singular values of SVD spectrum.



Chapter 6

The 2nd model - A model with

second order skin effect

I Introduction

Now we are going to introduce a two dimensional non-Hermitian model [3] that exihibits

the second-order skin effect. The 2D Bloch Hamiltonian is given as

H(~k) = −i(γ + λ cos kx) + λ(sin kx)σz + (γ + λ cos ky)σy + λ(sin ky)σx (6.1)

where γ and λ are real parameters, and σis are Pauli matrices.

The real space hopping of this Hamiltonian is shown in the figure (6.1). Here, the

number of the skin states scale with the system size O(L), 2L is the size of the system.

Its extended Hermitian Hamiltonian H̃ is then

H̃(kx, ky) =

(
0 H(k)

H(k)† 0

)
(6.2)

= (γ + λ cos kx)τy + λ(sin kx)σzτx

+ (γλ cos ky)σyτx + λ(sin ky)σxτx, (6.3)

where τi’s (i = x, y, z) are the Pauli matrices that introduce an additional degree of

freedom. This extended Hermitian Hamiltonian was first introduced by Benalcazar,

Bernevig, and Huges (BBH) [108] and is the prototypical second-order topological insu-

lator. Hermitian Hamiltonians of the off-diagonal form of eq.(6.3) have chiral symmetry

and thus it belongs to the chiral symmetry class. There is topological correspondence

between the Hamiltonian and the off-diagonal nH Hamiltonians [65].

44
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Figure 6.1: The hopping constants of the second Hamiltonian with the second-order skin
effect. The model is two-dimensional and consists of unit cells containing two lattice points.
The onsite potentials are shown with the red wiggles. The hopping in the unit cell is given
by the green arrows. The hoppings between unit cells in the y-direction are given by blue

arrows and in the x-direction in violet.

The zero-energy second-order corner states appear in H̃(~k) when |γ/λ| < 1. This is

analytically proven in ref.[3]. Then the corresponding nH Hamiltonian has second-order

skin states. Higher-order modes appear due to systems’ spatial symmetries. The system

has no edge modes under open boundary conditions along one direction because the one-

dimensional winding number is zero. On the other side, this says that the first-order

skin effect does not appear. The model has inversion symmetry and in that case, the

1D winding number is zero. [3]

Both the extended Hermitian and the nH Hamiltonians have proper inversion symmetry

σyH̃BBH(~k)σ−1
y = H̃BBH(−~k) (6.4)

σyH(~k)σ−1
y = H(−~k) (6.5)

Additionally, H̃BBH(~k) respects mirror symmetry

(σzτy)H̃BBH(kx, ky)(σzτy)
−1 = H̃BBH(−kx, ky) (6.6)

(σxτy)H̃BBH(kx, ky)(σxτy)
−1 = H̃BBH(kx,−ky) (6.7)
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Respectively, H(~k) respects

σzH
†(kx, ky)σ

−1
z = −H(−kx, ky) (6.8)

σxH
†(kx, ky)σ

−1
x = −H(kx,−ky) (6.9)

They both also respect the transposition-accompanying mirror symmetry

σxH̃
T
BBH(kx, ky)σ

−1
y = H̃BBH(−kx, ky) (6.10)

σzH̃
T
BBH(kx, ky)σ

−1
z = H̃BBH(kx,−ky) and (6.11)

σxH
T (kx, ky)σ

−1
x = H(−kx, ky) (6.12)

σzH
T (kx, ky)σ

−1
z = H(kx,−ky) (6.13)

As shown in Ref.([3]) , the inversion symmetries (6.12) and (6.13) vanish the skin effect

of H(~k) along the x and y direction, respectively. Besides, H̃BBH(~k) respects four-fold-

rotation symmetry

R4H̃BBH(kx, ky)R−1
4 = H̃BBH(−ky, kx) (6.14)

where R4 is a unitary matrix given as

R4 =

(
0 −iσy
1 0

)
(6.15)

Accordingly, H(~k) respects four-fold-rotation type symmetry

−iσyH†(kx, ky) = H(−ky, kx) (6.16)

In Ref.[3] it was found that in x periodic boundary and y open boundary there are

O(L) number of eigenstates are localized at both edges of ribbon geometric system.

The energy spectrum of these boundary modes is separated from the bulk spectrum

contrary to the chiral states of the Chern insulator. Under x open boundary and y

periodic boundary conditions at |γ/λ| = 1 there appear boundary modes with the same

ky = π wavenumber, which build 2L exceptional points and have 2 linear independent

eigenstates. One of them localizes at one edge while the other one localizes to the other

edge. There are no relations known between the corner states at the fully open boundary

and these edge states at the ribbon geometric cases yet.

Kawabata et al. [3] proposed a topological invariant called Wess-Zumino term which

was previously used more in high energy physics. In condensed matter context it can
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be used as a topological invariant in a system with a point defect in the Hermitian case.

Then the extended Hermitian system has zero modes and these zero modes localize

at the point defect forming chiral states around the point defect like the dynamics in

the Hatano-Nelson model. Similarly, they proposed, when we have corner zero modes

in extended Hermitian Hamiltonian WZ term is non-zero. Then the nH part of the

Hamiltonian has corner skin modes. And this is possible only when we do not have first-

order skin modes which were removed by inversion symmetry. In that case we consider

the adiabatic changes of the Hamiltonian near the edges H(kx, ky, t = 0) := H(kx, ky)

into the vacuum Hamiltonian H(kx, ky, t = 1) := Hconst. More on the WZ term see

Ref.[3].

The WZ is quantized in {0, 1/2} in presence of rotation type symmetry or reflection

type symmetries. We will reproduce the quantization below in the results.

II Results

II.1 The energy spectrum under various boundaries and the density

profile

Now we want to reproduce the energy spectra under various boundaries as in its paper

was done. In the figure (6.2) the energy spectra in the different boundary conditions,

i.e. fully OBC, xOByPB, xPByOB, fully PBC, are plotted with the IPR color code.

Additionally, the energy spectra in different boundary conditions are shown in three

different phases, one above a critical value which is |γ/λ| = 1.5 where the system is in

trivial phase, one at the critical value |γ/λ| = 1, and the other one under the critical

value |γ/λ| = 0.5 where the system is in topological phase. As we see in the fully OBC

we have a clear point gap. Thus we want to look its localization of the most localized

states and see they are at the opposite boundaries localized.

As mentioned above in the introduction for the model we see also corner localized states

building a circle in the spectrum for the boundary condition xPByOB. Moreover, the

linear dependent degenerated eigenstates (as mentioned above) looks less degenerate for

the boundary condition xOByPB and γ/λ = 1 case. This could come from the instability

of the critical point in calculating linear algebra library in python.
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Figure 6.2: Energy spectra under various boundary conditions from left to the right. From top to bottom topological non-trivial phase, critical phase,
and normal insulating phase with its corresponding parameters values γ and λ.
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Figure 6.3: On the top, the histogram of all eigenstates from the real space Hamiltonian for
system size L = 20 with γ = 0.5 and λ = 1 hopping constants. On the bottom left, we see
the complex energy spectrum of that real space Hamiltonian in fully OBC and is coded by its
histogram values in color. On its right, the density profile of a state from the circle in the energy
spectrum plot, which are the most localized states in the system as we see in the histogram given

by the bar near the value 0.2.

II.2 Investigation of the hopping constants

As next I have calculated the energy spectra for λ = −1 in the non-Hermitian term

instead of λ = 1 (see Fig.(6.4)). I have got the same spectral form and the same IPR

values as the previous case. However, when we check all the density profiles of the most

localized states they are localized now at the opposite two corners. We still have the

same number of corner localized states since the system is still in the same phase with

the condition |γ/λ| < 1 and strength of the hopping constants. That means the sign of

the nH λ term might be controlling the localization to the corners.

II.3 Number of corner localized states

I diagonalized the Hamiltonian for 5 different system sizes, 20, 40, 60, and 80 unit cells,

and counted the number of most localized states based on the IPR values, e.g. the states

in the circle on the fully OB spectrum. The number scales two times the system size

given in Fig.(6.6), which is consistent with the result on the paper in Ref.[3]. Afterward,

I plotted the probability density profile to see where the states are localized (see on

Fig.(6.7)). For the system sizes up to around 40 unit cells, the profile looks like what we
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Figure 6.4: On the top, the energy spectra when I changed the sign of the nH hopping term λ
to −λ. On the bottom left, the density profile of a most localized eigenstate of the Hamiltonian
when nH term with λ = 1 vs. on the right, the density profile of a most localized state of the

Hamiltonian when nH term with λ = −1.

expect, e.g. the states are at the opposite corners equally dense localized. However, for

the bigger system sizes, one of the two corner densities is higher than the other. This

contradicts the inversion symmetry of the system. We believe that the diagonalization

procedure of the python library for non-Hermitian Hamiltonian could be the reason,

why the states are not equally localized at both corners for bigger system sizes.

II.4 The Wyckoff position of the system

∣∣∣ψL,RΓ

〉
is the left and right eigenstate of the non-Hermitian Bloch Hamiltonian at the

high symmetry point Γ. Then the eigenvalue of the C2 operator at Γ can be found as

following: 〈
ψL,RΓ

∣∣∣C2

∣∣∣ψL,RΓ

〉
= −1 (6.17)

I get the same eigenvalues for both left and right eigenvectors at each high symmetry

points. The corresponding Wyckoff position of the particular system is then found as in

the table (6.1) below.
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Figure 6.5: Changing the hopping parameters. On the top left, the energy spectrum is
with the usual parameter strengths we calculated throughout the study, γ = 0.5 and λ = 1.
On the top and right, when we change the diagonal γ term, which is nH dissipation term,
the energy spectrum as a whole shifts along the imaginary energy axis. On the bottom left,
we change the off-diagonal γ term the energy spectrum as the whole expands and especially
the radius of the circle expands, which is expected from the Ref.[3]. On the bottom right,
this is a clear result. When we add a complex number to the diagonal term then the energy

spectrum shifts simply on the complex plane.

Table 6.1: C2 eigenvalues at high symmetry points and corresponding Wyckoff position

Wyckoff

positions

k points

Γ = (0, 0) M = (π, π) X = (π, 0) Y = (0, π)

(0, 1
2) (p-orbital) -1 1 -1 1

Additionally, when I hermitized the non-Hermitian Hamiltonian as Hhermitized = (H +

H†)/2 and computed the eigenvalues of that hermitized Hamiltonian I get the same

eigenvalues and therefore the same Wyckoff position as in the Table (6.1).

In the model, we have 2 sites in one unit cell, and on the probability density map, I plot

the length of the 2 sites along the x-direction and the other site along the y-direction. I

plot also the density profile in square form, e.g., if L = 20 is the number of the unit cells
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Figure 6.6: Number of the corner localized states as system size increases. We see here a
linear trend. I fitted the pionts with linear equation.

on the L2 profile, which has 2 · 20 = 40 number of sites in x-direction and 20 sites in the

y-direction. On the probability density maps of the model, for example in Fig.(6.3), we

see every second pixel is filled, which means due to the inversion symmetry the electron

probability density is sitting on this particular site of the unit cell, which is its Wyckoff

position.

II.5 The quantization of the Wess-Zumino term

In my calculation only for the C4- type symmetry the WZ integral is quantized in

{0, 1/2}. For the mirror type symmetries the integrals for the two extensions the same,

meaning that the integral can take any value in the circle [0, 1]. The explicit analytical

calculations and results are given in Appendix B.

II.6 Hermitization and probability density profile of its boundary states

We hermitize the model in the following way and get

H(~k) +H†(~k)

2
= λ(sin kx)σz + (γ + λ cos ky)σy + λ(sin ky)σx (6.18)

The corresponding energy spectrum is given in Fig.(6.9) and we see that the most

localized states are across the bulk energy gap and going into the bulk region. As we

removed the onsite dissipation term −iγ and nH λ term the skin states are now localized

at the edges instead of localizing at the corners.
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Figure 6.9: Energy spectrum for the hermitized model with its
histogramm values color-coded.

Here we do not have the corner states any more. The electron densities are edge like

localized. Every 2 states are degenerate and each of them is at the opposite edges

localized. We see on the Fig.(6.10) discrete densities, this is due to the Wyckoff position.

One unit cell has two sites and the electron density can be found where the Wyckoff

position lays.
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Figure 6.7: The top 4 plots are energy spectra for the systems with
different system sizes L =20, 40, 60, and 80 unit cells. The corner localized
states which can be seen on the circle in the spectra scale 2 times the
system size L. The bottom 4 plots are the corresponding probability
density profiles averaged over all corner localized states in the system.
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Figure 6.8: The blue point is the Wyckoff position at (0, 1/2). This point is repeated from
unit cell to the unit cell, which are not marked on the figure.

Figure 6.10: Probability density of the most localized states from the hermitized model. On
the top left is the density of states of one of the most localized states and this is a state which
hast its energy in the middle of bulk states. On top in the middle and on the left, these states
have also the same IPR but have more against the edge corners localized. On the bottom left the
most localized states are averaged by the number of the states. We can see by its color the states
have almost the same probability density. On the bottom middle, the probability density of the
gap states are averaged and we see the tendency is against the corner. On the bottom right, this
is the averaged probability density of the states whose energy is in the middle of the bulk states.
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II.7 Random perturbation under various symmetrization and magni-

tude

I systematically perturbed the system with small symmetry respecting and not symme-

try respecting Hamiltonian and saw how the various perturbations change the spectra.

The perturbation with a magnitude smaller than the 10−10 is numerically not detectable.

Thus the perturbations are done with bigger magnitudes.

We expect the spectrum change to respect the magnitude of the random perturbation

and the symmetries of the system. Especially we know from the chiral states in 2D Her-

mitian topological systems that the chiral states do not easily localize like the proper

one-dimensional systems (Anderson localization [109]). But to localize such states one

should break the symmetry and needs certain strength of perturbation. Thus we study

here from what strength and symmetry the corner states disappear or distort. Corner

states mean we have to focus on the circle spectrum and its IPR values. The perturba-

tions are done either to the Bloch Hamiltonian and then Fourier transformed or directly

to the real space Hamiltonian perturbed. Each case is described in captions. The rest

of the perturbations can be found in Appendix E.

Figure 6.11: Real valued perturbation. Reciprocal space. C2 perturbation with different mag-
nitudes times always same random matrix

Reciprocal space perturbation When we perturb the system onto Bloch Hamiltonian the

spectrum can vary very much because the size of the Hamiltonian is only 2x2 and thus

depends only on 4 values. The perturbing Hamiltonians are taken randomly and then

they are symmetrized under desired symmetries. That is the reason why the perturbing

Hamiltonian can take additional symmetries very easily.
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With C2 symmetric Bloch Hamiltonian perturbing spectra can be various and I think

because of the above reason.

With C4 symmetric Bloch Hamiltonian perturbing spectra generally keep well its spectra

up to the magnitude 0.4 which is around the magnitude of the system which is γ = 0.5

and λ = 1. Complex perturbation keeps better and can persist around order of 1i.

Real space perturbation Real space perturbations with complex amplitudes up to 0.6

keep the circles with different matrices. C2 real space perturbations with magnitude 1

keep quite well.

Full matrix perturbation up to 0.01 is fine. Diagonal perturbation up to 1 keeps very

well. This is exactly the Anderson delocalization in topological systems.

II.8 WZ-integrals and gap sizes of the system with the various hopping

constants and their interrelations

From the figure (6.14) we see that the WZ term is indeed quantized to the Z2 values

which is consistent with the topological phase based on the hopping parameter relations

|γ/λ| (that comes from the analytical calculation in its reference paper) and minimal

energy gap of the system (w.r.t. the real energy, because there the line gap is closing).

At the critical phase |γ/λ| = 1 the WZ integral looks not to be stable and takes random

value between 0 and 0.5.

Now we look at the plot fig.(6.13) of WZ terms in varying nH λ values in [0, 2], where

γ = 0.5. When nH λ is zero the WZ integral is accordingly equals zero which confirms

that the WZ term is only not zero when there are corner localized states. Because we

have seen that in hermitized version of the Hamiltonian the corner states vanish and

edge like localized states appear.
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Figure 6.12: This are WZ integral values by changing the λ’s in
the whole system. The gap sizes are with respect to the minimal

gaps in the real energy Bloch-band.

Figure 6.13: These are the WZ integral values by changing the
nH λ term. Here γ = 0.5.

When we vary only the nH λ and γ and compute the WZ integrals, we have the WZ

term is only quantized when the symmetry is retained (see fig.(6.14)). By breaking the

C4-type symmetry the WZ-terms are not any more quantized. However still having

non-zero nH λ terms the WZ is not zero, while nH λ is zero the integral is again

quantized and becomes zero telling there are no corner states. So we clearly see the

roles of non-Hermiticity and C4-type symmetry in the system.

In Fig.(6.15) on the left we can check if there is topological phase transition by varying
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Figure 6.14: WZ phase by varying nH γ and λ coefficients. The WZ term is indeed a smooth
quantity taking values in circle [0, 1]. By varying nH γ and λ we break the C4-type symmetry
and in the result the WZ term is not quantized any more. The x and o points are the values
where the WZ integrals take values near 0.5. The white x four points are where the WZ integral
is quantized and the C4-type symmetry is of course retained point. The whole line is white when

λ = 0 says the integrals take completely zero values without corner states.

Figure 6.15: On the left energy gap sizes by varying non-Hermitian γ and λ coefficients. They
do not change. On the right energy gap sizes by changing the whole λ and γ values in the system.

the nH terms in system through closing the energy gap. However, we do not observe any

phase transition that occurs by closing the energy gap. The corner states are protected

by 4 fold type rotation symmetry, but there are no system phase transition. By changing

the whole γ and λ values on Fig.(6.15) on the right there are gap closing when the ratio

|γ/λ| = 1.
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III Discussion for the 2D model with second order skin

effect

A higher-order nH skin effect model was studied [3]. Its extended Hermitian Hamiltonian

model is a prototypical Hermitian higher-order boundary state model. The number of

the corner localized skin states of the nH Hamiltonian scale twice with the system size

L.

The energy spectra with the different boundary conditions were reproduced. We see a

fully gapped system in fully PBC and point gap topology was observed in the spectrum

of fully OBC. When the topological phase transition occurs |γ/λ| = 1 the real part of

the energy gap closes and reopens in the trivial phase. In this model onsite dissipation

term determines the energy shift along the imaginary axis.

The corner states sitting on the opposite corners (due to the inversion symmetry) in the

probability density profile are the energy eigenstates in the spectrum of circle in fully

OBC. The nH λ term pushes the boundary states to the corner. If this term is zero the

boundary states are localized at one edge of the 4 edges. By changing the sign of nH λ

term the eigenstates localize to the opposite corners, meaning that the sign determines

on which corner they are localized.

The topological invariant Wess-Zumino integral for the corner localized phase was intro-

duced in the study of Ref.[3]. This term was investigated for the above model in detail

with its nH hopping strengths, energy gap size, and the system spatial symmetries by

changing the system hopping parameters in various ways.

We know that topological two distinct phases can occur by adding symmetry constraint.

Like that in this model by keeping the ratio of the nH part of the γ and λ parameters

the same as the other parameters we have the so-called symmetry enhanced topology

(see Fig.(6.15) on the left) so that we have corner states phase and the topological Wess-

Zumino invariant is quantized to the {0, 1/2}(see Fig.(6.14)), i.e. there are corner states

it is 1/2 and when not 0. While varying the whole parameters (Fig.(6.15 on the right)

in the system there is complete topological phase transition occurs by closing the energy

gap and opening again after the phase transition.

Additionally, instabilities in linear algebra libraries in python could be observed when we

calculated the exceptional points in xOByPB and |γ/λ| = 1 case and also by increasing

the size of the system the spectrum and density profile did not look as expected for the

system size starting from L = 60.



Interplay of crystal symmetries and non-Hermiticity in quantum lattice models 61

If the spectrum under periodic BC fill an area, so we have a skin effect under open BC

in nH systems as in the work of Ref.[8] was found. We indeed have finite area in the

energy spectrum and also skin states.



Chapter 7

The 3rd model - 3D model with

third order skin effect

I Introduction

The model is given by the following Hamiltonian [3]

H(k) = iλ(sin ky)σx + i(γ + λ cos ky)σy

+iλ(sin kx)σz + (γ + λ cos kx)τz

+λ(sin kz)τy + (γ + λ cos kz)τx

(7.1)

Its extended Hermitian Hamiltonian is also the prototypical 3D higher order topological

system.

H(k) =


γ + λeikx γ + λe−ikz γ + λeiky 0

γ + λeikz −γ − λe−ikx 0 γ + λeiky

−γ − λe−iky 0 γ + λe−ikx γ + λe−ikz

0 −γ − λe−iky γ + λeikz −γ − λeikx

 (7.2)

The symmetries of the system for the extended Hermitian Hamiltonian and its nH

Hamiltonian are given by

62
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Figure 7.1: The hopping directions of 3D higher order non-Hermitian model can
be seen. One unit cell is here given by the blue plane numbered with the 4 numbers,
1,2,3,and 4. The number of the balls in the unit cell represent the number of degree
of freedom. In the 3D plot the red, blue, and green arrows represent the hoppings
in all 3 directions. On the light green, blue, and red 2D planes we can see the 2D
projections, i.e. xz, xy, and zy, of the hopping strengths and onsite terms. The

3D figure is based on Ref.[110]

(ρyσyτy)H̃(k)(ρyσyτy)
−1 = H̃(−k) (7.3)

(σyτy)H
†(k)(σyτy)

−1 = −H(−k) (7.4)

(ρxσz)H̃(kx, ky, kz)(ρxσz)
−1 = H̃(−kx, ky, kz) (7.5)

(ρxσx)H̃(kx, ky, kz)(ρxσx)−1 = H̃(kx,−ky, kz) (7.6)

(ρyτy)H̃(kx, ky, kz)(ρyτy)
−1 = H̃(kx, ky,−kz) (7.7)

σzH
†(kx, ky, kz)σ

−1
z = H(−kx, ky, kz) (7.8)

σxH
†(kx, ky, kz)σ

−1
x = H(kx,−ky, kz) (7.9)

τyH
†(kx, ky, kz)τ

−1
y = −H(kx, ky,−kz) (7.10)
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II Results

II.1 Energy spectra under various boundary conditions

The energy spectra under different boundary conditions and in 2 different phases are

plotted on Fig.(7.3). The non-trivial topological phase is on the upper row with the

hopping constants γ = 0.5 and λ = 1 and lower row with the γ = 1.5 and λ = 1 in

trivial phase. In the trivial phase we have every where imaginary and real line gaps. In

the non-trivial phase first 2 conditions have line gap and in fully OBC we see the point

gap suggesting to have skin states. The states sitting on the point gaps have the biggest

IPR values. The most localized states are not too separated from the bulk states in IPR

values. But the reason could be the system size is small and only L = 10. For bigger

system size the calculation in python is very slow.

In Fig.(7.2) we see the number of the most localized states scaling with the system size.

It is a linear trend as expected from the paper Ref.[3].

Figure 7.2: Scaling of number of the most localized states by changing the system size. We
also see a linear trend. The points were fitted with a linear function.
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Figure 7.3: The energy spectra for different boundary conditions are plotted with their histogramm values in color code. In the most of the cases and
in fully PBC, the system has real and imaginary line gaps. That means the system does not have nodal phase and therefore no exceptional points in fully
PBC. In fully OBC the system has point gap suggesting there are skin states. The spectra are plotted for 2 diferent cases, topologically non-trivial on

upper row, when γ = 0.5 and λ = 1 and trivial phases on lower row, when γ = 1.5 and λ = 1.
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II.2 Hermitization

We hermitize the model to see what are the nH terms and plot the spectra for the unit

cells 4 and 10 are in fully OBC in Fig.(7.4). Especially the terms with ky are completely

nH and the terms with kz are completely Hermitian. We see on the spectrum the more

localized states can be found in the gap of the bulk states and some can be found into

the bulk spectrum. The Hermitian part of the Hamiltonian is given by

HHermi(k) =
(H(k) +H†(k))

2
= (γ + λ cos kx)τz + λ(sin kz)τy + (γ + λ cos kz)τx

(7.11)

The hermitized Hamiltonian is not inversion symmetric and not pseudo inversion sym-

metric. From here already we can say that the WZ term for the hermitized Hamiltonian

is zero because the one-dimensional winding number should vanish for the WZ term to

be defined. Or we can compute a 1D winding number to see if it equals zero and this

is not done. We plotted the energy dispersion along with the ”high symmetry points”,

although our system is not inversion symmetric and thus actually not ”high” symmetry

points. As we have seen on the energy spectrum in fully PBC here also the dispersion

should be fully gapped. If we look at the real and imaginary spectra of the nH Hamil-

tonian, the Hermitized spectrum corresponds to the real spectrum of the nH spectrum.

This is due to the commutation of the corresponding Hamiltonians. More precisely the

nH Hamiltonian is a normal matrix: HHermiH = HHHermi ⇒ HH† = H†H. The

commutation was also numerically checked.

Figure 7.4: 3D hermitized. The number of the most localized states are difficult to determine,
because the IPR values are slowly passaging and no discrete values. However the values are
approximately linearly dependent to the system size. The most localized states are also spreading

over the bulk gap and going into the bulk spectrum.
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Figure 7.5: Energy bands for nH Hamiltonian along high symmetry lines. Above two plots are
the real and imaginary part of the energy. The bottom plot is the energy band for the hermitized
Hamiltonian of the above one. As we see the real part of the energy band for nH Hamiltonian is
exactly the same as the band for the hermitized model, (H+H†)/2 and H is the nH Hamiltonian.
Lower band of the real energy band corresponds to the lower energy band of imaginary energy

and upper real corresponds to the upper imaginary bands.

Because the hermitized Hamiltonian 2 dimensional we can look at the probability density

profile (see Fig.(7.7) in the middle with the green heading). The most localized states

are localized only along the edges.

II.3 Energy spectra for the 2D OBC by keeping 3rd k = const values

Energy spectra are plotted for cuts along xy-plane, xz-plane, and yz-plane OBC and

keeping the third k-value some constant in [0, 2π] in Fig.(7.6 and 7.7). These energy

spectra are in all cases line gapped. Although there are a few states that are very well

localized and they are shown probability density profiles (PDP) on the right.

First, we look at the case with OB along xy and kz = 3π/7. The energy is real line

gapped and for different values of kz the energy spectrum is only broader or narrower

along with the real energy, but the line gap never closes. The most localized states of the
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system are at the 2 opposite corners localized and all best-localized states are divided

into 2 opposite corner localized.

Then the spectrum along yz open and kx at TRIM point π (the same results will apply

for kx = 0) is both real and imaginary energy line gapped. There are only 4 states

that are exponentially localized at the neighboring 2 corners. All 4 are at the opposite

neighboring corners localized. When we take a non-TRIM point then each of these 4

states is localized on one corner so that the probability density is twice as much as at

TRIM. The next most localized states are at the edges localized which are not shown in

Fig.(7.6).

For the case of OB along with xz directions we look at the 3 different cases, one just at

fixed ky value (see Fig.(7.7) the row with the blue heading), the other eliminating the ky

value (with the yellow heading), and the hermitized version (with the green heading).

The energy spectrum for the model without ky terms looks very similar to the previous

2D model in the previous chapter 6. So the states are localized at the corners. For the

other two cases, the most localized states are at the edges localized.
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Figure 7.6: In the first row we see the energy spectrum for xyOB and kz value is constant and we choose. Its histogram and the most
localized states are taken for the Prob.density profile. All most localized states are added and averaged on the very right. The same plots
were done for the boundaries along yzOB. Here kx = π TRIM was taken which has different localization of the eigenstates. There were only
4 states very well localized which is showed by the circle on the histogramm. These 4 states were localized at 2 neighboring corners. When

kx = 3π/7 were taken the states are only at one corner localized and all 4 states were localized at each of the 4 corners.
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Figure 7.7: Here we see the energy spectra (20 unit cells), its histogramms and their most localized states prob.density profiles for the xzOB case
by taking 3 different cases (from top to bottom) with the hopping constants. Two examples of most localized states were taken to show in order to
see where the states are localized. The most localized states were added and averaged and we see on the very right. Because the ky is completely nH

the spectrum for the hermitized case doesnot depend on constant ky value. The case on the top were taken for removing the nH ky terms.
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II.4 WZ integral analysis under its symmetries

To prove the WZ integral equals zero the symmetry relation of the third dimension is

always needed. From the 2D model we know that the pseudo mirror symmetry does not

quantize the WZ term, so is true for a 3D model if we have the pseudo mirror symmetry

along the integration direction and not the third dimension which is kept constant.

I could also choose the constant Hamiltonian of the extension without the symmetry

operator the same as the one with the symmetry operator. In that case, we can not

prove anything, so it is necessary to choose a different constant Hamiltonian so that we

have different extensions. In the 2D case, it is important to choose a different constant

Hamiltonian, except being non-symmetric under the system Hamiltonian, to get the

difference in the integer value and not just zero, so that the integral can be quantized.

The extensions with the symmetry operators are chosen to be the same extension does

not imply the same as the extension without symmetry operators yet. This specific

choice and the resulting conclusion that the WZ integral equals zero could not be found

if we would not have the symmetry relations.

The analytical calculation can be found in Appendix C. In the following table, I tabu-

lated all the analytical (third row) and numerical (fifth row) results. We get everywhere

zero as expected. By constructing the real space Hamiltonian along the third direction

I am also getting 0 for all 3 directions which are not tabulated.
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II.5 Numerical check of the integral values

Table 7.1: Analysis of symmetries for the WZ integration and its numerical comparison.

symmetry integral over integral/quantization at
numerical

nonsymm

(σyτy)H†(k)(σyτy)−1

= −H(k)
kx, ky 0 kx = π 0

kx = 0 0

kx = 3π/7 0

ky, kz 0 kx = π 0

kx = 0 0

kx = 3π/7 0

kx, kz 0 kx = π 0

kx = 0 0

kx = 3π/7 0

σzH
†(kx, ky, kz)σ−1

z

= H(−kx, ky, kz)
kx, ky 0 kx = 0

kx = π

ky, kz kx = 0

0 kx = π

kx, kz 0 kx = 0

kx = π

σxH
†(kx, ky, kz)σ−1

x

= H(kx,−ky, kz)
kx, ky 0 kx = 0

kx = π

ky, kz 0 kx = 0

kx = π

kx, kz kx = 0

0 kx = π

τyH
†(kx, ky, kz)τ−1

y

= −H(kx, ky,−kz)
kx, ky kx = 0

0 kx = π

ky, kz 0 kx = 0

kx = π

kx, kz 0 kx = 0

kx = π
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III Discussion for the 3D model with third order skin ef-

fect

I could reproduce the energy spectra for the model like in its Ref.[3]. Also the number

of the corner localized states scale with its size in O(4L) as expected.

In order WZ to be defined the 1D winding number should be zero which I mentioned

in the introduction of chapter 6. That means I had to calculate first the 1D winding

number and if this is zero we can investigate the WZ term for the system. The nH

system has no proper inversion symmetry. That means the 1D winding number is not

automatically zero. However, we can also look at the probability density profile and in

most cases we see that most of the well localized states are at the edges (very few states

are corner localized).

Let us look at the hermitized version of the model, which is a 2D model (x and z plane,

see Fig.(7.7)). We have seen on the probability density profile of Hermitian model there

are edge states meaning that the 1D winding number could be non-zero. Thus in this

case the WZ term should not be defined.

Numerically I am getting everywhere zero for the case when third dimension k dependent

or open. The edge states could be the reason why I am getting zero everywhere.

I investigated the WZ terms analytically with its spatial symmetries which is explicitly

calculated in Appendix B. I got that having mirror type symmetries the integral either

quantized to {0, 1/2} or the integral can be totally 0.

Then if we look at the surface probability density profiles then there are edge localized

states except the corner localized ones. That could be the reason why we get zero

everywhere, because the WZ term is defined when there are no edge localized states.



Chapter 8

The 4th model - exceptional

topological insulator model

I Introduction

The exceptional topological insulator (ETI) model [111] is given by the following Hamil-

tonian

H(k) = (cos kx + cos ky + cos kz −M)τzσ0 + λ(sin kxτxσx + sin kyτxσy + sin kzτxσz)

+ [sinατ0 + cosατz](B · σ) + iδτxσ0 (8.1)

Here τi and σj are the regular Pauli matrices. The Hermitian part of that model (and

without the Zeeman field), this is when B = δ = 0, is already very well known 3D Weyl

system, i.e. 3D TI, for 1 < |M | < 3 and trivial phase when |M | reaches values 1 or

3. M is the control parameter for the inversion between s and p orbitals, and λ is the

spin-orbit coupling term. B stands for the Zeeman field and for the further discussions

we will take B = (B,B,B)T . The α is a term which controls the g factor for the s and

p orbitals. When α = π/2 the g factors are the same and when α = 0 then they have

opposite signs. [111]

The Hermitian topological insulating phase has single gapless Dirac nodes on its surface

BZ and two of them on two different surfaces. After adding the nH term iδτxσ0 the

system becomes defective at energy E = 0 due to the exceptional degeneracy of two

eigenvectors only are linearly independent (out of 4). Without the Zeeman field the

system is isotropic. After introducing the Zeeman field in (1, 1, 1) direction with the

α = 0, π/2 values the system acquires 2π/3 rotational symmetry w.r.t. the field axis.

[111]

74
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In its paper Ref.[111] the system is discussed by setting the parameters δ = λ = 1 and

M = 3 where the system is non-trivial. With that parameters the bulk spectrum has

completely point gap and also there is a point gap w.r.t the zero energy. For example,

at M = 2.3, λ = 1, and δ = 0.5 besides 6 point gap in the bulk spectrum there is a line

gap w.r.t. the zero energy. We are interested in the case of previous parameters.

Figure 8.1: The figure was taken from ref.[111]. The phase diagram of the system param-
eters. The w3D numbers are the 3D topological invariant. The green numbers on the δ and

M plane are the wLL3D , w
UR
3D numbers, see in supplementary materials in ref.[111].

After introducing the Zeeman field (with α = π/2) there is a single Fermi point in the

surface BZ at the momentum kx = ky = 0. Appearance of a single Fermi point is not

possible due to the Fermion doubling theorem for nH models in proper 2D. However the

surface states are not strictly 2D, but it is surface of the 3D model.

Changing the parameter α from α = π/2 to α = 0 the exceptional point moves from the

point gap region to the bulk spectral area which has analogies with the Dirac nodes in

3D TI [112].



Interplay of crystal symmetries and non-Hermiticity in quantum lattice models 76



Interplay of crystal symmetries and non-Hermiticity in quantum lattice models 77

II Results

II.1 Energy spectrum with different BC

Figure 8.2: ETI spectra, in z ribbon geometry, OBC and PBC with and without the magnetic
field.
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
−i(γ + λcos(kx)) + λsin(kx) λsin(kz) −i(γ + λcos(ky)) + λsin(ky) 0

λsin(kz) −i(γ + λcos(kx)) + λsin(kx) 0 −i(γ + λcos(ky)) + λsin(ky)

i(γ + λcos(ky)) + λsin(ky) 0 −i(γ + λcos(kx))− λsin(kx) λsin(kz)

0 i(γ + λcos(ky)) + λsin(ky) λsin(kz) −i(γ + λcos(kx))− λsin(kx)



H(k) = −i(γ + λ cos(kx))I ⊗ I + λ sin(kx)σz ⊗ I

+ (γ + λ cos(ky))σy ⊗ I + λ sin(ky)σz ⊗ I

+ λ sin(kz)I ⊗ σx (8.2)

WZ[H]− (WZ[H])∗ =
1

24π2

∮
dkxdkydtεijktr[H

−1∂iHH
−1∂jHH

−1∂kH − (H−1∂iHH
−1∂jHH

−1∂kH)∗] (8.3)
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II.2 WZ integral for each plane

Let us investigate the system at TRIM points. At kz = π and B = 0 the Hamiltonian

looks in the following way:

H(k) = (cos kx + cos ky − 1−M)τzσ0 + λ(sin kxτxσx + sin kyτxσy) + iδτxσ0 (8.4)

and from my code at M = 2 and δ = 1 for the WZ term it gives me exploded value. For

ribbon geometric Hamiltonian the term is also zero. The WZ term at TRIM points is

always zero for every value of M and δ. If not TRIM then it is just some values in [0, 1].

Table 8.1: The WZ integration for the extension of 2D model into 3D version.

symmetry integral over integral/quantization at
numerical

nonsymm

σyH(kx, ky)σ−1
y

= H(−kx,−ky)
kx, ky

we expect 0

without kz term

kz = 0

kz = π

or without

0.027

σzH
†(kx, ky, kz)σ−1

z

= −H(−kx, ky, kz)
otherwise nonzero kz = 2π/5 −0.02− 7.93 · 10−6i

σxH
†(kx, ky, kz)σ−1

x

= −H(kx,−ky, kz)
kz = 4π/13 −0.05 + 0.026i

σxH
T (kx, ky, kz)σ−1

x

= H(−kx, ky, kz)
ky, kz

0 by pseudo

mirror w.r.t. kx
kx = π −5.41 · 10−6i

σzH
T (kx, ky, kz)σ−1

z

= H(kx,−ky, kz)
except TRIM points kx = 0 0

−iσyH
†(kx, ky, kz)

= H(−ky, kx, kz)
kx = 3π/7 0

kx = 5π/17 0

kx, kz
0 by pseudo

mirror w.r.t. ky
ky = π −0.0013i

τyH(kx, ky, kz)τ−1
y

= H(kx, ky,−kz)
ky = 0 0

except TRIM points ky = 3π/7 0

ky = 3π/13 0
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Table 8.2: The WZ integration with different constant Hamiltonian and evolution of the
spectra of HWZ depending on t. The constant Hamiltonians does not have C4-type symmetry
and various under other symmetries. The symmetries are listed below the tables with the

corresponding numbers.

Hconst symmetry spectral evolution numerical WZ integral

I

(18)True

(21)True

(22)True

(25)True

(26)True

(29)False

shrinks to one point

on the real axis.
−0.167− 0.005i

σx

(18)False

(21)True

(22)False

(25)True

(26)False

(29)False

shrinks to 2 points on the

real axis with complex axis

line gap.

−0.5

σy

(18)True

(21)True

(22)True

(25)True

(26)True

(29)False

shrinks to 2 points on the

real axis with complex axis

line gap.

−0.5

σz

(18)True

(21)False

(22)True

(25)False

(26)True

(29)False

shrinks to 2 points on the

real axis with complex axis

line gap.

0.5

(
−0.5 0.5i

−0.5i 0.5

)
(18)False

(21)False

(22)True

(25)False

(26)True

(29)False

shrinks to 2 points on the

real axis with complex axis

line gap.

0.5

(
0.75 −0.75

0.75 0.75

)
(18)True

(21)False

(22)False

(25)True

(26)True

(29)True

shrinks to complex 2 points

with real axis line gap.
-1.523i
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Table 8.3: The WZ integration with different constant Hamiltonian and evolution of the
spectra of HWZ depending on t. The case with constant Hamiltonians without all system

symmetries.The symmetries are listed below the tables with the corresponding numbers.

Hconst symmetry spectral evolution numerical WZ integral

(
−0.15 + 0.05i 0.05 + 0.15i

0.05 − 0.15i 0.15 + 0.05i

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to complex 2 points

with complex axis line gap.
0.391

(
−0.08 − 0.08i 0.08 + 0.25i

0.08 − 0.25i 0.08 − 0.08i

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to complex 2 points

with complex axis line gap.
0.239

(
−0.08i+ 0.08 0.08i− 0.25

0.08i+ 0.25 0.08i+ 0.08

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to complex 2 points

with real axis line gap.
-0.125-0.338j

(
0.25 + 0.25i 0.25 − 0.25i

−0.25 − 0.25i 0.25 − 0.25i

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to complex 2 points

with real axis line gap.
0

(
−0.33 −0.33 + 0.33i

−0.33 − 0.33i 0.33

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to 2 points

on the real axis

with complex axis line gap.

0.164

(
−0.5 −0.5

−0.5 0.5

)
(18)False

(21)False

(22)False

(25)False

(26)False

(29)False

shrinks to 2 points

on the real axis

with complex axis line gap.

0
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σyH(kx, ky)σ
−1
y = H(−kx,−ky) eq.(18)

σzH
†(kx, ky)σ

−1
z = −H(−kx, ky) eq.(21)

σxH
†(kx, ky)σ

−1
x = −H(kx,−ky) eq.(22)

σxH
T (kx, ky)σ

−1
x = H(−kx, ky) eq.(25)

σzH
T (kx, ky)σ

−1
z = H(kx,−ky) eq.(26)

−iσyH†(kx, ky) = H(−ky, kx) eq.(29)

Table 8.4: ETI model,WZ term with or wihtout B field. When no B field there is no
restrictions on the constant Hamiltonian and therefore the WZ terms are real. When we do
have B field I guess there exists some symmetry and there are certains restrictions on the
Hconst and therefore some complex integral values for the wrong chosen Hconst. In order
to get real numbers I have to experiment by taking different Hconst or I have to know the

symmetry explicitly.

Hconst integral over at α without B field with B field

kron(σx, σx) ky and kz kx = π π/2 0.00039 0.00043

kron(σx, σx) ky and kz kx = π 0 0.00039 0.0004-0.0041j

kron(σx, σx) ky and kz kx = 0 π/2 −0.5 −0.5

kron(σx, σx) ky and kz kx = 0 0 −0.5 −0.49 + 0.11j

kron(σx, σx) kx and kz ky = π π/2 3.4e-06 0

kron(σx, σx) kx and kz ky = π 0 3.4e-06 0.12-0.06j

kron(σx, σx + σz) kx and kz ky = 0 π/2 singular matrix od. 0 -0.02-0.08j

kron(σx, σx + σz) kx and kz ky = 0 0 singular matrix od. 0 0.06-0.02j

kron(σx, σx) kx and ky kz = π π/2 0 0

kron(σx, σx) kx and ky kz = π 0 0 2.2e-05-0.004j

kron(σx, σx) kx and ky kz = 0 π/2 0 0

kron(σx, σx) kx and ky kz = 0 0 0 0.31+0.39j

III Discussion for the ETI model

I could reproduce the energy spectra for different boundary conditions. Since the sys-

tem has exceptional topology the energy spectrum in fully periodic boundary should

have a point gap and thus the system is intrinsically non-Hermitian. In this case, it is

guaranteed to have skin modes according to the ”universal skin effect” of Ref.[8].
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The main result of my project on that model is the numerical calculation of the WZ

integrals. The challenge of calculating the WZ term in my way is that how to choose

the Hconst for my extending Hamiltonian HWZ = H(k)(1− t) + tHconst.

In its Ref.[3] Hconst is the Hamiltonian for the vacuum. That sounds consistent with my

assumption that the Hconst should not possess the WZ quantizing symmetry. In the 2D

model also the Hconst should break the C4-type symmetry so that my integral was 0.5

otherwise it takes different values.

Then I calculated for each surface the WZ term for the 3D ETI model. I systematically

calculated the WZ terms for some possible symmetric constant Hamiltonian to calculate

the WZ terms. It is important to notice that the constant Hamiltonian should not

close the energy gap during interpolation to the system Hamiltonian, i.e. the ETI

Hamiltonian. The numerical results are tabulated.

I did not check if the 1D winding number is zero. If this is not zero the WZ term is

anyways not defined.

On the other side, I got many 0.5 values for the integral which is consistent with my

analytical results where the term should be quantized to {0, 1/2}. And also with the

fact that the WZ term should be non-zero when the system has corner localized states.

To properly investigate I should know the symmetry explicitly when the system has a

non-zero Zeeman field.



Chapter 9

General conclusion

My goal of the project was to investigate how the non-Hermitian Hamiltonians could re-

cover the bulk boundary correspondence, which is generally broken in nH systems. Since

the topology of the systems is deeply connected with the symmetries it was important

to understand the symmetry interrelations within the models.

I numerically investigated 4 different models in 2D and 3D. The first model was a

2D reciprocal non-Hermitian nodal system, called the π-flux model. The system has no

symmetries in presence of non-Hermitian diagonal hoppings. The system has exceptional

topology so that the skin effect is guaranteed by the ”universal skin effect” of Ref.[8].

In that model, the skin effect was predicted by the 1D winding number along with ky

ribbon geometry. And the bulk boundary correspondence could be recovered with the

SVD spectrum which was proposed for the recovery of BBC in Ref.[1].

In my second model, I had to reproduce the quantization of the geometrical WZ term

which can be quantized in presence of spatial symmetries. I could reproduce the result

and the term should be quantized to {0, 1/2} in presence of C4-type symmetries. Follow-

ing, I investigated the interrelation of the WZ term with the symmetry of the system and

topological phase transition by looking at the energy gap evolution by varying system

parameters. All results were consistent and my conclusion was C4-type symmetry is the

symmetry that causes the symmetry enhanced topology. Only in presence of C4-type

symmetry, the WZ term was quantized and not for the edge state phase.

My third and fourth models were 3D systems and I continuously studied the WZ terms

for these models. The WZ term is for 2D systems defined. However, like the 1D winding

numbers, we could use it as a weak topological invariant. I analytically studied the term

in the presence of spatial symmetries for the third dimension. In that case, the term can

take just a value in the circle [0, 1], or 0 or it can be quantized to {0, 1/2} in presence of
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mirror type symmetries with respect to third dimension. All analytical results are given

on the decision tree below in Fig.(9.1 and 9.2).

I get for the third model everywhere zero for the WZ integrals and that could come from

the fact that there are edge states localized at the surface probability density profile.

The explicit symmetries should be determined in presence of Zeeman field. However, I

get for some Hconst choices WZ = 0.5 which could be because of the quantization of the

WZ term.
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Figure 9.1: Decision tree for the WZ integral.
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Figure 9.2: Decision tree for the WZ integral for the 3D case. 9.1



Appendix A

Winding number expression

The expression for the phase as trace is derived here:

∂k ln detH(k) = Tr[H−1(k)∂kH(k)] (A.1)

∂k ln detH(k) ≡ lim
ε−→0

ln detH(k + ε)− ln detH(k)

ε
(A.2)

det[H(k) + ε∂kH(k)] +O(ε2)

= detH(k) det[I + εH−1(k)∂kH(k)] +O(ε2)

= detH(k)[]1 + εTr{H−1(k)∂kH(k)]}+O(ε2) (A.3)

using the approximation ln (1 + x) = x+O(x2) we obtain the eq.(A.1). [75]
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Appendix B

Quantization of the Wess-Zumino

term for 2D models

To make my calculations simpler I wrote the system Hamiltonian H in eq.(6.1) explicitly

and also taking its Hermitian conjugate with the rotated reciprocal axes

H(~k) =

(
−iγ − iλ cos kx + λ sin kx −iγ − iλ cos ky + λ sin ky

iγ + iλ cos ky + λ sin ky −iγ − iλ cos kx − λ sin kx

)
(B.1)

H†(ky,−kx) =

(
−iγ − iλ cos ky + λ sin ky −iγ − iλ cos kx − λ sin kx

iγ + iλ cos kx − λ sin kx −iγ − iλ cos ky − λ sin ky

)†

=

(
iγ + iλ cos ky + sin ky −iγ − iλ cos kx + λ sin kx

iγ + iλ cos kx − sin kx iγ + iλ cos−ky − λ sin ky

)
(B.2)

For an extensionHWZ(kx, ky, t) we can introduce another extension by applying the rota-

tion matricesH ′WZ(kx, ky, t) = UH†
WZ(ky,−kx, t)V −1 for t ∈ [0, 1] and hereH(kx, ky, t =

0) is the system Hamiltonian rotated once backward and H ′(ky,−kx, t = 0) takes the

same form as the original Hamiltonian. The WZ integrals for the above two extensions

are given by:

WZ[HWZ ] =

∫
T 2x[0,1]

tr
[
(HWZ)−1dHWZ

]3
=

∮
T 2x[0,1]

d2kdt

24π2
εijktr((HWZ)−1∂iHWZ(HWZ)−1∂jHWZ(HWZ)−1∂kHWZ)

(B.3)
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WZ[H ′WZ ] =

∫
T 2x[0,1]

tr
[
(H ′WZ)−1dH ′WZ

]3
=

∮
T 2x[0,1]

d2kdt

24π2
εijktr((H ′WZ)−1∂iH

′
WZ(H ′WZ)−1∂jH

′
WZ(H ′WZ)−1∂kH

′
WZ)

(B.4)

I write the trace here explicitly. For convenience, I use for the extended Hamiltonian

HWZ(kx, ky, t) = H(kx, ky, t) and for the system Hamiltonian just H(kx, ky, t = 0) =

H(kx, ky):

tr{(UH†(ky,−kx)V −1)−1∂iU(H†(ky,−kx)V −1)

(UH†(ky,−kx)V −1)−1∂j(UH
†(ky,−kx)V −1)

(UH†(ky,−kx)V −1)−1∂k(UH
†(ky,−kx)V −1)} =

tr{V H†−1(ky,−kx)U−1U∂iH
†(ky,−kx)V −1

V H†−1(ky,−kx)U−1U∂j(H
†(ky,−kx)V −1

V H†−1(ky,−kx)U−1U∂kH
†(ky,−kx)V −1} =

tr{V H†−1(ky,−kx)∂iH
†(ky,−kx)

H†−1(ky,−kx)∂j(H
†(ky,−kx)

H†−1(ky,−kx)∂kH
†(ky,−kx)V −1}

(B.5)

Since U and V matrices are independet of kx, ky and t, I can switch ∂ijk with U and V .

By the cyclic permutation of the matrices in the trace we get rid of the V matrices and

I use the fact that Hermitian conjugation and inversion of a matrix can be exchanged.

Then take the Hermitian conjugation out of the all matrices and doing once again cyclic
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permutation we get:

tr{(∂kH(ky,−kx)

H−1(ky,−kx)∂j(H(ky,−kx)

H−1(ky,−kx)∂iH(ky,−kx)H−1(ky,−kx))†} =

(tr{∂kH(ky,−kx)

H−1(ky,−kx)∂jH(ky,−kx)

H−1(ky,−kx)∂iH(ky,−kx)H−1(ky,−kx)})∗ =

(tr{H−1(ky,−kx)∂kH(ky,−kx)

H−1(ky,−kx)∂j(H(ky,−kx)

H−1(ky,−kx)∂iH(ky,−kx)})∗ =

tr{H−1(ky,−kx)∂kH(ky,−kx)

H−1(ky,−kx)∂jH(ky,−kx)

H−1(ky,−kx)∂iH(ky,−kx)}

(B.6)

Because the overall integral is a value in [0, 1], we can leave out the complex conjugation.

The minus sign from the partial derivative w.r.t. −kx multiplies with the minus sign

from substitution −d(−kx) and one minus sign from the integral limits gives us overall

negative sign for the integral. Now, the order of the derivatives changed and if we look at

the indices closer the new order of ε tensor is: ε′ijk = −εijk. Finally, we can resubstitute

k′x and ky in the Hamiltonian functions and accordingly change the derivatives. This

results in switching the 2 indices in the ”new” ε tensor.

The order of the derivatives w.r.t. the sign of epsilon tensor (I just write here the indices

and they are the transpose of the signs of ε):

ε123∂3∂2∂1

ε312∂2∂2∂3

ε231∂1∂3∂2

ε132∂2∂3∂1

ε213∂3∂1∂2

ε321∂1∂2∂3

(B.7)
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Additionally, if I switch 2 indices the ε tensor gives us by definition one minus sign.

WZ[H ′WZ ] = −
∫ 1

0

∫ 2π

o

∫ 2π

o

d2k′dt

24π2
ε′ijktr{H−1(k′x, ky)∂iH(k′x, ky)

H−1(k′x, ky)∂j(H(k′x, ky)

H−1(k′x, ky)∂kH(k′x, ky)} = −WZ[HWZ ]

(B.8)

WZ[HWZ ] =

∫ 1

0

∫ 2π

o

∫ 2π

o

d2kdt

24π2
εijktr{H−1(kx, ky, t)∂kH(kx, ky, t)

H−1(kx, ky, t)∂j(H(kx, ky, t)

H−1(kx, ky, t)∂iH(kx, ky, t)}

(B.9)

Conclusion for the WZ term analysis

In my calculation only for the C4- type symmetry the WZ integral is quantized in

{0, 1/2}. For the mirror type symmetries the integrals for the two extensions the same,

meaning that the integral can take any value in the circle [0, 1].



Appendix C

Quantization of Wess-Zumino

term in presence of spatial

symmetries for 3D models

To prove the WZ integral equals to zero the symmetry relation of the third dimension is

always needed. From the 2D model we know that the pseudo mirror symmetry does not

quantize the WZ term, so is true for 3D model if we have the pseudo mirror symmetry

along the integration direction and not third dimension which is kept constant.

I could also choose the constant Hamiltonian of the extension without the symmetry

operator the same as the one with the symmetry operator. In that case we can not

prove anything, so it is necessary to choose a different constant Hamiltonian, so that we

have different extensions. In the 2D case it is important to choose a different constant

Hamiltonian, except being non-symmetric under the system Hamiltonian, too in order

to get the difference the integer value and not just zero, so that the integral can be

quantized.

The extensions with the symmetry operators are just chosen to be the same extension

does not imply the same as the extension without symmetry operators yet. This specific

choice and the resulting conclusion that the WZ integral equals zero could not be found

if we would not have the symmetry relations. I think that means the choice does not

contradict the generality. As we have chosen U and V operators to show the relation

In the following I calculate if the WZ term is quantized along the xy-plane for the pseudo

mirror symmetry w.r.t. the x axis by integrating the WZ integral over kx and ky. I show

how the WZ integral of the extended Hamiltonian without symmetry operators applied
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is related to the integral of a Hamiltonian by building a different extension using the

symmetry operators.

WZ[H ′WZ(kx, ky, kz, t)] =WZ[σzH
†(−kx, ky, kz, t)σ−1

z ] (C.1)

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(σzH†(−kx, ky, kz, t)σ−1

z )−1∂i(σzH
†(−kx, ky, kz, t)σ−1

z )

(σzH
†(−kx, ky, kz, t)σ−1

z )−1∂j(σzH
†(−kx, ky, kz, t)σ−1

z )

(σzH
†(−kx, ky, kz, t)σ−1

z )−1∂k(σzH
†(−kx, ky, kz, t)σ−1

z )}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(H†(−kx, ky, kz, t))−1∂iH

†(−kx, ky, kz, t) (C.2)

((H†(−kx, ky, kz, t))−1∂jH
†(−kx, ky, kz, t)

((H†(−kx, ky, kz, t))−1∂kH
†(−kx, ky, kz, t)}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{[(H(−kx, ky, kz, t))−1∂kH(−kx, ky, kz, t) (C.3)

((H(−kx, ky, kz, t))−1∂jH(−kx, ky, kz, t)

((H(−kx, ky, kz, t))−1∂iH(−kx, ky, kz, t)]†}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dk′xdkydt

24π2
εijk(−1)tr{(H(k′x, ky, kz, t))

−1∂kH(k′x, ky, kz, t) (C.4)

((H(k′x, ky, kz, t))
−1∂jH(k′x, ky, kz, t)

((H(k′x, ky, kz, t))
−1∂iH(k′x, ky, kz, t)}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dk′xdkydt

24π2
εijktr{(H(k′x, ky, kz, t))

−1∂iH(k′x, ky, kz, t) (C.5)

((H(k′x, ky, kz, t))
−1∂jH(k′x, ky, kz, t)

((H(k′x, ky, kz, t))
−1∂kH(k′x, ky, kz, t)}

=WZ[HWZ(k′x, ky, kz, t)] (C.6)

Here HWZ is the extended Hamiltonian and H ′WZ is if we apply the symmetry operator

once back to the system Hamiltonian H and extend it with the same extension and

finally apply again the symmetry operators to the transformed extended Hamiltonian

in order to get a different extension using the symmetry of the system. We see that the

WZ term is not quantized, because we get the same integral as not rotated one.

The integral over kx and kz would give the exact same result.

In the following I integrate the same extension over ky and kz.



Interplay of crystal symmetries and non-Hermiticity in quantum lattice models 95

WZ[H ′WZ(kx, ky, kz, t)] = WZ[σzH
†(−kx, ky, kz, t)σ−1

z ] (C.7)

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydkzdt

24π2
εijktr{(σzH†(−kx, ky, kz, t)σ−1

z )−1∂i(σzH
†(−kx, ky, kz, t)σ−1

z )

(σzH
†(−kx, ky, kz, t)σ−1

z )−1∂j(σzH
†(−kx, ky, kz, t)σ−1

z )

(σzH
†(−kx, ky, kz, t)σ−1

z )−1∂k(σzH
†(−kx, ky, kz, t)σ−1

z )}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydkzdt

24π2
εijktr{(H(−kx, ky, kz, t))−1∂kH(−kx, ky, kz, t) (C.8)

((H(−kx, ky, kz, t))−1∂jH(−kx, ky, kz, t)

((H(−kx, ky, kz, t))−1∂iH(−kx, ky, kz, t)}

= −
∫ 1

0

∫ 2π

0

∫ 2π

0

dkydkzdt

24π2
εijktr{(H(−kx, ky, kz, t))−1∂iH(−kx, ky, kz, t) (C.9)

((H(−kx, ky, kz, t))−1∂jH(−kx, ky, kz, t)

((H(−kx, ky, kz, t))−1∂kH(−kx, ky, kz, t)}

6= WZ[HWZ(kx, ky, kz, t)] (C.10)

except: WZ[H ′WZ(0, ky, kz, t)] = −WZ[HWZ(0, ky, kz, t)] (C.11)

⇒WZ[HWZ(0, ky, kz, t)] ∈ {0, 1/2} (C.12)

WZ[H ′WZ(π, ky, kz, t)] = −WZ[HWZ(π, ky, kz, t)] (C.13)

⇒WZ[HWZ(π, ky, kz, t)] ∈ {0, 1/2} (C.14)

The integrals are not equal for general kx and at the TRIM points for kx the integral is

equal to zero. However, I showed in the conclusion part, that the integral of the shape

eq.(C.9) us quantized to the following values {−1,−1
2 , 0,

1
2 , 1}.

For the mirror type symmetry w.r.t. y axis the WZ integration over kx and kz is also

not equal and at the ky TRIM points the integral is equal to zero. For other values of

the ky the integral is not clear.

We can also show that the integration over kx and ky and the other one over kz and ky

are equal: WZ[HWZ ] = WZ[H ′WZ ].

The pseudo mirror symmetry w.r.t. the z axis is slightly different in form than the other

axes, so let us look at the integral explicitly:
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WZ[H ′WZ(kx, ky, kz, t)] =WZ[−τyH†(kx, ky,−kz, t)τ−1
y ] (C.15)

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(−1)6(τyH

†(kx, ky,−kz, t)τ−1
y )−1∂i(τyH

†(kx, ky,−kz, t)τ−1
y )

(τyH
†(kx, ky,−kz, t)τ−1

y )−1∂j(τyH
†(kx, ky,−kz, t)τ−1

y )

(τyH
†(kx, ky,−kz, t)τ−1

y )−1∂k(τyH
†(kx, ky,−kz, t)τ−1

y )}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(H(kx, ky,−kz, t))−1∂kH(kx, ky,−kz, t) (C.16)

((H(kx, ky,−kz, t))−1∂jH(−kx, ky,−kz, t)

((H(kx, ky,−kz, t))−1∂iH(−kx, ky,−kz, t)}

= −
∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(H(kx, ky,−kz, t))−1∂iH(kx, ky,−kz, t) (C.17)

((H(kx, ky,−kz, t))−1∂jH(kx, ky,−kz, t)

((H(kx, ky,−kz, t))−1∂kH(kx, ky,−kz, t)}

= −
∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(H(kx, ky,−kz, t))−1∂iH(kx, ky,−kz, t) (C.18)

((H(kx, ky,−kz, t))−1∂jH(kx, ky,−kz, t)

((H(kx, ky,−kz, t))−1∂kH(kx, ky,−kz, t)}

6= WZ[HWZ(kx, ky, kz, t)] (C.19)

except: WZ[H ′WZ(kx, ky, 0, t)] = −WZ[HWZ(kx, ky, 0, t)] (C.20)

⇒WZ[HWZ(kx, ky, 0, t)] ∈ {0, 1/2} (C.21)

WZ[H ′WZ(kx, ky, π, t)] = −WZ[HWZ(kx, ky, π, t)] (C.22)

⇒WZ[HWZ(kx, ky, π, t)] ∈ {0, 1/2} (C.23)

Here if I choose the extension as (1−t)H+tHconst, I will have different integrand in both

H ′WZ and HWZ . In the integral of H ′WZ I will have the following extended Hamiltonian:

τy((1− t)(−1)H†(kx, ky,−kz) + tH†
const)τ

−1
y = (−1)(τy((1− t)H†(kx, ky,−kz)− tH†

const)τ
−1
y )

(C.24)

∂t(τy((1− t)H†(kx, ky,−kz)− tH†
const)τ

−1
y ) = (τy(−H†(kx, ky,−kz)−H†

const)τ
−1
y )

(C.25)

Instead, if we take U = −τy and V = τy, we have in front of Hconst plus sign and

therefore at the TRIM points for kz the integral is equal zero. For other values of kz the

two extensions are not equal.
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Now I integrate over ky and kz:

WZ[H ′WZ(kx, ky, kz, t)] =WZ[−τyH†(kx, ky,−kz, t)τ−1
y ] (C.26)

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydkzdt

24π2
εijktr{(−1)6(τyH

†(kx, ky,−kz, t)τ−1
y )−1∂i(τyH

†(kx, ky,−kz, t)τ−1
y )

(τyH
†(kx, ky,−kz, t)τ−1

y )−1∂j(τyH
†(kx, ky,−kz, t)τ−1

y )

(τyH
†(kx, ky,−kz, t)τ−1

y )−1∂k(τyH
†(kx, ky,−kz, t)τ−1

y )}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydkzdt

24π2
εijktr{(H(kx, ky,−kz, t))−1∂kH(kx, ky,−kz, t) (C.27)

((H(kx, ky,−kz, t))−1∂jH(−kx, ky,−kz, t)

((H(kx, ky,−kz, t))−1∂iH(−kx, ky,−kz, t)}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydk
′
zdt

24π2
εijktr{(H(kx, ky, k

′
z, t))

−1∂iH(kx, ky, k
′
z, t) (C.28)

((H(kx, ky, k
′
z, t))

−1∂jH(kx, ky, k
′
z, t)

((H(kx, ky, k
′
z, t))

−1∂kH(kx, ky, k
′
z, t)}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkydk
′
zdt

24π2
εijktr{(H(kx, ky, k

′
z, t))

−1∂iH(kx, ky, k
′
z, t) (C.29)

((H(kx, ky, k
′
z, t))

−1∂jH(kx, ky, k
′
z, t)

((H(kx, ky, k
′
z, t))

−1∂kH(kx, ky, k
′
z, t)}

= WZ[HWZ(kx, ky, kz, t)] (C.30)

By taking the U = −τy and V = τy, I could show that the integral is exactly the same

as not symmetry applied one.

The integral over kx and kz yields the same result, e.g. the integrals are equal.

Let us check now the pseudo inversion symmetry:
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WZ[H ′WZ(kx, ky, kz, t)] = WZ[−(σyτy)H
†(−k, t)(σyτy)−1] (C.31)

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(−1)6((σyτy)H

†(−k, t)(σyτy)−1)−1∂i((σyτy)H
†(−k, t)(σyτy)−1)

((σyτy)H
†(−k, t)(σyτy)−1)−1∂j((σyτy)H

†(−k, t)(σyτy)−1)

((σyτy)H
†(−k, t)(σyτy)−1)−1∂k((σyτy)H

†(−k, t)(σyτy)−1)}

=

∫ 1

0

∫ 2π

0

∫ 2π

0

dkxdkydt

24π2
εijktr{(H(−k, t))−1∂kH(−k, t) (C.32)

((H(−k, t))−1∂jH(−k, t)

((H(−k, t))−1∂iH(−k, t)}

= −
∫ 1

0

∫ 2π

0

∫ 2π

0

dk′xdk
′
ydt

24π2
εijktr{(H(k′x, k

′
y,−kz, t))−1∂iH(k′x, k

′
y,−kz, t) (C.33)

((H(k′x, k
′
y,−kz, t))−1∂jH(k′x, k

′
y,−kz, t)

((H(k′x, k
′
y,−kz, t))−1∂kH(k′x, k

′
y,−kz, t)}

6= WZ[HWZ(kx, ky, kz, t)] (C.34)

except: WZ[H ′WZ(kx, ky, 0, t)] = −WZ[HWZ(kx, ky, 0, t)] (C.35)

⇒WZ[HWZ(kx, ky, 0, t)] ∈ {0, 1/2} (C.36)

WZ[H ′WZ(kx, ky, π, t)] = −WZ[HWZ(kx, ky, π, t)] (C.37)

⇒WZ[HWZ(kx, ky, π, t)] ∈ {0, 1/2} (C.38)

If I take U = −σyτy and V = σyτy the integrals are not equal for the general kz, but

at the TRIM points for kz the integral is quantized. The same results yield from the

integrals over other two combinations of (kx, ky, kz).

WZ quantization for 3D models with mirror type symmetries

Firstly τy and σy commute

Secondly Hconst should not be commuting with the symmetry operators.

Using the pseudo inversion and pseudo mirror symmetry w.r.t the kz we get the same

extension of the Hamiltonian if we choose the end constant Hamiltonian in the following
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way:

WZ[H ′] =

WZ[−σyτy((1− t)H†(−k) + tH ′const)(σyτy)
−1] = WZ[−τy((1− t)H†(kx, ky,−kz) + tH ′′const)τy]

WZ[(1− t)H(k)− tτyσyH ′constσyτy] = WZ[(1− t)H(k)− tτyH ′′constτy]
(C.39)

the integral is over ky and kz or kx and kz and the two extensions are equal in the case of

σyH
′
constσy = H ′′const, the primes over the Hconst are to distinguish the constant Hamil-

tonians that they are different. For every H ′const there is other constant Hamiltonian

H ′′const which is connected in the above way.

From eq. (C.33) we get:

WZ[H ′(kz)] = −WZ[H(−kz)] (C.40)

From eq. (C.30) we get:

WZ[H ′(kz)] = WZ[H(kz)] (C.41)

From eq.(C.39) we have two terms are the same and get an odd relation:

WZ[H ′(kz)] = −WZ[H(−kz)] = WZ[H(kz)] (C.42)

The relation between 2 extensions is:

WZ[H(kz)]−WZ[H ′(kz)] = n ∈ Z (C.43)

From eq. (C.41) we see that n = 0 and (C.40) in (C.43):

WZ[H(kz)] +WZ[H(−kz)] = WZ[H(kz)]−WZ[H(kz)] = 0 (C.44)

Circlic values of WZ terms we get: WZ[H(kz)] = −WZ[H(kz)], setting this in eq.(C.44)

we get the WZ integral equals zero:

⇒ 2WZ[H(kz)] = 0 (C.45)

⇒WZ[H(kz)] = 0 or WZ[H(kz)] =
1

2
(C.46)
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So, due to the both pseudo inversion symmetry and pseudo mirror symmetry w.r.t the

kz we get that the integral is quantized. Additionally it is true for every symmetry,

which implies in every WZ integral equals zero.

WZ[H ′] =

WZ[σz((1− t)H†(−kx, ky, kz) + tH ′const)σ
−1
z ] = WZ[−τy((1− t)H†(kx, ky,−kz) + tH ′′const)τ

−1
y ]

WZ[(1− t)H(kx, ky, kz) + tσzH
′
constσz] = WZ[(1− t)H(kx, ky, kz)− tτyH ′′constτy]

(C.47)

From eq. (85) WZ[H ′(kz)] = −WZ[H(−kz)] integral over ky and kz

(C.48)

From eq. (101) WZ[H ′(kz)] = WZ[H(kz)] integral over kx and kz or ky and kz

(C.49)

The integral over kx and ky results also in WZ = 0:

WZ[H ′] =

WZ[σz((1− t)H†(−kx, ky, kz) + tH ′const)σ
−1
z ] = WZ[−σyτy(H†(−k) + tH ′const)(σyτy)

−1]

WZ[(1− t)H(kx, ky, kz) + tσzH
′
constσz] = WZ[(1− t)H(kx, ky, kz)− tτyH ′′constτy]

(C.50)

From eq. (77) WZ[H ′] = WZ[H] integral over kx and ky (C.51)

From eq. (104) WZ[H ′(kz)] = −WZ[H(−kz)] integral over kx and ky (C.52)

only mirror symmetries:

As shown above every extension with the symmetry operators can be related to the

other extensions

• mirror symmetry w.r.t. kx :

� integral over kx and ky or kx and kz: WZ[H ′] = WZ[H]
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� integral over ky and kz: WZ[H ′(kx)] = −WZ[H(−kx)]

• mirror symmetry w.r.t. ky :

� integral over kx and ky or ky and kz: WZ[H ′] = WZ[H]

� integral over kx and kz: WZ[H ′(ky)] = −WZ[H(−ky)]

• mirror symmetry w.r.t. kz :

� integral over kx and kz or ky and kz: WZ[H ′] = WZ[H]

� integral over kx and ky: WZ[H ′(kz)] = −WZ[H(−kz)]

To prove the WZ integral equals to zero the symmetry relation of the third dimension is

always needed. From the 2D model we know that the pseudo mirror symmetry does not

quantize the WZ term, so is true for 3D model if we have the pseudo mirror symmetry

along the integration direction and not third dimension which is kept constant.

I could also choose the constant Hamiltonian of the extension without the symmetry

operator the same as the one with the symmetry operator. In that case we can not

prove anything, so it is necessary to choose a different constant Hamiltonian, so that we

have different extensions. In the 2D case it is important to choose a different constant

Hamiltonian, except being non-symmetric under the system Hamiltonian, too in order

to get the difference the integer value and not just zero, so that the integral can be

quantized.

The extensions with the symmetry operators are just chosen to be the same extension

does not imply the same as the extension without symmetry operators yet. This specific

choice and the resulting conclusion that the WZ integral equals zero could not be found

if we would not have the symmetry relations. I think that means the choice does not

contradict the generality. As we have chosen U and V operators to show the relation



Appendix D

Plane cuts and its energy spectra

and prob.density profiles for the

3rd model

Figure D.1: cut along xy-plane, xz-plane, and yz-plane
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Figure D.2: cut along xy-plane
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Figure D.3: cut along xz-plane. Exactly 80 states are at the boundary localized in hermitized
model.
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Figure D.4: cut along yz-plane. I will put them on affinity design.



Appendix E

Perturbation results for the

second model

I systematically perturbed the system with small symmetry respecting and not symmetry

respecting Hamiltonian and seen how the various perturbations change the spectra. the

perturbation with the magnitude smaller than the 10−10 is numerically not detectable.

So the perturbations are done with bigger magnitudes.

This Hamiltonian respects four-fold-rotation (C4) type symmetry in the following form:

UH†(g−1~k) = H(~k) (E.1)

− iσyH†(kx, ky) = H(−ky, kx) (E.2)

H(~k) also respects C2 spatial inversion symmetry:

σyH(~k)σy = H(−~k) (E.3)

The Hamiltonian with the C4 symmetric perturbation is given as following:

H(~k) −→ H(~k)+δH(~k)+δH†(g−1~k)U+U−1δH(g−1g−1~k)U+U−1δH†(g−1g−1g−1~k)U2

(E.4)
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U is a unitary matrix:

U † = U−1 (E.5)

Rotate the third term once forward:

U(δH†(g−1~k)U)† = U(U †δH(g−1~k)) = δH(~k) (E.6)

Rotate the fourth term once forward:

U(U−1δH(g−1g−1~k)U)† = U(U †H†(g−1g−1~k)U) = δH†(g−1~k)U (E.7)

Rotate the fifth term once forward:

U(U−1δH†(g−1g−1g−1~k)U2)† = U((U †)2H(g−1g−1g−1~k)U) = U−1δH(g−1g−1~k)U

(E.8)

Here δH(~k) is a matrix with 2x2 random entries, that means δH matrix is actually not

dependent on ~k. U is a matrix for C4 type symmetry operator on the Bloch Hamiltonian

and therefore given as U = −iσy, σy is a Pauli matrix.

If we rotate the perturbing Hamiltonian:

U
(
δH(~k) + δH†(g−1~k)U + U−1δH(g−1g−1~k)U + U−1δH†(g−1g−1g−1~k)U2

)†
(g~k′) =

= UδH(g~k) + δH(~k) + δH†(g−1~k)U + U−1δH(g−1g−1~k)U

The g operators on ~k apply after clockwise or anticlockwise rotation.

I have to rotate this actually 4 times to show if the matrix comes in the same

state.

The Hamiltonian with the C2 symmetric perturbation is given as following:

H(~k) −→ H(~k) + δH(~k) + σyδH(−~k)σy (E.9)

Here δH(~k) is a matrix with 2x2 random entries in the range [0,1]. σy is a Pauli matrix

and the C2 symmetry operator on our Bloch Hamiltonian.
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Figure E.1: Real perturbation. Reciprocal space. C2 perturbation with different magnitudes
(1i,2i,3i,4i,5i,6i) times always the same random matrix
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Figure E.2: Real perturbation. Reciprocal space. C2 perturbation with different magnitudes
(1i,2i,3i,4i,5i,6i) times different random matrix



Interplay of crystal symmetries and non-Hermiticity in quantum lattice models 110

Figure E.3: Complex perturbation. Reciprocal space. C2 perturbation with different magni-
tudes times always same random matrix

Figure E.4: Complex perturbation. Reciprocal space. C2 perturbation with different magni-
tudes (1i,2i,3i,4i,5i,6i) times always the same random matrix
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Figure E.5: Complex perturbation. Reciprocal space. C2 perturbation with different magni-
tudes (1i,2i,3i,4i,5i,6i) times different random matrix
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Figure E.6: Real valued perturbation. Reciprocal space. C4 perturbation with different magni-
tudes with the same perturbation matrices. First and second plots are both for different random

matrices.
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Figure E.7: Real valued perturbation. Reciprocal space. C4 perturbation magnitude=1 with
the different perturbation matrices.

Figure E.8: Real valued perturbation. Reciprocal space. C4 perturbation magnitude=0.1 with
the different perturbation matrices.
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Figure E.9: Real valued perturbation. Reciprocal space. C4 perturbation magnitude=(0.1, 0.2,
0.3, 0.4, 0.5, 0.6) with the different perturbation matrices.

Figure E.10: Real valued perturbation. Reciprocal space. C4 perturbation magnitude=0.3 with
the different perturbation matrices.
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Figure E.11: Complex valued perturbation. Reciprocal space. C4 perturbation with different
magnitudes with the same perturbation matrices. First and second plots are both for different

random matrices.
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Figure E.12: Complex perturbation. Reciprocal space. C4 perturbation with different magni-
tudes (1i,2i,3i,4i,5i,6i) times always the same random matrix. However depending on the random
matrix we have corner localized state or not. So let us check also different randoms at magnitude

1j.

Figure E.13: Complex perturbation. Reciprocal space. C4 perturbation with different magni-
tude=1i times different random matrices.
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Figure E.14: Real space. C2 perturbation with pure complex values with different magnitudes
and same random matrix. I checked all magnitude=0.1j are fine.

Figure E.15: Real space. C2 perturbation with pure complex values with different magnitudes
and different random matrices. I checked all magnitude=0.1j are fine.
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Figure E.16: Real space. C2 perturbation with real values with different magnitudes. Same
random matrices.

Figure E.17: Real space. C2 perturbation with real magnitude = 1. Different random matrix.
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Figure E.18: random diagonal and random full matrix perturbation with different magnitude
and one random matrix.
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Figure E.19: Reciprocal space. σx symmetric perturbation with different magnitudes and for 3
different random matrices.
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Figure E.20: Reciprocal space. σx symmetric perturbation with different magnitudes. First six
are with different random matrices, next six are with a same random matrix.
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Figure E.21: Reciprocal space. σz symmetric perturbation with different magnitudes, different
random matrices.

Figure E.22: Reciprocal space. σz symmetric perturbation with magnitude=1, different random
matrices
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Ching Hua Lee, Ante Bilušić, Ronny Thomale, and Titus Neupert. Reciprocal

skin effect and its realization in a topolectrical circuit. Phys. Rev. Research, 2:

023265, Jun 2020. doi: 10.1103/PhysRevResearch.2.023265. URL https://link.

aps.org/doi/10.1103/PhysRevResearch.2.023265.

[5] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad

Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded

Zilberberg, and Iacopo Carusotto. Topological photonics. Rev. Mod. Phys., 91:

015006, Mar 2019. doi: 10.1103/RevModPhys.91.015006. URL https://link.

aps.org/doi/10.1103/RevModPhys.91.015006.

131

https://link.aps.org/doi/10.1103/RevModPhys.93.015005
https://link.aps.org/doi/10.1103/RevModPhys.93.015005
https://link.aps.org/doi/10.1103/PhysRevX.9.041015
https://link.aps.org/doi/10.1103/PhysRevX.9.041015
https://link.aps.org/doi/10.1103/PhysRevB.102.205118
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023265
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023265
https://link.aps.org/doi/10.1103/RevModPhys.91.015006
https://link.aps.org/doi/10.1103/RevModPhys.91.015006


Bibliography 132

[6] Ramy El-Ganainy, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rotter,

and Demetrios N. Christodoulides. Non-hermitian physics and pt symmetry. Na-

ture physics, 14:11, Jan 2018. doi: https://doi.org/10.1038/nphys4323. URL

https://www.nature.com/articles/nphys4323.

[7] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst. Exceptional topology

of non-hermitian systems. Reviews of Modern Physics, 93(1), Feb 2021. ISSN

1539-0756. doi: 10.1103/revmodphys.93.015005. URL http://dx.doi.org/10.

1103/RevModPhys.93.015005.

[8] Kai Zhang, Zhesen Yang, and Chen Fang. Universal non-hermitian skin effect in

two and higher dimensions, 2021.

[9] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath. Weyl and dirac semimet-

als in three-dimensional solids. Rev. Mod. Phys., 90:015001, Jan 2018. doi:

10.1103/RevModPhys.90.015001. URL https://link.aps.org/doi/10.1103/

RevModPhys.90.015001.

[10] Elisabet Edvardsson, Flore K. Kunst, and Emil J. Bergholtz. Non-hermitian ex-

tensions of higher-order topological phases and their biorthogonal bulk-boundary

correspondence. Phys. Rev. B, 99:081302, Feb 2019. doi: 10.1103/PhysRevB.99.

081302. URL https://link.aps.org/doi/10.1103/PhysRevB.99.081302.

[11] Ryo Okugawa, Ryo Takahashi, and Kazuki Yokomizo. Non-hermitian band

topology with generalized inversion symmetry. Phys. Rev. B, 103:205205, May

2021. doi: 10.1103/PhysRevB.103.205205. URL https://link.aps.org/doi/

10.1103/PhysRevB.103.205205.

[12] Eunwoo Lee, Hyunjik Lee, and Bohm-Jung Yang. Many-body approach to

non-hermitian physics in fermionic systems. Phys. Rev. B, 101:121109, Mar

2020. doi: 10.1103/PhysRevB.101.121109. URL https://link.aps.org/doi/

10.1103/PhysRevB.101.121109.

[13] Hridesh Kedia, Anton Souslov, and D. Zeb Rocklin. Soft topological modes pro-

tected by symmetry in rigid mechanical metamaterials. Phys. Rev. B, 103:L060104,

Feb 2021. doi: 10.1103/PhysRevB.103.L060104. URL https://link.aps.org/

doi/10.1103/PhysRevB.103.L060104.

https://www.nature.com/articles/nphys4323
http://dx.doi.org/10.1103/RevModPhys.93.015005
http://dx.doi.org/10.1103/RevModPhys.93.015005
https://link.aps.org/doi/10.1103/RevModPhys.90.015001
https://link.aps.org/doi/10.1103/RevModPhys.90.015001
https://link.aps.org/doi/10.1103/PhysRevB.99.081302
https://link.aps.org/doi/10.1103/PhysRevB.103.205205
https://link.aps.org/doi/10.1103/PhysRevB.103.205205
https://link.aps.org/doi/10.1103/PhysRevB.101.121109
https://link.aps.org/doi/10.1103/PhysRevB.101.121109
https://link.aps.org/doi/10.1103/PhysRevB.103.L060104
https://link.aps.org/doi/10.1103/PhysRevB.103.L060104


Bibliography 133

[14] Ryo Okugawa, Ryo Takahashi, and Kazuki Yokomizo. Second-order topological

non-hermitian skin effects. Phys. Rev. B, 102:241202, Dec 2020. doi: 10.1103/

PhysRevB.102.241202. URL https://link.aps.org/doi/10.1103/PhysRevB.

102.241202.

[15] Hridesh Kedia, Anton Souslov, and D. Zeb Rocklin. Exceptional topologi-

cal insulators. Nature communications, 12:5681, Sep 2021. doi: https://

doi.org/10.1038/s41467-021-25947-z. URL https://www.nature.com/articles/

s41467-021-25947-z.

[16] L. D. Landau. On the theory of phase transitions. Zh. Eksp. Teor. Fiz., 7:19–32,

1937.

[17] Xiao-Gang Wen. Quantum orders and symmetric spin liquids. Phys. Rev. B, 65:

165113, Apr 2002. doi: 10.1103/PhysRevB.65.165113. URL https://link.aps.

org/doi/10.1103/PhysRevB.65.165113.

[18] Hongming Weng, Rui Yu, Xiao Hu, Xi Dai, and Zhong Fang. Quantum anomalous

hall effect and related topological electronic states. Advances in Physics, 64(3):

227–282, May 2015. ISSN 1460-6976. doi: 10.1080/00018732.2015.1068524. URL

http://dx.doi.org/10.1080/00018732.2015.1068524.

[19] Xiao-Gang Wen. Quantum order: a quantum entanglement of many particles.

Physics Letters A, 300(2-3):175–181, Jul 2002. ISSN 0375-9601. doi: 10.1016/

s0375-9601(02)00808-3. URL http://dx.doi.org/10.1016/S0375-9601(02)

00808-3.

[20] Alexei Kitaev and John Preskill. Topological entanglement entropy. Phys. Rev.

Lett., 96:110404, Mar 2006. doi: 10.1103/PhysRevLett.96.110404. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.96.110404.

[21] Michael Levin and Xiao-Gang Wen. Detecting topological order in a

ground state wave function. Phys. Rev. Lett., 96:110405, Mar 2006. doi:

10.1103/PhysRevLett.96.110405. URL https://link.aps.org/doi/10.1103/

PhysRevLett.96.110405.

[22] Zheng-Cheng Gu and Xiao-Gang Wen. Tensor-entanglement-filtering renormal-

ization approach and symmetry-protected topological order. Phys. Rev. B, 80:

https://link.aps.org/doi/10.1103/PhysRevB.102.241202
https://link.aps.org/doi/10.1103/PhysRevB.102.241202
https://www.nature.com/articles/s41467-021-25947-z
https://www.nature.com/articles/s41467-021-25947-z
https://link.aps.org/doi/10.1103/PhysRevB.65.165113
https://link.aps.org/doi/10.1103/PhysRevB.65.165113
http://dx.doi.org/10.1080/00018732.2015.1068524
http://dx.doi.org/10.1016/S0375-9601(02)00808-3
http://dx.doi.org/10.1016/S0375-9601(02)00808-3
https://link.aps.org/doi/10.1103/PhysRevLett.96.110404
https://link.aps.org/doi/10.1103/PhysRevLett.96.110404
https://link.aps.org/doi/10.1103/PhysRevLett.96.110405
https://link.aps.org/doi/10.1103/PhysRevLett.96.110405


Bibliography 134

155131, Oct 2009. doi: 10.1103/PhysRevB.80.155131. URL https://link.aps.

org/doi/10.1103/PhysRevB.80.155131.

[23] Hongming Weng, Rui Yu, Xiao Hu, Xi Dai, and Zhong Fang. Quantum anomalous

hall effect and related topological electronic states. Advances in Physics, 64(3):

227–282, 2015. doi: 10.1080/00018732.2015.1068524. URL https://doi.org/10.

1080/00018732.2015.1068524.

[24] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod.

Phys., 82:3045–3067, Nov 2010. doi: 10.1103/RevModPhys.82.3045. URL https:

//link.aps.org/doi/10.1103/RevModPhys.82.3045.

[25] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall

conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49:405–408,

Aug 1982. doi: 10.1103/PhysRevLett.49.405. URL https://link.aps.org/doi/

10.1103/PhysRevLett.49.405.

[26] Xiao-Gang Wen. Topological orders and edge excitations in fractional quan-

tum hall states. Advances in Physics, 44(5):405–473, 1995. doi: 10.1080/

00018739500101566. URL https://doi.org/10.1080/00018739500101566.

[27] K. v. Klitzing, G. Dorda, and M. Pepper. New method for high-accuracy de-

termination of the fine-structure constant based on quantized hall resistance.

Phys. Rev. Lett., 45:494–497, Aug 1980. doi: 10.1103/PhysRevLett.45.494. URL

https://link.aps.org/doi/10.1103/PhysRevLett.45.494.

[28] Pascal Marc Vecsei. Two aspects of crystalline topological matter fractional corner

charges with fourfold rotational symmetry and symmetry indicator invariants for

non-hermitian topological materials. Master’s thesis, University of Zurich, Feb

2021.

[29] Mikio Nakahara. Geometry, Topology and Physics. Location Boca Raton, 2 edition,

2003. URL https://doi.org/10.1201/9781315275826.

[30] Michael Victor Berry. Quantal phase factors accompanying adiabatic changes.

Proceedings of the Royal Society of London. A. Mathematical and Physical Sci-

ences, 392(1802):45–57, 1984. doi: 10.1098/rspa.1984.0023. URL https://

royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023.

https://link.aps.org/doi/10.1103/PhysRevB.80.155131
https://link.aps.org/doi/10.1103/PhysRevB.80.155131
https://doi.org/10.1080/00018732.2015.1068524
https://doi.org/10.1080/00018732.2015.1068524
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
https://link.aps.org/doi/10.1103/PhysRevLett.49.405
https://doi.org/10.1080/00018739500101566
https://link.aps.org/doi/10.1103/PhysRevLett.45.494
https://doi.org/10.1201/9781315275826
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023


Bibliography 135

[31] F. D. M. Haldane. Model for a quantum hall effect without landau levels:

Condensed-matter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–

2018, Oct 1988. doi: 10.1103/PhysRevLett.61.2015. URL https://link.aps.

org/doi/10.1103/PhysRevLett.61.2015.

[32] T. Jungwirth, Qian Niu, and A. H. MacDonald. Anomalous hall effect in

ferromagnetic semiconductors. Phys. Rev. Lett., 88:207208, May 2002. doi:

10.1103/PhysRevLett.88.207208. URL https://link.aps.org/doi/10.1103/

PhysRevLett.88.207208.

[33] Masaru Onoda and Naoto Nagaosa. Topological nature of anomalous hall effect

in ferromagnets. Journal of the Physical Society of Japan, 71(1):19–22, 2002. doi:

10.1143/JPSJ.71.19. URL https://doi.org/10.1143/JPSJ.71.19.

[34] Zhong Fang, Naoto Nagaosa, Kei S. Takahashi, Atsushi Asamitsu, Roland Math-

ieu, Takeshi Ogasawara, Hiroyuki Yamada, Masashi Kawasaki, Yoshinori Tokura,

and Kiyoyuki Terakura. The anomalous hall effect and magnetic monopoles in

momentum space. Science, 302(5642):92–95, 2003. doi: 10.1126/science.1089408.

URL https://www.science.org/doi/abs/10.1126/science.1089408.

[35] Yugui Yao, Leonard Kleinman, A. H. MacDonald, Jairo Sinova, T. Jungwirth,

Ding-sheng Wang, Enge Wang, and Qian Niu. First principles calculation of

anomalous hall conductivity in ferromagnetic bcc fe. Phys. Rev. Lett., 92:037204,

Jan 2004. doi: 10.1103/PhysRevLett.92.037204. URL https://link.aps.org/

doi/10.1103/PhysRevLett.92.037204.

[36] Masaru Onoda and Naoto Nagaosa. Quantized anomalous hall effect in two-

dimensional ferromagnets: Quantum hall effect in metals. Phys. Rev. Lett., 90:

206601, May 2003. doi: 10.1103/PhysRevLett.90.206601. URL https://link.

aps.org/doi/10.1103/PhysRevLett.90.206601.

[37] David Vanderbilt. Berry Phases in Electronic Structure Theory: Electric Polar-

ization, Orbital Magnetization and Topological Insulators. Cambridge University

Press, 2018. doi: 10.1017/9781316662205.

[38] Berry Michael Victor. Quantal phase factors accompanying adiabatic changes.

Proc. R. Soc. Lond.., 392, 1984. doi: 10.1098/rspa.1984.0023. URL http://doi.

org/10.1098/rspa.1984.0023.

https://link.aps.org/doi/10.1103/PhysRevLett.61.2015
https://link.aps.org/doi/10.1103/PhysRevLett.61.2015
https://link.aps.org/doi/10.1103/PhysRevLett.88.207208
https://link.aps.org/doi/10.1103/PhysRevLett.88.207208
https://doi.org/10.1143/JPSJ.71.19
https://www.science.org/doi/abs/10.1126/science.1089408
https://link.aps.org/doi/10.1103/PhysRevLett.92.037204
https://link.aps.org/doi/10.1103/PhysRevLett.92.037204
https://link.aps.org/doi/10.1103/PhysRevLett.90.206601
https://link.aps.org/doi/10.1103/PhysRevLett.90.206601
http://doi.org/10.1098/rspa.1984.0023
http://doi.org/10.1098/rspa.1984.0023


Bibliography 136

[39] R. D. King-Smith and David Vanderbilt. Theory of polarization of crystalline

solids. Phys. Rev. B, 47:1651–1654, Jan 1993. doi: 10.1103/PhysRevB.47.1651.

URL https://link.aps.org/doi/10.1103/PhysRevB.47.1651.

[40] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier

functions for composite energy bands. Phys. Rev. B, 56:12847–12865, Nov 1997.

doi: 10.1103/PhysRevB.56.12847. URL https://link.aps.org/doi/10.1103/

PhysRevB.56.12847.

[41] T. Thonhauser, Davide Ceresoli, David Vanderbilt, and R. Resta. Orbital mag-

netization in periodic insulators. Phys. Rev. Lett., 95:137205, Sep 2005. doi:

10.1103/PhysRevLett.95.137205. URL https://link.aps.org/doi/10.1103/

PhysRevLett.95.137205.

[42] Davide Ceresoli, T. Thonhauser, David Vanderbilt, and R. Resta. Orbital mag-

netization in crystalline solids: Multi-band insulators, chern insulators, and met-

als. Phys. Rev. B, 74:024408, Jul 2006. doi: 10.1103/PhysRevB.74.024408. URL

https://link.aps.org/doi/10.1103/PhysRevB.74.024408.

[43] Lixin He and David Vanderbilt. Exponential decay properties of wannier

functions and related quantities. Phys. Rev. Lett., 86:5341–5344, Jun 2001.

doi: 10.1103/PhysRevLett.86.5341. URL https://link.aps.org/doi/10.1103/

PhysRevLett.86.5341.

[44] Raffaele Resta and Sandro Sorella. Electron localization in the insulating state.

Phys. Rev. Lett., 82:370–373, Jan 1999. doi: 10.1103/PhysRevLett.82.370. URL

https://link.aps.org/doi/10.1103/PhysRevLett.82.370.

[45] Ivo Souza, Tim Wilkens, and Richard M. Martin. Polarization and localization

in insulators: Generating function approach. Phys. Rev. B, 62:1666–1683, Jul

2000. doi: 10.1103/PhysRevB.62.1666. URL https://link.aps.org/doi/10.

1103/PhysRevB.62.1666.

[46] Raffaele Resta. Why are insulators insulating and metals conducting? Jour-

nal of Physics: Condensed Matter, 14(20):R625–R656, may 2002. doi: 10.1088/

0953-8984/14/20/201. URL https://doi.org/10.1088/0953-8984/14/20/201.

https://link.aps.org/doi/10.1103/PhysRevB.47.1651
https://link.aps.org/doi/10.1103/PhysRevB.56.12847
https://link.aps.org/doi/10.1103/PhysRevB.56.12847
https://link.aps.org/doi/10.1103/PhysRevLett.95.137205
https://link.aps.org/doi/10.1103/PhysRevLett.95.137205
https://link.aps.org/doi/10.1103/PhysRevB.74.024408
https://link.aps.org/doi/10.1103/PhysRevLett.86.5341
https://link.aps.org/doi/10.1103/PhysRevLett.86.5341
https://link.aps.org/doi/10.1103/PhysRevLett.82.370
https://link.aps.org/doi/10.1103/PhysRevB.62.1666
https://link.aps.org/doi/10.1103/PhysRevB.62.1666
https://doi.org/10.1088/0953-8984/14/20/201


Bibliography 137

[47] T. Thonhauser and David Vanderbilt. Insulator/chern-insulator transition in the

haldane model. Phys. Rev. B, 74:235111, Dec 2006. doi: 10.1103/PhysRevB.74.

235111. URL https://link.aps.org/doi/10.1103/PhysRevB.74.235111.

[48] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev.

Lett., 95:226801, Nov 2005. doi: 10.1103/PhysRevLett.95.226801. URL https:

//link.aps.org/doi/10.1103/PhysRevLett.95.226801.

[49] H.A. Kramers. Hand und jahrbuch der chemischen physik. Nature, 136:125, July

1935. doi: https://doi.org/10.1038/136125a0. URL https://www.nature.com/

articles/136125a0.

[50] Liang Fu and C. L. Kane. Time reversal polarization and a Z2 adiabatic spin

pump. Phys. Rev. B, 74:195312, Nov 2006. doi: 10.1103/PhysRevB.74.195312.

URL https://link.aps.org/doi/10.1103/PhysRevB.74.195312.

[51] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall effect.

Phys. Rev. Lett., 95:146802, Sep 2005. doi: 10.1103/PhysRevLett.95.146802. URL

https://link.aps.org/doi/10.1103/PhysRevLett.95.146802.

[52] Alexander Altland and Martin R. Zirnbauer. Nonstandard symmetry classes in

mesoscopic normal-superconducting hybrid structures. Phys. Rev. B, 55:1142–

1161, Jan 1997. doi: 10.1103/PhysRevB.55.1142. URL https://link.aps.org/

doi/10.1103/PhysRevB.55.1142.

[53] Alexander Altland and Martin R. Zirnbauer. Nonstandard symmetry classes in

mesoscopic normal-superconducting hybrid structures. Physical Review B, 55(2):

1142–1161, Jan 1997. ISSN 1095-3795. doi: 10.1103/physrevb.55.1142. URL

http://dx.doi.org/10.1103/PhysRevB.55.1142.

[54] H.B. Nielsen and Masao Ninomiya. The adler-bell-jackiw anomaly and weyl

fermions in a crystal. Physics Letters B, 130(6):389–396, 1983. ISSN 0370-

2693. doi: https://doi.org/10.1016/0370-2693(83)91529-0. URL https://www.

sciencedirect.com/science/article/pii/0370269383915290.

[55] B. Andrei Bernevig and Shou-Cheng Zhang. Quantum spin hall effect. Phys.

Rev. Lett., 96:106802, Mar 2006. doi: 10.1103/PhysRevLett.96.106802. URL

https://link.aps.org/doi/10.1103/PhysRevLett.96.106802.

https://link.aps.org/doi/10.1103/PhysRevB.74.235111
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
https://link.aps.org/doi/10.1103/PhysRevLett.95.226801
https://www.nature.com/articles/136125a0
https://www.nature.com/articles/136125a0
https://link.aps.org/doi/10.1103/PhysRevB.74.195312
https://link.aps.org/doi/10.1103/PhysRevLett.95.146802
https://link.aps.org/doi/10.1103/PhysRevB.55.1142
https://link.aps.org/doi/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
https://www.sciencedirect.com/science/article/pii/0370269383915290
https://www.sciencedirect.com/science/article/pii/0370269383915290
https://link.aps.org/doi/10.1103/PhysRevLett.96.106802


Bibliography 138

[56] B. Andrei Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang. Quantum spin hall

effect and topological phase transition in hgte quantum wells. Science, 314(5806):

1757–1761, 2006. doi: 10.1126/science.1133734. URL https://www.science.

org/doi/abs/10.1126/science.1133734.

[57] Markus König, Steffen Wiedmann, Christoph Brüne, Andreas Roth, Hartmut Buh-
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