PHY 117 HS2024

Today: Cross product **Torque** Static equilibrium Center of mass Stability vs. rotation Moment of inertia

> Week 4, Lecture 1 Oct. 8th, 2024 Prof. Ben Kilminster

Toque's a force applied at a distance from
\nthe distance the object to
\n
$$
s \tanh s
$$
 because the object to
\n
$$
s \tanh s
$$

$$
F \t
$$

\n
$$
\begin{array}{r}\n \text{Torque can be also thought of as the product of the force with the 'lever arm'} \\
= r_{\perp} = \text{the part of component of } F \\
\text{that is perpendicular to the force.} \\
\text{Perpendicular to the force.} \\
\text{Perp.} \\
\hline\n\end{array}
$$
\n

\n\n $\begin{array}{r}\n \text{for } r \\
\text{inter} \\$

Static equilibrium:	
2 condition	$\sqrt{5}$
2 condition	$\sqrt{5}$
$\sqrt{6}$	$\sqrt{6}$
$\sqrt{1}$	$\sqrt{1}$

What is the smallest angle, $\Theta_{n|n}$, such
that the ladder does not fall?
Lader has mass, M
length, D
angle, Θ For now, we
heglect friction
of the ladder
on wall. ω 74 $\rightarrow +\times$ F_{low}

Next, cunsider $\epsilon \in \bar{c} = 0$ $\chi_{\text{cw}} = \chi_{\text{ccw}}$ what should be the
rotation point \leftrightarrow No torque for $F_{\epsilon} + F_{\nu}$
Since they point through
the αx_{15} of rotation. bad choice
all 4 Forces
pht 2 m $\boldsymbol{\theta}$ ৼ৽৽ৼ

$$
\frac{1}{2}
$$
\nWhat if there is friction on the point T .

\n
$$
\frac{1}{2}
$$
\n
$$
\frac{1}{2
$$

Center of mass; the point at which there is an equal amount of mass on all points:

\n
$$
\frac{1}{2 \text{ times}} \quad \frac{1}{2 \text
$$

 $Stabilty$ $\begin{matrix} \mathcal{F}_{\mathsf{op}} \\ \mathcal{F}_{\mathsf{op}} \end{matrix}$ $2 is 2$ $\widetilde{\gamma}$ = \widetilde{r} + \widetilde{r} $c - 9$ $T = r F (+)$ direction An Object is stake when the torque
due to gravity tends to restore the
abject to equilibrium. This depends on the direction of the
forgne with respect to the pivot point T is CW, 2 From F, This is not stable $L_{\mathsf{F}_{\mathsf{a}}}$

to Improve stability, lower the center of $C.9$

Consider a tangential force on an object mass, m,
constrained to move in a circle. (not centrial)
movement SF The force is tangential f movement The force is unbalanced, so $F_T = ma = m(r \n\times)$
we multiply both sides by r $rF = mr^2x$ $\begin{array}{c} \nabla \cdot \uparrow \\ \nabla \cdot \uparrow \\ \nabla \cdot \uparrow \end{array} = \top \propto$ γ = τ $T \equiv mr : 'moment of inertia' : H₁₅ is
for a particle of mass m at a radius r from the center of a$

Note the parallels between linear +

\nTotal motion

\nLinear motion

\nTime

\n7 = mq

\n7 =
$$
\pm \times
$$

\n7 = $\pm \times$

\n7 = $\pm \times$

\n7 = $\pm \times$

\n7 = $\pm \times$

\n8.44 of like mass

\n9.532

\n1.444

\