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Lecture 9: Magnetic Scattering

Theoretical Background T
_ . N e

* Neutron magnetic interaction \ //i'p\
\_- r. e

* Magnetic scattering selection rules
* Magnetic form factor

Example Application
* Experimental form factor

* Anti-ferromagnetic order o b
* Inelastic scattering from (heli-)magnons
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Further Reading

*  “Neutron Diffraction of Magnetic Materials”
Y. A. Izyumov, V. E. Naish, and R. P. Ozerov.
Plenum Publishing Corporation, New York (1991)

*  “Introduction to the Theory of Thermal Neutron Scattering”
G. L. Squires
Dover Publication (1978)
* “Theory of Neutron Scattering from Condensed Matter” Vol.l/Il.
S. W. Lovesey
Oxford Science Publications (1984). R o) OTiGH

*  “Neutron Scattering”
T. Briickel, et al. (2012) / Available Open Access:
https://juser.fz-juelich.de/record/136390/files/Schluesseltech 39.pdf i e e

* “Neutron Data Book” Book
Albert-José Dianoux and Gerry Lander T eomons

Albert-José Dianoux
ILL (Grenoble)

https://www.ill.eu/fileadmin/user upload/ILL/1 About ILL/Documentation/NeutronDataBooklet.pq sy

ITU (Karlsruhe)

NEUTRONS
FOR SCIENCE
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Example for Magnetic cattering
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S. Mihlbauer et al. Science (2009).
= SANS discovered the Skyrmion lattice in MnSi for the first time!
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Magnetic Interaction

* Neutrons carry a spin % that interacts with any magnetic field.
* |n solid states magnetic fields are generated by the electrons that also carry spin %.

* Electrons additionally carry an orbital momentum L also creating a magnetic field.



Magnetic Interaction

Vin = _//_inB with (i, = —yuyo

y = 1.913 is the neutrons gyromagnetic ratio

hoo . .
Uy = % is the nuclear magneton (e is the elementary charge and m,, is its mass)
(4

(0 1 (0 =i\ _ _ (1 o0 the Pauli soin matri .
O, = 1 0 ,O'y— ; 0 yO0, = 0 _1 are e Faull spin matrix operators.



Magnetic Field Due To Electron

« Magnetic dipole moment of the electron u, = —2ugs B. = v’ X A’ with 4 = Ho (ﬁeXﬁ)
produces a magnetic field at a distance R S ! 4w R3 '’

e Because the electron represents a moving charge e~ B to 2ug) (PxR)
it additionally generates the field L A R R3

)

at the point R.HereL = R x p is the angular momentum of the electron.

* Intotal we obtain the magnetic interaction potential between neutron and electrons (see Squires)

Ho S
Vin = ——vun2ugd (W, + W)

THE THEORY OF

4 7'[ THERMAL

NEUTRON
SCATTERING

SXR
R3

wherel/T@ = ﬁx( ) and WL =%(p:R>.




Reminder: Cross-Section via Fermi’s Golden Rule

d?o k’(

dQdE’ ~ k )2”(1)2!%' FIV()|k,)|*6(E; — Ep + hw)

21h?

- Because I/, explicitly contains the neutron spin operator ¢ we have to introduce the spin state ¢
when evaluating the double-differential cross-section.

d?o k'( m

- 21 h?

2
© I 25(F. _
— = —(53) IE P(I)P(G)FE,Kk,F,a VCOlk, 1, o)2S(E, - By + ho)
,O- ;O-

=> Here it is possible to separate the computation of the transition matrix into two parts:

(k',F,a'|V,|k,I,0) = <F,0’Kk’| (W, + W,) |k>‘1, 0>
J

Does not depend on neutron spin!



The Magnetic Interaction Vector

- Evaluating the neutron spin-independent part for electrons i with position 7, spin s;, and momentum p;,
we obtain:

<k’| W, + W) |k> — 4,

Mlé =Y. er(iQF) {5 X (§i X 5) + % (p; X (_2))} is called the magnetic interaction vector that only

contains the position dependent part of ,,. 5 is a unit vector in the direction of é)

=> It can be shown (involving a lengthy calculation) that Muj can be expressed as a function of the

magnetization density M (7*) of the scattering system:

Ml5=§x(M5x§) M6=—$fd3rl\7f(?)eiaf

-> 1\71)5 is called the magnetic structure factor and is the Fourier transform of M(F).



The Magnetic Cross-Section

-=> Now we can evaluate the entire interaction matrix:

2

O'-Mla

= z P(o) K/l’a’

-y <,1|Mfg|/1'> <,1'|M’f5|,1>

o)

=> With this we can write down the full magnetic cross-section:

d?o k' -
_ 2 ai
20ar — @) kZP(”Z<I|MLQ
5 a

F> <F|ﬁf§ 1> 5(E; — Ep + hw)

Here r, = 2.82 - 101> mis a collection of prefactors and corresponds to the classical electron radius.



The Magnetic Selection Rule

(M, X Q)

=> Note that due to the double cross-product in the magnetic interaction vector only magnetic moments in
the sample that are perpendicular to the momentum transfer Q will contribute to scattering.

~
— =S

MlézQx(MéxQ)
=> Note that this is essentially a consequence of magnetic scattering arising from a dipole-dipole interaction.

=> This can be used to differentiate the direction in which the moments point.
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Magnetic Form Factor

What is the form factor for a magnetic atom?

Node\ f
=> Besides the structure factor in Born-approximation we make ) ) ‘ v

two more assumptions: i, - . . e -
(a) Electron probability (b) Contour probability
o The Heitler-London model is valid, thus unpaired electrons
are near to equilibrium positions of the magnetic ions.
o The total angular momentum L and the total spin
are good quantum numbers and therefore LS coupling is assumed.

s
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=> For L =0, we get (see for example Lovesey): F4 (6) = [ d3r eiafsd (7).

Here s4(7) is the density of unpaired electrons around ion d normalized to their number.

Fq (6) is the magnetic form factor that allows to consider all electrons of one magnetic atom together and

regard §ld as the total spin of that atom.

=> Because the electrons form a cloud around the magnetic ion, and are not centered at the position of the
nucleus the form factor falls off as function of Q.



Magnetic Form Factor

. 1 - 1
=> For L # 0, the magnetic form factor gets replaced by: —ng(Q) = —gsJo + 5L (Jo + J2)
where g =gs +gr,

S(S+1)— L(L+1)

Elci)i?\ael\\ T i ,1 Z‘ gS = 1 + J(J+ 1) )
y ’ ‘ P D LL+1)—S(S+1)
i b y =1 )
x/N* ) x Q v L=t T T+ )
0

Here g is the Landé splitting factor and j,,(Qr) is the nth order spherical Bessel function.

=> In this case §ld needs to be considered as the total angular momentum operator

=> The magnetic form factor can be approximated by analytical functions of the form:

(jo(s)) = Aexp(—as®)+ Bexp(—bs®) + Cexp(—cs®) +D for [ =0
(i(s)) = As®exp(—as®) + Bs®exp(—bs®) + Cs’exp(—cs®) + Ds* for [ #0.

=> All the parameters are tabulated (for example Neutron Scattering Handbook)
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Magnetic Form Factor
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Diffraction from Anti-Ferromagnet

2d 1 0-}0. Q=

VRN

A4 AV
? W A=Type C=Type
* Periodicity of anti-ferromagnets is larger then the 1/t
underlying atomic structure

* Inthe simplest case there is a doubling of the unit

cell in one direction
* This leads to additional Bragg-peaks at forbidden

positions (1/2 order Bragg-peaks) v E-Type v G-Type

R

!
;
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Diffraction from Anti-Ferromagnet
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B. C. Chakoumakos and J. B. Parise,
https://www.elementsmagazine.org/probing-phase-transitions-and-magnetism-in-minerals-with-neutrons/

14.02. 24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic Lecture 9: Magnetic Scattering


https://www.elementsmagazine.org/probing-phase-transitions-and-magnetism-in-minerals-with-neutrons/

Diffraction from Anti-Ferromagnet

00

Recent results from HRPT+DMC at SINQ: ol irT?*;;?;;’L _
* Complex system SrTe,FeO.Cl T=293K
* monoclinic with 88 atoms per UC 7 130 -
* heavy and light elements % X-ray
 low temperature magnetic structure z ol |
 Combined use of x-ray and neutron 2 ol | 4
diffraction (at two temperatures) to solve | O A bt A AL 1
nuclear and magnetic structure [l ML R
« Refinement yields very precise lattice 0 5 10 2[9(6] 5 %
parameter + atomic positions and thermal -

motion parameters SiTesFeOgC

2 =2464 A

28800 |
e T=15K

Results XRD+ND refinement:
21600

chemical formula  SrTe,FeO.Cl

Intensity (arb. units)

crystal system monoclinic .

space group P12,/n1 (no. 14) I ARG L] H neutOn |

- (A) 102604(1) 7200 | | |||||p|| ||1:nmm—-— —
b (A) 5.34556(5) st | ,

c(A 26.6851(3) 4 '_%WMMMW .
B(°) 93.6853(4) 0 . , N |
Rp (%) 1.32 2

14.02. 24 Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic Lecture 9: Magnetic Scattering



Incommensurate Magnetic Structures in ToMnO,

80 1 ! I 1 1 I
_ &0 oo pe TbMnO; is a multiferroic material:
° L paramagnetic |
%_40— 7] . . .
- N Lo simultaneous magnetic and ferro-electric order
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Lecture 10: Neutron Polarization Analysis



Incommensurate Magnetic Structures in ToMnO,
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M. Kenzelmann, et al., Phys. Rev. Lett. 95, 087206 (2005)
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Helimagnon
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M. Kugler, et al., Phys. Rev. Lett. 115, 097203 (2015)
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