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Lecture 11: Studying quantum matter for nanoscale applications

Theoretical Background
e Continuum description of matter }
* Dynamic effects at grazing incidence l

Practical Implementation

* Neutron guides and focusing optics |
— = A=

e SANS and reflectometry instruments

Example Application
 Surface spin canting in magnetic nanoparticles
* GISANS on frustrated artificial spins



Small Angle (Neutron) Scattering — SA(N)S

* Interest in structures with sizes 1-100 nm
* Very large compared with neutron wavelength (10x-1000x)
* Due to properties of Fourier transform the relevant signal is at small Q = small scattering angle

* Instruments require very good angular resolution (long collimation and distant detector)
* Wavelength resolution is less important and can be relaxed to regain intensity

Detector

Beam divergence

X-rays/neutrons
|
1

\ Point collimation /

(pinholes or slits)
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Continuum Description for SAS

real
space

space

space

real
space

Fourier U transformation

[[11]e i = Wk

small Q U approximation

e =\

Fourier U backtransformation

Q-rang limited to < 0.1 A1

Convolution theorem;

signal is given by nm-size variation in scattering potential
Material described as continuum with average material
dependent scattering length density (SLD) parameter

pn=pru Y _ bi-m
=1

X-ray atomic or neutron magnetic form factor decay at
much larger Q-values
=>» continuum description only depends on one complex
number to fully describe the scattering cross-section



Structure Factor in SAS

Unit Cell Stmcture Factor Reciprocal Lattice

N\

%  Structure factor only applies for organized systems

A ) ~ ’[QI:/‘ i i
Q) Z f’ /§v[5 — (hai +kaz +1a3)) Independent particles behave as incoherent scatterers

' Form Factor and can be described by their form factor alone
Structure Single Particle Unit Cell Lattice e
= @ © |e © ( s - ) 100 =
.............. 60 ——
Fourier Transform Forrh Eactor Selection Recip.rocal Peak 40 —— 0
A Rules Lattice Sh?pe - gg E—
= © E ®| | >0
1.0 ——
§10‘2
o
* The form factor is the Fourier transform of the particle 103
shape scaled by the contrast between particle and .
surrounding medium 10 P(q):/@gF(Q(q’qﬁ’f”d‘bdf
— — er = 0.01 1 0.1
fi(Q) = Ap; Fy(Q) = [ Ap;(r)e™"d’r QA
* nm-size particles are not identical like atoms, size/shape . 4sin QR — QR cos QR
distribution has to be taken into account Fophere(@, R) = ATR (QR)?

* Analysis programs include form factors for typical shapes
Cube(Q, a) = a’sinc(gza )sinc(gya)sinc(q a)
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Effects at grazing incidence

Geometry and naming conventions

(1) Specular Reflection:
a;=0 Detector

(2) Off-Specular Scattered:
aFa; ¢=0

2\ Arhitrarvy Qrattarad Raam:
(3) Arbitrary Scattered Beam:

a#Q;
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Effects at grazing incidence

At each interface:

reflection .
refraction

transmission
I fy Hy

i
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Refraction

k2
By definition, the refractive index is: ny = k—;
0
Interaction can’t change the in-plane component kys =Ky k., cosqy g
, : ’ ’ COS Qv = ‘ - = =
of wave vector, leads to Snell’s law: ks = ko 7 ko cosay | T
On side with larger n; critical angle of total reflection: COS Q. = it
no
Wave vector z-component in the medium:
k.t = kisinay = nikosin oy 4
4 7§4\2 ;'59 %} airn = 1.00 . |k@ kfl
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Reflection from a single interface

Reflectivity determined from reflectance: R=|ro1 E

using the reciprocal space vector

21 . 4 .
q, = ~ (sina; +sinay) = — sinaqy

one finds that the reflectivity is:

1 — \/1 - (qC/QZ)2
1+ \/1 — (qC/Qz)2

R(9z/q%)

R(q.) =
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Reflection from multiple interfaces

Interfering parts from all interfaces, but general relation for each layer:

21kz,j+1%;

.= B ik 2 Tiarl T Ajpae
LT 1+ 7j 41X 412 P=i+1%

Together with two boundary conditions

d-
RN — (0 and TO =1 |
can be solved analytically for any number of interfaces. ki kf
8% Oéf PN

Tl \/ Rl
T> ~., — K

Referred to as Parratt’s formalism, which yields a iterative solution for IN-L >y 7 RN
s u ” 0=Rn Tn
any number of layers that is “exact ~
ki

"/
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Refractive Index for Neutrons

. Vi
Can be derived from Schrodinger’s equation: N = 1 — % ~1— ﬁ
Ferma 27 — _ o
Nuclear: Vi = b;—0(7) Magnetic: V™ =B,
My
)\2
Related to scattering length density (SLD): Moy — 1 — 2— (Pn + ,Om)
s
Typical values for & are 10~ for x-rays and 10 for neutrons ks
=> nis very close to 1 me o




Scattering within the plane

The Distorted Wave Born Approximation (DWBA)

* Use optical formalism (Parratt) to describe strong dynamic effect

* In each layer perform Born approximation for the in-plane scattering
of the difference potential that fulfills small scattering condition

* Need to account for all possible initial and final wave directions
that may be present due to reflection below

= Fpwpa (Q), ki kr2) = F(Q.kf-— ki)

+ i F (Qy Kogn + Kiz)
+1pF(Q), —kyz — kiz)
+rirs F (Q), —ky,z + Kiz)

Relevant for off-specular and GISAS:
* Roughness between layers
 Magnetic domains

e Structured samples
 Embedded particles

I

—_—
—_—
—
—

Term 3: G,=-kp-ki,  Term 4: §,=-k+k;,
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NR from homogeneous layers

Simple example of single layer reflectivity:
0 I 1 | =

logio [R(w)]

w/deg
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NR from homogeneous layers

Simple example of single layer reflectivity:

=

3

& litude = AV,

- amplitude = layer,substrate -

o

A, _ minima = djayer

S 4l ]
5t
04 I 3 3 ] 5

w/deg
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NR from homogeneous layers

Simple example of multilayer reflectivity:

0
i B
: [\[\ maxima = dbilayer [

— -2} ﬂ /\ amplitudes = AV/|ayers
% fm = Adjayers I
_2 -3-— mm minima = Dgim
£ 4 Wil

| i N\ ﬂM i —

w/deg
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Polarized NR from magnetic layers

Fe
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Pi /&

Reflectivity
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SANS instruments

iris for beam : I
collimation bgg mg{gp :HI]:F
neutron ¥ .
guide ' ] 1
- - . i J 3 ?2]4" [ 1
- sample E i
(mechanical) Eﬂ 2-di ional h
. a -dimensiona
velocity selector ?:v J position sensitive

detector

f h . \
35 4 4.5 5 55 6 6.5 7
Wavelength (A)
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Neutron Reflectometers

®
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SANS on Magnetic Nanoparticles

100 | Form factor is a sphere
- | of magnetic core and
5 non-magnetic shell
107" |

PHYSICAL REVIEW X 10, 031019 (2020)
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https://doi.org/10.1103/PhysRevX.10.031019

Polarized SANS on Magnetic Nanoparticles
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Frustrated artificial spins on triangular lattice

Principles of X-ray and Neutron Scattering | Applications to Quantum Matter | Artur Glavic
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Frustrated artificial spins on triangular lattice
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Frustrated artificial spins on triangular lattice

symmetric

Follow up experiment at PSI
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