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Supervised learning
Train network with large amount of labelled data 
(input-output pairs): Reduce cost function 
(distance measure between network output and 
labels) via gradient descent.


Verify network performance on distinct test data.

Unsupervised learning
Use unlabelled data, network learns to cluster 
data/find structure/learn probability distribution 
of features 


Holy grail of the field

Machine Learning Overview
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Artificial Neural Networks

Phase Classification Quantum State Compression

Probing many-body localization with neural networks

Frank Schindler,1 Nicolas Regnault,2 and Titus Neupert1
1Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
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We show that a simple artificial neural network trained on entanglement spectra of individual states of a
many-body quantum system can be used to determine the transition between a many-body localized and a
thermalizing regime. Specifically, we study the Heisenberg spin-1/2 chain in a random external field. We
employ a multilayer perceptron with a single hidden layer, which is trained on labelled entanglement spectra
pertaining to the fully localized and fully thermal regimes. We then apply this network to classify spectra
belonging to states in the transition region. For training, we use a cost function that contains, in addition to the
usual error and regularization parts, a term that favors a confident classification of the transition region states.
The resulting phase diagram is in good agreement with the one obtained by more conventional methods and can
be computed for small systems. Furthermore, we map out the structure of eigenstates across the transition with
spatial resolution. We test the robustness of these results against providing the input data in alternate forms,
such as the level spacings of the entanglement spectra, and analyze the network operation using the dreaming
technique.

I. INTRODUCTION

Artificial neural networks are routinely employed for data
classification. They are useful when features distinguishing
one class of data from another are unknown or unwieldy. A
neural network can learn such features from examples, i.e.,
a set of labelled training data. In physics, the application of
neural networks, and machine learning in general, to many-
body quantum mechanics is a novel and burgeoning field
of research.1 Currently, there are three main lines of pur-
suit: The application of machine learning to the problem of
classifying various phases of matter2–8, accelerating material
searches and design9–12, and the quest to encode quantum me-
chanical states in structures mimicking the setup of a neural
network13–15. This work is concerned with the first kind of
approach. Most previous studies have considered the iden-
tification of phases and phase transitions by training neural
networks on a large set of prototype configurations. Here,
we instead use entanglement spectra16, which in recent years
emerged as a powerful tool to characterize of a plethora of
physical systems, and have been employed for a neural net-
work based detection of phase transitions in Ref. 7.

We apply neural network based phase classification to a
fundamental question in quantum statistical physics, namely
the distinction between systems that obey the eigenstate ther-
malization hypothesis (ETH) and those violating it. Accord-
ing to the ETH, local observables in a typical many-body
eigenstate should take the values that pertain to the observ-
ables in a thermal ensemble, with the whole system acting
as a heat bath for its subsystems in the thermodynamic limit.
A well-studied class of systems that violate the ETH are
those exhibiting many-body localization (MBL)17–24, mean-
ing that partial memory of initial conditions is preserved for
infinite times. Due to this property, which is intimately re-
lated to the emergence of an extensive number of integrals of
motion22,25–27, MBL systems have been envisioned as particu-
larly robust quantum memories.28 Here, we study the Heisen-

FIG. 1. Phase diagram of the Heisenberg chain with Hamiltonian (5)
obtained from the neural network ansatz in Eq. (7) trained with cost
function (8) on entanglement spectra obtained from an exact diago-
nalization of the Hamiltonian (5) on N = 16 sites. The plot shows
the average confidence for the MBL phase over 40 realizations of
disorder as a function of the absolute values of the random magnetic
field h̄, spaced with �h̄ = 0.125, and for eigenstates belonging
to different rescaled energies ✏ = (E � Emin)/(Emax � Emin).
Compared to Ref. 17 where a similar plot was obtained with better-
controlled, yet more sophisticated methods, we have used smaller
systems and fewer disorder realizations.

berg chain in a random field as a simple model for MBL. At
strong disorder, the model is in the MBL regime, whereas it
satisfies the ETH if disorder is weak. Several measures or
quantities allow a well-controlled quantitative distinction of
thermal and localized regimes. They have been used to study
the ETH-MBL transition in finite size numerical simulations,
in particular for an extensive analysis of the Heisenberg model
in a random field. These characterizing quantities include en-

conventional methods neural network output

Phase diagram of a discordered spin-chain 
exhibiting many-body localization (MBL):
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Idea: train with 
quantities pertaining 
to known phases of 
matter and apply 
network to classify 
quantities from 
unknown phases
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So far, we have focussed on supervised 
techniques, but are currently also exploring 
unsupervised methods.

see also: Physical Review B 95, 245134 (2017)

Condensed Matter Applications

Goal: Learn a quantum wave function

 i , with i = 1...N
where      is exponentially 
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using a network with 
n ⌧ N free parameters

Ansatz:

see: Carleo et. al. Science 355 (6325), 602-606
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e.g. A(x) = tanh(x) or ReLu(x)


